@inproceedings{13053, abstract = {Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization, before they can be deployed in practical settings. In this work we propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order to produce models whose local loss behavior is stable under compression operations such as pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single step, without significant accuracy loss. Experimental results on standard benchmarks, such as residual networks for ImageNet classification and BERT models for language modelling, show that CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning: specifically, we can prune models in one-shot to 70-80% sparsity with almost no accuracy loss, and to 90% with reasonable (∼1%) accuracy loss, which is competitive with gradual compression methods. Additionally, CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware. The code for reproducing the results is available at this https URL .}, author = {Peste, Elena-Alexandra and Vladu, Adrian and Kurtic, Eldar and Lampert, Christoph and Alistarh, Dan-Adrian}, booktitle = {11th International Conference on Learning Representations }, location = {Kigali, Rwanda }, title = {{CrAM: A Compression-Aware Minimizer}}, year = {2023}, } @phdthesis{13074, abstract = {Deep learning has become an integral part of a large number of important applications, and many of the recent breakthroughs have been enabled by the ability to train very large models, capable to capture complex patterns and relationships from the data. At the same time, the massive sizes of modern deep learning models have made their deployment to smaller devices more challenging; this is particularly important, as in many applications the users rely on accurate deep learning predictions, but they only have access to devices with limited memory and compute power. One solution to this problem is to prune neural networks, by setting as many of their parameters as possible to zero, to obtain accurate sparse models with lower memory footprint. Despite the great research progress in obtaining sparse models that preserve accuracy, while satisfying memory and computational constraints, there are still many challenges associated with efficiently training sparse models, as well as understanding their generalization properties. The focus of this thesis is to investigate how the training process of sparse models can be made more efficient, and to understand the differences between sparse and dense models in terms of how well they can generalize to changes in the data distribution. We first study a method for co-training sparse and dense models, at a lower cost compared to regular training. With our method we can obtain very accurate sparse networks, and dense models that can recover the baseline accuracy. Furthermore, we are able to more easily analyze the differences, at prediction level, between the sparse-dense model pairs. Next, we investigate the generalization properties of sparse neural networks in more detail, by studying how well different sparse models trained on a larger task can adapt to smaller, more specialized tasks, in a transfer learning scenario. Our analysis across multiple pruning methods and sparsity levels reveals that sparse models provide features that can transfer similarly to or better than the dense baseline. However, the choice of the pruning method plays an important role, and can influence the results when the features are fixed (linear finetuning), or when they are allowed to adapt to the new task (full finetuning). Using sparse models with fixed masks for finetuning on new tasks has an important practical advantage, as it enables training neural networks on smaller devices. However, one drawback of current pruning methods is that the entire training cycle has to be repeated to obtain the initial sparse model, for every sparsity target; in consequence, the entire training process is costly and also multiple models need to be stored. In the last part of the thesis we propose a method that can train accurate dense models that are compressible in a single step, to multiple sparsity levels, without additional finetuning. Our method results in sparse models that can be competitive with existing pruning methods, and which can also successfully generalize to new tasks.}, author = {Peste, Elena-Alexandra}, issn = {2663-337X}, pages = {147}, publisher = {Institute of Science and Technology Austria}, title = {{Efficiency and generalization of sparse neural networks}}, doi = {10.15479/at:ista:13074}, year = {2023}, } @article{14320, abstract = {The development of two-dimensional materials has resulted in a diverse range of novel, high-quality compounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate determination of these materials' band structure parameters. However, this task is challenging due to the intricate band structures and the indirect nature of experimental probes. In this work, we introduce a general framework to derive band structure parameters from experimental data using deep neural networks. We applied our method to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states. First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network to automatically determine tight-binding parameters directly from experimental data, with extracted parameters being in a good agreement with values in the literature. We conclude by discussing potential applications of our method to other materials and experimental techniques beyond penetration field capacitance.}, author = {Henderson, Paul M and Ghazaryan, Areg and Zibrov, Alexander A. and Young, Andrea F. and Serbyn, Maksym}, issn = {2469-9969}, journal = {Physical Review B}, number = {12}, publisher = {American Physical Society}, title = {{Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene}}, doi = {10.1103/physrevb.108.125411}, volume = {108}, year = {2023}, } @inproceedings{14410, abstract = {This paper focuses on the implementation details of the baseline methods and a recent lightweight conditional model extrapolation algorithm LIMES [5] for streaming data under class-prior shift. LIMES achieves superior performance over the baseline methods, especially concerning the minimum-across-day accuracy, which is important for the users of the system. In this work, the key measures to facilitate reproducibility and enhance the credibility of the results are described.}, author = {Tomaszewska, Paulina and Lampert, Christoph}, booktitle = {International Workshop on Reproducible Research in Pattern Recognition}, isbn = {9783031407727}, issn = {1611-3349}, location = {Montreal, Canada}, pages = {67--73}, publisher = {Springer Nature}, title = {{On the implementation of baselines and lightweight conditional model extrapolation (LIMES) under class-prior shift}}, doi = {10.1007/978-3-031-40773-4_6}, volume = {14068}, year = {2023}, } @article{14446, abstract = {Recent work has paid close attention to the first principle of Granger causality, according to which cause precedes effect. In this context, the question may arise whether the detected direction of causality also reverses after the time reversal of unidirectionally coupled data. Recently, it has been shown that for unidirectionally causally connected autoregressive (AR) processes X → Y, after time reversal of data, the opposite causal direction Y → X is indeed detected, although typically as part of the bidirectional X↔ Y link. As we argue here, the answer is different when the measured data are not from AR processes but from linked deterministic systems. When the goal is the usual forward data analysis, cross-mapping-like approaches correctly detect X → Y, while Granger causality-like approaches, which should not be used for deterministic time series, detect causal independence X → Y. The results of backward causal analysis depend on the predictability of the reversed data. Unlike AR processes, observables from deterministic dynamical systems, even complex nonlinear ones, can be predicted well forward, while backward predictions can be difficult (notably when the time reversal of a function leads to one-to-many relations). To address this problem, we propose an approach based on models that provide multiple candidate predictions for the target, combined with a loss function that consideres only the best candidate. The resulting good forward and backward predictability supports the view that unidirectionally causally linked deterministic dynamical systems X → Y can be expected to detect the same link both before and after time reversal.}, author = {Jakubík, Jozef and Bui Thi Mai, Phuong and Chvosteková, Martina and Krakovská, Anna}, issn = {1335-8871}, journal = {Measurement Science Review}, number = {4}, pages = {175--183}, publisher = {Sciendo}, title = {{Against the flow of time with multi-output models}}, doi = {10.2478/msr-2023-0023}, volume = {23}, year = {2023}, } @inproceedings{14771, abstract = {Pruning—that is, setting a significant subset of the parameters of a neural network to zero—is one of the most popular methods of model compression. Yet, several recent works have raised the issue that pruning may induce or exacerbate bias in the output of the compressed model. Despite existing evidence for this phenomenon, the relationship between neural network pruning and induced bias is not well-understood. In this work, we systematically investigate and characterize this phenomenon in Convolutional Neural Networks for computer vision. First, we show that it is in fact possible to obtain highly-sparse models, e.g. with less than 10% remaining weights, which do not decrease in accuracy nor substantially increase in bias when compared to dense models. At the same time, we also find that, at higher sparsities, pruned models exhibit higher uncertainty in their outputs, as well as increased correlations, which we directly link to increased bias. We propose easy-to-use criteria which, based only on the uncompressed model, establish whether bias will increase with pruning, and identify the samples most susceptible to biased predictions post-compression. Our code can be found at https://github.com/IST-DASLab/pruned-vision-model-bias.}, author = {Iofinova, Eugenia B and Peste, Elena-Alexandra and Alistarh, Dan-Adrian}, booktitle = {2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition}, issn = {2575-7075}, location = {Vancouver, BC, Canada}, pages = {24364--24373}, publisher = {IEEE}, title = {{Bias in pruned vision models: In-depth analysis and countermeasures}}, doi = {10.1109/cvpr52729.2023.02334}, year = {2023}, } @inproceedings{14921, abstract = {Neural collapse (NC) refers to the surprising structure of the last layer of deep neural networks in the terminal phase of gradient descent training. Recently, an increasing amount of experimental evidence has pointed to the propagation of NC to earlier layers of neural networks. However, while the NC in the last layer is well studied theoretically, much less is known about its multi-layered counterpart - deep neural collapse (DNC). In particular, existing work focuses either on linear layers or only on the last two layers at the price of an extra assumption. Our paper fills this gap by generalizing the established analytical framework for NC - the unconstrained features model - to multiple non-linear layers. Our key technical contribution is to show that, in a deep unconstrained features model, the unique global optimum for binary classification exhibits all the properties typical of DNC. This explains the existing experimental evidence of DNC. We also empirically show that (i) by optimizing deep unconstrained features models via gradient descent, the resulting solution agrees well with our theory, and (ii) trained networks recover the unconstrained features suitable for the occurrence of DNC, thus supporting the validity of this modeling principle.}, author = {Súkeník, Peter and Mondelli, Marco and Lampert, Christoph}, booktitle = {37th Annual Conference on Neural Information Processing Systems}, location = {New Orleans, LA, United States}, title = {{Deep neural collapse is provably optimal for the deep unconstrained features model}}, year = {2023}, } @unpublished{15039, abstract = {A crucial property for achieving secure, trustworthy and interpretable deep learning systems is their robustness: small changes to a system's inputs should not result in large changes to its outputs. Mathematically, this means one strives for networks with a small Lipschitz constant. Several recent works have focused on how to construct such Lipschitz networks, typically by imposing constraints on the weight matrices. In this work, we study an orthogonal aspect, namely the role of the activation function. We show that commonly used activation functions, such as MaxMin, as well as all piece-wise linear ones with two segments unnecessarily restrict the class of representable functions, even in the simplest one-dimensional setting. We furthermore introduce the new N-activation function that is provably more expressive than currently popular activation functions. We provide code at this https URL.}, author = {Prach, Bernd and Lampert, Christoph}, booktitle = {arXiv}, title = {{1-Lipschitz neural networks are more expressive with N-activations}}, doi = {10.48550/ARXIV.2311.06103}, year = {2023}, } @unpublished{12660, abstract = {We present Cross-Client Label Propagation(XCLP), a new method for transductive federated learning. XCLP estimates a data graph jointly from the data of multiple clients and computes labels for the unlabeled data by propagating label information across the graph. To avoid clients having to share their data with anyone, XCLP employs two cryptographically secure protocols: secure Hamming distance computation and secure summation. We demonstrate two distinct applications of XCLP within federated learning. In the first, we use it in a one-shot way to predict labels for unseen test points. In the second, we use it to repeatedly pseudo-label unlabeled training data in a federated semi-supervised setting. Experiments on both real federated and standard benchmark datasets show that in both applications XCLP achieves higher classification accuracy than alternative approaches.}, author = {Scott, Jonathan A and Yeo, Michelle X and Lampert, Christoph}, booktitle = {arXiv}, title = {{Cross-client Label Propagation for transductive federated learning}}, doi = {10.48550/arXiv.2210.06434}, year = {2022}, } @unpublished{12662, abstract = {Modern machine learning tasks often require considering not just one but multiple objectives. For example, besides the prediction quality, this could be the efficiency, robustness or fairness of the learned models, or any of their combinations. Multi-objective learning offers a natural framework for handling such problems without having to commit to early trade-offs. Surprisingly, statistical learning theory so far offers almost no insight into the generalization properties of multi-objective learning. In this work, we make first steps to fill this gap: we establish foundational generalization bounds for the multi-objective setting as well as generalization and excess bounds for learning with scalarizations. We also provide the first theoretical analysis of the relation between the Pareto-optimal sets of the true objectives and the Pareto-optimal sets of their empirical approximations from training data. In particular, we show a surprising asymmetry: all Pareto-optimal solutions can be approximated by empirically Pareto-optimal ones, but not vice versa.}, author = {Súkeník, Peter and Lampert, Christoph}, booktitle = {arXiv}, title = {{Generalization in Multi-objective machine learning}}, doi = {10.48550/arXiv.2208.13499}, year = {2022}, }