TY - CONF AB - Pruning—that is, setting a significant subset of the parameters of a neural network to zero—is one of the most popular methods of model compression. Yet, several recent works have raised the issue that pruning may induce or exacerbate bias in the output of the compressed model. Despite existing evidence for this phenomenon, the relationship between neural network pruning and induced bias is not well-understood. In this work, we systematically investigate and characterize this phenomenon in Convolutional Neural Networks for computer vision. First, we show that it is in fact possible to obtain highly-sparse models, e.g. with less than 10% remaining weights, which do not decrease in accuracy nor substantially increase in bias when compared to dense models. At the same time, we also find that, at higher sparsities, pruned models exhibit higher uncertainty in their outputs, as well as increased correlations, which we directly link to increased bias. We propose easy-to-use criteria which, based only on the uncompressed model, establish whether bias will increase with pruning, and identify the samples most susceptible to biased predictions post-compression. Our code can be found at https://github.com/IST-DASLab/pruned-vision-model-bias. AU - Iofinova, Eugenia B AU - Peste, Elena-Alexandra AU - Alistarh, Dan-Adrian ID - 14771 T2 - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition TI - Bias in pruned vision models: In-depth analysis and countermeasures ER - TY - CONF AB - Neural collapse (NC) refers to the surprising structure of the last layer of deep neural networks in the terminal phase of gradient descent training. Recently, an increasing amount of experimental evidence has pointed to the propagation of NC to earlier layers of neural networks. However, while the NC in the last layer is well studied theoretically, much less is known about its multi-layered counterpart - deep neural collapse (DNC). In particular, existing work focuses either on linear layers or only on the last two layers at the price of an extra assumption. Our paper fills this gap by generalizing the established analytical framework for NC - the unconstrained features model - to multiple non-linear layers. Our key technical contribution is to show that, in a deep unconstrained features model, the unique global optimum for binary classification exhibits all the properties typical of DNC. This explains the existing experimental evidence of DNC. We also empirically show that (i) by optimizing deep unconstrained features models via gradient descent, the resulting solution agrees well with our theory, and (ii) trained networks recover the unconstrained features suitable for the occurrence of DNC, thus supporting the validity of this modeling principle. AU - Súkeník, Peter AU - Mondelli, Marco AU - Lampert, Christoph ID - 14921 T2 - 37th Annual Conference on Neural Information Processing Systems TI - Deep neural collapse is provably optimal for the deep unconstrained features model ER - TY - GEN AB - A crucial property for achieving secure, trustworthy and interpretable deep learning systems is their robustness: small changes to a system's inputs should not result in large changes to its outputs. Mathematically, this means one strives for networks with a small Lipschitz constant. Several recent works have focused on how to construct such Lipschitz networks, typically by imposing constraints on the weight matrices. In this work, we study an orthogonal aspect, namely the role of the activation function. We show that commonly used activation functions, such as MaxMin, as well as all piece-wise linear ones with two segments unnecessarily restrict the class of representable functions, even in the simplest one-dimensional setting. We furthermore introduce the new N-activation function that is provably more expressive than currently popular activation functions. We provide code at this https URL. AU - Prach, Bernd AU - Lampert, Christoph ID - 15039 T2 - arXiv TI - 1-Lipschitz neural networks are more expressive with N-activations ER - TY - GEN AB - We present Cross-Client Label Propagation(XCLP), a new method for transductive federated learning. XCLP estimates a data graph jointly from the data of multiple clients and computes labels for the unlabeled data by propagating label information across the graph. To avoid clients having to share their data with anyone, XCLP employs two cryptographically secure protocols: secure Hamming distance computation and secure summation. We demonstrate two distinct applications of XCLP within federated learning. In the first, we use it in a one-shot way to predict labels for unseen test points. In the second, we use it to repeatedly pseudo-label unlabeled training data in a federated semi-supervised setting. Experiments on both real federated and standard benchmark datasets show that in both applications XCLP achieves higher classification accuracy than alternative approaches. AU - Scott, Jonathan A AU - Yeo, Michelle X AU - Lampert, Christoph ID - 12660 T2 - arXiv TI - Cross-client Label Propagation for transductive federated learning ER - TY - GEN AB - Modern machine learning tasks often require considering not just one but multiple objectives. For example, besides the prediction quality, this could be the efficiency, robustness or fairness of the learned models, or any of their combinations. Multi-objective learning offers a natural framework for handling such problems without having to commit to early trade-offs. Surprisingly, statistical learning theory so far offers almost no insight into the generalization properties of multi-objective learning. In this work, we make first steps to fill this gap: we establish foundational generalization bounds for the multi-objective setting as well as generalization and excess bounds for learning with scalarizations. We also provide the first theoretical analysis of the relation between the Pareto-optimal sets of the true objectives and the Pareto-optimal sets of their empirical approximations from training data. In particular, we show a surprising asymmetry: all Pareto-optimal solutions can be approximated by empirically Pareto-optimal ones, but not vice versa. AU - Súkeník, Peter AU - Lampert, Christoph ID - 12662 T2 - arXiv TI - Generalization in Multi-objective machine learning ER - TY - JOUR AB - Fairness-aware learning aims at constructing classifiers that not only make accurate predictions, but also do not discriminate against specific groups. It is a fast-growing area of machine learning with far-reaching societal impact. However, existing fair learning methods are vulnerable to accidental or malicious artifacts in the training data, which can cause them to unknowingly produce unfair classifiers. In this work we address the problem of fair learning from unreliable training data in the robust multisource setting, where the available training data comes from multiple sources, a fraction of which might not be representative of the true data distribution. We introduce FLEA, a filtering-based algorithm that identifies and suppresses those data sources that would have a negative impact on fairness or accuracy if they were used for training. As such, FLEA is not a replacement of prior fairness-aware learning methods but rather an augmentation that makes any of them robust against unreliable training data. We show the effectiveness of our approach by a diverse range of experiments on multiple datasets. Additionally, we prove formally that –given enough data– FLEA protects the learner against corruptions as long as the fraction of affected data sources is less than half. Our source code and documentation are available at https://github.com/ISTAustria-CVML/FLEA. AU - Iofinova, Eugenia B AU - Konstantinov, Nikola H AU - Lampert, Christoph ID - 12495 JF - Transactions on Machine Learning Research SN - 2835-8856 TI - FLEA: Provably robust fair multisource learning from unreliable training data ER - TY - CONF AB - It is a highly desirable property for deep networks to be robust against small input changes. One popular way to achieve this property is by designing networks with a small Lipschitz constant. In this work, we propose a new technique for constructing such Lipschitz networks that has a number of desirable properties: it can be applied to any linear network layer (fully-connected or convolutional), it provides formal guarantees on the Lipschitz constant, it is easy to implement and efficient to run, and it can be combined with any training objective and optimization method. In fact, our technique is the first one in the literature that achieves all of these properties simultaneously. Our main contribution is a rescaling-based weight matrix parametrization that guarantees each network layer to have a Lipschitz constant of at most 1 and results in the learned weight matrices to be close to orthogonal. Hence we call such layers almost-orthogonal Lipschitz (AOL). Experiments and ablation studies in the context of image classification with certified robust accuracy confirm that AOL layers achieve results that are on par with most existing methods. Yet, they are simpler to implement and more broadly applicable, because they do not require computationally expensive matrix orthogonalization or inversion steps as part of the network architecture. We provide code at https://github.com/berndprach/AOL. AU - Prach, Bernd AU - Lampert, Christoph ID - 11839 SN - 9783031198021 T2 - Computer Vision – ECCV 2022 TI - Almost-orthogonal layers for efficient general-purpose Lipschitz networks VL - 13681 ER - TY - CONF AB - The digitalization of almost all aspects of our everyday lives has led to unprecedented amounts of data being freely available on the Internet. In particular social media platforms provide rich sources of user-generated data, though typically in unstructured form, and with high diversity, such as written in many different languages. Automatically identifying meaningful information in such big data resources and extracting it efficiently is one of the ongoing challenges of our time. A common step for this is sentiment analysis, which forms the foundation for tasks such as opinion mining or trend prediction. Unfortunately, publicly available tools for this task are almost exclusively available for English-language texts. Consequently, a large fraction of the Internet users, who do not communicate in English, are ignored in automatized studies, a phenomenon called rare-language discrimination.In this work we propose a technique to overcome this problem by a truly multi-lingual model, which can be trained automatically without linguistic knowledge or even the ability to read the many target languages. The main step is to combine self-annotation, specifically the use of emoticons as a proxy for labels, with multi-lingual sentence representations.To evaluate our method we curated several large datasets from data obtained via the free Twitter streaming API. The results show that our proposed multi-lingual training is able to achieve sentiment predictions at the same quality level for rare languages as for frequent ones, and in particular clearly better than what mono-lingual training achieves on the same data. AU - Lampert, Jasmin AU - Lampert, Christoph ID - 10752 SN - 9781665439022 T2 - 2021 IEEE International Conference on Big Data TI - Overcoming rare-language discrimination in multi-lingual sentiment analysis ER - TY - CONF AB - We introduce LIMES, a new method for learning with non-stationary streaming data, inspired by the recent success of meta-learning. The main idea is not to attempt to learn a single classifier that would have to work well across all occurring data distributions, nor many separate classifiers, but to exploit a hybrid strategy: we learn a single set of model parameters from which a specific classifier for any specific data distribution is derived via classifier adaptation. Assuming a multiclass classification setting with class-prior shift, the adaptation step can be performed analytically with only the classifier’s bias terms being affected. Another contribution of our work is an extrapolation step that predicts suitable adaptation parameters for future time steps based on the previous data. In combination, we obtain a lightweight procedure for learning from streaming data with varying class distribution that adds no trainable parameters and almost no memory or computational overhead compared to training a single model. Experiments on a set of exemplary tasks using Twitter data show that LIMES achieves higher accuracy than alternative approaches, especially with respect to the relevant real-world metric of lowest within-day accuracy. AU - Tomaszewska, Paulina AU - Lampert, Christoph ID - 12161 T2 - 26th International Conference on Pattern Recognition TI - Lightweight conditional model extrapolation for streaming data under class-prior shift VL - 2022 ER - TY - CONF AB - Transfer learning is a classic paradigm by which models pretrained on large “upstream” datasets are adapted to yield good results on “downstream” specialized datasets. Generally, more accurate models on the “upstream” dataset tend to provide better transfer accuracy “downstream”. In this work, we perform an in-depth investigation of this phenomenon in the context of convolutional neural networks (CNNs) trained on the ImageNet dataset, which have been pruned-that is, compressed by sparsifiying their connections. We consider transfer using unstructured pruned models obtained by applying several state-of-the-art pruning methods, including magnitude-based, second-order, regrowth, lottery-ticket, and regularization approaches, in the context of twelve standard transfer tasks. In a nutshell, our study shows that sparse models can match or even outperform the transfer performance of dense models, even at high sparsities, and, while doing so, can lead to significant inference and even training speedups. At the same time, we observe and analyze significant differences in the behaviour of different pruning methods. The code is available at: https://github.com/IST-DASLab/sparse-imagenet-transfer. AU - Iofinova, Eugenia B AU - Peste, Elena-Alexandra AU - Kurtz, Mark AU - Alistarh, Dan-Adrian ID - 12299 T2 - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition TI - How well do sparse ImageNet models transfer? ER -