--- _id: '1067' abstract: - lang: eng text: Embryo morphogenesis relies on highly coordinated movements of different tissues. However, remarkably little is known about how tissues coordinate their movements to shape the embryo. In zebrafish embryogenesis, coordinated tissue movements first become apparent during “doming,” when the blastoderm begins to spread over the yolk sac, a process involving coordinated epithelial surface cell layer expansion and mesenchymal deep cell intercalations. Here, we find that active surface cell expansion represents the key process coordinating tissue movements during doming. By using a combination of theory and experiments, we show that epithelial surface cells not only trigger blastoderm expansion by reducing tissue surface tension, but also drive blastoderm thinning by inducing tissue contraction through radial deep cell intercalations. Thus, coordinated tissue expansion and thinning during doming relies on surface cells simultaneously controlling tissue surface tension and radial tissue contraction. acknowledged_ssus: - _id: PreCl article_processing_charge: No author: - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Silvia full_name: Grigolon, Silvia last_name: Grigolon - first_name: Martin full_name: Bock, Martin last_name: Bock - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Morita H, Grigolon S, Bock M, Krens G, Salbreux G, Heisenberg C-PJ. The physical basis of coordinated tissue spreading in zebrafish gastrulation. Developmental Cell. 2017;40(4):354-366. doi:10.1016/j.devcel.2017.01.010 apa: Morita, H., Grigolon, S., Bock, M., Krens, G., Salbreux, G., & Heisenberg, C.-P. J. (2017). The physical basis of coordinated tissue spreading in zebrafish gastrulation. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2017.01.010 chicago: Morita, Hitoshi, Silvia Grigolon, Martin Bock, Gabriel Krens, Guillaume Salbreux, and Carl-Philipp J Heisenberg. “The Physical Basis of Coordinated Tissue Spreading in Zebrafish Gastrulation.” Developmental Cell. Cell Press, 2017. https://doi.org/10.1016/j.devcel.2017.01.010. ieee: H. Morita, S. Grigolon, M. Bock, G. Krens, G. Salbreux, and C.-P. J. Heisenberg, “The physical basis of coordinated tissue spreading in zebrafish gastrulation,” Developmental Cell, vol. 40, no. 4. Cell Press, pp. 354–366, 2017. ista: Morita H, Grigolon S, Bock M, Krens G, Salbreux G, Heisenberg C-PJ. 2017. The physical basis of coordinated tissue spreading in zebrafish gastrulation. Developmental Cell. 40(4), 354–366. mla: Morita, Hitoshi, et al. “The Physical Basis of Coordinated Tissue Spreading in Zebrafish Gastrulation.” Developmental Cell, vol. 40, no. 4, Cell Press, 2017, pp. 354–66, doi:10.1016/j.devcel.2017.01.010. short: H. Morita, S. Grigolon, M. Bock, G. Krens, G. Salbreux, C.-P.J. Heisenberg, Developmental Cell 40 (2017) 354–366. date_created: 2018-12-11T11:49:58Z date_published: 2017-02-27T00:00:00Z date_updated: 2023-09-20T12:06:27Z day: '27' ddc: - '572' - '597' department: - _id: CaHe doi: 10.1016/j.devcel.2017.01.010 ec_funded: 1 external_id: isi: - '000395368300007' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:10:57Z date_updated: 2018-12-12T10:10:57Z file_id: '4849' file_name: IST-2017-869-v1+1_1-s2.0-S1534580717300370-main.pdf file_size: 6866187 relation: main_file file_date_updated: 2018-12-12T10:10:57Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '4' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '02' oa: 1 oa_version: Published Version page: 354 - 366 project: - _id: 2524F500-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '201439' name: Developing High-Throughput Bioassays for Human Cancers in Zebrafish publication: Developmental Cell publication_identifier: issn: - '15345807' publication_status: published publisher: Cell Press publist_id: '6320' pubrep_id: '869' quality_controlled: '1' scopus_import: '1' status: public title: The physical basis of coordinated tissue spreading in zebrafish gastrulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 40 year: '2017' ... --- _id: '1025' abstract: - lang: eng text: Many organ surfaces are covered by a protective epithelial-cell layer. It emerges that such layers are maintained by cell stretching that triggers cell division mediated by the force-sensitive ion-channel protein Piezo1. See Letter p.118 article_processing_charge: No author: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Heisenberg C-PJ. Cell biology: Stretched divisions. Nature. 2017;543(7643):43-44. doi:10.1038/nature21502' apa: 'Heisenberg, C.-P. J. (2017). Cell biology: Stretched divisions. Nature. Nature Publishing Group. https://doi.org/10.1038/nature21502' chicago: 'Heisenberg, Carl-Philipp J. “Cell Biology: Stretched Divisions.” Nature. Nature Publishing Group, 2017. https://doi.org/10.1038/nature21502.' ieee: 'C.-P. J. Heisenberg, “Cell biology: Stretched divisions,” Nature, vol. 543, no. 7643. Nature Publishing Group, pp. 43–44, 2017.' ista: 'Heisenberg C-PJ. 2017. Cell biology: Stretched divisions. Nature. 543(7643), 43–44.' mla: 'Heisenberg, Carl-Philipp J. “Cell Biology: Stretched Divisions.” Nature, vol. 543, no. 7643, Nature Publishing Group, 2017, pp. 43–44, doi:10.1038/nature21502.' short: C.-P.J. Heisenberg, Nature 543 (2017) 43–44. date_created: 2018-12-11T11:49:45Z date_published: 2017-03-02T00:00:00Z date_updated: 2023-09-22T09:26:59Z day: '02' department: - _id: CaHe doi: 10.1038/nature21502 external_id: isi: - '000395671500025' intvolume: ' 543' isi: 1 issue: '7643' language: - iso: eng month: '03' oa_version: None page: 43 - 44 publication: Nature publication_identifier: issn: - '00280836' publication_status: published publisher: Nature Publishing Group publist_id: '6367' quality_controlled: '1' scopus_import: '1' status: public title: 'Cell biology: Stretched divisions' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 543 year: '2017' ... --- _id: '803' abstract: - lang: eng text: Eukaryotic cells store their chromosomes in a single nucleus. This is important to maintain genomic integrity, as chromosomes packaged into separate nuclei (micronuclei) are prone to massive DNA damage. During mitosis, higher eukaryotes disassemble their nucleus and release individualized chromosomes for segregation. How numerous chromosomes subsequently reform a single nucleus has remained unclear. Using image-based screening of human cells, we identified barrier-to-autointegration factor (BAF) as a key factor guiding membranes to form a single nucleus. Unexpectedly, nuclear assembly does not require BAF?s association with inner nuclear membrane proteins but instead relies on BAF?s ability to bridge distant DNA sites. Live-cell imaging and in vitro reconstitution showed that BAF enriches around the mitotic chromosome ensemble to induce a densely cross-bridged chromatin layer that is mechanically stiff and limits membranes to the surface. Our study reveals that BAF-mediated changes in chromosome mechanics underlie nuclear assembly with broad implications for proper genome function. acknowledged_ssus: - _id: Bio article_processing_charge: No author: - first_name: Matthias full_name: Samwer, Matthias last_name: Samwer - first_name: Maximilian full_name: Schneider, Maximilian last_name: Schneider - first_name: Rudolf full_name: Hoefler, Rudolf last_name: Hoefler - first_name: Philipp S full_name: Schmalhorst, Philipp S id: 309D50DA-F248-11E8-B48F-1D18A9856A87 last_name: Schmalhorst orcid: 0000-0002-5795-0133 - first_name: Julian full_name: Jude, Julian last_name: Jude - first_name: Johannes full_name: Zuber, Johannes last_name: Zuber - first_name: Daniel full_name: Gerlic, Daniel last_name: Gerlic citation: ama: Samwer M, Schneider M, Hoefler R, et al. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell. 2017;170(5):956-972. doi:10.1016/j.cell.2017.07.038 apa: Samwer, M., Schneider, M., Hoefler, R., Schmalhorst, P. S., Jude, J., Zuber, J., & Gerlic, D. (2017). DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell. Cell Press. https://doi.org/10.1016/j.cell.2017.07.038 chicago: Samwer, Matthias, Maximilian Schneider, Rudolf Hoefler, Philipp S Schmalhorst, Julian Jude, Johannes Zuber, and Daniel Gerlic. “DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes.” Cell. Cell Press, 2017. https://doi.org/10.1016/j.cell.2017.07.038. ieee: M. Samwer et al., “DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes,” Cell, vol. 170, no. 5. Cell Press, pp. 956–972, 2017. ista: Samwer M, Schneider M, Hoefler R, Schmalhorst PS, Jude J, Zuber J, Gerlic D. 2017. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell. 170(5), 956–972. mla: Samwer, Matthias, et al. “DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes.” Cell, vol. 170, no. 5, Cell Press, 2017, pp. 956–72, doi:10.1016/j.cell.2017.07.038. short: M. Samwer, M. Schneider, R. Hoefler, P.S. Schmalhorst, J. Jude, J. Zuber, D. Gerlic, Cell 170 (2017) 956–972. date_created: 2018-12-11T11:48:35Z date_published: 2017-08-24T00:00:00Z date_updated: 2023-09-27T10:59:14Z day: '24' ddc: - '570' department: - _id: CaHe doi: 10.1016/j.cell.2017.07.038 external_id: isi: - '000408372400014' file: - access_level: open_access checksum: 64897b0c5373f22273f598e4672c60ff content_type: application/pdf creator: dernst date_created: 2019-01-18T13:45:40Z date_updated: 2020-07-14T12:48:08Z file_id: '5852' file_name: 2017_Cell_Samwer.pdf file_size: 17666637 relation: main_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' intvolume: ' 170' isi: 1 issue: '5' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '08' oa: 1 oa_version: Published Version page: 956 - 972 publication: Cell publication_identifier: issn: - '00928674' publication_status: published publisher: Cell Press publist_id: '6848' quality_controlled: '1' scopus_import: '1' status: public title: DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 170 year: '2017' ... --- _id: '804' abstract: - lang: eng text: Polysaccharides (carbohydrates) are key regulators of a large number of cell biological processes. However, precise biochemical or genetic manipulation of these often complex structures is laborious and hampers experimental structure–function studies. Molecular Dynamics (MD) simulations provide a valuable alternative tool to generate and test hypotheses on saccharide function. Yet, currently used MD force fields often overestimate the aggregation propensity of polysaccharides, affecting the usability of those simulations. Here we tested MARTINI, a popular coarse-grained (CG) force field for biological macromolecules, for its ability to accurately represent molecular forces between saccharides. To this end, we calculated a thermodynamic solution property, the second virial coefficient of the osmotic pressure (B22). Comparison with light scattering experiments revealed a nonphysical aggregation of a prototypical polysaccharide in MARTINI, pointing at an imbalance of the nonbonded solute–solute, solute–water, and water–water interactions. This finding also applies to smaller oligosaccharides which were all found to aggregate in simulations even at moderate concentrations, well below their solubility limit. Finally, we explored the influence of the Lennard-Jones (LJ) interaction between saccharide molecules and propose a simple scaling of the LJ interaction strength that makes MARTINI more reliable for the simulation of saccharides. acknowledged_ssus: - _id: ScienComp acknowledgement: P.S.S. was supported by research fellowship 2811/1-1 from the German Research Foundation (DFG), and M.S. was supported by EMBO Long Term Fellowship ALTF 187-2013 and Grant GC65-32 from the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, Poland. The authors thank Antje Potthast, Marek Cieplak, Tomasz Włodarski, and Damien Thompson for fruitful discussions and the IST Austria Scientific Computing Facility for support. article_processing_charge: No author: - first_name: Philipp S full_name: Schmalhorst, Philipp S id: 309D50DA-F248-11E8-B48F-1D18A9856A87 last_name: Schmalhorst orcid: 0000-0002-5795-0133 - first_name: Felix full_name: Deluweit, Felix last_name: Deluweit - first_name: Roger full_name: Scherrers, Roger last_name: Scherrers - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora citation: ama: Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg C-PJ, Sikora MK. Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. Journal of Chemical Theory and Computation. 2017;13(10):5039-5053. doi:10.1021/acs.jctc.7b00374 apa: Schmalhorst, P. S., Deluweit, F., Scherrers, R., Heisenberg, C.-P. J., & Sikora, M. K. (2017). Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. Journal of Chemical Theory and Computation. American Chemical Society. https://doi.org/10.1021/acs.jctc.7b00374 chicago: Schmalhorst, Philipp S, Felix Deluweit, Roger Scherrers, Carl-Philipp J Heisenberg, and Mateusz K Sikora. “Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides.” Journal of Chemical Theory and Computation. American Chemical Society, 2017. https://doi.org/10.1021/acs.jctc.7b00374. ieee: P. S. Schmalhorst, F. Deluweit, R. Scherrers, C.-P. J. Heisenberg, and M. K. Sikora, “Overcoming the limitations of the MARTINI force field in simulations of polysaccharides,” Journal of Chemical Theory and Computation, vol. 13, no. 10. American Chemical Society, pp. 5039–5053, 2017. ista: Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg C-PJ, Sikora MK. 2017. Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. Journal of Chemical Theory and Computation. 13(10), 5039–5053. mla: Schmalhorst, Philipp S., et al. “Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides.” Journal of Chemical Theory and Computation, vol. 13, no. 10, American Chemical Society, 2017, pp. 5039–53, doi:10.1021/acs.jctc.7b00374. short: P.S. Schmalhorst, F. Deluweit, R. Scherrers, C.-P.J. Heisenberg, M.K. Sikora, Journal of Chemical Theory and Computation 13 (2017) 5039–5053. date_created: 2018-12-11T11:48:35Z date_published: 2017-10-10T00:00:00Z date_updated: 2023-09-27T10:58:45Z day: '10' department: - _id: CaHe doi: 10.1021/acs.jctc.7b00374 external_id: isi: - '000412965700036' intvolume: ' 13' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1704.03773 month: '10' oa: 1 oa_version: Submitted Version page: 5039 - 5053 publication: Journal of Chemical Theory and Computation publication_identifier: issn: - '15499618' publication_status: published publisher: American Chemical Society publist_id: '6847' quality_controlled: '1' scopus_import: '1' status: public title: Overcoming the limitations of the MARTINI force field in simulations of polysaccharides type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13 year: '2017' ... --- _id: '961' abstract: - lang: eng text: Cell-cell contact formation constitutes the first step in the emergence of multicellularity in evolution, thereby allowing the differentiation of specialized cell types. In metazoan development, cell-cell contact formation is thought to influence cell fate specification, and cell fate specification has been implicated in cell-cell contact formation. However, remarkably little is yet known about whether and how the interaction and feedback between cell-cell contact formation and cell fate specification affect development. Here we identify a positive feedback loop between cell-cell contact duration, morphogen signaling and mesendoderm cell fate specification during zebrafish gastrulation. We show that long lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for proper ppl cell fate specification. We further show that Nodal signalling romotes ppl cell-cell contact duration, thereby generating an effective positive feedback loop between ppl cell-cell contact duration and cell fate specification. Finally, by using a combination of theoretical modeling and experimentation, we show that this feedback loop determines whether anterior axial mesendoderm cells become ppl progenitors or, instead, turn into endoderm progenitors. Our findings reveal that the gene regulatory networks leading to cell fate diversification within the developing embryo are controlled by the interdependent activities of cell-cell signaling and contact formation. acknowledgement: "Many people accompanied me during this trip: I would not have reached my destination nor \r\nenjoyed the travelling without them. First of all, thanks to CP. Thanks for making me part of \r\nyour team, always full of diverse, interesting and incredibly competent people and thanks for \r\nall the good science I witnessed \ and participated in. It has been a \r\nblast, an incredibly \r\nexciting \ one! Thanks to JLo, for teaching me how to master my pipettes and \ showing me \r\nthat science is a lot of fun. Many, many thanks to Gabby for teaching me basically everything \r\nabout zebrafish and being always there to advice, \ sugge\r\nst, support...and play fussball! \r\nThank you to Julien, for the critical eye on things, Pedro, for all the invaluable feedback and \r\nthe amazing kicker matches, and Keisuke, for showing me the light, and to the three of them \r\ntogether for all the good laughs we\r\nhad. My start in Vienna would \ have been a lot more \r\ndifficult without you guys. Also it would not \ have been possible without Elena and Inês: \r\nthanks for helping setting \ up this lab and for the dinners in Gugging. Thanks to Martin, for \r\nhelping me understand \r\nthe physics behind biology. Thanks to Philipp, \ for the interest and \r\nadvice, and to Michael, for the Viennise take on things. Thanks to Julia, for putting up with \r\nbeing our technician and becoming a friend in the process. And now to the newest members \r\nof th\r\ne lab. Thanks to Daniel for the enthusiasm and the neverending energy and for all your \r\nhelp over the years: thank you! To Jana, for showing me that one doesn’t give up, no matter \r\nwhat. \ To Shayan, for being such a motivated student. To Matt, for helping \ out\r\nwith coding \r\nand for finding punk solutions to data analysis problems. Thanks to all the members of the \r\nlab, Verena, Hitoshi, Silvia, Conny, Karla, Nicoletta, Zoltan, Peng, Benoit, Roland, Yuuta and \r\nFeyza, for the wonderful \ atmosphere in the lab. Many than\r\nks to Koni and Deborah: doing \r\nexperiments would have been much more difficult without your help. Special thanks to Katjia \r\nfor setting up an amazing imaging facility and for building the best \ team, Robert, Nasser, \r\nAnna and Doreen: thank you for putting up w\r\nith all the late sortings and for helping with all \r\nthe technical problems. Thanks to Eva, Verena and Matthias for keeping the fish happy. Big \r\nthanks to Harald Janovjak for being a present and helpful committee member over the years \r\nand \ to Patrick Lemaire f\r\nor the helpful insight and extremely interesting \ discussion we had \r\nabout the project. Also, this journey would not \ have been the same without all the friends \r\nthat I met in Dresden and then in Vienna: Daniele, Claire, Kuba, Steffi, Harold, Dejan, Irene, \r\nFab\r\nienne, Hande, Tiago, Marianne, Jon, Srdjan, Branca, Uli, Murat, Alex, Conny, Christoph, \r\nCaro, Simone, Barbara, Felipe, Dama, Jose, Hubert and many others that filled my days with \r\nfun and support. A special thank to my family, always close even if they are \r\nkilometers away. \r\nGrazie ai miei fratelli, Nunzio e William, \ e alla mia mamma, per essermi sempre vicini pur \r\nvivendo a chilometri di distanza. And, last but not least, thanks to Moritz, for putting up with \r\nthe crazy life of a scientist, the living apart for\r\nso long, never knowing when things are going \r\nto happen. Thanks for being a great partner and my number one fan!" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 citation: ama: 'Barone V. Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. 2017. doi:10.15479/AT:ISTA:th_825' apa: 'Barone, V. (2017). Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_825' chicago: 'Barone, Vanessa. “Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_825.' ieee: 'V. Barone, “Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation,” Institute of Science and Technology Austria, 2017.' ista: 'Barone V. 2017. Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. Institute of Science and Technology Austria.' mla: 'Barone, Vanessa. Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_825.' short: 'V. Barone, Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation, Institute of Science and Technology Austria, 2017.' date_created: 2018-12-11T11:49:25Z date_published: 2017-03-01T00:00:00Z date_updated: 2023-09-27T14:16:45Z day: '01' ddc: - '570' - '590' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:th_825 file: - access_level: closed checksum: 242f88c87f2cf267bf05049fa26a687b content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T08:36:52Z date_updated: 2020-07-14T12:48:16Z file_id: '6205' file_name: 2017_Barone_thesis_final.docx file_size: 14497822 relation: source_file - access_level: open_access checksum: ba5b0613ed8bade73a409acdd880fb8a content_type: application/pdf creator: dernst date_created: 2019-04-05T08:36:52Z date_updated: 2020-07-14T12:48:16Z file_id: '6206' file_name: 2017_Barone_thesis_.pdf file_size: 14995941 relation: main_file file_date_updated: 2020-07-14T12:48:16Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '109' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6444' pubrep_id: '825' related_material: record: - id: '1100' relation: part_of_dissertation status: public - id: '1537' relation: part_of_dissertation status: public - id: '1912' relation: part_of_dissertation status: public - id: '2926' relation: part_of_dissertation status: public - id: '3246' relation: part_of_dissertation status: public - id: '676' relation: part_of_dissertation status: public - id: '735' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: 'Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '728' abstract: - lang: eng text: During animal development, cell-fate-specific changes in gene expression can modify the material properties of a tissue and drive tissue morphogenesis. While mechanistic insights into the genetic control of tissue-shaping events are beginning to emerge, how tissue morphogenesis and mechanics can reciprocally impact cell-fate specification remains relatively unexplored. Here we review recent findings reporting how multicellular morphogenetic events and their underlying mechanical forces can feed back into gene regulatory pathways to specify cell fate. We further discuss emerging techniques that allow for the direct measurement and manipulation of mechanical signals in vivo, offering unprecedented access to study mechanotransduction during development. Examination of the mechanical control of cell fate during tissue morphogenesis will pave the way to an integrated understanding of the design principles that underlie robust tissue patterning in embryonic development. article_processing_charge: No author: - first_name: Chii full_name: Chan, Chii last_name: Chan - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Takashi full_name: Hiiragi, Takashi last_name: Hiiragi citation: ama: Chan C, Heisenberg C-PJ, Hiiragi T. Coordination of morphogenesis and cell fate specification in development. Current Biology. 2017;27(18):R1024-R1035. doi:10.1016/j.cub.2017.07.010 apa: Chan, C., Heisenberg, C.-P. J., & Hiiragi, T. (2017). Coordination of morphogenesis and cell fate specification in development. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2017.07.010 chicago: Chan, Chii, Carl-Philipp J Heisenberg, and Takashi Hiiragi. “Coordination of Morphogenesis and Cell Fate Specification in Development.” Current Biology. Cell Press, 2017. https://doi.org/10.1016/j.cub.2017.07.010. ieee: C. Chan, C.-P. J. Heisenberg, and T. Hiiragi, “Coordination of morphogenesis and cell fate specification in development,” Current Biology, vol. 27, no. 18. Cell Press, pp. R1024–R1035, 2017. ista: Chan C, Heisenberg C-PJ, Hiiragi T. 2017. Coordination of morphogenesis and cell fate specification in development. Current Biology. 27(18), R1024–R1035. mla: Chan, Chii, et al. “Coordination of Morphogenesis and Cell Fate Specification in Development.” Current Biology, vol. 27, no. 18, Cell Press, 2017, pp. R1024–35, doi:10.1016/j.cub.2017.07.010. short: C. Chan, C.-P.J. Heisenberg, T. Hiiragi, Current Biology 27 (2017) R1024–R1035. date_created: 2018-12-11T11:48:11Z date_published: 2017-09-18T00:00:00Z date_updated: 2023-09-28T11:33:21Z day: '18' department: - _id: CaHe doi: 10.1016/j.cub.2017.07.010 external_id: isi: - '000411581800019' intvolume: ' 27' isi: 1 issue: '18' language: - iso: eng month: '09' oa_version: None page: R1024 - R1035 publication: Current Biology publication_identifier: issn: - '09609822' publication_status: published publisher: Cell Press publist_id: '6949' quality_controlled: '1' scopus_import: '1' status: public title: Coordination of morphogenesis and cell fate specification in development type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 27 year: '2017' ... --- _id: '729' abstract: - lang: eng text: The cellular mechanisms allowing tissues to efficiently regenerate are not fully understood. In this issue of Developmental Cell, Cao et al. (2017)) discover that during zebrafish heart regeneration, epicardial cells at the leading edge of regenerating tissue undergo endoreplication, possibly due to increased tissue tension, thereby boosting their regenerative capacity. article_processing_charge: No author: - first_name: Zoltan P full_name: Spiro, Zoltan P id: 426AD026-F248-11E8-B48F-1D18A9856A87 last_name: Spiro - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Spiro ZP, Heisenberg C-PJ. Regeneration tensed up polyploidy takes the lead. Developmental Cell. 2017;42(6):559-560. doi:10.1016/j.devcel.2017.09.008 apa: Spiro, Z. P., & Heisenberg, C.-P. J. (2017). Regeneration tensed up polyploidy takes the lead. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2017.09.008 chicago: Spiro, Zoltan P, and Carl-Philipp J Heisenberg. “Regeneration Tensed up Polyploidy Takes the Lead.” Developmental Cell. Cell Press, 2017. https://doi.org/10.1016/j.devcel.2017.09.008. ieee: Z. P. Spiro and C.-P. J. Heisenberg, “Regeneration tensed up polyploidy takes the lead,” Developmental Cell, vol. 42, no. 6. Cell Press, pp. 559–560, 2017. ista: Spiro ZP, Heisenberg C-PJ. 2017. Regeneration tensed up polyploidy takes the lead. Developmental Cell. 42(6), 559–560. mla: Spiro, Zoltan P., and Carl-Philipp J. Heisenberg. “Regeneration Tensed up Polyploidy Takes the Lead.” Developmental Cell, vol. 42, no. 6, Cell Press, 2017, pp. 559–60, doi:10.1016/j.devcel.2017.09.008. short: Z.P. Spiro, C.-P.J. Heisenberg, Developmental Cell 42 (2017) 559–560. date_created: 2018-12-11T11:48:11Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-28T11:32:49Z day: '01' department: - _id: CaHe doi: 10.1016/j.devcel.2017.09.008 external_id: isi: - '000411582800003' intvolume: ' 42' isi: 1 issue: '6' language: - iso: eng month: '01' oa_version: None page: 559 - 560 publication: Developmental Cell publication_identifier: issn: - '15345807' publication_status: published publisher: Cell Press publist_id: '6948' quality_controlled: '1' scopus_import: '1' status: public title: Regeneration tensed up polyploidy takes the lead type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 42 year: '2017' ... --- _id: '946' abstract: - lang: eng text: Roots navigate through soil integrating environmental signals to orient their growth. The Arabidopsis root is a widely used model for developmental, physiological and cell biological studies. Live imaging greatly aids these efforts, but the horizontal sample position and continuous root tip displacement present significant difficulties. Here, we develop a confocal microscope setup for vertical sample mounting and integrated directional illumination. We present TipTracker – a custom software for automatic tracking of diverse moving objects usable on various microscope setups. Combined, this enables observation of root tips growing along the natural gravity vector over prolonged periods of time, as well as the ability to induce rapid gravity or light stimulation. We also track migrating cells in the developing zebrafish embryo, demonstrating the utility of this system in the acquisition of high-resolution data sets of dynamic samples. We provide detailed descriptions of the tools enabling the easy implementation on other microscopes. acknowledged_ssus: - _id: M-Shop - _id: Bio acknowledgement: "Funding: Marie Curie Actions (FP7/2007-2013 no 291734) to Daniel von Wangenheim; Austrian Science Fund (M 2128-B21) to Matyáš Fendrych; Austrian Science Fund (FWF01_I1774S) to Eva Benková; European Research Council (FP7/2007-2013 no 282300) to Jiří Friml. \r\nThe authors are grateful to the Miba Machine Shop at IST Austria for their contribution to the microscope setup and to Yvonne Kemper for reading, understanding and correcting the manuscript.\r\n#BioimagingFacility" article_number: e26792 article_processing_charge: Yes author: - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife. 2017;6. doi:10.7554/eLife.26792 apa: von Wangenheim, D., Hauschild, R., Fendrych, M., Barone, V., Benková, E., & Friml, J. (2017). Live tracking of moving samples in confocal microscopy for vertically grown roots. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.26792 chicago: Wangenheim, Daniel von, Robert Hauschild, Matyas Fendrych, Vanessa Barone, Eva Benková, and Jiří Friml. “Live Tracking of Moving Samples in Confocal Microscopy for Vertically Grown Roots.” ELife. eLife Sciences Publications, 2017. https://doi.org/10.7554/eLife.26792. ieee: D. von Wangenheim, R. Hauschild, M. Fendrych, V. Barone, E. Benková, and J. Friml, “Live tracking of moving samples in confocal microscopy for vertically grown roots,” eLife, vol. 6. eLife Sciences Publications, 2017. ista: von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J. 2017. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife. 6, e26792. mla: von Wangenheim, Daniel, et al. “Live Tracking of Moving Samples in Confocal Microscopy for Vertically Grown Roots.” ELife, vol. 6, e26792, eLife Sciences Publications, 2017, doi:10.7554/eLife.26792. short: D. von Wangenheim, R. Hauschild, M. Fendrych, V. Barone, E. Benková, J. Friml, ELife 6 (2017). date_created: 2018-12-11T11:49:21Z date_published: 2017-06-19T00:00:00Z date_updated: 2024-02-21T13:49:34Z day: '19' ddc: - '570' department: - _id: JiFr - _id: Bio - _id: CaHe - _id: EvBe doi: 10.7554/eLife.26792 ec_funded: 1 external_id: isi: - '000404728300001' file: - access_level: open_access checksum: 9af3398cb0d81f99d79016a616df22e9 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:57Z date_updated: 2020-07-14T12:48:15Z file_id: '5315' file_name: IST-2017-847-v1+1_elife-26792-v2.pdf file_size: 19581847 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 6' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2572ED28-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02128 name: Molecular basis of root growth inhibition by auxin - _id: 2542D156-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 1774-B16 name: Hormone cross-talk drives nutrient dependent plant development - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '6471' pubrep_id: '847' quality_controlled: '1' related_material: record: - id: '5566' relation: popular_science status: public scopus_import: '1' status: public title: Live tracking of moving samples in confocal microscopy for vertically grown roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 6 year: '2017' ... --- _id: '676' abstract: - lang: eng text: The segregation of different cell types into distinct tissues is a fundamental process in metazoan development. Differences in cell adhesion and cortex tension are commonly thought to drive cell sorting by regulating tissue surface tension (TST). However, the role that differential TST plays in cell segregation within the developing embryo is as yet unclear. Here, we have analyzed the role of differential TST for germ layer progenitor cell segregation during zebrafish gastrulation. Contrary to previous observations that differential TST drives germ layer progenitor cell segregation in vitro, we show that germ layers display indistinguishable TST within the gastrulating embryo, arguing against differential TST driving germ layer progenitor cell segregation in vivo. We further show that the osmolarity of the interstitial fluid (IF) is an important factor that influences germ layer TST in vivo, and that lower osmolarity of the IF compared with standard cell culture medium can explain why germ layers display differential TST in culture but not in vivo. Finally, we show that directed migration of mesendoderm progenitors is required for germ layer progenitor cell segregation and germ layer formation. article_processing_charge: No article_type: original author: - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Jim full_name: Veldhuis, Jim last_name: Veldhuis - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Wayne full_name: Brodland, Wayne last_name: Brodland - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Krens G, Veldhuis J, Barone V, et al. Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development. 2017;144(10):1798-1806. doi:10.1242/dev.144964 apa: Krens, G., Veldhuis, J., Barone, V., Capek, D., Maître, J.-L., Brodland, W., & Heisenberg, C.-P. J. (2017). Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development. Company of Biologists. https://doi.org/10.1242/dev.144964 chicago: Krens, Gabriel, Jim Veldhuis, Vanessa Barone, Daniel Capek, Jean-Léon Maître, Wayne Brodland, and Carl-Philipp J Heisenberg. “Interstitial Fluid Osmolarity Modulates the Action of Differential Tissue Surface Tension in Progenitor Cell Segregation during Gastrulation.” Development. Company of Biologists, 2017. https://doi.org/10.1242/dev.144964. ieee: G. Krens et al., “Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation,” Development, vol. 144, no. 10. Company of Biologists, pp. 1798–1806, 2017. ista: Krens G, Veldhuis J, Barone V, Capek D, Maître J-L, Brodland W, Heisenberg C-PJ. 2017. Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development. 144(10), 1798–1806. mla: Krens, Gabriel, et al. “Interstitial Fluid Osmolarity Modulates the Action of Differential Tissue Surface Tension in Progenitor Cell Segregation during Gastrulation.” Development, vol. 144, no. 10, Company of Biologists, 2017, pp. 1798–806, doi:10.1242/dev.144964. short: G. Krens, J. Veldhuis, V. Barone, D. Capek, J.-L. Maître, W. Brodland, C.-P.J. Heisenberg, Development 144 (2017) 1798–1806. date_created: 2018-12-11T11:47:52Z date_published: 2017-05-15T00:00:00Z date_updated: 2024-03-27T23:30:25Z day: '15' ddc: - '570' department: - _id: Bio - _id: CaHe doi: 10.1242/dev.144964 external_id: pmid: - '28512197' file: - access_level: open_access checksum: bc25125fb664706cdf180e061429f91d content_type: application/pdf creator: dernst date_created: 2019-09-24T06:56:22Z date_updated: 2020-07-14T12:47:39Z file_id: '6905' file_name: 2017_Development_Krens.pdf file_size: 8194516 relation: main_file file_date_updated: 2020-07-14T12:47:39Z has_accepted_license: '1' intvolume: ' 144' issue: '10' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1798 - 1806 pmid: 1 publication: Development publication_identifier: issn: - '09501991' publication_status: published publisher: Company of Biologists publist_id: '7047' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public - id: '50' relation: dissertation_contains status: public scopus_import: 1 status: public title: Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 144 year: '2017' ... --- _id: '661' abstract: - lang: eng text: During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo. acknowledged_ssus: - _id: SSU author: - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Zsuzsa full_name: Ákos, Zsuzsa last_name: Ákos - first_name: Silvia full_name: Grigolon, Silvia last_name: Grigolon - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Verena full_name: Ruprecht, Verena last_name: Ruprecht - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Masazumi full_name: Tada, Masazumi last_name: Tada - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Tamás full_name: Vicsek, Tamás last_name: Vicsek - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Smutny M, Ákos Z, Grigolon S, et al. Friction forces position the neural anlage. Nature Cell Biology. 2017;19:306-317. doi:10.1038/ncb3492 apa: Smutny, M., Ákos, Z., Grigolon, S., Shamipour, S., Ruprecht, V., Capek, D., … Heisenberg, C.-P. J. (2017). Friction forces position the neural anlage. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb3492 chicago: Smutny, Michael, Zsuzsa Ákos, Silvia Grigolon, Shayan Shamipour, Verena Ruprecht, Daniel Capek, Martin Behrndt, et al. “Friction Forces Position the Neural Anlage.” Nature Cell Biology. Nature Publishing Group, 2017. https://doi.org/10.1038/ncb3492. ieee: M. Smutny et al., “Friction forces position the neural anlage,” Nature Cell Biology, vol. 19. Nature Publishing Group, pp. 306–317, 2017. ista: Smutny M, Ákos Z, Grigolon S, Shamipour S, Ruprecht V, Capek D, Behrndt M, Papusheva E, Tada M, Hof B, Vicsek T, Salbreux G, Heisenberg C-PJ. 2017. Friction forces position the neural anlage. Nature Cell Biology. 19, 306–317. mla: Smutny, Michael, et al. “Friction Forces Position the Neural Anlage.” Nature Cell Biology, vol. 19, Nature Publishing Group, 2017, pp. 306–17, doi:10.1038/ncb3492. short: M. Smutny, Z. Ákos, S. Grigolon, S. Shamipour, V. Ruprecht, D. Capek, M. Behrndt, E. Papusheva, M. Tada, B. Hof, T. Vicsek, G. Salbreux, C.-P.J. Heisenberg, Nature Cell Biology 19 (2017) 306–317. date_created: 2018-12-11T11:47:46Z date_published: 2017-03-27T00:00:00Z date_updated: 2024-03-27T23:30:38Z day: '27' department: - _id: CaHe - _id: BjHo - _id: Bio doi: 10.1038/ncb3492 ec_funded: 1 external_id: pmid: - '28346437' intvolume: ' 19' language: - iso: eng main_file_link: - open_access: '1' url: https://europepmc.org/articles/pmc5635970 month: '03' oa: 1 oa_version: Submitted Version page: 306 - 317 pmid: 1 project: - _id: 25152F3A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '306589' name: Decoding the complexity of turbulence at its origin - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Nature Cell Biology publication_identifier: issn: - '14657392' publication_status: published publisher: Nature Publishing Group publist_id: '7074' quality_controlled: '1' related_material: record: - id: '50' relation: dissertation_contains status: public - id: '8350' relation: dissertation_contains status: public scopus_import: 1 status: public title: Friction forces position the neural anlage type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2017' ... --- _id: '735' abstract: - lang: eng text: Cell-cell contact formation constitutes an essential step in evolution, leading to the differentiation of specialized cell types. However, remarkably little is known about whether and how the interplay between contact formation and fate specification affects development. Here, we identify a positive feedback loop between cell-cell contact duration, morphogen signaling, and mesendoderm cell-fate specification during zebrafish gastrulation. We show that long-lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for ppl cell-fate specification. We further show that Nodal signaling promotes ppl cell-cell contact duration, generating a positive feedback loop between ppl cell-cell contact duration and cell-fate specification. Finally, by combining mathematical modeling and experimentation, we show that this feedback determines whether anterior axial mesendoderm cells become ppl or, instead, turn into endoderm. Thus, the interdependent activities of cell-cell signaling and contact formation control fate diversification within the developing embryo. article_processing_charge: No author: - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Moritz full_name: Lang, Moritz id: 29E0800A-F248-11E8-B48F-1D18A9856A87 last_name: Lang - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Saurabh full_name: Pradhan, Saurabh last_name: Pradhan - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Keisuke full_name: Sako, Keisuke id: 3BED66BE-F248-11E8-B48F-1D18A9856A87 last_name: Sako orcid: 0000-0002-6453-8075 - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Barone V, Lang M, Krens G, et al. An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate. Developmental Cell. 2017;43(2):198-211. doi:10.1016/j.devcel.2017.09.014 apa: Barone, V., Lang, M., Krens, G., Pradhan, S., Shamipour, S., Sako, K., … Heisenberg, C.-P. J. (2017). An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2017.09.014 chicago: Barone, Vanessa, Moritz Lang, Gabriel Krens, Saurabh Pradhan, Shayan Shamipour, Keisuke Sako, Mateusz K Sikora, Calin C Guet, and Carl-Philipp J Heisenberg. “An Effective Feedback Loop between Cell-Cell Contact Duration and Morphogen Signaling Determines Cell Fate.” Developmental Cell. Cell Press, 2017. https://doi.org/10.1016/j.devcel.2017.09.014. ieee: V. Barone et al., “An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate,” Developmental Cell, vol. 43, no. 2. Cell Press, pp. 198–211, 2017. ista: Barone V, Lang M, Krens G, Pradhan S, Shamipour S, Sako K, Sikora MK, Guet CC, Heisenberg C-PJ. 2017. An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate. Developmental Cell. 43(2), 198–211. mla: Barone, Vanessa, et al. “An Effective Feedback Loop between Cell-Cell Contact Duration and Morphogen Signaling Determines Cell Fate.” Developmental Cell, vol. 43, no. 2, Cell Press, 2017, pp. 198–211, doi:10.1016/j.devcel.2017.09.014. short: V. Barone, M. Lang, G. Krens, S. Pradhan, S. Shamipour, K. Sako, M.K. Sikora, C.C. Guet, C.-P.J. Heisenberg, Developmental Cell 43 (2017) 198–211. date_created: 2018-12-11T11:48:13Z date_published: 2017-10-23T00:00:00Z date_updated: 2024-03-27T23:30:38Z day: '23' department: - _id: CaHe - _id: CaGu - _id: GaTk doi: 10.1016/j.devcel.2017.09.014 ec_funded: 1 external_id: isi: - '000413443700011' intvolume: ' 43' isi: 1 issue: '2' language: - iso: eng month: '10' oa_version: None page: 198 - 211 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 252DD2A6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I2058 name: 'Cell segregation in gastrulation: the role of cell fate specification' publication: Developmental Cell publication_identifier: issn: - '15345807' publication_status: published publisher: Cell Press publist_id: '6934' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public - id: '8350' relation: dissertation_contains status: public scopus_import: '1' status: public title: An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 43 year: '2017' ... --- _id: '1239' abstract: - lang: eng text: Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment. acknowledgement: 'V. R. acknowledges support by the Austrian Science Fund (FWF): (Grant No. T560-B17).' article_number: '028102' author: - first_name: Andrew full_name: Callan Jones, Andrew last_name: Callan Jones - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez citation: ama: Callan Jones A, Ruprecht V, Wieser S, Heisenberg C-PJ, Voituriez R. Cortical flow-driven shapes of nonadherent cells. Physical Review Letters. 2016;116(2). doi:10.1103/PhysRevLett.116.028102 apa: Callan Jones, A., Ruprecht, V., Wieser, S., Heisenberg, C.-P. J., & Voituriez, R. (2016). Cortical flow-driven shapes of nonadherent cells. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.116.028102 chicago: Callan Jones, Andrew, Verena Ruprecht, Stefan Wieser, Carl-Philipp J Heisenberg, and Raphaël Voituriez. “Cortical Flow-Driven Shapes of Nonadherent Cells.” Physical Review Letters. American Physical Society, 2016. https://doi.org/10.1103/PhysRevLett.116.028102. ieee: A. Callan Jones, V. Ruprecht, S. Wieser, C.-P. J. Heisenberg, and R. Voituriez, “Cortical flow-driven shapes of nonadherent cells,” Physical Review Letters, vol. 116, no. 2. American Physical Society, 2016. ista: Callan Jones A, Ruprecht V, Wieser S, Heisenberg C-PJ, Voituriez R. 2016. Cortical flow-driven shapes of nonadherent cells. Physical Review Letters. 116(2), 028102. mla: Callan Jones, Andrew, et al. “Cortical Flow-Driven Shapes of Nonadherent Cells.” Physical Review Letters, vol. 116, no. 2, 028102, American Physical Society, 2016, doi:10.1103/PhysRevLett.116.028102. short: A. Callan Jones, V. Ruprecht, S. Wieser, C.-P.J. Heisenberg, R. Voituriez, Physical Review Letters 116 (2016). date_created: 2018-12-11T11:50:53Z date_published: 2016-01-15T00:00:00Z date_updated: 2021-01-12T06:49:19Z day: '15' department: - _id: CaHe doi: 10.1103/PhysRevLett.116.028102 intvolume: ' 116' issue: '2' language: - iso: eng month: '01' oa_version: None project: - _id: 2529486C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T 560-B17 name: Cell- and Tissue Mechanics in Zebrafish Germ Layer Formation publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '6095' quality_controlled: '1' scopus_import: 1 status: public title: Cortical flow-driven shapes of nonadherent cells type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 116 year: '2016' ... --- _id: '1249' abstract: - lang: eng text: 'Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell- and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example, the characteristic time of stress relaxation (the Maxwell time τM) in the actomyosin sets the timescale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length λ) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer in vivo directly from laser ablation experiments. For this we investigate the cortical response to laser ablation in the one-cell-stage Caenorhabditis elegans embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse-grained physical description of the cortex in terms of a two-dimensional thin film of an active viscoelastic gel. To determine the Maxwell time τM, the hydrodynamic length λ, the ratio of active stress ζΔμ, and per-area friction γ, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best-fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. Our method provides an accurate and robust means for measuring physical parameters of the actomyosin cortical layer. It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights into the active mechanics processes that govern tissue-scale morphogenesis.' acknowledgement: S.W.G. acknowledges support by grant no. 281903 from the European Research Council and by grant No. GR-7271/2-1 from the Deutsche Forschungsgemeinschaft. S.W.G. and C.-P.H. acknowledge support through a grant from the Fonds zur Förderung der Wissenschaftlichen Forschung and the Deutsche Forschungsgemeinschaft (No. I930-B20). We are grateful to Daniel Dickinson for providing the LP133 C. elegans strain. We thank G. Salbreux, V. K. Krishnamurthy, and J. S. Bois for fruitful discussions. author: - first_name: Arnab full_name: Saha, Arnab last_name: Saha - first_name: Masatoshi full_name: Nishikawa, Masatoshi last_name: Nishikawa - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Stephan full_name: Grill, Stephan last_name: Grill citation: ama: Saha A, Nishikawa M, Behrndt M, Heisenberg C-PJ, Julicher F, Grill S. Determining physical properties of the cell cortex. Biophysical Journal. 2016;110(6):1421-1429. doi:10.1016/j.bpj.2016.02.013 apa: Saha, A., Nishikawa, M., Behrndt, M., Heisenberg, C.-P. J., Julicher, F., & Grill, S. (2016). Determining physical properties of the cell cortex. Biophysical Journal. Biophysical Society. https://doi.org/10.1016/j.bpj.2016.02.013 chicago: Saha, Arnab, Masatoshi Nishikawa, Martin Behrndt, Carl-Philipp J Heisenberg, Frank Julicher, and Stephan Grill. “Determining Physical Properties of the Cell Cortex.” Biophysical Journal. Biophysical Society, 2016. https://doi.org/10.1016/j.bpj.2016.02.013. ieee: A. Saha, M. Nishikawa, M. Behrndt, C.-P. J. Heisenberg, F. Julicher, and S. Grill, “Determining physical properties of the cell cortex,” Biophysical Journal, vol. 110, no. 6. Biophysical Society, pp. 1421–1429, 2016. ista: Saha A, Nishikawa M, Behrndt M, Heisenberg C-PJ, Julicher F, Grill S. 2016. Determining physical properties of the cell cortex. Biophysical Journal. 110(6), 1421–1429. mla: Saha, Arnab, et al. “Determining Physical Properties of the Cell Cortex.” Biophysical Journal, vol. 110, no. 6, Biophysical Society, 2016, pp. 1421–29, doi:10.1016/j.bpj.2016.02.013. short: A. Saha, M. Nishikawa, M. Behrndt, C.-P.J. Heisenberg, F. Julicher, S. Grill, Biophysical Journal 110 (2016) 1421–1429. date_created: 2018-12-11T11:50:56Z date_published: 2016-03-29T00:00:00Z date_updated: 2021-01-12T06:49:23Z day: '29' ddc: - '572' - '576' department: - _id: CaHe doi: 10.1016/j.bpj.2016.02.013 file: - access_level: open_access checksum: c408cf2e25a25c8d711cffea524bda55 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:54Z date_updated: 2020-07-14T12:44:41Z file_id: '4845' file_name: IST-2016-706-v1+1_1-s2.0-S0006349516001582-main.pdf file_size: 1965645 relation: main_file file_date_updated: 2020-07-14T12:44:41Z has_accepted_license: '1' intvolume: ' 110' issue: '6' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 1421 - 1429 project: - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Biophysical Journal publication_status: published publisher: Biophysical Society publist_id: '6079' pubrep_id: '706' quality_controlled: '1' scopus_import: 1 status: public title: Determining physical properties of the cell cortex tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 110 year: '2016' ... --- _id: '1271' abstract: - lang: eng text: 'Background: High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Results: Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Conclusions: Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.' acknowledged_ssus: - _id: LifeSc acknowledgement: "We thank K. Lee, C. Norden, A. Webb, and the members of the Paluch lab for\r\ncomments on the manuscript. We are grateful to P. Rørth and Peter Dieterich\r\nfor discussions, S. Ares, Y. Arboleda-Estudillo and S. Schneider for technical help,\r\nM. Biro for help with programming, and the BIOTEC/MPI-CBG and IST zebrafish\r\nand imaging facilities for help and advice at various stages of this project. This work was supported by the Max Planck Society, the Medical Research Council UK (core funding to the MRC LMCB), and by grants from the Polish Ministry of Science and Higher Education (454/N-MPG/2009/0) to EKP, the Deutsche Forschungsgemeinschaft (HE 3231/6-1 and PA 1590/1-1) to CPH and EKP, a A*Star JCO career development award (12302FG010) to WY and a Damon Runyon fellowship award to ADM (DRG 2157-12). This work was also supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001317), the UK Medical Research Council (FC001317), and the Wellcome Trust (FC001317) to GS." article_number: '74' author: - first_name: Alba full_name: Diz Muñoz, Alba last_name: Diz Muñoz - first_name: Pawel full_name: Romanczuk, Pawel last_name: Romanczuk - first_name: Weimiao full_name: Yu, Weimiao last_name: Yu - first_name: Martin full_name: Bergert, Martin last_name: Bergert - first_name: Kenzo full_name: Ivanovitch, Kenzo last_name: Ivanovitch - first_name: Guillame full_name: Salbreux, Guillame last_name: Salbreux - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch citation: ama: Diz Muñoz A, Romanczuk P, Yu W, et al. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biology. 2016;14(1). doi:10.1186/s12915-016-0294-x apa: Diz Muñoz, A., Romanczuk, P., Yu, W., Bergert, M., Ivanovitch, K., Salbreux, G., … Paluch, E. (2016). Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biology. BioMed Central. https://doi.org/10.1186/s12915-016-0294-x chicago: Diz Muñoz, Alba, Pawel Romanczuk, Weimiao Yu, Martin Bergert, Kenzo Ivanovitch, Guillame Salbreux, Carl-Philipp J Heisenberg, and Ewa Paluch. “Steering Cell Migration by Alternating Blebs and Actin-Rich Protrusions.” BMC Biology. BioMed Central, 2016. https://doi.org/10.1186/s12915-016-0294-x. ieee: A. Diz Muñoz et al., “Steering cell migration by alternating blebs and actin-rich protrusions,” BMC Biology, vol. 14, no. 1. BioMed Central, 2016. ista: Diz Muñoz A, Romanczuk P, Yu W, Bergert M, Ivanovitch K, Salbreux G, Heisenberg C-PJ, Paluch E. 2016. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biology. 14(1), 74. mla: Diz Muñoz, Alba, et al. “Steering Cell Migration by Alternating Blebs and Actin-Rich Protrusions.” BMC Biology, vol. 14, no. 1, 74, BioMed Central, 2016, doi:10.1186/s12915-016-0294-x. short: A. Diz Muñoz, P. Romanczuk, W. Yu, M. Bergert, K. Ivanovitch, G. Salbreux, C.-P.J. Heisenberg, E. Paluch, BMC Biology 14 (2016). date_created: 2018-12-11T11:51:04Z date_published: 2016-09-02T00:00:00Z date_updated: 2021-01-12T06:49:32Z day: '02' ddc: - '572' - '576' department: - _id: CaHe doi: 10.1186/s12915-016-0294-x file: - access_level: open_access checksum: 0bfa484ac69a0a560fb9a4589aeda7f6 content_type: application/pdf creator: system date_created: 2018-12-12T10:13:20Z date_updated: 2020-07-14T12:44:42Z file_id: '5002' file_name: IST-2016-695-v1+1_s12915-016-0294-x.pdf file_size: 1875695 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 14' issue: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 252064B8-B435-11E9-9278-68D0E5697425 grant_number: HE_3231/6-1 name: Analysis of the Formation and Function of Different Cell Protusion Types During Cell Migration in Vivo publication: BMC Biology publication_status: published publisher: BioMed Central publist_id: '6049' pubrep_id: '695' quality_controlled: '1' scopus_import: 1 status: public title: Steering cell migration by alternating blebs and actin-rich protrusions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2016' ... --- _id: '1275' article_number: '139802' author: - first_name: Andrew full_name: Callan Jones, Andrew last_name: Callan Jones - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez citation: ama: Callan Jones A, Ruprecht V, Wieser S, Heisenberg C-PJ, Voituriez R. Callan-Jones et al. Reply. Physical Review Letters. 2016;117(13). doi:10.1103/PhysRevLett.117.139802 apa: Callan Jones, A., Ruprecht, V., Wieser, S., Heisenberg, C.-P. J., & Voituriez, R. (2016). Callan-Jones et al. Reply. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.117.139802 chicago: Callan Jones, Andrew, Verena Ruprecht, Stefan Wieser, Carl-Philipp J Heisenberg, and Raphaël Voituriez. “Callan-Jones et Al. Reply.” Physical Review Letters. American Physical Society, 2016. https://doi.org/10.1103/PhysRevLett.117.139802. ieee: A. Callan Jones, V. Ruprecht, S. Wieser, C.-P. J. Heisenberg, and R. Voituriez, “Callan-Jones et al. Reply,” Physical Review Letters, vol. 117, no. 13. American Physical Society, 2016. ista: Callan Jones A, Ruprecht V, Wieser S, Heisenberg C-PJ, Voituriez R. 2016. Callan-Jones et al. Reply. Physical Review Letters. 117(13), 139802. mla: Callan Jones, Andrew, et al. “Callan-Jones et Al. Reply.” Physical Review Letters, vol. 117, no. 13, 139802, American Physical Society, 2016, doi:10.1103/PhysRevLett.117.139802. short: A. Callan Jones, V. Ruprecht, S. Wieser, C.-P.J. Heisenberg, R. Voituriez, Physical Review Letters 117 (2016). date_created: 2018-12-11T11:51:05Z date_published: 2016-09-22T00:00:00Z date_updated: 2021-01-12T06:49:33Z day: '22' department: - _id: CaHe doi: 10.1103/PhysRevLett.117.139802 intvolume: ' 117' issue: '13' language: - iso: eng month: '09' oa_version: None publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '6041' quality_controlled: '1' scopus_import: 1 status: public title: Callan-Jones et al. Reply type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 117 year: '2016' ... --- _id: '1096' author: - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Jana full_name: Slovakova, Jana id: 30F3F2F0-F248-11E8-B48F-1D18A9856A87 last_name: Slovakova - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Schwayer C, Sikora MK, Slovakova J, Kardos R, Heisenberg C-PJ. Actin rings of power. Developmental Cell. 2016;37(6):493-506. doi:10.1016/j.devcel.2016.05.024 apa: Schwayer, C., Sikora, M. K., Slovakova, J., Kardos, R., & Heisenberg, C.-P. J. (2016). Actin rings of power. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2016.05.024 chicago: Schwayer, Cornelia, Mateusz K Sikora, Jana Slovakova, Roland Kardos, and Carl-Philipp J Heisenberg. “Actin Rings of Power.” Developmental Cell. Cell Press, 2016. https://doi.org/10.1016/j.devcel.2016.05.024. ieee: C. Schwayer, M. K. Sikora, J. Slovakova, R. Kardos, and C.-P. J. Heisenberg, “Actin rings of power,” Developmental Cell, vol. 37, no. 6. Cell Press, pp. 493–506, 2016. ista: Schwayer C, Sikora MK, Slovakova J, Kardos R, Heisenberg C-PJ. 2016. Actin rings of power. Developmental Cell. 37(6), 493–506. mla: Schwayer, Cornelia, et al. “Actin Rings of Power.” Developmental Cell, vol. 37, no. 6, Cell Press, 2016, pp. 493–506, doi:10.1016/j.devcel.2016.05.024. short: C. Schwayer, M.K. Sikora, J. Slovakova, R. Kardos, C.-P.J. Heisenberg, Developmental Cell 37 (2016) 493–506. date_created: 2018-12-11T11:50:07Z date_published: 2016-06-20T00:00:00Z date_updated: 2023-09-07T12:56:41Z day: '20' department: - _id: CaHe doi: 10.1016/j.devcel.2016.05.024 intvolume: ' 37' issue: '6' language: - iso: eng month: '06' oa_version: None page: 493 - 506 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '6279' quality_controlled: '1' related_material: record: - id: '7186' relation: part_of_dissertation status: public scopus_import: 1 status: public title: Actin rings of power type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2016' ... --- _id: '1100' abstract: - lang: eng text: During metazoan development, the temporal pattern of morphogen signaling is critical for organizing cell fates in space and time. Yet, tools for temporally controlling morphogen signaling within the embryo are still scarce. Here, we developed a photoactivatable Nodal receptor to determine how the temporal pattern of Nodal signaling affects cell fate specification during zebrafish gastrulation. By using this receptor to manipulate the duration of Nodal signaling in vivo by light, we show that extended Nodal signaling within the organizer promotes prechordal plate specification and suppresses endoderm differentiation. Endoderm differentiation is suppressed by extended Nodal signaling inducing expression of the transcriptional repressor goosecoid (gsc) in prechordal plate progenitors, which in turn restrains Nodal signaling from upregulating the endoderm differentiation gene sox17 within these cells. Thus, optogenetic manipulation of Nodal signaling identifies a critical role of Nodal signaling duration for organizer cell fate specification during gastrulation. acknowledged_ssus: - _id: SSU acknowledgement: 'We are grateful to members of the C.-P.H. and H.J. labs for discussions, R. Hauschild and the different Scientific Service Units at IST Austria for technical help, M. Dravecka for performing initial experiments, A. Schier for reading an earlier version of the manuscript, K.W. Rogers for technical help, and C. Hill, A. Bruce, and L. Solnica-Krezel for sending plasmids. This work was supported by grants from the Austrian Science Foundation (FWF): (T560-B17) and (I 812-B12) to V.R. and C.-P.H., and from the European Union (EU FP7): (6275) to H.J. A.I.-P. is supported by a Ramon Areces fellowship.' author: - first_name: Keisuke full_name: Sako, Keisuke id: 3BED66BE-F248-11E8-B48F-1D18A9856A87 last_name: Sako orcid: 0000-0002-6453-8075 - first_name: Saurabh full_name: Pradhan, Saurabh last_name: Pradhan - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Álvaro full_name: Inglés Prieto, Álvaro id: 2A9DB292-F248-11E8-B48F-1D18A9856A87 last_name: Inglés Prieto orcid: 0000-0002-5409-8571 - first_name: Patrick full_name: Mueller, Patrick last_name: Mueller - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Sanjeev full_name: Galande, Sanjeev last_name: Galande - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Sako K, Pradhan S, Barone V, et al. Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation. Cell Reports. 2016;16(3):866-877. doi:10.1016/j.celrep.2016.06.036 apa: Sako, K., Pradhan, S., Barone, V., Inglés Prieto, Á., Mueller, P., Ruprecht, V., … Heisenberg, C.-P. J. (2016). Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation. Cell Reports. Cell Press. https://doi.org/10.1016/j.celrep.2016.06.036 chicago: Sako, Keisuke, Saurabh Pradhan, Vanessa Barone, Álvaro Inglés Prieto, Patrick Mueller, Verena Ruprecht, Daniel Capek, Sanjeev Galande, Harald L Janovjak, and Carl-Philipp J Heisenberg. “Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation.” Cell Reports. Cell Press, 2016. https://doi.org/10.1016/j.celrep.2016.06.036. ieee: K. Sako et al., “Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation,” Cell Reports, vol. 16, no. 3. Cell Press, pp. 866–877, 2016. ista: Sako K, Pradhan S, Barone V, Inglés Prieto Á, Mueller P, Ruprecht V, Capek D, Galande S, Janovjak HL, Heisenberg C-PJ. 2016. Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation. Cell Reports. 16(3), 866–877. mla: Sako, Keisuke, et al. “Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation.” Cell Reports, vol. 16, no. 3, Cell Press, 2016, pp. 866–77, doi:10.1016/j.celrep.2016.06.036. short: K. Sako, S. Pradhan, V. Barone, Á. Inglés Prieto, P. Mueller, V. Ruprecht, D. Capek, S. Galande, H.L. Janovjak, C.-P.J. Heisenberg, Cell Reports 16 (2016) 866–877. date_created: 2018-12-11T11:50:08Z date_published: 2016-07-19T00:00:00Z date_updated: 2024-03-27T23:30:25Z day: '19' ddc: - '570' - '576' department: - _id: CaHe - _id: HaJa doi: 10.1016/j.celrep.2016.06.036 ec_funded: 1 file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:11:04Z date_updated: 2018-12-12T10:11:04Z file_id: '4857' file_name: IST-2017-754-v1+1_1-s2.0-S2211124716307768-main.pdf file_size: 3921947 relation: main_file file_date_updated: 2018-12-12T10:11:04Z has_accepted_license: '1' intvolume: ' 16' issue: '3' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 866 - 877 project: - _id: 2529486C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T 560-B17 name: Cell- and Tissue Mechanics in Zebrafish Germ Layer Formation - _id: 2527D5CC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 812-B12 name: Cell Cortex and Germ Layer Formation in Zebrafish Gastrulation - _id: 25548C20-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '303564' name: Microbial Ion Channels for Synthetic Neurobiology publication: Cell Reports publication_status: published publisher: Cell Press publist_id: '6275' pubrep_id: '754' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public - id: '50' relation: dissertation_contains status: public scopus_import: 1 status: public title: Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2016' ... --- _id: '1553' abstract: - lang: eng text: Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns. author: - first_name: Paolo full_name: Maiuri, Paolo last_name: Maiuri - first_name: Jean full_name: Rupprecht, Jean last_name: Rupprecht - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Olivier full_name: Bénichou, Olivier last_name: Bénichou - first_name: Nicolas full_name: Carpi, Nicolas last_name: Carpi - first_name: Mathieu full_name: Coppey, Mathieu last_name: Coppey - first_name: Simon full_name: De Beco, Simon last_name: De Beco - first_name: Nir full_name: Gov, Nir last_name: Gov - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Carolina full_name: Lage Crespo, Carolina last_name: Lage Crespo - first_name: Franziska full_name: Lautenschlaeger, Franziska last_name: Lautenschlaeger - first_name: Maël full_name: Le Berre, Maël last_name: Le Berre - first_name: Ana full_name: Lennon Duménil, Ana last_name: Lennon Duménil - first_name: Matthew full_name: Raab, Matthew last_name: Raab - first_name: Hawa full_name: Thiam, Hawa last_name: Thiam - first_name: Matthieu full_name: Piel, Matthieu last_name: Piel - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez citation: ama: Maiuri P, Rupprecht J, Wieser S, et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. 2015;161(2):374-386. doi:10.1016/j.cell.2015.01.056 apa: Maiuri, P., Rupprecht, J., Wieser, S., Ruprecht, V., Bénichou, O., Carpi, N., … Voituriez, R. (2015). Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. Cell Press. https://doi.org/10.1016/j.cell.2015.01.056 chicago: Maiuri, Paolo, Jean Rupprecht, Stefan Wieser, Verena Ruprecht, Olivier Bénichou, Nicolas Carpi, Mathieu Coppey, et al. “Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence.” Cell. Cell Press, 2015. https://doi.org/10.1016/j.cell.2015.01.056. ieee: P. Maiuri et al., “Actin flows mediate a universal coupling between cell speed and cell persistence,” Cell, vol. 161, no. 2. Cell Press, pp. 374–386, 2015. ista: Maiuri P, Rupprecht J, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, De Beco S, Gov N, Heisenberg C-PJ, Lage Crespo C, Lautenschlaeger F, Le Berre M, Lennon Duménil A, Raab M, Thiam H, Piel M, Sixt MK, Voituriez R. 2015. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. 161(2), 374–386. mla: Maiuri, Paolo, et al. “Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence.” Cell, vol. 161, no. 2, Cell Press, 2015, pp. 374–86, doi:10.1016/j.cell.2015.01.056. short: P. Maiuri, J. Rupprecht, S. Wieser, V. Ruprecht, O. Bénichou, N. Carpi, M. Coppey, S. De Beco, N. Gov, C.-P.J. Heisenberg, C. Lage Crespo, F. Lautenschlaeger, M. Le Berre, A. Lennon Duménil, M. Raab, H. Thiam, M. Piel, M.K. Sixt, R. Voituriez, Cell 161 (2015) 374–386. date_created: 2018-12-11T11:52:41Z date_published: 2015-04-09T00:00:00Z date_updated: 2021-01-12T06:51:33Z day: '09' department: - _id: MiSi - _id: CaHe doi: 10.1016/j.cell.2015.01.056 ec_funded: 1 intvolume: ' 161' issue: '2' language: - iso: eng month: '04' oa_version: None page: 374 - 386 project: - _id: 2529486C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T 560-B17 name: Cell- and Tissue Mechanics in Zebrafish Germ Layer Formation - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes (EU) - _id: 25ABD200-B435-11E9-9278-68D0E5697425 grant_number: RGP0058/2011 name: 'Cell migration in complex environments: from in vivo experiments to theoretical models' publication: Cell publication_status: published publisher: Cell Press publist_id: '5618' quality_controlled: '1' scopus_import: 1 status: public title: Actin flows mediate a universal coupling between cell speed and cell persistence type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 161 year: '2015' ... --- _id: '1581' abstract: - lang: eng text: In animal embryos, morphogen gradients determine tissue patterning and morphogenesis. Shyer et al. provide evidence that, during vertebrate gut formation, tissue folding generates graded activity of signals required for subsequent steps of gut growth and differentiation, thereby revealing an intriguing link between tissue morphogenesis and morphogen gradient formation. article_processing_charge: No author: - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Bollenbach MT, Heisenberg C-PJ. Gradients are shaping up. Cell. 2015;161(3):431-432. doi:10.1016/j.cell.2015.04.009 apa: Bollenbach, M. T., & Heisenberg, C.-P. J. (2015). Gradients are shaping up. Cell. Cell Press. https://doi.org/10.1016/j.cell.2015.04.009 chicago: Bollenbach, Mark Tobias, and Carl-Philipp J Heisenberg. “Gradients Are Shaping Up.” Cell. Cell Press, 2015. https://doi.org/10.1016/j.cell.2015.04.009. ieee: M. T. Bollenbach and C.-P. J. Heisenberg, “Gradients are shaping up,” Cell, vol. 161, no. 3. Cell Press, pp. 431–432, 2015. ista: Bollenbach MT, Heisenberg C-PJ. 2015. Gradients are shaping up. Cell. 161(3), 431–432. mla: Bollenbach, Mark Tobias, and Carl-Philipp J. Heisenberg. “Gradients Are Shaping Up.” Cell, vol. 161, no. 3, Cell Press, 2015, pp. 431–32, doi:10.1016/j.cell.2015.04.009. short: M.T. Bollenbach, C.-P.J. Heisenberg, Cell 161 (2015) 431–432. date_created: 2018-12-11T11:52:50Z date_published: 2015-04-23T00:00:00Z date_updated: 2022-08-25T13:56:10Z day: '23' department: - _id: ToBo - _id: CaHe doi: 10.1016/j.cell.2015.04.009 intvolume: ' 161' issue: '3' language: - iso: eng month: '04' oa_version: None page: 431 - 432 publication: Cell publication_status: published publisher: Cell Press publist_id: '5590' quality_controlled: '1' scopus_import: '1' status: public title: Gradients are shaping up type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 161 year: '2015' ... --- _id: '1817' abstract: - lang: eng text: 'Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D''Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues. ' author: - first_name: Sean full_name: Porazinski, Sean last_name: Porazinski - first_name: Huijia full_name: Wang, Huijia last_name: Wang - first_name: Yoichi full_name: Asaoka, Yoichi last_name: Asaoka - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Tatsuo full_name: Miyamoto, Tatsuo last_name: Miyamoto - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Shoji full_name: Hata, Shoji last_name: Hata - first_name: Takashi full_name: Sasaki, Takashi last_name: Sasaki - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Yumi full_name: Osada, Yumi last_name: Osada - first_name: Satoshi full_name: Asaka, Satoshi last_name: Asaka - first_name: Akihiro full_name: Momoi, Akihiro last_name: Momoi - first_name: Sarah full_name: Linton, Sarah last_name: Linton - first_name: Joel full_name: Miesfeld, Joel last_name: Miesfeld - first_name: Brian full_name: Link, Brian last_name: Link - first_name: Takeshi full_name: Senga, Takeshi last_name: Senga - first_name: Atahualpa full_name: Castillo Morales, Atahualpa last_name: Castillo Morales - first_name: Araxi full_name: Urrutia, Araxi last_name: Urrutia - first_name: Nobuyoshi full_name: Shimizu, Nobuyoshi last_name: Shimizu - first_name: Hideaki full_name: Nagase, Hideaki last_name: Nagase - first_name: Shinya full_name: Matsuura, Shinya last_name: Matsuura - first_name: Stefan full_name: Bagby, Stefan last_name: Bagby - first_name: Hisato full_name: Kondoh, Hisato last_name: Kondoh - first_name: Hiroshi full_name: Nishina, Hiroshi last_name: Nishina - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Makoto full_name: Furutani Seiki, Makoto last_name: Furutani Seiki citation: ama: Porazinski S, Wang H, Asaoka Y, et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature. 2015;521(7551):217-221. doi:10.1038/nature14215 apa: Porazinski, S., Wang, H., Asaoka, Y., Behrndt, M., Miyamoto, T., Morita, H., … Furutani Seiki, M. (2015). YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature. Nature Publishing Group. https://doi.org/10.1038/nature14215 chicago: Porazinski, Sean, Huijia Wang, Yoichi Asaoka, Martin Behrndt, Tatsuo Miyamoto, Hitoshi Morita, Shoji Hata, et al. “YAP Is Essential for Tissue Tension to Ensure Vertebrate 3D Body Shape.” Nature. Nature Publishing Group, 2015. https://doi.org/10.1038/nature14215. ieee: S. Porazinski et al., “YAP is essential for tissue tension to ensure vertebrate 3D body shape,” Nature, vol. 521, no. 7551. Nature Publishing Group, pp. 217–221, 2015. ista: Porazinski S, Wang H, Asaoka Y, Behrndt M, Miyamoto T, Morita H, Hata S, Sasaki T, Krens G, Osada Y, Asaka S, Momoi A, Linton S, Miesfeld J, Link B, Senga T, Castillo Morales A, Urrutia A, Shimizu N, Nagase H, Matsuura S, Bagby S, Kondoh H, Nishina H, Heisenberg C-PJ, Furutani Seiki M. 2015. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature. 521(7551), 217–221. mla: Porazinski, Sean, et al. “YAP Is Essential for Tissue Tension to Ensure Vertebrate 3D Body Shape.” Nature, vol. 521, no. 7551, Nature Publishing Group, 2015, pp. 217–21, doi:10.1038/nature14215. short: S. Porazinski, H. Wang, Y. Asaoka, M. Behrndt, T. Miyamoto, H. Morita, S. Hata, T. Sasaki, G. Krens, Y. Osada, S. Asaka, A. Momoi, S. Linton, J. Miesfeld, B. Link, T. Senga, A. Castillo Morales, A. Urrutia, N. Shimizu, H. Nagase, S. Matsuura, S. Bagby, H. Kondoh, H. Nishina, C.-P.J. Heisenberg, M. Furutani Seiki, Nature 521 (2015) 217–221. date_created: 2018-12-11T11:54:10Z date_published: 2015-03-16T00:00:00Z date_updated: 2021-01-12T06:53:23Z day: '16' department: - _id: CaHe doi: 10.1038/nature14215 external_id: pmid: - '25778702' intvolume: ' 521' issue: '7551' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720436/ month: '03' oa: 1 oa_version: Submitted Version page: 217 - 221 pmid: 1 publication: Nature publication_status: published publisher: Nature Publishing Group publist_id: '5289' quality_controlled: '1' scopus_import: 1 status: public title: YAP is essential for tissue tension to ensure vertebrate 3D body shape type: journal_article user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 volume: 521 year: '2015' ... --- _id: '802' abstract: - lang: eng text: Glycoinositolphosphoceramides (GIPCs) are complex sphingolipids present at the plasma membrane of various eukaryotes with the important exception of mammals. In fungi, these glycosphingolipids commonly contain an alpha-mannose residue (Man) linked at position 2 of the inositol. However, several pathogenic fungi additionally synthesize zwitterionic GIPCs carrying an alpha-glucosamine residue (GlcN) at this position. In the human pathogen Aspergillus fumigatus, the GlcNalpha1,2IPC core (where IPC is inositolphosphoceramide) is elongated to Manalpha1,3Manalpha1,6GlcNalpha1,2IPC, which is the most abundant GIPC synthesized by this fungus. In this study, we identified an A. fumigatus N-acetylglucosaminyltransferase, named GntA, and demonstrate its involvement in the initiation of zwitterionic GIPC biosynthesis. Targeted deletion of the gene encoding GntA in A. fumigatus resulted in complete absence of zwitterionic GIPC; a phenotype that could be reverted by episomal expression of GntA in the mutant. The N-acetylhexosaminyltransferase activity of GntA was substantiated by production of N-acetylhexosamine-IPC in the yeast Saccharomyces cerevisiae upon GntA expression. Using an in vitro assay, GntA was furthermore shown to use UDP-N-acetylglucosamine as donor substrate to generate a glycolipid product resistant to saponification and to digestion by phosphatidylinositol-phospholipase C as expected for GlcNAcalpha1,2IPC. Finally, as the enzymes involved in mannosylation of IPC, GntA was localized to the Golgi apparatus, the site of IPC synthesis. author: - first_name: Jakob full_name: Engel, Jakob last_name: Engel - first_name: Philipp S full_name: Schmalhorst, Philipp S id: 309D50DA-F248-11E8-B48F-1D18A9856A87 last_name: Schmalhorst orcid: 0000-0002-5795-0133 - first_name: Anke full_name: Kruger, Anke last_name: Kruger - first_name: Christina full_name: Muller, Christina last_name: Muller - first_name: Falk full_name: Buettner, Falk last_name: Buettner - first_name: Françoise full_name: Routier, Françoise last_name: Routier citation: ama: Engel J, Schmalhorst PS, Kruger A, Muller C, Buettner F, Routier F. Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis. Glycobiology. 2015;25(12):1423-1430. doi:10.1093/glycob/cwv059 apa: Engel, J., Schmalhorst, P. S., Kruger, A., Muller, C., Buettner, F., & Routier, F. (2015). Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis. Glycobiology. Oxford University Press. https://doi.org/10.1093/glycob/cwv059 chicago: Engel, Jakob, Philipp S Schmalhorst, Anke Kruger, Christina Muller, Falk Buettner, and Françoise Routier. “Characterization of an N-Acetylglucosaminyltransferase Involved in Aspergillus Fumigatus Zwitterionic Glycoinositolphosphoceramide Biosynthesis.” Glycobiology. Oxford University Press, 2015. https://doi.org/10.1093/glycob/cwv059. ieee: J. Engel, P. S. Schmalhorst, A. Kruger, C. Muller, F. Buettner, and F. Routier, “Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis,” Glycobiology, vol. 25, no. 12. Oxford University Press, pp. 1423–1430, 2015. ista: Engel J, Schmalhorst PS, Kruger A, Muller C, Buettner F, Routier F. 2015. Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis. Glycobiology. 25(12), 1423–1430. mla: Engel, Jakob, et al. “Characterization of an N-Acetylglucosaminyltransferase Involved in Aspergillus Fumigatus Zwitterionic Glycoinositolphosphoceramide Biosynthesis.” Glycobiology, vol. 25, no. 12, Oxford University Press, 2015, pp. 1423–30, doi:10.1093/glycob/cwv059. short: J. Engel, P.S. Schmalhorst, A. Kruger, C. Muller, F. Buettner, F. Routier, Glycobiology 25 (2015) 1423–1430. date_created: 2018-12-11T11:48:35Z date_published: 2015-12-01T00:00:00Z date_updated: 2021-01-12T08:16:33Z day: '01' department: - _id: CaHe doi: 10.1093/glycob/cwv059 external_id: pmid: - '26306635' intvolume: ' 25' issue: '12' language: - iso: eng month: '12' oa_version: None page: 1423 - 1430 pmid: 1 publication: Glycobiology publication_status: published publisher: Oxford University Press publist_id: '6851' quality_controlled: '1' scopus_import: 1 status: public title: Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2015' ... --- _id: '1566' abstract: - lang: eng text: Deposits of misfolded proteins in the human brain are associated with the development of many neurodegenerative diseases. Recent studies show that these proteins have common traits even at the monomer level. Among them, a polyglutamine region that is present in huntingtin is known to exhibit a correlation between the length of the chain and the severity as well as the earliness of the onset of Huntington disease. Here, we apply bias exchange molecular dynamics to generate structures of polyglutamine expansions of several lengths and characterize the resulting independent conformations. We compare the properties of these conformations to those of the standard proteins, as well as to other homopolymeric tracts. We find that, similar to the previously studied polyvaline chains, the set of possible transient folds is much broader than the set of known-to-date folds, although the conformations have different structures. We show that the mechanical stability is not related to any simple geometrical characteristics of the structures. We demonstrate that long polyglutamine expansions result in higher mechanical stability than the shorter ones. They also have a longer life span and are substantially more prone to form knotted structures. The knotted region has an average length of 35 residues, similar to the typical threshold for most polyglutamine-related diseases. Similarly, changes in shape and mechanical stability appear once the total length of the peptide exceeds this threshold of 35 glutamine residues. We suggest that knotted conformers may also harm the cellular machinery and thus lead to disease. acknowledgement: 'We acknowledge the support by the EU Joint Programme in Neurodegenerative Diseases (JPND AC14/00037) project. The project is supported through the following funding organisations under the aegis of JPND—www.jpnd.eu: Ireland, HRB; Poland, National Science Centre; and Spain, ISCIII. ' article_number: e1004541 author: - first_name: Àngel full_name: Gómez Sicilia, Àngel last_name: Gómez Sicilia - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Marek full_name: Cieplak, Marek last_name: Cieplak - first_name: Mariano full_name: Carrión Vázquez, Mariano last_name: Carrión Vázquez citation: ama: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. An exploration of the universe of polyglutamine structures. PLoS Computational Biology. 2015;11(10). doi:10.1371/journal.pcbi.1004541 apa: Gómez Sicilia, À., Sikora, M. K., Cieplak, M., & Carrión Vázquez, M. (2015). An exploration of the universe of polyglutamine structures. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1004541 chicago: Gómez Sicilia, Àngel, Mateusz K Sikora, Marek Cieplak, and Mariano Carrión Vázquez. “An Exploration of the Universe of Polyglutamine Structures.” PLoS Computational Biology. Public Library of Science, 2015. https://doi.org/10.1371/journal.pcbi.1004541. ieee: À. Gómez Sicilia, M. K. Sikora, M. Cieplak, and M. Carrión Vázquez, “An exploration of the universe of polyglutamine structures,” PLoS Computational Biology, vol. 11, no. 10. Public Library of Science, 2015. ista: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. 2015. An exploration of the universe of polyglutamine structures. PLoS Computational Biology. 11(10), e1004541. mla: Gómez Sicilia, Àngel, et al. “An Exploration of the Universe of Polyglutamine Structures.” PLoS Computational Biology, vol. 11, no. 10, e1004541, Public Library of Science, 2015, doi:10.1371/journal.pcbi.1004541. short: À. Gómez Sicilia, M.K. Sikora, M. Cieplak, M. Carrión Vázquez, PLoS Computational Biology 11 (2015). date_created: 2018-12-11T11:52:45Z date_published: 2015-10-23T00:00:00Z date_updated: 2023-02-23T14:05:55Z day: '23' ddc: - '570' department: - _id: CaHe doi: 10.1371/journal.pcbi.1004541 file: - access_level: open_access checksum: 8b67d729be663bfc9af04bfd94459655 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:21Z date_updated: 2020-07-14T12:45:02Z file_id: '5207' file_name: IST-2016-478-v1+1_journal.pcbi.1004541.pdf file_size: 1412511 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 11' issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: PLoS Computational Biology publication_status: published publisher: Public Library of Science publist_id: '5605' pubrep_id: '478' quality_controlled: '1' related_material: record: - id: '9714' relation: research_data status: public scopus_import: 1 status: public title: An exploration of the universe of polyglutamine structures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2015' ... --- _id: '9714' article_processing_charge: No author: - first_name: Àngel full_name: Gómez Sicilia, Àngel last_name: Gómez Sicilia - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Marek full_name: Cieplak, Marek last_name: Cieplak - first_name: Mariano full_name: Carrión Vázquez, Mariano last_name: Carrión Vázquez citation: ama: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. An exploration of the universe of polyglutamine structures - submission to PLOS journals. 2015. doi:10.1371/journal.pcbi.1004541.s001 apa: Gómez Sicilia, À., Sikora, M. K., Cieplak, M., & Carrión Vázquez, M. (2015). An exploration of the universe of polyglutamine structures - submission to PLOS journals. Public Library of Science . https://doi.org/10.1371/journal.pcbi.1004541.s001 chicago: Gómez Sicilia, Àngel, Mateusz K Sikora, Marek Cieplak, and Mariano Carrión Vázquez. “An Exploration of the Universe of Polyglutamine Structures - Submission to PLOS Journals.” Public Library of Science , 2015. https://doi.org/10.1371/journal.pcbi.1004541.s001. ieee: À. Gómez Sicilia, M. K. Sikora, M. Cieplak, and M. Carrión Vázquez, “An exploration of the universe of polyglutamine structures - submission to PLOS journals.” Public Library of Science , 2015. ista: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. 2015. An exploration of the universe of polyglutamine structures - submission to PLOS journals, Public Library of Science , 10.1371/journal.pcbi.1004541.s001. mla: Gómez Sicilia, Àngel, et al. An Exploration of the Universe of Polyglutamine Structures - Submission to PLOS Journals. Public Library of Science , 2015, doi:10.1371/journal.pcbi.1004541.s001. short: À. Gómez Sicilia, M.K. Sikora, M. Cieplak, M. Carrión Vázquez, (2015). date_created: 2021-07-23T12:05:28Z date_published: 2015-10-23T00:00:00Z date_updated: 2023-02-23T10:04:35Z day: '23' department: - _id: CaHe doi: 10.1371/journal.pcbi.1004541.s001 month: '10' oa_version: Published Version publisher: 'Public Library of Science ' related_material: record: - id: '1566' relation: used_in_publication status: public status: public title: An exploration of the universe of polyglutamine structures - submission to PLOS journals type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '1537' abstract: - lang: eng text: 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype. acknowledged_ssus: - _id: SSU acknowledgement: 'We would like to thank R. Hausschild and E. Papusheva for technical assistance and the service facilities at the IST Austria for continuous support. The caRhoA plasmid was a kind gift of T. Kudoh and A. Takesono. We thank M. Piel and E. Paluch for exchanging unpublished data. ' author: - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Andrew full_name: Callan Jones, Andrew last_name: Callan Jones - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Keisuke full_name: Sako, Keisuke id: 3BED66BE-F248-11E8-B48F-1D18A9856A87 last_name: Sako orcid: 0000-0002-6453-8075 - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Monika full_name: Ritsch Marte, Monika last_name: Ritsch Marte - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Ruprecht V, Wieser S, Callan Jones A, et al. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell. 2015;160(4):673-685. doi:10.1016/j.cell.2015.01.008 apa: Ruprecht, V., Wieser, S., Callan Jones, A., Smutny, M., Morita, H., Sako, K., … Heisenberg, C.-P. J. (2015). Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell. Cell Press. https://doi.org/10.1016/j.cell.2015.01.008 chicago: Ruprecht, Verena, Stefan Wieser, Andrew Callan Jones, Michael Smutny, Hitoshi Morita, Keisuke Sako, Vanessa Barone, et al. “Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility.” Cell. Cell Press, 2015. https://doi.org/10.1016/j.cell.2015.01.008. ieee: V. Ruprecht et al., “Cortical contractility triggers a stochastic switch to fast amoeboid cell motility,” Cell, vol. 160, no. 4. Cell Press, pp. 673–685, 2015. ista: Ruprecht V, Wieser S, Callan Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch Marte M, Sixt MK, Voituriez R, Heisenberg C-PJ. 2015. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell. 160(4), 673–685. mla: Ruprecht, Verena, et al. “Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility.” Cell, vol. 160, no. 4, Cell Press, 2015, pp. 673–85, doi:10.1016/j.cell.2015.01.008. short: V. Ruprecht, S. Wieser, A. Callan Jones, M. Smutny, H. Morita, K. Sako, V. Barone, M. Ritsch Marte, M.K. Sixt, R. Voituriez, C.-P.J. Heisenberg, Cell 160 (2015) 673–685. date_created: 2018-12-11T11:52:35Z date_published: 2015-02-12T00:00:00Z date_updated: 2023-09-07T12:05:08Z day: '12' ddc: - '570' department: - _id: CaHe - _id: MiSi doi: 10.1016/j.cell.2015.01.008 file: - access_level: open_access checksum: 228d3edf40627d897b3875088a0ac51f content_type: application/pdf creator: system date_created: 2018-12-12T10:13:21Z date_updated: 2020-07-14T12:45:01Z file_id: '5003' file_name: IST-2016-484-v1+1_1-s2.0-S0092867415000094-main.pdf file_size: 4362653 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 160' issue: '4' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 673 - 685 project: - _id: 2529486C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T 560-B17 name: Cell- and Tissue Mechanics in Zebrafish Germ Layer Formation - _id: 2527D5CC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 812-B12 name: Cell Cortex and Germ Layer Formation in Zebrafish Gastrulation publication: Cell publication_status: published publisher: Cell Press publist_id: '5634' pubrep_id: '484' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public scopus_import: 1 status: public title: Cortical contractility triggers a stochastic switch to fast amoeboid cell motility tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 160 year: '2015' ... --- _id: '10815' abstract: - lang: eng text: In the last several decades, developmental biology has clarified the molecular mechanisms of embryogenesis and organogenesis. In particular, it has demonstrated that the “tool-kit genes” essential for regulating developmental processes are not only highly conserved among species, but are also used as systems at various times and places in an organism to control distinct developmental events. Therefore, mutations in many of these tool-kit genes may cause congenital diseases involving morphological abnormalities. This link between genes and abnormal morphological phenotypes underscores the importance of understanding how cells behave and contribute to morphogenesis as a result of gene function. Recent improvements in live imaging and in quantitative analyses of cellular dynamics will advance our understanding of the cellular pathogenesis of congenital diseases associated with aberrant morphologies. In these studies, it is critical to select an appropriate model organism for the particular phenomenon of interest. acknowledgement: The authors thank all the members of the Division of Morphogenesis, National Institute for Basic Biology, for their contributions to the research, their encouragement, and helpful discussions, particularly Dr M. Suzuki for his critical reading of the manuscript. We also thank the Model Animal Research and Spectrography and Bioimaging Facilities, NIBB Core Research Facilities, for technical support. M.H. was supported by a research fellowship from the Japan Society for the Promotion of Science (JSPS). Our work introduced in this review was supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, to N.U. article_processing_charge: No article_type: original author: - first_name: Masakazu full_name: Hashimoto, Masakazu last_name: Hashimoto - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Naoto full_name: Ueno, Naoto last_name: Ueno citation: ama: Hashimoto M, Morita H, Ueno N. Molecular and cellular mechanisms of development underlying congenital diseases. Congenital Anomalies. 2014;54(1):1-7. doi:10.1111/cga.12039 apa: Hashimoto, M., Morita, H., & Ueno, N. (2014). Molecular and cellular mechanisms of development underlying congenital diseases. Congenital Anomalies. Wiley. https://doi.org/10.1111/cga.12039 chicago: Hashimoto, Masakazu, Hitoshi Morita, and Naoto Ueno. “Molecular and Cellular Mechanisms of Development Underlying Congenital Diseases.” Congenital Anomalies. Wiley, 2014. https://doi.org/10.1111/cga.12039. ieee: M. Hashimoto, H. Morita, and N. Ueno, “Molecular and cellular mechanisms of development underlying congenital diseases,” Congenital Anomalies, vol. 54, no. 1. Wiley, pp. 1–7, 2014. ista: Hashimoto M, Morita H, Ueno N. 2014. Molecular and cellular mechanisms of development underlying congenital diseases. Congenital Anomalies. 54(1), 1–7. mla: Hashimoto, Masakazu, et al. “Molecular and Cellular Mechanisms of Development Underlying Congenital Diseases.” Congenital Anomalies, vol. 54, no. 1, Wiley, 2014, pp. 1–7, doi:10.1111/cga.12039. short: M. Hashimoto, H. Morita, N. Ueno, Congenital Anomalies 54 (2014) 1–7. date_created: 2022-03-04T08:17:25Z date_published: 2014-02-01T00:00:00Z date_updated: 2022-03-04T08:26:05Z day: '01' department: - _id: CaHe doi: 10.1111/cga.12039 external_id: pmid: - '24666178' intvolume: ' 54' issue: '1' keyword: - Developmental Biology - Embryology - General Medicine - Pediatrics - Perinatology - and Child Health language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/cga.12039 month: '02' oa: 1 oa_version: None page: 1-7 pmid: 1 publication: Congenital Anomalies publication_identifier: issn: - 0914-3505 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Molecular and cellular mechanisms of development underlying congenital diseases type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 54 year: '2014' ... --- _id: '1891' abstract: - lang: eng text: We provide theoretical tests of a novel experimental technique to determine mechanostability of proteins based on stretching a mechanically protected protein by single-molecule force spectroscopy. This technique involves stretching a homogeneous or heterogeneous chain of reference proteins (single-molecule markers) in which one of them acts as host to the guest protein under study. The guest protein is grafted into the host through genetic engineering. It is expected that unraveling of the host precedes the unraveling of the guest removing ambiguities in the reading of the force-extension patterns of the guest protein. We study examples of such systems within a coarse-grained structure-based model. We consider systems with various ratios of mechanostability for the host and guest molecules and compare them to experimental results involving cohesin I as the guest molecule. For a comparison, we also study the force-displacement patterns in proteins that are linked in a serial fashion. We find that the mechanostability of the guest is similar to that of the isolated or serially linked protein. We also demonstrate that the ideal configuration of this strategy would be one in which the host is much more mechanostable than the single-molecule markers. We finally show that it is troublesome to use the highly stable cystine knot proteins as a host to graft a guest in stretching studies because this would involve a cleaving procedure. acknowledgement: Grant Nr. 2011/01/N/ST3/02475 author: - first_name: Mateusz full_name: Chwastyk, Mateusz last_name: Chwastyk - first_name: Albert full_name: Galera Prat, Albert last_name: Galera Prat - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Àngel full_name: Gómez Sicilia, Àngel last_name: Gómez Sicilia - first_name: Mariano full_name: Carrión Vázquez, Mariano last_name: Carrión Vázquez - first_name: Marek full_name: Cieplak, Marek last_name: Cieplak citation: ama: 'Chwastyk M, Galera Prat A, Sikora MK, Gómez Sicilia À, Carrión Vázquez M, Cieplak M. Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins: Structure, Function and Bioinformatics. 2014;82(5):717-726. doi:10.1002/prot.24436' apa: 'Chwastyk, M., Galera Prat, A., Sikora, M. K., Gómez Sicilia, À., Carrión Vázquez, M., & Cieplak, M. (2014). Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins: Structure, Function and Bioinformatics. Wiley-Blackwell. https://doi.org/10.1002/prot.24436' chicago: 'Chwastyk, Mateusz, Albert Galera Prat, Mateusz K Sikora, Àngel Gómez Sicilia, Mariano Carrión Vázquez, and Marek Cieplak. “Theoretical Tests of the Mechanical Protection Strategy in Protein Nanomechanics.” Proteins: Structure, Function and Bioinformatics. Wiley-Blackwell, 2014. https://doi.org/10.1002/prot.24436.' ieee: 'M. Chwastyk, A. Galera Prat, M. K. Sikora, À. Gómez Sicilia, M. Carrión Vázquez, and M. Cieplak, “Theoretical tests of the mechanical protection strategy in protein nanomechanics,” Proteins: Structure, Function and Bioinformatics, vol. 82, no. 5. Wiley-Blackwell, pp. 717–726, 2014.' ista: 'Chwastyk M, Galera Prat A, Sikora MK, Gómez Sicilia À, Carrión Vázquez M, Cieplak M. 2014. Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins: Structure, Function and Bioinformatics. 82(5), 717–726.' mla: 'Chwastyk, Mateusz, et al. “Theoretical Tests of the Mechanical Protection Strategy in Protein Nanomechanics.” Proteins: Structure, Function and Bioinformatics, vol. 82, no. 5, Wiley-Blackwell, 2014, pp. 717–26, doi:10.1002/prot.24436.' short: 'M. Chwastyk, A. Galera Prat, M.K. Sikora, À. Gómez Sicilia, M. Carrión Vázquez, M. Cieplak, Proteins: Structure, Function and Bioinformatics 82 (2014) 717–726.' date_created: 2018-12-11T11:54:34Z date_published: 2014-05-01T00:00:00Z date_updated: 2021-01-12T06:53:52Z day: '01' department: - _id: CaHe doi: 10.1002/prot.24436 intvolume: ' 82' issue: '5' language: - iso: eng month: '05' oa_version: None page: 717 - 726 publication: 'Proteins: Structure, Function and Bioinformatics' publication_status: published publisher: Wiley-Blackwell publist_id: '5204' scopus_import: 1 status: public title: Theoretical tests of the mechanical protection strategy in protein nanomechanics type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 82 year: '2014' ... --- _id: '1900' abstract: - lang: eng text: Epithelial cell layers need to be tightly regulated to maintain their integrity and correct function. Cell integration into epithelial sheets is now shown to depend on the N-WASP-regulated stabilization of cortical F-actin, which generates distinct patterns of apical-lateral contractility at E-cadherin-based cell-cell junctions. author: - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Behrndt M, Heisenberg C-PJ. Lateral junction dynamics lead the way out. Nature Cell Biology. 2014;16(2):127-129. doi:10.1038/ncb2913 apa: Behrndt, M., & Heisenberg, C.-P. J. (2014). Lateral junction dynamics lead the way out. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb2913 chicago: Behrndt, Martin, and Carl-Philipp J Heisenberg. “Lateral Junction Dynamics Lead the Way Out.” Nature Cell Biology. Nature Publishing Group, 2014. https://doi.org/10.1038/ncb2913. ieee: M. Behrndt and C.-P. J. Heisenberg, “Lateral junction dynamics lead the way out,” Nature Cell Biology, vol. 16, no. 2. Nature Publishing Group, pp. 127–129, 2014. ista: Behrndt M, Heisenberg C-PJ. 2014. Lateral junction dynamics lead the way out. Nature Cell Biology. 16(2), 127–129. mla: Behrndt, Martin, and Carl-Philipp J. Heisenberg. “Lateral Junction Dynamics Lead the Way Out.” Nature Cell Biology, vol. 16, no. 2, Nature Publishing Group, 2014, pp. 127–29, doi:10.1038/ncb2913. short: M. Behrndt, C.-P.J. Heisenberg, Nature Cell Biology 16 (2014) 127–129. date_created: 2018-12-11T11:54:37Z date_published: 2014-01-31T00:00:00Z date_updated: 2021-01-12T06:53:56Z day: '31' department: - _id: CaHe doi: 10.1038/ncb2913 intvolume: ' 16' issue: '2' language: - iso: eng month: '01' oa_version: None page: 127 - 129 publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '5195' quality_controlled: '1' scopus_import: 1 status: public title: Lateral junction dynamics lead the way out type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2014' ... --- _id: '1925' abstract: - lang: eng text: In the past decade carbon nanotubes (CNTs) have been widely studied as a potential drug-delivery system, especially with functionality for cellular targeting. Yet, little is known about the actual process of docking to cell receptors and transport dynamics after internalization. Here we performed single-particle studies of folic acid (FA) mediated CNT binding to human carcinoma cells and their transport inside the cytosol. In particular, we employed molecular recognition force spectroscopy, an atomic force microscopy based method, to visualize and quantify docking of FA functionalized CNTs to FA binding receptors in terms of binding probability and binding force. We then traced individual fluorescently labeled, FA functionalized CNTs after specific uptake, and created a dynamic 'roadmap' that clearly showed trajectories of directed diffusion and areas of nanotube confinement in the cytosol. Our results demonstrate the potential of a single-molecule approach for investigation of drug-delivery vehicles and their targeting capacity. acknowledgement: "This work was supported by EC grant Marie Curie RTN-CT-2006-035616, CARBIO 'Carbon nanotubes for biomedical applications' and Austrian FFG grant mnt-era.net 823980, 'IntelliTip'.\r\n" article_number: '125704' article_processing_charge: No article_type: original author: - first_name: Constanze full_name: Lamprecht, Constanze last_name: Lamprecht - first_name: Birgit full_name: Plochberger, Birgit last_name: Plochberger - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Christian full_name: Rankl, Christian last_name: Rankl - first_name: Elena full_name: Heister, Elena last_name: Heister - first_name: Barbara full_name: Unterauer, Barbara last_name: Unterauer - first_name: Mario full_name: Brameshuber, Mario last_name: Brameshuber - first_name: Jürgen full_name: Danzberger, Jürgen last_name: Danzberger - first_name: Petar full_name: Lukanov, Petar last_name: Lukanov - first_name: Emmanuel full_name: Flahaut, Emmanuel last_name: Flahaut - first_name: Gerhard full_name: Schütz, Gerhard last_name: Schütz - first_name: Peter full_name: Hinterdorfer, Peter last_name: Hinterdorfer - first_name: Andreas full_name: Ebner, Andreas last_name: Ebner citation: ama: Lamprecht C, Plochberger B, Ruprecht V, et al. A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. 2014;25(12). doi:10.1088/0957-4484/25/12/125704 apa: Lamprecht, C., Plochberger, B., Ruprecht, V., Wieser, S., Rankl, C., Heister, E., … Ebner, A. (2014). A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. IOP Publishing. https://doi.org/10.1088/0957-4484/25/12/125704 chicago: Lamprecht, Constanze, Birgit Plochberger, Verena Ruprecht, Stefan Wieser, Christian Rankl, Elena Heister, Barbara Unterauer, et al. “A Single-Molecule Approach to Explore Binding Uptake and Transport of Cancer Cell Targeting Nanotubes.” Nanotechnology. IOP Publishing, 2014. https://doi.org/10.1088/0957-4484/25/12/125704. ieee: C. Lamprecht et al., “A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes,” Nanotechnology, vol. 25, no. 12. IOP Publishing, 2014. ista: Lamprecht C, Plochberger B, Ruprecht V, Wieser S, Rankl C, Heister E, Unterauer B, Brameshuber M, Danzberger J, Lukanov P, Flahaut E, Schütz G, Hinterdorfer P, Ebner A. 2014. A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. 25(12), 125704. mla: Lamprecht, Constanze, et al. “A Single-Molecule Approach to Explore Binding Uptake and Transport of Cancer Cell Targeting Nanotubes.” Nanotechnology, vol. 25, no. 12, 125704, IOP Publishing, 2014, doi:10.1088/0957-4484/25/12/125704. short: C. Lamprecht, B. Plochberger, V. Ruprecht, S. Wieser, C. Rankl, E. Heister, B. Unterauer, M. Brameshuber, J. Danzberger, P. Lukanov, E. Flahaut, G. Schütz, P. Hinterdorfer, A. Ebner, Nanotechnology 25 (2014). date_created: 2018-12-11T11:54:45Z date_published: 2014-03-28T00:00:00Z date_updated: 2021-01-12T06:54:07Z day: '28' ddc: - '570' department: - _id: CaHe - _id: MiSi doi: 10.1088/0957-4484/25/12/125704 file: - access_level: open_access checksum: df4e03d225a19179e7790f6d87a12332 content_type: application/pdf creator: dernst date_created: 2020-05-15T09:21:19Z date_updated: 2020-07-14T12:45:21Z file_id: '7856' file_name: 2014_Nanotechnology_Lamprecht.pdf file_size: 3804152 relation: main_file file_date_updated: 2020-07-14T12:45:21Z has_accepted_license: '1' intvolume: ' 25' issue: '12' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version publication: Nanotechnology publication_status: published publisher: IOP Publishing publist_id: '5169' scopus_import: 1 status: public title: A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2014' ... --- _id: '1923' abstract: - lang: eng text: We derive the equations for a thin, axisymmetric elastic shell subjected to an internal active stress giving rise to active tension and moments within the shell. We discuss the stability of a cylindrical elastic shell and its response to a localized change in internal active stress. This description is relevant to describe the cellular actomyosin cortex, a thin shell at the cell surface behaving elastically at a short timescale and subjected to active internal forces arising from myosin molecular motor activity. We show that the recent observations of cell deformation following detachment of adherent cells (Maître J-L et al 2012 Science 338 253-6) are well accounted for by this mechanical description. The actin cortex elastic and bending moduli can be obtained from a quantitative analysis of cell shapes observed in these experiments. Our approach thus provides a non-invasive, imaging-based method for the extraction of cellular physical parameters. article_number: '065005' author: - first_name: Hélène full_name: Berthoumieux, Hélène last_name: Berthoumieux - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux citation: ama: Berthoumieux H, Maître J-L, Heisenberg C-PJ, Paluch E, Julicher F, Salbreux G. Active elastic thin shell theory for cellular deformations. New Journal of Physics. 2014;16. doi:10.1088/1367-2630/16/6/065005 apa: Berthoumieux, H., Maître, J.-L., Heisenberg, C.-P. J., Paluch, E., Julicher, F., & Salbreux, G. (2014). Active elastic thin shell theory for cellular deformations. New Journal of Physics. IOP Publishing Ltd. https://doi.org/10.1088/1367-2630/16/6/065005 chicago: Berthoumieux, Hélène, Jean-Léon Maître, Carl-Philipp J Heisenberg, Ewa Paluch, Frank Julicher, and Guillaume Salbreux. “Active Elastic Thin Shell Theory for Cellular Deformations.” New Journal of Physics. IOP Publishing Ltd., 2014. https://doi.org/10.1088/1367-2630/16/6/065005. ieee: H. Berthoumieux, J.-L. Maître, C.-P. J. Heisenberg, E. Paluch, F. Julicher, and G. Salbreux, “Active elastic thin shell theory for cellular deformations,” New Journal of Physics, vol. 16. IOP Publishing Ltd., 2014. ista: Berthoumieux H, Maître J-L, Heisenberg C-PJ, Paluch E, Julicher F, Salbreux G. 2014. Active elastic thin shell theory for cellular deformations. New Journal of Physics. 16, 065005. mla: Berthoumieux, Hélène, et al. “Active Elastic Thin Shell Theory for Cellular Deformations.” New Journal of Physics, vol. 16, 065005, IOP Publishing Ltd., 2014, doi:10.1088/1367-2630/16/6/065005. short: H. Berthoumieux, J.-L. Maître, C.-P.J. Heisenberg, E. Paluch, F. Julicher, G. Salbreux, New Journal of Physics 16 (2014). date_created: 2018-12-11T11:54:44Z date_published: 2014-06-01T00:00:00Z date_updated: 2021-01-12T06:54:06Z day: '01' ddc: - '570' department: - _id: CaHe doi: 10.1088/1367-2630/16/6/065005 file: - access_level: open_access checksum: 8dbe81ec656bf1264d8889bda9b2b985 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:16Z date_updated: 2020-07-14T12:45:21Z file_id: '5202' file_name: IST-2016-429-v1+1_document.pdf file_size: 941387 relation: main_file file_date_updated: 2020-07-14T12:45:21Z has_accepted_license: '1' intvolume: ' 16' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: New Journal of Physics publication_status: published publisher: IOP Publishing Ltd. publist_id: '5171' pubrep_id: '429' quality_controlled: '1' scopus_import: 1 status: public title: Active elastic thin shell theory for cellular deformations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2014' ... --- _id: '2248' abstract: - lang: eng text: 'Avian forelimb digit homology remains one of the standard themes in comparative biology and EvoDevo research. In order to resolve the apparent contradictions between embryological and paleontological evidence a variety of hypotheses have been presented in recent years. The proposals range from excluding birds from the dinosaur clade, to assignments of homology by different criteria, or even assuming a hexadactyl tetrapod limb ground state. At present two approaches prevail: the frame shift hypothesis and the pyramid reduction hypothesis. While the former postulates a homeotic shift of digit identities, the latter argues for a gradual bilateral reduction of phalanges and digits. Here we present a new model that integrates elements from both hypotheses with the existing experimental and fossil evidence. We start from the main feature common to both earlier concepts, the initiating ontogenetic event: reduction and loss of the anterior-most digit. It is proposed that a concerted mechanism of molecular regulation and developmental mechanics is capable of shifting the boundaries of hoxD expression in embryonic forelimb buds as well as changing the digit phenotypes. Based on a distinction between positional (topological) and compositional (phenotypic) homology criteria, we argue that the identity of the avian digits is II, III, IV, despite a partially altered phenotype. Finally, we introduce an alternative digit reduction scheme that reconciles the current fossil evidence with the presented molecular-morphogenetic model. Our approach identifies specific experiments that allow to test whether gene expression can be shifted and digit phenotypes can be altered by induced digit loss or digit gain.' author: - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Brian full_name: Metscher, Brian last_name: Metscher - first_name: Gerd full_name: Müller, Gerd last_name: Müller citation: ama: 'Capek D, Metscher B, Müller G. Thumbs down: A molecular-morphogenetic approach to avian digit homology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2014;322(1):1-12. doi:10.1002/jez.b.22545' apa: 'Capek, D., Metscher, B., & Müller, G. (2014). Thumbs down: A molecular-morphogenetic approach to avian digit homology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. Wiley-Blackwell. https://doi.org/10.1002/jez.b.22545' chicago: 'Capek, Daniel, Brian Metscher, and Gerd Müller. “Thumbs down: A Molecular-Morphogenetic Approach to Avian Digit Homology.” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. Wiley-Blackwell, 2014. https://doi.org/10.1002/jez.b.22545.' ieee: 'D. Capek, B. Metscher, and G. Müller, “Thumbs down: A molecular-morphogenetic approach to avian digit homology,” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 322, no. 1. Wiley-Blackwell, pp. 1–12, 2014.' ista: 'Capek D, Metscher B, Müller G. 2014. Thumbs down: A molecular-morphogenetic approach to avian digit homology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 322(1), 1–12.' mla: 'Capek, Daniel, et al. “Thumbs down: A Molecular-Morphogenetic Approach to Avian Digit Homology.” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 322, no. 1, Wiley-Blackwell, 2014, pp. 1–12, doi:10.1002/jez.b.22545.' short: 'D. Capek, B. Metscher, G. Müller, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 322 (2014) 1–12.' date_created: 2018-12-11T11:56:33Z date_published: 2014-01-01T00:00:00Z date_updated: 2021-01-12T06:56:16Z day: '01' department: - _id: CaHe doi: 10.1002/jez.b.22545 intvolume: ' 322' issue: '1' language: - iso: eng month: '01' oa_version: None page: 1 - 12 publication: 'Journal of Experimental Zoology Part B: Molecular and Developmental Evolution' publication_identifier: issn: - '15525007' publication_status: published publisher: Wiley-Blackwell publist_id: '4701' quality_controlled: '1' scopus_import: 1 status: public title: 'Thumbs down: A molecular-morphogenetic approach to avian digit homology' type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 322 year: '2014' ... --- _id: '6178' abstract: - lang: eng text: Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo. article_processing_charge: No author: - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg C-PJ. UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In: Nelson C, ed. Tissue Morphogenesis. Vol 1189. Methods in Molecular Biology. New York, NY: Springer; 2014:219-235. doi:10.1007/978-1-4939-1164-6_15' apa: 'Smutny, M., Behrndt, M., Campinho, P., Ruprecht, V., & Heisenberg, C.-P. J. (2014). UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In C. Nelson (Ed.), Tissue Morphogenesis (Vol. 1189, pp. 219–235). New York, NY: Springer. https://doi.org/10.1007/978-1-4939-1164-6_15' chicago: 'Smutny, Michael, Martin Behrndt, Pedro Campinho, Verena Ruprecht, and Carl-Philipp J Heisenberg. “UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo in Vivo and Ex Vivo.” In Tissue Morphogenesis, edited by Celeste Nelson, 1189:219–35. Methods in Molecular Biology. New York, NY: Springer, 2014. https://doi.org/10.1007/978-1-4939-1164-6_15.' ieee: 'M. Smutny, M. Behrndt, P. Campinho, V. Ruprecht, and C.-P. J. Heisenberg, “UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo,” in Tissue Morphogenesis, vol. 1189, C. Nelson, Ed. New York, NY: Springer, 2014, pp. 219–235.' ista: 'Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg C-PJ. 2014.UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In: Tissue Morphogenesis. vol. 1189, 219–235.' mla: Smutny, Michael, et al. “UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo in Vivo and Ex Vivo.” Tissue Morphogenesis, edited by Celeste Nelson, vol. 1189, Springer, 2014, pp. 219–35, doi:10.1007/978-1-4939-1164-6_15. short: M. Smutny, M. Behrndt, P. Campinho, V. Ruprecht, C.-P.J. Heisenberg, in:, C. Nelson (Ed.), Tissue Morphogenesis, Springer, New York, NY, 2014, pp. 219–235. date_created: 2019-03-26T08:55:59Z date_published: 2014-08-22T00:00:00Z date_updated: 2023-09-05T14:12:00Z day: '22' department: - _id: CaHe doi: 10.1007/978-1-4939-1164-6_15 editor: - first_name: Celeste full_name: Nelson, Celeste last_name: Nelson external_id: pmid: - '25245697' intvolume: ' 1189' language: - iso: eng month: '08' oa_version: None page: 219-235 place: New York, NY pmid: 1 publication: Tissue Morphogenesis publication_identifier: eissn: - 1940-6029 isbn: - '9781493911639' - '9781493911646' issn: - 1064-3745 publication_status: published publisher: Springer quality_controlled: '1' series_title: Methods in Molecular Biology status: public title: UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 1189 year: '2014' ... --- _id: '1912' abstract: - lang: eng text: Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function. acknowledgement: We are grateful to members of the C.-P.H. lab, M. Concha, D. Siekhaus, and J. Vermot for comments on the manuscript and to M. Furutani-Seiki for sharing reagents. This work was supported by the Institute of Science and Technology Austria and an Alexander von Humboldt Foundation fellowship to J.C. article_processing_charge: No author: - first_name: Julien full_name: Compagnon, Julien id: 2E3E0988-F248-11E8-B48F-1D18A9856A87 last_name: Compagnon - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Srivarsha full_name: Rajshekar, Srivarsha last_name: Rajshekar - first_name: Rita full_name: Kottmeier, Rita last_name: Kottmeier - first_name: Kornelija full_name: Pranjic-Ferscha, Kornelija id: 4362B3C2-F248-11E8-B48F-1D18A9856A87 last_name: Pranjic-Ferscha - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Compagnon J, Barone V, Rajshekar S, et al. The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ. Developmental Cell. 2014;31(6):774-783. doi:10.1016/j.devcel.2014.11.003 apa: Compagnon, J., Barone, V., Rajshekar, S., Kottmeier, R., Pranjic-Ferscha, K., Behrndt, M., & Heisenberg, C.-P. J. (2014). The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2014.11.003 chicago: Compagnon, Julien, Vanessa Barone, Srivarsha Rajshekar, Rita Kottmeier, Kornelija Pranjic-Ferscha, Martin Behrndt, and Carl-Philipp J Heisenberg. “The Notochord Breaks Bilateral Symmetry by Controlling Cell Shapes in the Zebrafish Laterality Organ.” Developmental Cell. Cell Press, 2014. https://doi.org/10.1016/j.devcel.2014.11.003. ieee: J. Compagnon et al., “The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ,” Developmental Cell, vol. 31, no. 6. Cell Press, pp. 774–783, 2014. ista: Compagnon J, Barone V, Rajshekar S, Kottmeier R, Pranjic-Ferscha K, Behrndt M, Heisenberg C-PJ. 2014. The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ. Developmental Cell. 31(6), 774–783. mla: Compagnon, Julien, et al. “The Notochord Breaks Bilateral Symmetry by Controlling Cell Shapes in the Zebrafish Laterality Organ.” Developmental Cell, vol. 31, no. 6, Cell Press, 2014, pp. 774–83, doi:10.1016/j.devcel.2014.11.003. short: J. Compagnon, V. Barone, S. Rajshekar, R. Kottmeier, K. Pranjic-Ferscha, M. Behrndt, C.-P.J. Heisenberg, Developmental Cell 31 (2014) 774–783. date_created: 2018-12-11T11:54:41Z date_published: 2014-12-22T00:00:00Z date_updated: 2023-09-07T12:05:08Z day: '22' department: - _id: CaHe doi: 10.1016/j.devcel.2014.11.003 external_id: pmid: - '25535919' intvolume: ' 31' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/25535919 month: '12' oa: 1 oa_version: Published Version page: 774 - 783 pmid: 1 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '5182' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public scopus_import: '1' status: public title: The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 31 year: '2014' ... --- _id: '1403' abstract: - lang: eng text: A variety of developmental and disease related processes depend on epithelial cell sheet spreading. In order to gain insight into the biophysical mechanism(s) underlying the tissue morphogenesis we studied the spreading of an epithelium during the early development of the zebrafish embryo. In zebrafish epiboly the enveloping cell layer (EVL), a simple squamous epithelium, spreads over the yolk cell to completely engulf it at the end of gastrulation. Previous studies have proposed that an actomyosin ring forming within the yolk syncytial layer (YSL) acts as purse string that through constriction along its circumference pulls on the margin of the EVL. Direct biophysical evidence for this hypothesis has however been missing. The aim of the thesis was to understand how the actomyosin ring may generate pulling forces onto the EVL and what cellular mechanism(s) may facilitate the spreading of the epithelium. Using laser ablation to measure cortical tension within the actomyosin ring we found an anisotropic tension distribution, which was highest along the circumference of the ring. However the low degree of anisotropy was incompatible with the actomyosin ring functioning as a purse string only. Additionally, we observed retrograde cortical flow from vegetal parts of the ring into the EVL margin. Interpreting the experimental data using a theoretical distribution that models the tissues as active viscous gels led us to proposen that the actomyosin ring has a twofold contribution to EVL epiboly. It not only acts as a purse string through constriction along its circumference, but in addition constriction along the width of the ring generates pulling forces through friction-resisted cortical flow. Moreover, when rendering the purse string mechanism unproductive EVL epiboly proceeded normally indicating that the flow-friction mechanism is sufficient to drive the process. Aiming to understand what cellular mechanism(s) may facilitate the spreading of the epithelium we found that tension-oriented EVL cell divisions limit tissue anisotropy by releasing tension along the division axis and promote epithelial spreading. Notably, EVL cells undergo ectopic cell fusion in conditions in which oriented-cell division is impaired or the epithelium is mechanically challenged. Taken together our study of EVL epiboly suggests a novel mechanism of force generation for actomyosin rings through friction-resisted cortical flow and highlights the importance of tension-oriented cell divisions in epithelial morphogenesis. acknowledged_ssus: - _id: SSU alternative_title: - IST Austria Thesis author: - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt citation: ama: Behrndt M. Forces driving epithelial spreading in zebrafish epiboly. 2014. apa: Behrndt, M. (2014). Forces driving epithelial spreading in zebrafish epiboly. IST Austria. chicago: Behrndt, Martin. “Forces Driving Epithelial Spreading in Zebrafish Epiboly.” IST Austria, 2014. ieee: M. Behrndt, “Forces driving epithelial spreading in zebrafish epiboly,” IST Austria, 2014. ista: Behrndt M. 2014. Forces driving epithelial spreading in zebrafish epiboly. IST Austria. mla: Behrndt, Martin. Forces Driving Epithelial Spreading in Zebrafish Epiboly. IST Austria, 2014. short: M. Behrndt, Forces Driving Epithelial Spreading in Zebrafish Epiboly, IST Austria, 2014. date_created: 2018-12-11T11:51:49Z date_published: 2014-08-01T00:00:00Z date_updated: 2023-10-17T12:16:58Z day: '01' department: - _id: CaHe language: - iso: eng month: '08' oa_version: None page: '91' publication_status: published publisher: IST Austria publist_id: '5804' related_material: record: - id: '2282' relation: part_of_dissertation status: public - id: '2950' relation: part_of_dissertation status: public - id: '3373' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Forces driving epithelial spreading in zebrafish epiboly type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '2278' abstract: - lang: eng text: It is firmly established that interactions between neurons and glia are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions that generate neuroblasts. The proneural gene lethal of scute (l9sc) is transiently activated by the epidermal growth factor receptor (EGFR)-Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium, promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR-Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for interactions between glia and neuroepithelial cells during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR-Ras pathway and hence of L9sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling. author: - first_name: Raquel full_name: Pérez Gómez, Raquel last_name: Pérez Gómez - first_name: Jana full_name: Slovakova, Jana id: 30F3F2F0-F248-11E8-B48F-1D18A9856A87 last_name: Slovakova - first_name: Noemí full_name: Rives Quinto, Noemí last_name: Rives Quinto - first_name: Alena full_name: Krejčí, Alena last_name: Krejčí - first_name: Ana full_name: Carmena, Ana last_name: Carmena citation: ama: Pérez Gómez R, Slovakova J, Rives Quinto N, Krejčí A, Carmena A. A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. Journal of Cell Science. 2013;126(21):4873-4884. doi:10.1242/jcs.125617 apa: Pérez Gómez, R., Slovakova, J., Rives Quinto, N., Krejčí, A., & Carmena, A. (2013). A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. Journal of Cell Science. Company of Biologists. https://doi.org/10.1242/jcs.125617 chicago: Pérez Gómez, Raquel, Jana Slovakova, Noemí Rives Quinto, Alena Krejčí, and Ana Carmena. “A Serrate-Notch-Canoe Complex Mediates Essential Interactions between Glia and Neuroepithelial Cells during Drosophila Optic Lobe Development.” Journal of Cell Science. Company of Biologists, 2013. https://doi.org/10.1242/jcs.125617. ieee: R. Pérez Gómez, J. Slovakova, N. Rives Quinto, A. Krejčí, and A. Carmena, “A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development,” Journal of Cell Science, vol. 126, no. 21. Company of Biologists, pp. 4873–4884, 2013. ista: Pérez Gómez R, Slovakova J, Rives Quinto N, Krejčí A, Carmena A. 2013. A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. Journal of Cell Science. 126(21), 4873–4884. mla: Pérez Gómez, Raquel, et al. “A Serrate-Notch-Canoe Complex Mediates Essential Interactions between Glia and Neuroepithelial Cells during Drosophila Optic Lobe Development.” Journal of Cell Science, vol. 126, no. 21, Company of Biologists, 2013, pp. 4873–84, doi:10.1242/jcs.125617. short: R. Pérez Gómez, J. Slovakova, N. Rives Quinto, A. Krejčí, A. Carmena, Journal of Cell Science 126 (2013) 4873–4884. date_created: 2018-12-11T11:56:43Z date_published: 2013-11-01T00:00:00Z date_updated: 2021-01-12T06:56:29Z day: '01' department: - _id: CaHe doi: 10.1242/jcs.125617 intvolume: ' 126' issue: '21' language: - iso: eng month: '11' oa_version: None page: 4873 - 4884 publication: Journal of Cell Science publication_status: published publisher: Company of Biologists publist_id: '4658' quality_controlled: '1' scopus_import: 1 status: public title: A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 126 year: '2013' ... --- _id: '2282' abstract: - lang: eng text: Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly. acknowledged_ssus: - _id: PreCl - _id: Bio acknowledgement: 'This work was supported by the IST Austria and MPI-CBG ' author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Jonas full_name: Ranft, Jonas last_name: Ranft - first_name: Thomas full_name: Risler, Thomas last_name: Risler - first_name: Nicolas full_name: Minc, Nicolas last_name: Minc - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg C-PJ. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. 2013;15:1405-1414. doi:10.1038/ncb2869 apa: Campinho, P., Behrndt, M., Ranft, J., Risler, T., Minc, N., & Heisenberg, C.-P. J. (2013). Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb2869 chicago: Campinho, Pedro, Martin Behrndt, Jonas Ranft, Thomas Risler, Nicolas Minc, and Carl-Philipp J Heisenberg. “Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading during Zebrafish Epiboly.” Nature Cell Biology. Nature Publishing Group, 2013. https://doi.org/10.1038/ncb2869. ieee: P. Campinho, M. Behrndt, J. Ranft, T. Risler, N. Minc, and C.-P. J. Heisenberg, “Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly,” Nature Cell Biology, vol. 15. Nature Publishing Group, pp. 1405–1414, 2013. ista: Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg C-PJ. 2013. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. 15, 1405–1414. mla: Campinho, Pedro, et al. “Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading during Zebrafish Epiboly.” Nature Cell Biology, vol. 15, Nature Publishing Group, 2013, pp. 1405–14, doi:10.1038/ncb2869. short: P. Campinho, M. Behrndt, J. Ranft, T. Risler, N. Minc, C.-P.J. Heisenberg, Nature Cell Biology 15 (2013) 1405–1414. date_created: 2018-12-11T11:56:45Z date_published: 2013-11-10T00:00:00Z date_updated: 2023-02-21T17:02:44Z day: '10' department: - _id: CaHe doi: 10.1038/ncb2869 intvolume: ' 15' language: - iso: eng main_file_link: - open_access: '1' url: http://hal.upmc.fr/hal-00983313/ month: '11' oa: 1 oa_version: Submitted Version page: 1405 - 1414 project: - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '4652' quality_controlled: '1' related_material: record: - id: '1403' relation: dissertation_contains status: public scopus_import: 1 status: public title: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2013' ... --- _id: '2286' abstract: - lang: eng text: The spatiotemporal control of cell divisions is a key factor in epithelial morphogenesis and patterning. Mao et al (2013) now describe how differential rates of proliferation within the Drosophila wing disc epithelium give rise to anisotropic tissue tension in peripheral/proximal regions of the disc. Such global tissue tension anisotropy in turn determines the orientation of cell divisions by controlling epithelial cell elongation. author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Campinho P, Heisenberg C-PJ. The force and effect of cell proliferation. EMBO Journal. 2013;32(21):2783-2784. doi:10.1038/emboj.2013.225 apa: Campinho, P., & Heisenberg, C.-P. J. (2013). The force and effect of cell proliferation. EMBO Journal. Wiley-Blackwell. https://doi.org/10.1038/emboj.2013.225 chicago: Campinho, Pedro, and Carl-Philipp J Heisenberg. “The Force and Effect of Cell Proliferation.” EMBO Journal. Wiley-Blackwell, 2013. https://doi.org/10.1038/emboj.2013.225. ieee: P. Campinho and C.-P. J. Heisenberg, “The force and effect of cell proliferation,” EMBO Journal, vol. 32, no. 21. Wiley-Blackwell, pp. 2783–2784, 2013. ista: Campinho P, Heisenberg C-PJ. 2013. The force and effect of cell proliferation. EMBO Journal. 32(21), 2783–2784. mla: Campinho, Pedro, and Carl-Philipp J. Heisenberg. “The Force and Effect of Cell Proliferation.” EMBO Journal, vol. 32, no. 21, Wiley-Blackwell, 2013, pp. 2783–84, doi:10.1038/emboj.2013.225. short: P. Campinho, C.-P.J. Heisenberg, EMBO Journal 32 (2013) 2783–2784. date_created: 2018-12-11T11:56:46Z date_published: 2013-10-04T00:00:00Z date_updated: 2021-01-12T06:56:32Z day: '04' department: - _id: CaHe doi: 10.1038/emboj.2013.225 external_id: pmid: - '24097062' intvolume: ' 32' issue: '21' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817470/ month: '10' oa: 1 oa_version: Submitted Version page: 2783 - 2784 pmid: 1 publication: EMBO Journal publication_status: published publisher: Wiley-Blackwell publist_id: '4645' quality_controlled: '1' scopus_import: 1 status: public title: The force and effect of cell proliferation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2013' ... --- _id: '2469' abstract: - lang: eng text: Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major unctions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial ension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact. author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Heisenberg C-PJ. Three functions of cadherins in cell adhesion. Current Biology. 2013;23(14):R626-R633. doi:10.1016/j.cub.2013.06.019 apa: Maître, J.-L., & Heisenberg, C.-P. J. (2013). Three functions of cadherins in cell adhesion. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2013.06.019 chicago: Maître, Jean-Léon, and Carl-Philipp J Heisenberg. “Three Functions of Cadherins in Cell Adhesion.” Current Biology. Cell Press, 2013. https://doi.org/10.1016/j.cub.2013.06.019. ieee: J.-L. Maître and C.-P. J. Heisenberg, “Three functions of cadherins in cell adhesion,” Current Biology, vol. 23, no. 14. Cell Press, pp. R626–R633, 2013. ista: Maître J-L, Heisenberg C-PJ. 2013. Three functions of cadherins in cell adhesion. Current Biology. 23(14), R626–R633. mla: Maître, Jean-Léon, and Carl-Philipp J. Heisenberg. “Three Functions of Cadherins in Cell Adhesion.” Current Biology, vol. 23, no. 14, Cell Press, 2013, pp. R626–33, doi:10.1016/j.cub.2013.06.019. short: J.-L. Maître, C.-P.J. Heisenberg, Current Biology 23 (2013) R626–R633. date_created: 2018-12-11T11:57:51Z date_published: 2013-07-22T00:00:00Z date_updated: 2021-01-12T06:57:40Z day: '22' ddc: - '570' department: - _id: CaHe doi: 10.1016/j.cub.2013.06.019 external_id: pmid: - '23885883' file: - access_level: open_access checksum: 6a424b2f007b41d4955a9135793b2162 content_type: application/pdf creator: dernst date_created: 2019-01-24T15:40:22Z date_updated: 2020-07-14T12:45:41Z file_id: '5881' file_name: 2013_CurrentBiology_Maitre.pdf file_size: 247320 relation: main_file file_date_updated: 2020-07-14T12:45:41Z has_accepted_license: '1' intvolume: ' 23' issue: '14' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: R626 - R633 pmid: 1 publication: Current Biology publication_status: published publisher: Cell Press publist_id: '4433' quality_controlled: '1' scopus_import: 1 status: public title: Three functions of cadherins in cell adhesion tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '2833' abstract: - lang: eng text: During development, mechanical forces cause changes in size, shape, number, position, and gene expression of cells. They are therefore integral to any morphogenetic processes. Force generation by actin-myosin networks and force transmission through adhesive complexes are two self-organizing phenomena driving tissue morphogenesis. Coordination and integration of forces by long-range force transmission and mechanosensing of cells within tissues produce large-scale tissue shape changes. Extrinsic mechanical forces also control tissue patterning by modulating cell fate specification and differentiation. Thus, the interplay between tissue mechanics and biochemical signaling orchestrates tissue morphogenesis and patterning in development. acknowledgement: C.-P.H. is supported by the Institute of Science and Technology Austria and grants from the Deutsche Forschungsgemeinschaft (DFG) and Fonds zur Förderung der wissenschaftlichen Forschung (FWF). author: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Yohanns full_name: Bellaïche, Yohanns last_name: Bellaïche citation: ama: Heisenberg C-PJ, Bellaïche Y. Forces in tissue morphogenesis and patterning. Cell. 2013;153(5):948-962. doi:10.1016/j.cell.2013.05.008 apa: Heisenberg, C.-P. J., & Bellaïche, Y. (2013). Forces in tissue morphogenesis and patterning. Cell. Cell Press. https://doi.org/10.1016/j.cell.2013.05.008 chicago: Heisenberg, Carl-Philipp J, and Yohanns Bellaïche. “Forces in Tissue Morphogenesis and Patterning.” Cell. Cell Press, 2013. https://doi.org/10.1016/j.cell.2013.05.008. ieee: C.-P. J. Heisenberg and Y. Bellaïche, “Forces in tissue morphogenesis and patterning,” Cell, vol. 153, no. 5. Cell Press, pp. 948–962, 2013. ista: Heisenberg C-PJ, Bellaïche Y. 2013. Forces in tissue morphogenesis and patterning. Cell. 153(5), 948–962. mla: Heisenberg, Carl-Philipp J., and Yohanns Bellaïche. “Forces in Tissue Morphogenesis and Patterning.” Cell, vol. 153, no. 5, Cell Press, 2013, pp. 948–62, doi:10.1016/j.cell.2013.05.008. short: C.-P.J. Heisenberg, Y. Bellaïche, Cell 153 (2013) 948–962. date_created: 2018-12-11T11:59:50Z date_published: 2013-05-23T00:00:00Z date_updated: 2021-01-12T07:00:04Z day: '23' department: - _id: CaHe doi: 10.1016/j.cell.2013.05.008 intvolume: ' 153' issue: '5' language: - iso: eng month: '05' oa_version: None page: 948 - 962 publication: Cell publication_status: published publisher: Cell Press publist_id: '3966' quality_controlled: '1' scopus_import: 1 status: public title: Forces in tissue morphogenesis and patterning type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 153 year: '2013' ... --- _id: '2841' abstract: - lang: eng text: In zebrafish early development, blastoderm cells undergo extensive radial intercalations, triggering the spreading of the blastoderm over the yolk cell and thereby initiating embryonic body axis formation. Now reporting in Developmental Cell, Song et al. (2013) demonstrate a critical function for EGF-dependent E-cadherin endocytosis in promoting blastoderm cell intercalations. author: - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Morita H, Heisenberg C-PJ. Holding on and letting go: Cadherin turnover in cell intercalation. Developmental Cell. 2013;24(6):567-569. doi:10.1016/j.devcel.2013.03.007' apa: 'Morita, H., & Heisenberg, C.-P. J. (2013). Holding on and letting go: Cadherin turnover in cell intercalation. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2013.03.007' chicago: 'Morita, Hitoshi, and Carl-Philipp J Heisenberg. “Holding on and Letting Go: Cadherin Turnover in Cell Intercalation.” Developmental Cell. Cell Press, 2013. https://doi.org/10.1016/j.devcel.2013.03.007.' ieee: 'H. Morita and C.-P. J. Heisenberg, “Holding on and letting go: Cadherin turnover in cell intercalation,” Developmental Cell, vol. 24, no. 6. Cell Press, pp. 567–569, 2013.' ista: 'Morita H, Heisenberg C-PJ. 2013. Holding on and letting go: Cadherin turnover in cell intercalation. Developmental Cell. 24(6), 567–569.' mla: 'Morita, Hitoshi, and Carl-Philipp J. Heisenberg. “Holding on and Letting Go: Cadherin Turnover in Cell Intercalation.” Developmental Cell, vol. 24, no. 6, Cell Press, 2013, pp. 567–69, doi:10.1016/j.devcel.2013.03.007.' short: H. Morita, C.-P.J. Heisenberg, Developmental Cell 24 (2013) 567–569. date_created: 2018-12-11T11:59:52Z date_published: 2013-05-25T00:00:00Z date_updated: 2021-01-12T07:00:09Z day: '25' department: - _id: CaHe doi: 10.1016/j.devcel.2013.03.007 intvolume: ' 24' issue: '6' language: - iso: eng month: '05' oa_version: None page: 567 - 569 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '3956' quality_controlled: '1' scopus_import: 1 status: public title: 'Holding on and letting go: Cadherin turnover in cell intercalation' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2013' ... --- _id: '2862' abstract: - lang: eng text: Motile cilia perform crucial functions during embryonic development and throughout adult life. Development of organs containing motile cilia involves regulation of cilia formation (ciliogenesis) and formation of a luminal space (lumenogenesis) in which cilia generate fluid flows. Control of ciliogenesis and lumenogenesis is not yet fully understood, and it remains unclear whether these processes are coupled. In the zebrafish embryo, lethal giant larvae 2 (lgl2) is expressed prominently in ciliated organs. Lgl proteins are involved in establishing cell polarity and have been implicated in vesicle trafficking. Here, we identified a role for Lgl2 in development of ciliated epithelia in Kupffer's vesicle, which directs left-right asymmetry of the embryo; the otic vesicles, which give rise to the inner ear; and the pronephric ducts of the kidney. Using Kupffer's vesicle as a model ciliated organ, we found that depletion of Lgl2 disrupted lumen formation and reduced cilia number and length. Immunofluorescence and time-lapse imaging of Kupffer's vesicle morphogenesis in Lgl2-deficient embryos suggested cell adhesion defects and revealed loss of the adherens junction component E-cadherin at lateral membranes. Genetic interaction experiments indicate that Lgl2 interacts with Rab11a to regulate E-cadherin and mediate lumen formation that is uncoupled from cilia formation. These results uncover new roles and interactions for Lgl2 that are crucial for both lumenogenesis and ciliogenesis and indicate that these processes are genetically separable in zebrafish. acknowledgement: Deposited in PMC for release after 12 months. We thank members of the Amack lab for helpful discussions and Mahendra Sonawane for donating reagents. author: - first_name: Hwee full_name: Tay, Hwee last_name: Tay - first_name: Sabrina full_name: Schulze, Sabrina last_name: Schulze - first_name: Julien full_name: Compagnon, Julien id: 2E3E0988-F248-11E8-B48F-1D18A9856A87 last_name: Compagnon - first_name: Fiona full_name: Foley, Fiona last_name: Foley - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: H Joseph full_name: Yost, H Joseph last_name: Yost - first_name: Salim full_name: Abdelilah Seyfried, Salim last_name: Abdelilah Seyfried - first_name: Jeffrey full_name: Amack, Jeffrey last_name: Amack citation: ama: Tay H, Schulze S, Compagnon J, et al. Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. 2013;140(7):1550-1559. doi:10.1242/dev.087130 apa: Tay, H., Schulze, S., Compagnon, J., Foley, F., Heisenberg, C.-P. J., Yost, H. J., … Amack, J. (2013). Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. Company of Biologists. https://doi.org/10.1242/dev.087130 chicago: Tay, Hwee, Sabrina Schulze, Julien Compagnon, Fiona Foley, Carl-Philipp J Heisenberg, H Joseph Yost, Salim Abdelilah Seyfried, and Jeffrey Amack. “Lethal Giant Larvae 2 Regulates Development of the Ciliated Organ Kupffer’s Vesicle.” Development. Company of Biologists, 2013. https://doi.org/10.1242/dev.087130. ieee: H. Tay et al., “Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle,” Development, vol. 140, no. 7. Company of Biologists, pp. 1550–1559, 2013. ista: Tay H, Schulze S, Compagnon J, Foley F, Heisenberg C-PJ, Yost HJ, Abdelilah Seyfried S, Amack J. 2013. Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. 140(7), 1550–1559. mla: Tay, Hwee, et al. “Lethal Giant Larvae 2 Regulates Development of the Ciliated Organ Kupffer’s Vesicle.” Development, vol. 140, no. 7, Company of Biologists, 2013, pp. 1550–59, doi:10.1242/dev.087130. short: H. Tay, S. Schulze, J. Compagnon, F. Foley, C.-P.J. Heisenberg, H.J. Yost, S. Abdelilah Seyfried, J. Amack, Development 140 (2013) 1550–1559. date_created: 2018-12-11T11:59:59Z date_published: 2013-04-01T00:00:00Z date_updated: 2021-01-12T07:00:20Z day: '01' department: - _id: CaHe doi: 10.1242/dev.087130 external_id: pmid: - '23482490' intvolume: ' 140' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596994/ month: '04' oa: 1 oa_version: Submitted Version page: 1550 - 1559 pmid: 1 publication: Development publication_status: published publisher: Company of Biologists publist_id: '3927' quality_controlled: '1' scopus_import: 1 status: public title: Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 140 year: '2013' ... --- _id: '2884' author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Hélène full_name: Berthoumieux, Hélène last_name: Berthoumieux - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Berthoumieux H, Krens G, et al. Cell adhesion mechanics of zebrafish gastrulation. Medecine Sciences. 2013;29(2):147-150. doi:10.1051/medsci/2013292011 apa: Maître, J.-L., Berthoumieux, H., Krens, G., Salbreux, G., Julicher, F., Paluch, E., & Heisenberg, C.-P. J. (2013). Cell adhesion mechanics of zebrafish gastrulation. Medecine Sciences. Éditions Médicales et Scientifiques. https://doi.org/10.1051/medsci/2013292011 chicago: Maître, Jean-Léon, Hélène Berthoumieux, Gabriel Krens, Guillaume Salbreux, Frank Julicher, Ewa Paluch, and Carl-Philipp J Heisenberg. “Cell Adhesion Mechanics of Zebrafish Gastrulation.” Medecine Sciences. Éditions Médicales et Scientifiques, 2013. https://doi.org/10.1051/medsci/2013292011. ieee: J.-L. Maître et al., “Cell adhesion mechanics of zebrafish gastrulation,” Medecine Sciences, vol. 29, no. 2. Éditions Médicales et Scientifiques, pp. 147–150, 2013. ista: Maître J-L, Berthoumieux H, Krens G, Salbreux G, Julicher F, Paluch E, Heisenberg C-PJ. 2013. Cell adhesion mechanics of zebrafish gastrulation. Medecine Sciences. 29(2), 147–150. mla: Maître, Jean-Léon, et al. “Cell Adhesion Mechanics of Zebrafish Gastrulation.” Medecine Sciences, vol. 29, no. 2, Éditions Médicales et Scientifiques, 2013, pp. 147–50, doi:10.1051/medsci/2013292011. short: J.-L. Maître, H. Berthoumieux, G. Krens, G. Salbreux, F. Julicher, E. Paluch, C.-P.J. Heisenberg, Medecine Sciences 29 (2013) 147–150. date_created: 2018-12-11T12:00:08Z date_published: 2013-02-01T00:00:00Z date_updated: 2021-01-12T07:00:28Z day: '01' department: - _id: CaHe doi: 10.1051/medsci/2013292011 intvolume: ' 29' issue: '2' language: - iso: eng month: '02' oa_version: None page: 147 - 150 project: - _id: 252064B8-B435-11E9-9278-68D0E5697425 grant_number: HE_3231/6-1 name: Analysis of the Formation and Function of Different Cell Protusion Types During Cell Migration in Vivo - _id: 2527D5CC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 812-B12 name: Cell Cortex and Germ Layer Formation in Zebrafish Gastrulation publication: Medecine Sciences publication_status: published publisher: Éditions Médicales et Scientifiques publist_id: '3877' quality_controlled: '1' scopus_import: 1 status: public title: Cell adhesion mechanics of zebrafish gastrulation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 29 year: '2013' ... --- _id: '2918' abstract: - lang: eng text: "Oriented mitosis is essential during tissue morphogenesis. The Wnt/planar cell polarity (Wnt/PCP) pathway orients mitosis in a number of developmental systems, including dorsal epiblast cell divisions along the animal-vegetal (A-V) axis during zebrafish gastrulation. How Wnt signalling orients the mitotic plane is, however, unknown. Here we show that, in dorsal epiblast cells, anthrax toxin receptor 2a (Antxr2a) accumulates in a polarized cortical cap, which is aligned with the embryonic A-V axis and forecasts the division plane. Filamentous actin (F-actin) also forms an A-V polarized cap, which depends on Wnt/PCP and its effectors RhoA and Rock2. Antxr2a is recruited to the cap by interacting with actin. Antxr2a also interacts with RhoA and together they activate the diaphanous-related formin zDia2. Mechanistically, Antxr2a functions as a Wnt-dependent polarized determinant, which, through the action of RhoA and zDia2, exerts torque on the spindle to align it with the A-V axis.\r\n" acknowledgement: This work was supported by the SNSF, the Swiss SystemsX.ch initiative and LipidX-2008/011 (M.G-G. and F.G.v.d.G.), by the Fondation SANTE-Vaduz/Aide au Soutien des Nouvelles Thérapies (F.G.v.d.G.) and by the ERC, the NCCR Frontiers in Genetics and Chemical Biology programmes and the Polish–Swiss research program (M.G-G.). author: - first_name: Irinka full_name: Castanon, Irinka last_name: Castanon - first_name: Laurence full_name: Abrami, Laurence last_name: Abrami - first_name: Laurent full_name: Holtzer, Laurent last_name: Holtzer - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Françoise full_name: Van Der Goot, Françoise last_name: Van Der Goot - first_name: Marcos full_name: González Gaitán, Marcos last_name: González Gaitán citation: ama: Castanon I, Abrami L, Holtzer L, Heisenberg C-PJ, Van Der Goot F, González Gaitán M. Anthrax toxin receptor 2a controls mitotic spindle positioning. Nature Cell Biology. 2013;15(1):28-39. doi:10.1038/ncb2632 apa: Castanon, I., Abrami, L., Holtzer, L., Heisenberg, C.-P. J., Van Der Goot, F., & González Gaitán, M. (2013). Anthrax toxin receptor 2a controls mitotic spindle positioning. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb2632 chicago: Castanon, Irinka, Laurence Abrami, Laurent Holtzer, Carl-Philipp J Heisenberg, Françoise Van Der Goot, and Marcos González Gaitán. “Anthrax Toxin Receptor 2a Controls Mitotic Spindle Positioning.” Nature Cell Biology. Nature Publishing Group, 2013. https://doi.org/10.1038/ncb2632. ieee: I. Castanon, L. Abrami, L. Holtzer, C.-P. J. Heisenberg, F. Van Der Goot, and M. González Gaitán, “Anthrax toxin receptor 2a controls mitotic spindle positioning,” Nature Cell Biology, vol. 15, no. 1. Nature Publishing Group, pp. 28–39, 2013. ista: Castanon I, Abrami L, Holtzer L, Heisenberg C-PJ, Van Der Goot F, González Gaitán M. 2013. Anthrax toxin receptor 2a controls mitotic spindle positioning. Nature Cell Biology. 15(1), 28–39. mla: Castanon, Irinka, et al. “Anthrax Toxin Receptor 2a Controls Mitotic Spindle Positioning.” Nature Cell Biology, vol. 15, no. 1, Nature Publishing Group, 2013, pp. 28–39, doi:10.1038/ncb2632. short: I. Castanon, L. Abrami, L. Holtzer, C.-P.J. Heisenberg, F. Van Der Goot, M. González Gaitán, Nature Cell Biology 15 (2013) 28–39. date_created: 2018-12-11T12:00:20Z date_published: 2013-01-01T00:00:00Z date_updated: 2021-01-12T07:00:41Z day: '01' department: - _id: CaHe doi: 10.1038/ncb2632 intvolume: ' 15' issue: '1' language: - iso: eng month: '01' oa_version: None page: 28 - 39 publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '3819' quality_controlled: '1' scopus_import: 1 status: public title: Anthrax toxin receptor 2a controls mitotic spindle positioning type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2013' ... --- _id: '2920' abstract: - lang: eng text: Cell polarisation in development is a common and fundamental process underlying embryo patterning and morphogenesis, and has been extensively studied over the past years. Our current knowledge of cell polarisation in development is predominantly based on studies that have analysed polarisation of single cells, such as eggs, or cellular aggregates with a stable polarising interface, such as cultured epithelial cells (St Johnston and Ahringer, 2010). However, in embryonic development, particularly of vertebrates, cell polarisation processes often encompass large numbers of cells that are placed within moving and proliferating tissues, and undergo mesenchymal-to-epithelial transitions with a highly complex spatiotemporal choreography. How such intricate cell polarisation processes in embryonic development are achieved has only started to be analysed. By using live imaging of neurulation in the transparent zebrafish embryo, Buckley et al (2012) now describe a novel polarisation strategy by which cells assemble an apical domain in the part of their cell body that intersects with the midline of the forming neural rod. This mechanism, along with the previously described mirror-symmetric divisions (Tawk et al, 2007), is thought to trigger formation of both neural rod midline and lumen. author: - first_name: Julien full_name: Compagnon, Julien id: 2E3E0988-F248-11E8-B48F-1D18A9856A87 last_name: Compagnon - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Compagnon J, Heisenberg C-PJ. Neurulation coordinating cell polarisation and lumen formation. EMBO Journal. 2013;32(1):1-3. doi:10.1038/emboj.2012.325 apa: Compagnon, J., & Heisenberg, C.-P. J. (2013). Neurulation coordinating cell polarisation and lumen formation. EMBO Journal. Wiley-Blackwell. https://doi.org/10.1038/emboj.2012.325 chicago: Compagnon, Julien, and Carl-Philipp J Heisenberg. “Neurulation Coordinating Cell Polarisation and Lumen Formation.” EMBO Journal. Wiley-Blackwell, 2013. https://doi.org/10.1038/emboj.2012.325. ieee: J. Compagnon and C.-P. J. Heisenberg, “Neurulation coordinating cell polarisation and lumen formation,” EMBO Journal, vol. 32, no. 1. Wiley-Blackwell, pp. 1–3, 2013. ista: Compagnon J, Heisenberg C-PJ. 2013. Neurulation coordinating cell polarisation and lumen formation. EMBO Journal. 32(1), 1–3. mla: Compagnon, Julien, and Carl-Philipp J. Heisenberg. “Neurulation Coordinating Cell Polarisation and Lumen Formation.” EMBO Journal, vol. 32, no. 1, Wiley-Blackwell, 2013, pp. 1–3, doi:10.1038/emboj.2012.325. short: J. Compagnon, C.-P.J. Heisenberg, EMBO Journal 32 (2013) 1–3. date_created: 2018-12-11T12:00:20Z date_published: 2013-01-09T00:00:00Z date_updated: 2021-01-12T07:00:42Z day: '09' department: - _id: CaHe doi: 10.1038/emboj.2012.325 external_id: pmid: - '23211745' intvolume: ' 32' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545307/ month: '01' oa: 1 oa_version: Submitted Version page: 1 - 3 pmid: 1 publication: EMBO Journal publication_status: published publisher: Wiley-Blackwell publist_id: '3817' quality_controlled: '1' scopus_import: 1 status: public title: Neurulation coordinating cell polarisation and lumen formation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2013' ... --- _id: '1406' abstract: - lang: eng text: Epithelial spreading is a critical part of various developmental and wound repair processes. Here we use zebrafish epiboly as a model system to study the cellular and molecular mechanisms underlying the spreading of epithelial sheets. During zebrafish epiboly the enveloping cell layer (EVL), a simple squamous epithelium, spreads over the embryo to eventually cover the entire yolk cell by the end of gastrulation. The EVL leading edge is anchored through tight junctions to the yolk syncytial layer (YSL), where directly adjacent to the EVL margin a contractile actomyosin ring is formed that is thought to drive EVL epiboly. The prevalent view in the field was that the contractile ring exerts a pulling force on the EVL margin, which pulls the EVL towards the vegetal pole. However, how this force is generated and how it affects EVL morphology still remains elusive. Moreover, the cellular mechanisms mediating the increase in EVL surface area, while maintaining tissue integrity and function are still unclear. Here we show that the YSL actomyosin ring pulls on the EVL margin by two distinct force-generating mechanisms. One mechanism is based on contraction of the ring around its circumference, as previously proposed. The second mechanism is based on actomyosin retrogade flows, generating force through resistance against the substrate. The latter can function at any epiboly stage even in situations where the contraction-based mechanism is unproductive. Additionally, we demonstrate that during epiboly the EVL is subjected to anisotropic tension, which guides the orientation of EVL cell division along the main axis (animal-vegetal) of tension. The influence of tension in cell division orientation involves cell elongation and requires myosin-2 activity for proper spindle alignment. Strikingly, we reveal that tension-oriented cell divisions release anisotropic tension within the EVL and that in the absence of such divisions, EVL cells undergo ectopic fusions. We conclude that forces applied to the EVL by the action of the YSL actomyosin ring generate a tension anisotropy in the EVL that orients cell divisions, which in turn limit tissue tension increase thereby facilitating tissue spreading. acknowledged_ssus: - _id: Bio - _id: PreCl alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 citation: ama: 'Campinho P. Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading. 2013.' apa: 'Campinho, P. (2013). Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading. Institute of Science and Technology Austria.' chicago: 'Campinho, Pedro. “Mechanics of Zebrafish Epiboly: Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading.” Institute of Science and Technology Austria, 2013.' ieee: 'P. Campinho, “Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading,” Institute of Science and Technology Austria, 2013.' ista: 'Campinho P. 2013. Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading. Institute of Science and Technology Austria.' mla: 'Campinho, Pedro. Mechanics of Zebrafish Epiboly: Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading. Institute of Science and Technology Austria, 2013.' short: 'P. Campinho, Mechanics of Zebrafish Epiboly: Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading, Institute of Science and Technology Austria, 2013.' date_created: 2018-12-11T11:51:50Z date_published: 2013-10-01T00:00:00Z date_updated: 2023-09-07T11:36:07Z day: '01' degree_awarded: PhD department: - _id: CaHe language: - iso: eng month: '10' oa_version: None page: '123' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '5801' status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: 'Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2013' ... --- _id: '2926' abstract: - lang: eng text: To fight infectious diseases, host immune defenses are employed at multiple levels. Sanitary behavior, such as pathogen avoidance and removal, acts as a first line of defense to prevent infection [1] before activation of the physiological immune system. Insect societies have evolved a wide range of collective hygiene measures and intensive health care toward pathogen-exposed group members [2]. One of the most common behaviors is allogrooming, in which nestmates remove infectious particles from the body surfaces of exposed individuals [3]. Here we show that, in invasive garden ants, grooming of fungus-exposed brood is effective beyond the sheer mechanical removal of fungal conidiospores; it also includes chemical disinfection through the application of poison produced by the ants themselves. Formic acid is the main active component of the poison. It inhibits fungal growth of conidiospores remaining on the brood surface after grooming and also those collected in the mouth of the grooming ant. This dual function is achieved by uptake of the poison droplet into the mouth through acidopore self-grooming and subsequent application onto the infectious brood via brood grooming. This extraordinary behavior extends the current understanding of grooming and the establishment of social immunity in insect societies. acknowledgement: "Funding for this project was obtained by the German Research Foundation (DFG, to S.C.) and the European Research Council (ERC, through an ERC-Starting Grant to S.C. and an Individual Marie Curie IEF fellowship to L.V.U.).\r\nWe thank Jørgen Eilenberg, Bernhardt Steinwender, Miriam Stock, and Meghan L. Vyleta for the fungal strain and its characterization; Volker Witte for chemical information; Eva Sixt for ant drawings; and Robert Hauschild for help with image analysis. We further thank Martin Kaltenpoth, Michael Sixt, Jürgen Heinze, and Joachim Ruther for discussion and Daria Siekhaus, Sophie A.O. Armitage, and Leila Masri for comments on the manuscript. \r\n" author: - first_name: Simon full_name: Tragust, Simon id: 35A7A418-F248-11E8-B48F-1D18A9856A87 last_name: Tragust - first_name: Barbara full_name: Mitteregger, Barbara id: 479DDAAC-E9CD-11E9-9B5F-82450873F7A1 last_name: Mitteregger - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Matthias full_name: Konrad, Matthias id: 46528076-F248-11E8-B48F-1D18A9856A87 last_name: Konrad - first_name: Line V full_name: Ugelvig, Line V id: 3DC97C8E-F248-11E8-B48F-1D18A9856A87 last_name: Ugelvig orcid: 0000-0003-1832-8883 - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Current Biology. 2013;23(1):76-82. doi:10.1016/j.cub.2012.11.034 apa: Tragust, S., Mitteregger, B., Barone, V., Konrad, M., Ugelvig, L. V., & Cremer, S. (2013). Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2012.11.034 chicago: Tragust, Simon, Barbara Mitteregger, Vanessa Barone, Matthias Konrad, Line V Ugelvig, and Sylvia Cremer. “Ants Disinfect Fungus-Exposed Brood by Oral Uptake and Spread of Their Poison.” Current Biology. Cell Press, 2013. https://doi.org/10.1016/j.cub.2012.11.034. ieee: S. Tragust, B. Mitteregger, V. Barone, M. Konrad, L. V. Ugelvig, and S. Cremer, “Ants disinfect fungus-exposed brood by oral uptake and spread of their poison,” Current Biology, vol. 23, no. 1. Cell Press, pp. 76–82, 2013. ista: Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S. 2013. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Current Biology. 23(1), 76–82. mla: Tragust, Simon, et al. “Ants Disinfect Fungus-Exposed Brood by Oral Uptake and Spread of Their Poison.” Current Biology, vol. 23, no. 1, Cell Press, 2013, pp. 76–82, doi:10.1016/j.cub.2012.11.034. short: S. Tragust, B. Mitteregger, V. Barone, M. Konrad, L.V. Ugelvig, S. Cremer, Current Biology 23 (2013) 76–82. date_created: 2018-12-11T12:00:23Z date_published: 2013-01-07T00:00:00Z date_updated: 2023-09-07T12:05:08Z day: '07' department: - _id: SyCr - _id: CaHe doi: 10.1016/j.cub.2012.11.034 ec_funded: 1 intvolume: ' 23' issue: '1' language: - iso: eng month: '01' oa_version: None page: 76 - 82 project: - _id: 25DAF0B2-B435-11E9-9278-68D0E5697425 grant_number: CR-118/3-1 name: Host-Parasite Coevolution - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' - _id: 25DDF0F0-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '302004' name: 'Pathogen Detectors Collective disease defence and pathogen detection abilities in ant societies: a chemo-neuro-immunological approach' publication: Current Biology publication_status: published publisher: Cell Press publist_id: '3811' quality_controlled: '1' related_material: record: - id: '9757' relation: research_data status: public - id: '961' relation: dissertation_contains status: public scopus_import: 1 status: public title: Ants disinfect fungus-exposed brood by oral uptake and spread of their poison type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '2950' abstract: - lang: eng text: Contractile actomyosin rings drive various fundamental morphogenetic processes ranging from cytokinesis to wound healing. Actomyosin rings are generally thought to function by circumferential contraction. Here, we show that the spreading of the enveloping cell layer (EVL) over the yolk cell during zebrafish gastrulation is driven by a contractile actomyosin ring. In contrast to previous suggestions, we find that this ring functions not only by circumferential contraction but also by a flow-friction mechanism. This generates a pulling force through resistance against retrograde actomyosin flow. EVL spreading proceeds normally in situations where circumferential contraction is unproductive, indicating that the flow-friction mechanism is sufficient. Thus, actomyosin rings can function in epithelial morphogenesis through a combination of cable-constriction and flow-friction mechanisms. acknowledged_ssus: - _id: SSU author: - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Felix full_name: Oswald, Felix last_name: Oswald - first_name: Julia full_name: Roensch, Julia id: 4220E59C-F248-11E8-B48F-1D18A9856A87 last_name: Roensch - first_name: Stephan full_name: Grill, Stephan last_name: Grill - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Behrndt M, Salbreux G, Campinho P, et al. Forces driving epithelial spreading in zebrafish gastrulation. Science. 2012;338(6104):257-260. doi:10.1126/science.1224143 apa: Behrndt, M., Salbreux, G., Campinho, P., Hauschild, R., Oswald, F., Roensch, J., … Heisenberg, C.-P. J. (2012). Forces driving epithelial spreading in zebrafish gastrulation. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.1224143 chicago: Behrndt, Martin, Guillaume Salbreux, Pedro Campinho, Robert Hauschild, Felix Oswald, Julia Roensch, Stephan Grill, and Carl-Philipp J Heisenberg. “Forces Driving Epithelial Spreading in Zebrafish Gastrulation.” Science. American Association for the Advancement of Science, 2012. https://doi.org/10.1126/science.1224143. ieee: M. Behrndt et al., “Forces driving epithelial spreading in zebrafish gastrulation,” Science, vol. 338, no. 6104. American Association for the Advancement of Science, pp. 257–260, 2012. ista: Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F, Roensch J, Grill S, Heisenberg C-PJ. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science. 338(6104), 257–260. mla: Behrndt, Martin, et al. “Forces Driving Epithelial Spreading in Zebrafish Gastrulation.” Science, vol. 338, no. 6104, American Association for the Advancement of Science, 2012, pp. 257–60, doi:10.1126/science.1224143. short: M. Behrndt, G. Salbreux, P. Campinho, R. Hauschild, F. Oswald, J. Roensch, S. Grill, C.-P.J. Heisenberg, Science 338 (2012) 257–260. date_created: 2018-12-11T12:00:30Z date_published: 2012-10-12T00:00:00Z date_updated: 2023-02-21T17:02:44Z day: '12' department: - _id: CaHe - _id: Bio doi: 10.1126/science.1224143 intvolume: ' 338' issue: '6104' language: - iso: eng month: '10' oa_version: None page: 257 - 260 project: - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '3778' quality_controlled: '1' related_material: record: - id: '1403' relation: dissertation_contains status: public scopus_import: 1 status: public title: Forces driving epithelial spreading in zebrafish gastrulation type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 338 year: '2012' ... --- _id: '2951' abstract: - lang: eng text: Differential cell adhesion and cortex tension are thought to drive cell sorting by controlling cell-cell contact formation. Here, we show that cell adhesion and cortex tension have different mechanical functions in controlling progenitor cell-cell contact formation and sorting during zebrafish gastrulation. Cortex tension controls cell-cell contact expansion by modulating interfacial tension at the contact. By contrast, adhesion has little direct function in contact expansion, but instead is needed to mechanically couple the cortices of adhering cells at their contacts, allowing cortex tension to control contact expansion. The coupling function of adhesion is mediated by E-cadherin and limited by the mechanical anchoring of E-cadherin to the cortex. Thus, cell adhesion provides the mechanical scaffold for cell cortex tension to drive cell sorting during gastrulation. acknowledged_ssus: - _id: SSU author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Hélène full_name: Berthoumieux, Hélène last_name: Berthoumieux - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Berthoumieux H, Krens G, et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. 2012;338(6104):253-256. doi:10.1126/science.1225399 apa: Maître, J.-L., Berthoumieux, H., Krens, G., Salbreux, G., Julicher, F., Paluch, E., & Heisenberg, C.-P. J. (2012). Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.1225399 chicago: Maître, Jean-Léon, Hélène Berthoumieux, Gabriel Krens, Guillaume Salbreux, Frank Julicher, Ewa Paluch, and Carl-Philipp J Heisenberg. “Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells.” Science. American Association for the Advancement of Science, 2012. https://doi.org/10.1126/science.1225399. ieee: J.-L. Maître et al., “Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells,” Science, vol. 338, no. 6104. American Association for the Advancement of Science, pp. 253–256, 2012. ista: Maître J-L, Berthoumieux H, Krens G, Salbreux G, Julicher F, Paluch E, Heisenberg C-PJ. 2012. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. 338(6104), 253–256. mla: Maître, Jean-Léon, et al. “Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells.” Science, vol. 338, no. 6104, American Association for the Advancement of Science, 2012, pp. 253–56, doi:10.1126/science.1225399. short: J.-L. Maître, H. Berthoumieux, G. Krens, G. Salbreux, F. Julicher, E. Paluch, C.-P.J. Heisenberg, Science 338 (2012) 253–256. date_created: 2018-12-11T12:00:31Z date_published: 2012-10-12T00:00:00Z date_updated: 2021-01-12T07:40:00Z day: '12' department: - _id: CaHe doi: 10.1126/science.1225399 intvolume: ' 338' issue: '6104' language: - iso: eng month: '10' oa_version: None page: 253 - 256 publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '3777' quality_controlled: '1' scopus_import: 1 status: public title: Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 338 year: '2012' ... --- _id: '2952' abstract: - lang: eng text: Body axis elongation represents a common and fundamental morphogenetic process in development. A key mechanism triggering body axis elongation without additional growth is convergent extension (CE), whereby a tissue undergoes simultaneous narrowing and extension. Both collective cell migration and cell intercalation are thought to drive CE and are used to different degrees in various species as they elongate their body axis. Here, we provide an overview of CE as a general strategy for body axis elongation and discuss conserved and divergent mechanisms underlying CE among different species. acknowledgement: 'M.T. is supported by the UK Medical Research Council (MRC) and Royal Society and C.-P.H. by the Fonds zur Förderung der wissenschaftlichen Forschung (FWF), Deutsche Forschungsgemeinschaft (DFG) and Institute of Science and Technology Austria. ' author: - first_name: Masazumi full_name: Tada, Masazumi last_name: Tada - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Tada M, Heisenberg C-PJ. Convergent extension Using collective cell migration and cell intercalation to shape embryos. Development. 2012;139(21):3897-3904. doi:10.1242/dev.073007 apa: Tada, M., & Heisenberg, C.-P. J. (2012). Convergent extension Using collective cell migration and cell intercalation to shape embryos. Development. Company of Biologists. https://doi.org/10.1242/dev.073007 chicago: Tada, Masazumi, and Carl-Philipp J Heisenberg. “Convergent Extension Using Collective Cell Migration and Cell Intercalation to Shape Embryos.” Development. Company of Biologists, 2012. https://doi.org/10.1242/dev.073007. ieee: M. Tada and C.-P. J. Heisenberg, “Convergent extension Using collective cell migration and cell intercalation to shape embryos,” Development, vol. 139, no. 21. Company of Biologists, pp. 3897–3904, 2012. ista: Tada M, Heisenberg C-PJ. 2012. Convergent extension Using collective cell migration and cell intercalation to shape embryos. Development. 139(21), 3897–3904. mla: Tada, Masazumi, and Carl-Philipp J. Heisenberg. “Convergent Extension Using Collective Cell Migration and Cell Intercalation to Shape Embryos.” Development, vol. 139, no. 21, Company of Biologists, 2012, pp. 3897–904, doi:10.1242/dev.073007. short: M. Tada, C.-P.J. Heisenberg, Development 139 (2012) 3897–3904. date_created: 2018-12-11T12:00:31Z date_published: 2012-11-01T00:00:00Z date_updated: 2021-01-12T07:40:00Z day: '01' department: - _id: CaHe doi: 10.1242/dev.073007 intvolume: ' 139' issue: '21' language: - iso: eng month: '11' oa_version: None page: 3897 - 3904 publication: Development publication_status: published publisher: Company of Biologists publist_id: '3776' quality_controlled: '1' scopus_import: 1 status: public title: Convergent extension Using collective cell migration and cell intercalation to shape embryos type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 139 year: '2012' ... --- _id: '2953' author: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Reinhard full_name: Fässler, Reinhard last_name: Fässler citation: ama: Heisenberg C-PJ, Fässler R. Cell-cell adhesion and extracellular matrix diversity counts. Current Opinion in Cell Biology. 2012;24(5):559-561. doi:10.1016/j.ceb.2012.09.002 apa: Heisenberg, C.-P. J., & Fässler, R. (2012). Cell-cell adhesion and extracellular matrix diversity counts. Current Opinion in Cell Biology. Elsevier. https://doi.org/10.1016/j.ceb.2012.09.002 chicago: Heisenberg, Carl-Philipp J, and Reinhard Fässler. “Cell-Cell Adhesion and Extracellular Matrix Diversity Counts.” Current Opinion in Cell Biology. Elsevier, 2012. https://doi.org/10.1016/j.ceb.2012.09.002. ieee: C.-P. J. Heisenberg and R. Fässler, “Cell-cell adhesion and extracellular matrix diversity counts,” Current Opinion in Cell Biology, vol. 24, no. 5. Elsevier, pp. 559–561, 2012. ista: Heisenberg C-PJ, Fässler R. 2012. Cell-cell adhesion and extracellular matrix diversity counts. Current Opinion in Cell Biology. 24(5), 559–561. mla: Heisenberg, Carl-Philipp J., and Reinhard Fässler. “Cell-Cell Adhesion and Extracellular Matrix Diversity Counts.” Current Opinion in Cell Biology, vol. 24, no. 5, Elsevier, 2012, pp. 559–61, doi:10.1016/j.ceb.2012.09.002. short: C.-P.J. Heisenberg, R. Fässler, Current Opinion in Cell Biology 24 (2012) 559–561. date_created: 2018-12-11T12:00:31Z date_published: 2012-10-01T00:00:00Z date_updated: 2021-01-12T07:40:01Z day: '01' department: - _id: CaHe doi: 10.1016/j.ceb.2012.09.002 intvolume: ' 24' issue: '5' language: - iso: eng month: '10' oa_version: None page: 559 - 561 publication: Current Opinion in Cell Biology publication_status: published publisher: Elsevier publist_id: '3773' quality_controlled: '1' scopus_import: 1 status: public title: Cell-cell adhesion and extracellular matrix diversity counts type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2012' ... --- _id: '3245' abstract: - lang: eng text: How cells orchestrate their behavior during collective migration is a long-standing question. Using magnetic tweezers to apply mechanical stimuli to Xenopus mesendoderm cells, Weber etal. (2012) now reveal, in this issue of Developmental Cell, a cadherin-mediated mechanosensitive response that promotes cell polarization and movement persistence during the collective mesendoderm migration in gastrulation. author: - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Behrndt M, Heisenberg C-PJ. Spurred by resistance mechanosensation in collective migration. Developmental Cell. 2012;22(1):3-4. doi:10.1016/j.devcel.2011.12.018 apa: Behrndt, M., & Heisenberg, C.-P. J. (2012). Spurred by resistance mechanosensation in collective migration. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2011.12.018 chicago: Behrndt, Martin, and Carl-Philipp J Heisenberg. “Spurred by Resistance Mechanosensation in Collective Migration.” Developmental Cell. Cell Press, 2012. https://doi.org/10.1016/j.devcel.2011.12.018. ieee: M. Behrndt and C.-P. J. Heisenberg, “Spurred by resistance mechanosensation in collective migration,” Developmental Cell, vol. 22, no. 1. Cell Press, pp. 3–4, 2012. ista: Behrndt M, Heisenberg C-PJ. 2012. Spurred by resistance mechanosensation in collective migration. Developmental Cell. 22(1), 3–4. mla: Behrndt, Martin, and Carl-Philipp J. Heisenberg. “Spurred by Resistance Mechanosensation in Collective Migration.” Developmental Cell, vol. 22, no. 1, Cell Press, 2012, pp. 3–4, doi:10.1016/j.devcel.2011.12.018. short: M. Behrndt, C.-P.J. Heisenberg, Developmental Cell 22 (2012) 3–4. date_created: 2018-12-11T12:02:14Z date_published: 2012-01-17T00:00:00Z date_updated: 2021-01-12T07:42:05Z day: '17' department: - _id: CaHe doi: 10.1016/j.devcel.2011.12.018 intvolume: ' 22' issue: '1' language: - iso: eng month: '01' oa_version: None page: 3 - 4 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '3426' quality_controlled: '1' scopus_import: 1 status: public title: Spurred by resistance mechanosensation in collective migration type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 22 year: '2012' ...