@article{9818, abstract = {Triangle mesh-based simulations are able to produce satisfying animations of knitted and woven cloth; however, they lack the rich geometric detail of yarn-level simulations. Naive texturing approaches do not consider yarn-level physics, while full yarn-level simulations may become prohibitively expensive for large garments. We propose a method to animate yarn-level cloth geometry on top of an underlying deforming mesh in a mechanics-aware fashion. Using triangle strains to interpolate precomputed yarn geometry, we are able to reproduce effects such as knit loops tightening under stretching. In combination with precomputed mesh animation or real-time mesh simulation, our method is able to animate yarn-level cloth in real-time at large scales.}, author = {Sperl, Georg and Narain, Rahul and Wojtan, Christopher J}, issn = {15577368}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {Association for Computing Machinery}, title = {{Mechanics-aware deformation of yarn pattern geometry}}, doi = {10.1145/3450626.3459816}, volume = {40}, year = {2021}, } @misc{9327, abstract = {This archive contains the missing sweater mesh animations and displacement models for the code of "Mechanics-Aware Deformation of Yarn Pattern Geometry" Code Repository: https://git.ist.ac.at/gsperl/MADYPG}, author = {Sperl, Georg and Narain, Rahul and Wojtan, Christopher J}, publisher = {IST Austria}, title = {{Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data)}}, doi = {10.15479/AT:ISTA:9327}, year = {2021}, } @article{8535, abstract = {We propose a method to enhance the visual detail of a water surface simulation. Our method works as a post-processing step which takes a simulation as input and increases its apparent resolution by simulating many detailed Lagrangian water waves on top of it. We extend linear water wave theory to work in non-planar domains which deform over time, and we discretize the theory using Lagrangian wave packets attached to spline curves. The method is numerically stable and trivially parallelizable, and it produces high frequency ripples with dispersive wave-like behaviors customized to the underlying fluid simulation.}, author = {Skrivan, Tomas and Soderstrom, Andreas and Johansson, John and Sprenger, Christoph and Museth, Ken and Wojtan, Christopher J}, issn = {15577368}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {Association for Computing Machinery}, title = {{Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces}}, doi = {10.1145/3386569.3392466}, volume = {39}, year = {2020}, } @article{8765, abstract = {This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly‐shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re‐use popular isotropic plasticity models like the Drucker‐Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate.}, author = {Schreck, Camille and Wojtan, Christopher J}, issn = {1467-8659}, journal = {Computer Graphics Forum}, keywords = {Computer Networks and Communications}, number = {2}, pages = {89--99}, publisher = {Wiley}, title = {{A practical method for animating anisotropic elastoplastic materials}}, doi = {10.1111/cgf.13914}, volume = {39}, year = {2020}, } @article{5681, abstract = {We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both: we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to implement and takes advantage of existing highly-tuned algorithms.}, author = {Hikaru, Ibayashi and Wojtan, Christopher J and Thuerey, Nils and Igarashi, Takeo and Ando, Ryoichi}, issn = {19410506}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {6}, pages = {2288--2302}, publisher = {IEEE}, title = {{Simulating liquids on dynamically warping grids}}, doi = {10.1109/TVCG.2018.2883628}, volume = {26}, year = {2020}, }