Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




88 Publications

2016 | Conference Paper | IST-REx-ID: 1102 | OA
Kolesnikov, A., & Lampert, C. (2016). Improving weakly-supervised object localization by micro-annotation. In Proceedings of the British Machine Vision Conference 2016 (Vol. 2016–September, p. 92.1-92.12). York, United Kingdom: BMVA Press. https://doi.org/10.5244/C.30.92
View | DOI | Download Published Version (ext.)
 
2016 | Thesis | IST-REx-ID: 1126 | OA
Pentina, A. (2016). Theoretical foundations of multi-task lifelong learning. IST Austria. https://doi.org/10.15479/AT:ISTA:TH_776
View | Files available | DOI
 
2015 | Journal Article | IST-REx-ID: 1570 | OA
Der, R., & Martius, G. S. (2015). Novel plasticity rule can explain the development of sensorimotor intelligence. PNAS, 112(45), E6224–E6232. https://doi.org/10.1073/pnas.1508400112
View | DOI | Download Submitted Version (ext.) | PubMed | Europe PMC
 
2015 | Journal Article | IST-REx-ID: 1655 | OA
Martius, G. S., & Olbrich, E. (2015). Quantifying emergent behavior of autonomous robots. Entropy, 17(10), 7266–7297. https://doi.org/10.3390/e17107266
View | Files available | DOI
 
2015 | Conference Paper | IST-REx-ID: 1706 | OA
Pentina, A., & Ben David, S. (2015). Multi-task and lifelong learning of kernels (Vol. 9355, pp. 194–208). Presented at the ALT: Algorithmic Learning Theory, Banff, AB, Canada: Springer. https://doi.org/10.1007/978-3-319-24486-0_13
View | DOI | Download Preprint (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1857 | OA
Pentina, A., Sharmanska, V., & Lampert, C. (2015). Curriculum learning of multiple tasks (pp. 5492–5500). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, United States: IEEE. https://doi.org/10.1109/CVPR.2015.7299188
View | DOI | Download Preprint (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1858 | OA
Lampert, C. (2015). Predicting the future behavior of a time-varying probability distribution (pp. 942–950). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, United States: IEEE. https://doi.org/10.1109/CVPR.2015.7298696
View | DOI | Download Preprint (ext.) | arXiv
 
2015 | Conference Paper | IST-REx-ID: 1859 | OA
Shah, N., Kolmogorov, V., & Lampert, C. (2015). A multi-plane block-coordinate Frank-Wolfe algorithm for training structural SVMs with a costly max-oracle (pp. 2737–2745). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE. https://doi.org/10.1109/CVPR.2015.7298890
View | DOI | Download Preprint (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1860 | OA
Royer, A., & Lampert, C. (2015). Classifier adaptation at prediction time (pp. 1401–1409). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, United States: IEEE. https://doi.org/10.1109/CVPR.2015.7298746
View | DOI | Download Submitted Version (ext.)
 
2015 | Thesis | IST-REx-ID: 1401
Sharmanska, V. (2015). Learning with attributes for object recognition: Parametric and non-parametrics views. IST Austria.
View | Download None (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1425 | OA
Pentina, A., & Lampert, C. (2015). Lifelong learning with non-i.i.d. tasks (Vol. 2015, pp. 1540–1548). Presented at the NIPS: Neural Information Processing Systems, Montreal, Canada: Neural Information Processing Systems.
View | Download None (ext.)
 
2015 | Journal Article | IST-REx-ID: 1533
Xia, W., Domokos, C., Xiong, J., Cheong, L., & Yan, S. (2015). Segmentation over detection via optimal sparse reconstructions. IEEE Transactions on Circuits and Systems for Video Technology, 25(8), 1295–1308. https://doi.org/10.1109/TCSVT.2014.2379972
View | DOI
 
2014 | Conference Paper | IST-REx-ID: 2033 | OA
Hernandez Lobato, D., Sharmanska, V., Kersting, K., Lampert, C., & Quadrianto, N. (2014). Mind the nuisance: Gaussian process classification using privileged noise. In Advances in Neural Information Processing Systems (Vol. 1, pp. 837–845). Montreal, Canada: Neural Information Processing Systems.
View | Download Submitted Version (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2057 | OA
Morvant, E., Habrard, A., & Ayache, S. (2014). Majority vote of diverse classifiers for late fusion. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8621, pp. 153–162). Joensuu, Finland: Springer. https://doi.org/10.1007/978-3-662-44415-3_16
View | DOI | Download Preprint (ext.) | arXiv
 
2014 | Conference Paper | IST-REx-ID: 2160 | OA
Pentina, A., & Lampert, C. (2014). A PAC-Bayesian bound for Lifelong Learning. In E. Xing & T. Jebara (Eds.) (Vol. 32, pp. 991–999). Presented at the ICML: International Conference on Machine Learning, Beijing, China: Omnipress.
View | Download Submitted Version (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2171 | OA
Kolesnikov, A., Guillaumin, M., Ferrari, V., & Lampert, C. (2014). Closed-form approximate CRF training for scalable image segmentation. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8691, pp. 550–565). Zurich, Switzerland: Springer. https://doi.org/10.1007/978-3-319-10578-9_36
View | DOI | Download Submitted Version (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2172
Sydorov, V., Sakurada, M., & Lampert, C. (2014). Deep Fisher Kernels – End to end learning of the Fisher Kernel GMM parameters. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1402–1409). Columbus, USA: IEEE. https://doi.org/10.1109/CVPR.2014.182
View | DOI
 
2014 | Conference Paper | IST-REx-ID: 2173 | OA
Khamis, S., & Lampert, C. (2014). CoConut: Co-classification with output space regularization. In Proceedings of the British Machine Vision Conference 2014. Nottingham, UK: BMVA Press.
View | Files available
 
2014 | Journal Article | IST-REx-ID: 2180 | OA
Bellet, A., Habrard, A., Morvant, E., & Sebban, M. (2014). Learning a priori constrained weighted majority votes. Machine Learning, 97(1–2), 129–154. https://doi.org/10.1007/s10994-014-5462-z
View | DOI | Download Submitted Version (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2189 | OA
Morvant, E. (2014). Adaptation de domaine de vote de majorité par auto-étiquetage non itératif (Vol. 1, pp. 49–58). Presented at the CAP: Conférence Francophone sur l’Apprentissage Automatique (Machine Learning French Conference), Saint-Etienne, France: Elsevier.
View | Download Preprint (ext.)
 

Search

Display / Sort

Citation Style: APA

Export / Embed