Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




75 Publications

2017 | Conference Paper | IST-REx-ID: 999   OA
Pentina, A., & Lampert, C. (2017). Multi-task learning with labeled and unlabeled tasks (Vol. 70, pp. 2807–2816). Presented at the ICML: International Conference on Machine Learning, Sydney, Australia: Omnipress.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 1108   OA
Zimin, A., & Lampert, C. (2017). Learning theory for conditional risk minimization (Vol. 54, pp. 213–222). Presented at the AISTATS: Artificial Intelligence and Statistics, Fort Lauderdale, FL, United States: JMLR, Inc. and Microtome Publishing.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 750
Pielorz, J., Prandtstetter, M., Straub, M., & Lampert, C. (2017). Optimal geospatial volunteer allocation needs realistic distances. In 2017 IEEE International Conference on Big Data (pp. 3760–3763). Boston, MA, United States: IEEE. https://doi.org/10.1109/BigData.2017.8258375
View | DOI
 
2016 | Conference Paper | IST-REx-ID: 1369   OA
Kolesnikov, A., & Lampert, C. (2016). Seed, expand and constrain: Three principles for weakly-supervised image segmentation (Vol. 9908, pp. 695–711). Presented at the ECCV: European Conference on Computer Vision, Amsterdam, The Netherlands: Springer. https://doi.org/10.1007/978-3-319-46493-0_42
View | DOI | Download (ext.)
 
2016 | Conference Paper | IST-REx-ID: 1098   OA
Pentina, A., & Urner, R. (2016). Lifelong learning with weighted majority votes (Vol. 29, pp. 3619–3627). Presented at the NIPS: Neural Information Processing Systems, Barcelona, Spain: Neural Information Processing Systems.
View | Files available
 
2016 | Conference Paper | IST-REx-ID: 1214
Martius, G. S., Hostettler, R., Knoll, A., & Der, R. (2016). Compliant control for soft robots: Emergent behavior of a tendon driven anthropomorphic arm (Vol. 2016–November). Presented at the IEEE RSJ International Conference on Intelligent Robots and Systems IROS , Daejeon, Korea: IEEE. https://doi.org/10.1109/IROS.2016.7759138
View | DOI
 
2016 | Conference Paper | IST-REx-ID: 1707
Pielorz, J., & Lampert, C. (2016). Optimal geospatial allocation of volunteers for crisis management. Presented at the ICT-DM: Information and Communication Technologies for Disaster Management, Rennes, France: IEEE. https://doi.org/10.1109/ICT-DM.2015.7402041
View | DOI
 
2016 | Conference Paper | IST-REx-ID: 1102   OA
Kolesnikov, A., & Lampert, C. (2016). Improving weakly-supervised object localization by micro-annotation. In Proceedings of the British Machine Vision Conference 2016 (Vol. 2016–September, p. 92.1-92.12). York, United Kingdom: BMVA Press. https://doi.org/10.5244/C.30.92
View | DOI | Download (ext.)
 
2016 | Thesis | IST-REx-ID: 1126   OA
Pentina, A. (2016). Theoretical foundations of multi-task lifelong learning. IST Austria. https://doi.org/10.15479/AT:ISTA:TH_776
View | Files available | DOI
 
2015 | Journal Article | IST-REx-ID: 1655   OA
Martius, G. S., & Olbrich, E. (2015). Quantifying emergent behavior of autonomous robots. Entropy, 17(10), 7266–7297. https://doi.org/10.3390/e17107266
View | Files available | DOI
 
2015 | Conference Paper | IST-REx-ID: 1706   OA
Pentina, A., & Ben David, S. (2015). Multi-task and lifelong learning of kernels (Vol. 9355, pp. 194–208). Presented at the ALT: Algorithmic Learning Theory, Banff, AB, Canada: Springer. https://doi.org/10.1007/978-3-319-24486-0_13
View | DOI | Download (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1857   OA
Pentina, A., Sharmanska, V., & Lampert, C. (2015). Curriculum learning of multiple tasks (pp. 5492–5500). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, United States: IEEE. https://doi.org/10.1109/CVPR.2015.7299188
View | DOI | Download (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1858   OA
Lampert, C. (2015). Predicting the future behavior of a time-varying probability distribution (pp. 942–950). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, United States: IEEE. https://doi.org/10.1109/CVPR.2015.7298696
View | DOI | Download (ext.) | arXiv
 
2015 | Conference Paper | IST-REx-ID: 1860   OA
Royer, A., & Lampert, C. (2015). Classifier adaptation at prediction time (pp. 1401–1409). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, United States: IEEE. https://doi.org/10.1109/CVPR.2015.7298746
View | DOI | Download (ext.)
 
2015 | Journal Article | IST-REx-ID: 1570   OA
Der, R., & Martius, G. S. (2015). Novel plasticity rule can explain the development of sensorimotor intelligence. PNAS, 112(45), E6224–E6232. https://doi.org/10.1073/pnas.1508400112
View | DOI | Download (ext.) | PubMed | Europe PMC
 
2015 | Conference Paper | IST-REx-ID: 1859   OA
Shah, N., Kolmogorov, V., & Lampert, C. (2015). A multi-plane block-coordinate Frank-Wolfe algorithm for training structural SVMs with a costly max-oracle (pp. 2737–2745). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE. https://doi.org/10.1109/CVPR.2015.7298890
View | DOI | Download (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1425   OA
Pentina, A., & Lampert, C. (2015). Lifelong learning with non-i.i.d. tasks (Vol. 2015, pp. 1540–1548). Presented at the NIPS: Neural Information Processing Systems, Montreal, Canada: Neural Information Processing Systems.
View | Download (ext.)
 
2015 | Thesis | IST-REx-ID: 1401
Sharmanska, V. (2015). Learning with attributes for object recognition: Parametric and non-parametrics views. IST Austria.
View | Download (ext.)
 
2015 | Journal Article | IST-REx-ID: 1533
Xia, W., Domokos, C., Xiong, J., Cheong, L., & Yan, S. (2015). Segmentation over detection via optimal sparse reconstructions. IEEE Transactions on Circuits and Systems for Video Technology, 25(8), 1295–1308. https://doi.org/10.1109/TCSVT.2014.2379972
View | DOI
 
2014 | Conference Paper | IST-REx-ID: 2171   OA
Kolesnikov, A., Guillaumin, M., Ferrari, V., & Lampert, C. (2014). Closed-form approximate CRF training for scalable image segmentation. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8691, pp. 550–565). Zurich, Switzerland: Springer. https://doi.org/10.1007/978-3-319-10578-9_36
View | DOI | Download (ext.)
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed