Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




72 Publications

2019 | Conference Paper | IST-REx-ID: 6569   OA
Towards understanding knowledge distillation
P. Bui Thi Mai, C. Lampert, in:, Proceedings of the 36th International Conference on Machine Learning, PMLR, 2019, pp. 5142–5151.
View | Files available
 
2019 | Conference Paper | IST-REx-ID: 6590   OA
Robust learning from untrusted sources
N.H. Konstantinov, C. Lampert, in:, Proceedings of the 36th International Conference on Machine Learning, n.d.
View | Download (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 6482   OA
KS(conf): A light-weight test if a ConvNet operates outside of Its specifications
R. Sun, C. Lampert, in:, Springer Nature, 2019, pp. 244–259.
View | DOI | Download (ext.) | arXiv
 
2018 | Journal Article | IST-REx-ID: 321
Guest editors' introduction to the special section on learning with Shared information for computer vision and multimedia analysis
T. Darrell, C. Lampert, N. Sebe, Y. Wu, Y. Yan, IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (2018) 1029–1031.
View | DOI
 
2018 | Conference Paper | IST-REx-ID: 6589   OA
The convergence of sparsified gradient methods
D.-A. Alistarh, T. Hoefler, M. Johansson, N.H. Konstantinov, S. Khirirat, C. Renggli, in:, Advances in Neural Information Processing Systems 31, Neural information processing systems, 2018, pp. 5973–5983.
View | Download (ext.) | arXiv
 
2018 | Conference Paper | IST-REx-ID: 6011   OA
Data-dependent stability of stochastic gradient descent
I. Kuzborskij, C. Lampert, in:, Proceedings of the 35 Th International Conference on Machine Learning, International Machine Learning Society, 2018, pp. 2815–2824.
View | Download (ext.) | arXiv
 
2018 | Journal Article | IST-REx-ID: 6554   OA
Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly
Y. Xian, C. Lampert, B. Schiele, Z. Akata, IEEE Transactions on Pattern Analysis and Machine Intelligence (2018) 1–1.
View | DOI | Download (ext.) | arXiv
 
2018 | Conference Paper | IST-REx-ID: 6012   OA
Learning equations for extrapolation and control
S. Sahoo, C. Lampert, G. Martius, in:, Proceedings of the 35th International Conference on Machine Learning, International Machine Learning Society, 2018, pp. 4442–4450.
View | Files available | Download (ext.) | arXiv
 
2018 | Thesis | IST-REx-ID: 68   OA
Learning from dependent data
A. Zimin, Learning from Dependent Data, IST Austria, 2018.
View | Files available | DOI
 
2018 | Journal Article | IST-REx-ID: 563
Estimating barriers to gene flow from distorted isolation-by-distance patterns
H. Ringbauer, A. Kolesnikov, D. Field, N.H. Barton, Genetics 208 (2018) 1231–1245.
View | Files available | DOI | Download (ext.)
 
2018 | Research Data | IST-REx-ID: 5584   OA
Nonlinear decoding of a complex movie from the mammalian retina
S. Deny, O. Marre, V. Botella-Soler, G.S. Martius, G. Tkacik, Nonlinear Decoding of a Complex Movie from the Mammalian Retina, IST Austria, 2018.
View | Files available | DOI
 
2018 | Thesis | IST-REx-ID: 197   OA
Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images
A. Kolesnikov, Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images, IST Austria, 2018.
View | Files available | DOI
 
2017 | Conference Paper | IST-REx-ID: 911   OA
Probabilistic image colorization
A. Royer, A. Kolesnikov, C. Lampert, in:, BMVA Press, n.d.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 1000   OA
PixelCNN models with auxiliary variables for natural image modeling
A. Kolesnikov, C. Lampert, in:, Omnipress, 2017, pp. 1905–1914.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 652 View | DOI
 
2017 | Conference Paper | IST-REx-ID: 998   OA
iCaRL: Incremental classifier and representation learning
S.A. Rebuffi, A. Kolesnikov, G. Sperl, C. Lampert, in:, IEEE, 2017, pp. 5533–5542.
View | DOI | Download (ext.)
 
2017 | Journal Article | IST-REx-ID: 658   OA
Self organized behavior generation for musculoskeletal robots
R. Der, G.S. Martius, Frontiers in Neurorobotics 11 (2017).
View | Files available | DOI
 
2017 | Conference Paper | IST-REx-ID: 999   OA
Multi-task learning with labeled and unlabeled tasks
A. Pentina, C. Lampert, in:, Omnipress, 2017, pp. 2807–2816.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 1108   OA
Learning theory for conditional risk minimization
A. Zimin, C. Lampert, in:, JMLR, Inc. and Microtome Publishing, 2017, pp. 213–222.
View | Download (ext.)
 
2017 | Conference Paper | IST-REx-ID: 750
Optimal geospatial volunteer allocation needs realistic distances
J. Pielorz, M. Prandtstetter, M. Straub, C. Lampert, in:, 2017 IEEE International Conference on Big Data, IEEE, 2017, pp. 3760–3763.
View | DOI
 
2016 | Conference Paper | IST-REx-ID: 1369   OA
Seed, expand and constrain: Three principles for weakly-supervised image segmentation
A. Kolesnikov, C. Lampert, in:, Springer, 2016, pp. 695–711.
View | DOI | Download (ext.)
 
2016 | Conference Paper | IST-REx-ID: 1098   OA
Lifelong learning with weighted majority votes
A. Pentina, R. Urner, in:, Neural Information Processing Systems, 2016, pp. 3619–3627.
View | Files available
 
2016 | Conference Paper | IST-REx-ID: 1214
Compliant control for soft robots: Emergent behavior of a tendon driven anthropomorphic arm
G.S. Martius, R. Hostettler, A. Knoll, R. Der, in:, IEEE, 2016.
View | DOI
 
2016 | Conference Paper | IST-REx-ID: 1707 View | DOI
 
2016 | Conference Paper | IST-REx-ID: 1102   OA
Improving weakly-supervised object localization by micro-annotation
A. Kolesnikov, C. Lampert, in:, Proceedings of the British Machine Vision Conference 2016, BMVA Press, 2016, p. 92.1-92.12.
View | DOI | Download (ext.)
 
2016 | Thesis | IST-REx-ID: 1126   OA
Theoretical foundations of multi-task lifelong learning
A. Pentina, Theoretical Foundations of Multi-Task Lifelong Learning, IST Austria, 2016.
View | Files available | DOI
 
2015 | Journal Article | IST-REx-ID: 1655   OA
Quantifying emergent behavior of autonomous robots
G.S. Martius, E. Olbrich, Entropy 17 (2015) 7266–7297.
View | Files available | DOI
 
2015 | Conference Paper | IST-REx-ID: 1706   OA
Multi-task and lifelong learning of kernels
A. Pentina, S. Ben David, in:, Springer, 2015, pp. 194–208.
View | DOI | Download (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1857   OA
Curriculum learning of multiple tasks
A. Pentina, V. Sharmanska, C. Lampert, in:, IEEE, 2015, pp. 5492–5500.
View | DOI | Download (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1858   OA View | DOI | Download (ext.) | arXiv
 
2015 | Conference Paper | IST-REx-ID: 1860   OA
Classifier adaptation at prediction time
A. Royer, C. Lampert, in:, IEEE, 2015, pp. 1401–1409.
View | DOI | Download (ext.)
 
2015 | Journal Article | IST-REx-ID: 1570   OA
Novel plasticity rule can explain the development of sensorimotor intelligence
R. Der, G.S. Martius, PNAS 112 (2015) E6224–E6232.
View | DOI | Download (ext.) | PubMed | Europe PMC
 
2015 | Conference Paper | IST-REx-ID: 1859   OA
A multi-plane block-coordinate Frank-Wolfe algorithm for training structural SVMs with a costly max-oracle
N. Shah, V. Kolmogorov, C. Lampert, in:, IEEE, 2015, pp. 2737–2745.
View | DOI | Download (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1425   OA
Lifelong learning with non-i.i.d. tasks
A. Pentina, C. Lampert, in:, Neural Information Processing Systems, 2015, pp. 1540–1548.
View | Download (ext.)
 
2015 | Thesis | IST-REx-ID: 1401
Learning with attributes for object recognition: Parametric and non-parametrics views
V. Sharmanska, Learning with Attributes for Object Recognition: Parametric and Non-Parametrics Views, IST Austria, 2015.
View | Download (ext.)
 
2015 | Journal Article | IST-REx-ID: 1533
Segmentation over detection via optimal sparse reconstructions
W. Xia, C. Domokos, J. Xiong, L. Cheong, S. Yan, IEEE Transactions on Circuits and Systems for Video Technology 25 (2015) 1295–1308.
View | DOI
 
2014 | Conference Paper | IST-REx-ID: 2171   OA
Closed-form approximate CRF training for scalable image segmentation
A. Kolesnikov, M. Guillaumin, V. Ferrari, C. Lampert, in:, D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, 2014, pp. 550–565.
View | DOI | Download (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2033   OA
Mind the nuisance: Gaussian process classification using privileged noise
D. Hernandez Lobato, V. Sharmanska, K. Kersting, C. Lampert, N. Quadrianto, in:, Advances in Neural Information Processing Systems, Neural Information Processing Systems, 2014, pp. 837–845.
View | Download (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2057   OA
Majority vote of diverse classifiers for late fusion
E. Morvant, A. Habrard, S. Ayache, in:, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, 2014, pp. 153–162.
View | DOI | Download (ext.) | arXiv
 
2014 | Conference Paper | IST-REx-ID: 2172
Deep Fisher Kernels – End to end learning of the Fisher Kernel GMM parameters
V. Sydorov, M. Sakurada, C. Lampert, in:, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2014, pp. 1402–1409.
View | DOI
 
2014 | Conference Paper | IST-REx-ID: 2189   OA View | Download (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2160   OA
A PAC-Bayesian bound for Lifelong Learning
A. Pentina, C. Lampert, in:, E. Xing, T. Jebara (Eds.), Omnipress, 2014, pp. 991–999.
View | Download (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2173   OA
CoConut: Co-classification with output space regularization
S. Khamis, C. Lampert, in:, Proceedings of the British Machine Vision Conference 2014, BMVA Press, 2014.
View | Files available
 
2014 | Journal Article | IST-REx-ID: 2180   OA
Learning a priori constrained weighted majority votes
A. Bellet, A. Habrard, E. Morvant, M. Sebban, Machine Learning 97 (2014) 129–154.
View | DOI | Download (ext.)
 
2014 | Book Chapter | IST-REx-ID: 1829
Movement templates for learning of hitting and batting
K. Muelling, O. Kroemer, C. Lampert, B. Schölkopf, in:, J. Kober, J. Peters (Eds.), Learning Motor Skills, Springer, 2014, pp. 69–82.
View | DOI
 
2013 | Conference Paper | IST-REx-ID: 2520   OA
The supervised IBP: Neighbourhood preserving infinite latent feature models
N. Quadrianto, V. Sharmanska, D. Knowles, Z. Ghahramani, in:, Proceedings of the 29th Conference Uncertainty in Artificial Intelligence, AUAI Press, 2013, pp. 527–536.
View | Files available
 
2013 | Conference Paper | IST-REx-ID: 2948   OA
Beyond dataset bias: Multi-task unaligned shared knowledge transfer
T. Tommasi, N. Quadrianto, B. Caputo, C. Lampert, 7724 (2013) 1–15.
View | Files available | DOI
 
2013 | Encyclopedia Article | IST-REx-ID: 3321
Kernel based learning
N. Quadrianto, C. Lampert, in:, W. Dubitzky, O. Wolkenhauer, K. Cho, H. Yokota (Eds.), Encyclopedia of Systems Biology, Springer, 2013, pp. 1069–1069.
View | DOI
 
2013 | Conference Paper | IST-REx-ID: 2901   OA
Computing the M most probable modes of a graphical model
C. Chen, V. Kolmogorov, Z. Yan, D. Metaxas, C. Lampert, in:, JMLR, 2013, pp. 161–169.
View | Download (ext.)
 
2013 | Conference Paper | IST-REx-ID: 2293   OA
Learning to rank using privileged information
V. Sharmanska, N. Quadrianto, C. Lampert, in:, IEEE, 2013, pp. 825–832.
View | DOI | Download (ext.)
 

Search

Filter Publications

Display / Sort

Export / Embed