Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




79 Publications

2020 | Conference Paper | IST-REx-ID: 7481   OA
Bui Thi Mai, P., & Lampert, C. (n.d.). Functional vs. parametric equivalence of ReLU networks.
View | Files available
 
2019 | Journal Article | IST-REx-ID: 6952   OA
Henderson, P. M., & Ferrari, V. (2019). Learning single-image 3D reconstruction by generative modelling of shape, pose and shading. International Journal of Computer Vision. https://doi.org/10.1007/s11263-019-01219-8
View | Files available | DOI
 
2019 | Book (Editor) | IST-REx-ID: 7171
Kersting, K., Lampert, C., & Rothkopf, C. (Eds.). (2019). Wie Maschinen lernen. Springer Nature. https://doi.org/10.1007/978-3-658-26763-6
View | Files available | DOI
 
2019 | Journal Article | IST-REx-ID: 7479   OA
Bui Thi Mai, P., & Lampert, C. (2019). Distillation-based training for multi-exit architectures. IEEE International Conference on Computer Vision, 1355–1364.
View | Files available
 
2019 | Journal Article | IST-REx-ID: 6554   OA
Xian, Y., Lampert, C., Schiele, B., & Akata, Z. (2019). Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(9), 2251–2265. https://doi.org/10.1109/tpami.2018.2857768
View | DOI | Download (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 6942   OA
Ashok, P., Brázdil, T., Chatterjee, K., Křetínský, J., Lampert, C., & Toman, V. (2019). Strategy representation by decision trees with linear classifiers. In 16th International Conference on Quantitative Evaluation of Systems (Vol. 11785, pp. 109–128). Glasgow, United Kingdom: Springer Nature. https://doi.org/10.1007/978-3-030-30281-8_7
View | DOI | Download (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 6569   OA
Bui Thi Mai, P., & Lampert, C. (2019). Towards understanding knowledge distillation. In Proceedings of the 36th International Conference on Machine Learning (Vol. 97, pp. 5142–5151). Long Beach, CA, United States: PMLR.
View | Files available
 
2019 | Conference Paper | IST-REx-ID: 6482
Sun, R., & Lampert, C. (2019). KS(conf): A light-weight test if a ConvNet operates outside of Its specifications (Vol. 11269, pp. 244–259). Presented at the GCPR: Conference on Pattern Recognition, Stuttgart, Germany: Springer Nature. https://doi.org/10.1007/978-3-030-12939-2_18
View | Files available | DOI | Download (ext.) | arXiv
 
2019 | Journal Article | IST-REx-ID: 6944   OA
Sun, R., & Lampert, C. (2019). KS(conf): A light-weight test if a multiclass classifier operates outside of its specifications. International Journal of Computer Vision. https://doi.org/10.1007/s11263-019-01232-x
View | Files available | DOI
 
2019 | Conference Paper | IST-REx-ID: 6590   OA
Konstantinov, N. H., & Lampert, C. (2019). Robust learning from untrusted sources. In Proceedings of the 36th International Conference on Machine Learning (Vol. 97, pp. 3488–3498). Long Beach, CA, USA: PMLR.
View | Download (ext.) | arXiv
 
2018 | Journal Article | IST-REx-ID: 321
Darrell, T., Lampert, C., Sebe, N., Wu, Y., & Yan, Y. (2018). Guest editors’ introduction to the special section on learning with Shared information for computer vision and multimedia analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(5), 1029–1031. https://doi.org/10.1109/TPAMI.2018.2804998
View | DOI
 
2018 | Conference Paper | IST-REx-ID: 6589   OA
Alistarh, D.-A., Hoefler, T., Johansson, M., Konstantinov, N. H., Khirirat, S., & Renggli, C. (2018). The convergence of sparsified gradient methods. In Advances in Neural Information Processing Systems 31 (Vol. Volume 2018, pp. 5973–5983). Montreal, Canada: Neural information processing systems.
View | Download (ext.) | arXiv
 
2018 | Conference Paper | IST-REx-ID: 6011   OA
Kuzborskij, I., & Lampert, C. (2018). Data-dependent stability of stochastic gradient descent. In Proceedings of the 35 th International Conference on Machine Learning (Vol. 80, pp. 2815–2824). Stockholm, Sweden: International Machine Learning Society.
View | Download (ext.) | arXiv
 
2018 | Journal Article | IST-REx-ID: 563   OA
Ringbauer, H., Kolesnikov, A., Field, D., & Barton, N. H. (2018). Estimating barriers to gene flow from distorted isolation-by-distance patterns. Genetics, 208(3), 1231–1245. https://doi.org/10.1534/genetics.117.300638
View | Files available | DOI | Download (ext.)
 
2018 | Conference Paper | IST-REx-ID: 6012   OA
Sahoo, S., Lampert, C., & Martius, G. S. (2018). Learning equations for extrapolation and control. In Proceedings of the 35th International Conference on Machine Learning (Vol. 80, pp. 4442–4450). Stockholm, Sweden: International Machine Learning Society.
View | Files available | Download (ext.) | arXiv
 
2018 | Thesis | IST-REx-ID: 68   OA
Zimin, A. (2018). Learning from dependent data. IST Austria. https://doi.org/10.15479/AT:ISTA:TH1048
View | Files available | DOI
 
2018 | Research Data | IST-REx-ID: 5584
Deny, S., Marre, O., Botella-Soler, V., Martius, G. S., & Tkacik, G. (2018). Nonlinear decoding of a complex movie from the mammalian retina. IST Austria. https://doi.org/10.15479/AT:ISTA:98
View | Files available | DOI
 
2018 | Thesis | IST-REx-ID: 197   OA
Kolesnikov, A. (2018). Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. IST Austria. https://doi.org/10.15479/AT:ISTA:th_1021
View | Files available | DOI
 
2017 | Conference Paper | IST-REx-ID: 911   OA
Royer, A., Kolesnikov, A., & Lampert, C. (n.d.). Probabilistic image colorization. Presented at the BMVC: British Machine Vision Conference, London, United Kingdom: BMVA Press.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 1000   OA
Kolesnikov, A., & Lampert, C. (2017). PixelCNN models with auxiliary variables for natural image modeling (Vol. 70, pp. 1905–1914). Presented at the ICML: International Conference on Machine Learning, Sydney, Australia: Omnipress.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 652
Der, R., & Martius, G. S. (2017). Dynamical self consistency leads to behavioral development and emergent social interactions in robots. Presented at the ICDL EpiRob: International Conference on Development and Learning and Epigenetic Robotics , Cergy-Pontoise, France: IEEE. https://doi.org/10.1109/DEVLRN.2016.7846789
View | DOI
 
2017 | Conference Paper | IST-REx-ID: 6841   OA
Martius, G. S., & Lampert, C. (2017). Extrapolation and learning equations. In 5th International Conference on Learning Representations, ICLR 2017 - Workshop Track Proceedings. Toulon, France: International Conference on Learning Representations.
View | Download (ext.) | arXiv
 
2017 | Conference Paper | IST-REx-ID: 998   OA
Rebuffi, S. A., Kolesnikov, A., Sperl, G., & Lampert, C. (2017). iCaRL: Incremental classifier and representation learning (Vol. 2017, pp. 5533–5542). Presented at the CVPR: Computer Vision and Pattern Recognition, Honolulu, HA, United States: IEEE. https://doi.org/10.1109/CVPR.2017.587
View | DOI | Download (ext.)
 
2017 | Journal Article | IST-REx-ID: 658   OA
Der, R., & Martius, G. S. (2017). Self organized behavior generation for musculoskeletal robots. Frontiers in Neurorobotics, 11(MAR). https://doi.org/10.3389/fnbot.2017.00008
View | Files available | DOI
 
2017 | Conference Paper | IST-REx-ID: 999   OA
Pentina, A., & Lampert, C. (2017). Multi-task learning with labeled and unlabeled tasks (Vol. 70, pp. 2807–2816). Presented at the ICML: International Conference on Machine Learning, Sydney, Australia: Omnipress.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 1108   OA
Zimin, A., & Lampert, C. (2017). Learning theory for conditional risk minimization (Vol. 54, pp. 213–222). Presented at the AISTATS: Artificial Intelligence and Statistics, Fort Lauderdale, FL, United States: JMLR, Inc. and Microtome Publishing.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 750
Pielorz, J., Prandtstetter, M., Straub, M., & Lampert, C. (2017). Optimal geospatial volunteer allocation needs realistic distances. In 2017 IEEE International Conference on Big Data (pp. 3760–3763). Boston, MA, United States: IEEE. https://doi.org/10.1109/BigData.2017.8258375
View | DOI
 
2016 | Conference Paper | IST-REx-ID: 1369   OA
Kolesnikov, A., & Lampert, C. (2016). Seed, expand and constrain: Three principles for weakly-supervised image segmentation (Vol. 9908, pp. 695–711). Presented at the ECCV: European Conference on Computer Vision, Amsterdam, The Netherlands: Springer. https://doi.org/10.1007/978-3-319-46493-0_42
View | DOI | Download (ext.)
 
2016 | Conference Paper | IST-REx-ID: 1098   OA
Pentina, A., & Urner, R. (2016). Lifelong learning with weighted majority votes (Vol. 29, pp. 3619–3627). Presented at the NIPS: Neural Information Processing Systems, Barcelona, Spain: Neural Information Processing Systems.
View | Files available
 
2016 | Conference Paper | IST-REx-ID: 1214
Martius, G. S., Hostettler, R., Knoll, A., & Der, R. (2016). Compliant control for soft robots: Emergent behavior of a tendon driven anthropomorphic arm (Vol. 2016–November). Presented at the IEEE RSJ International Conference on Intelligent Robots and Systems IROS , Daejeon, Korea: IEEE. https://doi.org/10.1109/IROS.2016.7759138
View | DOI
 
2016 | Conference Paper | IST-REx-ID: 1707
Pielorz, J., & Lampert, C. (2016). Optimal geospatial allocation of volunteers for crisis management. Presented at the ICT-DM: Information and Communication Technologies for Disaster Management, Rennes, France: IEEE. https://doi.org/10.1109/ICT-DM.2015.7402041
View | DOI
 
2016 | Conference Paper | IST-REx-ID: 1102   OA
Kolesnikov, A., & Lampert, C. (2016). Improving weakly-supervised object localization by micro-annotation. In Proceedings of the British Machine Vision Conference 2016 (Vol. 2016–September, p. 92.1-92.12). York, United Kingdom: BMVA Press. https://doi.org/10.5244/C.30.92
View | DOI | Download (ext.)
 
2016 | Thesis | IST-REx-ID: 1126   OA
Pentina, A. (2016). Theoretical foundations of multi-task lifelong learning. IST Austria. https://doi.org/10.15479/AT:ISTA:TH_776
View | Files available | DOI
 
2015 | Journal Article | IST-REx-ID: 1655   OA
Martius, G. S., & Olbrich, E. (2015). Quantifying emergent behavior of autonomous robots. Entropy, 17(10), 7266–7297. https://doi.org/10.3390/e17107266
View | Files available | DOI
 
2015 | Conference Paper | IST-REx-ID: 1706   OA
Pentina, A., & Ben David, S. (2015). Multi-task and lifelong learning of kernels (Vol. 9355, pp. 194–208). Presented at the ALT: Algorithmic Learning Theory, Banff, AB, Canada: Springer. https://doi.org/10.1007/978-3-319-24486-0_13
View | DOI | Download (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1857   OA
Pentina, A., Sharmanska, V., & Lampert, C. (2015). Curriculum learning of multiple tasks (pp. 5492–5500). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, United States: IEEE. https://doi.org/10.1109/CVPR.2015.7299188
View | DOI | Download (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1858   OA
Lampert, C. (2015). Predicting the future behavior of a time-varying probability distribution (pp. 942–950). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, United States: IEEE. https://doi.org/10.1109/CVPR.2015.7298696
View | DOI | Download (ext.) | arXiv
 
2015 | Conference Paper | IST-REx-ID: 1860   OA
Royer, A., & Lampert, C. (2015). Classifier adaptation at prediction time (pp. 1401–1409). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, United States: IEEE. https://doi.org/10.1109/CVPR.2015.7298746
View | DOI | Download (ext.)
 
2015 | Journal Article | IST-REx-ID: 1570   OA
Der, R., & Martius, G. S. (2015). Novel plasticity rule can explain the development of sensorimotor intelligence. PNAS, 112(45), E6224–E6232. https://doi.org/10.1073/pnas.1508400112
View | DOI | Download (ext.) | PubMed | Europe PMC
 
2015 | Conference Paper | IST-REx-ID: 1859   OA
Shah, N., Kolmogorov, V., & Lampert, C. (2015). A multi-plane block-coordinate Frank-Wolfe algorithm for training structural SVMs with a costly max-oracle (pp. 2737–2745). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE. https://doi.org/10.1109/CVPR.2015.7298890
View | DOI | Download (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1425   OA
Pentina, A., & Lampert, C. (2015). Lifelong learning with non-i.i.d. tasks (Vol. 2015, pp. 1540–1548). Presented at the NIPS: Neural Information Processing Systems, Montreal, Canada: Neural Information Processing Systems.
View | Download (ext.)
 
2015 | Thesis | IST-REx-ID: 1401
Sharmanska, V. (2015). Learning with attributes for object recognition: Parametric and non-parametrics views. IST Austria.
View | Download (ext.)
 
2015 | Journal Article | IST-REx-ID: 1533
Xia, W., Domokos, C., Xiong, J., Cheong, L., & Yan, S. (2015). Segmentation over detection via optimal sparse reconstructions. IEEE Transactions on Circuits and Systems for Video Technology, 25(8), 1295–1308. https://doi.org/10.1109/TCSVT.2014.2379972
View | DOI
 
2014 | Conference Paper | IST-REx-ID: 2171   OA
Kolesnikov, A., Guillaumin, M., Ferrari, V., & Lampert, C. (2014). Closed-form approximate CRF training for scalable image segmentation. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8691, pp. 550–565). Zurich, Switzerland: Springer. https://doi.org/10.1007/978-3-319-10578-9_36
View | DOI | Download (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2033   OA
Hernandez Lobato, D., Sharmanska, V., Kersting, K., Lampert, C., & Quadrianto, N. (2014). Mind the nuisance: Gaussian process classification using privileged noise. In Advances in Neural Information Processing Systems (Vol. 1, pp. 837–845). Montreal, Canada: Neural Information Processing Systems.
View | Download (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2057   OA
Morvant, E., Habrard, A., & Ayache, S. (2014). Majority vote of diverse classifiers for late fusion. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8621, pp. 153–162). Joensuu, Finland: Springer. https://doi.org/10.1007/978-3-662-44415-3_16
View | DOI | Download (ext.) | arXiv
 
2014 | Conference Paper | IST-REx-ID: 2172
Sydorov, V., Sakurada, M., & Lampert, C. (2014). Deep Fisher Kernels – End to end learning of the Fisher Kernel GMM parameters. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1402–1409). Columbus, USA: IEEE. https://doi.org/10.1109/CVPR.2014.182
View | DOI
 
2014 | Conference Paper | IST-REx-ID: 2189   OA
Morvant, E. (2014). Adaptation de domaine de vote de majorité par auto-étiquetage non itératif (Vol. 1, pp. 49–58). Presented at the CAP: Conférence Francophone sur l’Apprentissage Automatique (Machine Learning French Conference), Saint-Etienne, France: Elsevier.
View | Download (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2160   OA
Pentina, A., & Lampert, C. (2014). A PAC-Bayesian bound for Lifelong Learning. In E. Xing & T. Jebara (Eds.) (Vol. 32, pp. 991–999). Presented at the ICML: International Conference on Machine Learning, Beijing, China: Omnipress.
View | Download (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2173   OA
Khamis, S., & Lampert, C. (2014). CoConut: Co-classification with output space regularization. In Proceedings of the British Machine Vision Conference 2014. Nottingham, UK: BMVA Press.
View | Files available
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed