TY - CONF AB - We study the problem of learning from multiple untrusted data sources, a scenario of increasing practical relevance given the recent emergence of crowdsourcing and collaborative learning paradigms. Specifically, we analyze the situation in which a learning system obtains datasets from multiple sources, some of which might be biased or even adversarially perturbed. It is known that in the single-source case, an adversary with the power to corrupt a fixed fraction of the training data can prevent PAC-learnability, that is, even in the limit of infinitely much training data, no learning system can approach the optimal test error. In this work we show that, surprisingly, the same is not true in the multi-source setting, where the adversary can arbitrarily corrupt a fixed fraction of the data sources. Our main results are a generalization bound that provides finite-sample guarantees for this learning setting, as well as corresponding lower bounds. Besides establishing PAC-learnability our results also show that in a cooperative learning setting sharing data with other parties has provable benefits, even if some participants are malicious. AU - Konstantinov, Nikola H AU - Frantar, Elias AU - Alistarh, Dan-Adrian AU - Lampert, Christoph ID - 8724 SN - 2640-3498 T2 - Proceedings of the 37th International Conference on Machine Learning TI - On the sample complexity of adversarial multi-source PAC learning VL - 119 ER - TY - THES AB - Deep neural networks have established a new standard for data-dependent feature extraction pipelines in the Computer Vision literature. Despite their remarkable performance in the standard supervised learning scenario, i.e. when models are trained with labeled data and tested on samples that follow a similar distribution, neural networks have been shown to struggle with more advanced generalization abilities, such as transferring knowledge across visually different domains, or generalizing to new unseen combinations of known concepts. In this thesis we argue that, in contrast to the usual black-box behavior of neural networks, leveraging more structured internal representations is a promising direction for tackling such problems. In particular, we focus on two forms of structure. First, we tackle modularity: We show that (i) compositional architectures are a natural tool for modeling reasoning tasks, in that they efficiently capture their combinatorial nature, which is key for generalizing beyond the compositions seen during training. We investigate how to to learn such models, both formally and experimentally, for the task of abstract visual reasoning. Then, we show that (ii) in some settings, modularity allows us to efficiently break down complex tasks into smaller, easier, modules, thereby improving computational efficiency; We study this behavior in the context of generative models for colorization, as well as for small objects detection. Secondly, we investigate the inherently layered structure of representations learned by neural networks, and analyze its role in the context of transfer learning and domain adaptation across visually dissimilar domains. AU - Royer, Amélie ID - 8390 SN - 2663-337X TI - Leveraging structure in Computer Vision tasks for flexible Deep Learning models ER - TY - CONF AB - Numerous methods have been proposed for probabilistic generative modelling of 3D objects. However, none of these is able to produce textured objects, which renders them of limited use for practical tasks. In this work, we present the first generative model of textured 3D meshes. Training such a model would traditionally require a large dataset of textured meshes, but unfortunately, existing datasets of meshes lack detailed textures. We instead propose a new training methodology that allows learning from collections of 2D images without any 3D information. To do so, we train our model to explain a distribution of images by modelling each image as a 3D foreground object placed in front of a 2D background. Thus, it learns to generate meshes that when rendered, produce images similar to those in its training set. A well-known problem when generating meshes with deep networks is the emergence of self-intersections, which are problematic for many use-cases. As a second contribution we therefore introduce a new generation process for 3D meshes that guarantees no self-intersections arise, based on the physical intuition that faces should push one another out of the way as they move. We conduct extensive experiments on our approach, reporting quantitative and qualitative results on both synthetic data and natural images. These show our method successfully learns to generate plausible and diverse textured 3D samples for five challenging object classes. AU - Henderson, Paul M AU - Tsiminaki, Vagia AU - Lampert, Christoph ID - 8186 T2 - Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition TI - Leveraging 2D data to learn textured 3D mesh generation ER - TY - JOUR AB - We study the problem of automatically detecting if a given multi-class classifier operates outside of its specifications (out-of-specs), i.e. on input data from a different distribution than what it was trained for. This is an important problem to solve on the road towards creating reliable computer vision systems for real-world applications, because the quality of a classifier’s predictions cannot be guaranteed if it operates out-of-specs. Previously proposed methods for out-of-specs detection make decisions on the level of single inputs. This, however, is insufficient to achieve low false positive rate and high false negative rates at the same time. In this work, we describe a new procedure named KS(conf), based on statistical reasoning. Its main component is a classical Kolmogorov–Smirnov test that is applied to the set of predicted confidence values for batches of samples. Working with batches instead of single samples allows increasing the true positive rate without negatively affecting the false positive rate, thereby overcoming a crucial limitation of single sample tests. We show by extensive experiments using a variety of convolutional network architectures and datasets that KS(conf) reliably detects out-of-specs situations even under conditions where other tests fail. It furthermore has a number of properties that make it an excellent candidate for practical deployment: it is easy to implement, adds almost no overhead to the system, works with any classifier that outputs confidence scores, and requires no a priori knowledge about how the data distribution could change. AU - Sun, Rémy AU - Lampert, Christoph ID - 6944 IS - 4 JF - International Journal of Computer Vision SN - 0920-5691 TI - KS(conf): A light-weight test if a multiclass classifier operates outside of its specifications VL - 128 ER - TY - BOOK AB - Wissen Sie, was sich hinter künstlicher Intelligenz und maschinellem Lernen verbirgt? Dieses Sachbuch erklärt Ihnen leicht verständlich und ohne komplizierte Formeln die grundlegenden Methoden und Vorgehensweisen des maschinellen Lernens. Mathematisches Vorwissen ist dafür nicht nötig. Kurzweilig und informativ illustriert Lisa, die Protagonistin des Buches, diese anhand von Alltagssituationen. Ein Buch für alle, die in Diskussionen über Chancen und Risiken der aktuellen Entwicklung der künstlichen Intelligenz und des maschinellen Lernens mit Faktenwissen punkten möchten. Auch für Schülerinnen und Schüler geeignet! ED - Kersting, Kristian ED - Lampert, Christoph ED - Rothkopf, Constantin ID - 7171 SN - 978-3-658-26762-9 TI - Wie Maschinen Lernen: Künstliche Intelligenz Verständlich Erklärt ER - TY - CONF AB - Graph games and Markov decision processes (MDPs) are standard models in reactive synthesis and verification of probabilistic systems with nondeterminism. The class of 𝜔 -regular winning conditions; e.g., safety, reachability, liveness, parity conditions; provides a robust and expressive specification formalism for properties that arise in analysis of reactive systems. The resolutions of nondeterminism in games and MDPs are represented as strategies, and we consider succinct representation of such strategies. The decision-tree data structure from machine learning retains the flavor of decisions of strategies and allows entropy-based minimization to obtain succinct trees. However, in contrast to traditional machine-learning problems where small errors are allowed, for winning strategies in graph games and MDPs no error is allowed, and the decision tree must represent the entire strategy. In this work we propose decision trees with linear classifiers for representation of strategies in graph games and MDPs. We have implemented strategy representation using this data structure and we present experimental results for problems on graph games and MDPs, which show that this new data structure presents a much more efficient strategy representation as compared to standard decision trees. AU - Ashok, Pranav AU - Brázdil, Tomáš AU - Chatterjee, Krishnendu AU - Křetínský, Jan AU - Lampert, Christoph AU - Toman, Viktor ID - 6942 SN - 0302-9743 T2 - 16th International Conference on Quantitative Evaluation of Systems TI - Strategy representation by decision trees with linear classifiers VL - 11785 ER - TY - JOUR AB - Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis for advancing it. AU - Xian, Yongqin AU - Lampert, Christoph AU - Schiele, Bernt AU - Akata, Zeynep ID - 6554 IS - 9 JF - IEEE Transactions on Pattern Analysis and Machine Intelligence SN - 0162-8828 TI - Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly VL - 41 ER - TY - CONF AB - Multi-exit architectures, in which a stack of processing layers is interleaved with early output layers, allow the processing of a test example to stop early and thus save computation time and/or energy. In this work, we propose a new training procedure for multi-exit architectures based on the principle of knowledge distillation. The method encourage searly exits to mimic later, more accurate exits, by matching their output probabilities. Experiments on CIFAR100 and ImageNet show that distillation-based training significantly improves the accuracy of early exits while maintaining state-of-the-art accuracy for late ones. The method is particularly beneficial when training data is limited and it allows a straightforward extension to semi-supervised learning,i.e. making use of unlabeled data at training time. Moreover, it takes only afew lines to implement and incurs almost no computational overhead at training time, and none at all at test time. AU - Bui Thi Mai, Phuong AU - Lampert, Christoph ID - 7479 SN - 15505499 T2 - IEEE International Conference on Computer Vision TI - Distillation-based training for multi-exit architectures VL - 2019-October ER - TY - CONF AB - We propose a new model for detecting visual relationships, such as "person riding motorcycle" or "bottle on table". This task is an important step towards comprehensive structured mage understanding, going beyond detecting individual objects. Our main novelty is a Box Attention mechanism that allows to model pairwise interactions between objects using standard object detection pipelines. The resulting model is conceptually clean, expressive and relies on well-justified training and prediction procedures. Moreover, unlike previously proposed approaches, our model does not introduce any additional complex components or hyperparameters on top of those already required by the underlying detection model. We conduct an experimental evaluation on two datasets, V-COCO and Open Images, demonstrating strong quantitative and qualitative results. AU - Kolesnikov, Alexander AU - Kuznetsova, Alina AU - Lampert, Christoph AU - Ferrari, Vittorio ID - 7640 SN - 9781728150239 T2 - Proceedings of the 2019 International Conference on Computer Vision Workshop TI - Detecting visual relationships using box attention ER - TY - CONF AB - Knowledge distillation, i.e. one classifier being trained on the outputs of another classifier, is an empirically very successful technique for knowledge transfer between classifiers. It has even been observed that classifiers learn much faster and more reliably if trained with the outputs of another classifier as soft labels, instead of from ground truth data. So far, however, there is no satisfactory theoretical explanation of this phenomenon. In this work, we provide the first insights into the working mechanisms of distillation by studying the special case of linear and deep linear classifiers. Specifically, we prove a generalization bound that establishes fast convergence of the expected risk of a distillation-trained linear classifier. From the bound and its proof we extract three keyfactors that determine the success of distillation: data geometry – geometric properties of the datadistribution, in particular class separation, has an immediate influence on the convergence speed of the risk; optimization bias– gradient descentoptimization finds a very favorable minimum of the distillation objective; and strong monotonicity– the expected risk of the student classifier always decreases when the size of the training set grows. AU - Bui Thi Mai, Phuong AU - Lampert, Christoph ID - 6569 T2 - Proceedings of the 36th International Conference on Machine Learning TI - Towards understanding knowledge distillation VL - 97 ER - TY - CONF AB - Modern machine learning methods often require more data for training than a single expert can provide. Therefore, it has become a standard procedure to collect data from external sources, e.g. via crowdsourcing. Unfortunately, the quality of these sources is not always guaranteed. As additional complications, the data might be stored in a distributed way, or might even have to remain private. In this work, we address the question of how to learn robustly in such scenarios. Studying the problem through the lens of statistical learning theory, we derive a procedure that allows for learning from all available sources, yet automatically suppresses irrelevant or corrupted data. We show by extensive experiments that our method provides significant improvements over alternative approaches from robust statistics and distributed optimization. AU - Konstantinov, Nikola H AU - Lampert, Christoph ID - 6590 T2 - Proceedings of the 36th International Conference on Machine Learning TI - Robust learning from untrusted sources VL - 97 ER - TY - CONF AB - Computer vision systems for automatic image categorization have become accurate and reliable enough that they can run continuously for days or even years as components of real-world commercial applications. A major open problem in this context, however, is quality control. Good classification performance can only be expected if systems run under the specific conditions, in particular data distributions, that they were trained for. Surprisingly, none of the currently used deep network architectures have a built-in functionality that could detect if a network operates on data from a distribution it was not trained for, such that potentially a warning to the human users could be triggered. In this work, we describe KS(conf), a procedure for detecting such outside of specifications (out-of-specs) operation, based on statistical testing of the network outputs. We show by extensive experiments using the ImageNet, AwA2 and DAVIS datasets on a variety of ConvNets architectures that KS(conf) reliably detects out-of-specs situations. It furthermore has a number of properties that make it a promising candidate for practical deployment: it is easy to implement, adds almost no overhead to the system, works with all networks, including pretrained ones, and requires no a priori knowledge of how the data distribution could change. AU - Sun, Rémy AU - Lampert, Christoph ID - 6482 SN - 0302-9743 TI - KS(conf): A light-weight test if a ConvNet operates outside of Its specifications VL - 11269 ER - TY - THES AB - The most common assumption made in statistical learning theory is the assumption of the independent and identically distributed (i.i.d.) data. While being very convenient mathematically, it is often very clearly violated in practice. This disparity between the machine learning theory and applications underlies a growing demand in the development of algorithms that learn from dependent data and theory that can provide generalization guarantees similar to the independent situations. This thesis is dedicated to two variants of dependencies that can arise in practice. One is a dependence on the level of samples in a single learning task. Another dependency type arises in the multi-task setting when the tasks are dependent on each other even though the data for them can be i.i.d. In both cases we model the data (samples or tasks) as stochastic processes and introduce new algorithms for both settings that take into account and exploit the resulting dependencies. We prove the theoretical guarantees on the performance of the introduced algorithms under different evaluation criteria and, in addition, we compliment the theoretical study by the empirical one, where we evaluate some of the algorithms on two real world datasets to highlight their practical applicability. AU - Zimin, Alexander ID - 68 SN - 2663-337X TI - Learning from dependent data ER - TY - THES AB - Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task. AU - Kolesnikov, Alexander ID - 197 SN - 2663-337X TI - Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images ER - TY - JOUR AB - In continuous populations with local migration, nearby pairs of individuals have on average more similar genotypes than geographically well separated pairs. A barrier to gene flow distorts this classical pattern of isolation by distance. Genetic similarity is decreased for sample pairs on different sides of the barrier and increased for pairs on the same side near the barrier. Here, we introduce an inference scheme that utilizes this signal to detect and estimate the strength of a linear barrier to gene flow in two-dimensions. We use a diffusion approximation to model the effects of a barrier on the geographical spread of ancestry backwards in time. This approach allows us to calculate the chance of recent coalescence and probability of identity by descent. We introduce an inference scheme that fits these theoretical results to the geographical covariance structure of bialleleic genetic markers. It can estimate the strength of the barrier as well as several demographic parameters. We investigate the power of our inference scheme to detect barriers by applying it to a wide range of simulated data. We also showcase an example application to a Antirrhinum majus (snapdragon) flower color hybrid zone, where we do not detect any signal of a strong genome wide barrier to gene flow. AU - Ringbauer, Harald AU - Kolesnikov, Alexander AU - Field, David AU - Barton, Nicholas H ID - 563 IS - 3 JF - Genetics TI - Estimating barriers to gene flow from distorted isolation-by-distance patterns VL - 208 ER - TY - JOUR AB - The twelve papers in this special section focus on learning systems with shared information for computer vision and multimedia communication analysis. In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes containing a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with shared information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different levels of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. AU - Darrell, Trevor AU - Lampert, Christoph AU - Sebe, Nico AU - Wu, Ying AU - Yan, Yan ID - 321 IS - 5 JF - IEEE Transactions on Pattern Analysis and Machine Intelligence TI - Guest editors' introduction to the special section on learning with Shared information for computer vision and multimedia analysis VL - 40 ER - TY - CONF AB - We introduce Intelligent Annotation Dialogs for bounding box annotation. We train an agent to automatically choose a sequence of actions for a human annotator to produce a bounding box in a minimal amount of time. Specifically, we consider two actions: box verification [34], where the annotator verifies a box generated by an object detector, and manual box drawing. We explore two kinds of agents, one based on predicting the probability that a box will be positively verified, and the other based on reinforcement learning. We demonstrate that (1) our agents are able to learn efficient annotation strategies in several scenarios, automatically adapting to the image difficulty, the desired quality of the boxes, and the detector strength; (2) in all scenarios the resulting annotation dialogs speed up annotation compared to manual box drawing alone and box verification alone, while also outperforming any fixed combination of verification and drawing in most scenarios; (3) in a realistic scenario where the detector is iteratively re-trained, our agents evolve a series of strategies that reflect the shifting trade-off between verification and drawing as the detector grows stronger. AU - Uijlings, Jasper AU - Konyushkova, Ksenia AU - Lampert, Christoph AU - Ferrari, Vittorio ID - 10882 SN - 9781538664209 T2 - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition TI - Learning intelligent dialogs for bounding box annotation ER - TY - CONF AB - We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task. AU - Sahoo, Subham AU - Lampert, Christoph AU - Martius, Georg S ID - 6012 T2 - Proceedings of the 35th International Conference on Machine Learning TI - Learning equations for extrapolation and control VL - 80 ER - TY - CONF AB - We establish a data-dependent notion of algorithmic stability for Stochastic Gradient Descent (SGD), and employ it to develop novel generalization bounds. This is in contrast to previous distribution-free algorithmic stability results for SGD which depend on the worst-case constants. By virtue of the data-dependent argument, our bounds provide new insights into learning with SGD on convex and non-convex problems. In the convex case, we show that the bound on the generalization error depends on the risk at the initialization point. In the non-convex case, we prove that the expected curvature of the objective function around the initialization point has crucial influence on the generalization error. In both cases, our results suggest a simple data-driven strategy to stabilize SGD by pre-screening its initialization. As a corollary, our results allow us to show optimistic generalization bounds that exhibit fast convergence rates for SGD subject to a vanishing empirical risk and low noise of stochastic gradient. AU - Kuzborskij, Ilja AU - Lampert, Christoph ID - 6011 T2 - Proceedings of the 35 th International Conference on Machine Learning TI - Data-dependent stability of stochastic gradient descent VL - 80 ER - TY - CONF AB - Distributed training of massive machine learning models, in particular deep neural networks, via Stochastic Gradient Descent (SGD) is becoming commonplace. Several families of communication-reduction methods, such as quantization, large-batch methods, and gradient sparsification, have been proposed. To date, gradient sparsification methods--where each node sorts gradients by magnitude, and only communicates a subset of the components, accumulating the rest locally--are known to yield some of the largest practical gains. Such methods can reduce the amount of communication per step by up to \emph{three orders of magnitude}, while preserving model accuracy. Yet, this family of methods currently has no theoretical justification. This is the question we address in this paper. We prove that, under analytic assumptions, sparsifying gradients by magnitude with local error correction provides convergence guarantees, for both convex and non-convex smooth objectives, for data-parallel SGD. The main insight is that sparsification methods implicitly maintain bounds on the maximum impact of stale updates, thanks to selection by magnitude. Our analysis and empirical validation also reveal that these methods do require analytical conditions to converge well, justifying existing heuristics. AU - Alistarh, Dan-Adrian AU - Hoefler, Torsten AU - Johansson, Mikael AU - Konstantinov, Nikola H AU - Khirirat, Sarit AU - Renggli, Cedric ID - 6589 T2 - Advances in Neural Information Processing Systems 31 TI - The convergence of sparsified gradient methods VL - Volume 2018 ER -