--- _id: '9336' abstract: - lang: eng text: Mentorship is experience and/or knowledge‐based guidance. Mentors support, sponsor and advocate for mentees. Having one or more mentors when you seek advice can significantly influence and improve your research endeavours, well‐being and career development. Positive mentee–mentor relationships are vital for maintaining work–life balance and success in careers. Early‐career researchers (ECRs), in particular, can benefit from mentorship to navigate challenges in academic and nonacademic life and careers. Yet, strategies for selecting mentors and maintaining interactions with them are often underdiscussed within research environments. In this Words of Advice, we provide recommendations for ECRs to seek and manage mentorship interactions. Our article draws from our experiences as ECRs and published work, to provide suggestions for mentees to proactively promote beneficial mentorship interactions. The recommended practices highlight the importance of identifying mentorship needs, planning and selecting multiple and diverse mentors, setting goals, and maintaining constructive, and mutually beneficial working relationships with mentors. acknowledgement: The authors thank Nicholas Asby of the University of Chicago for valuable comments on an earlier version of this work. A.P.S. was partially supported by the NARSAD Young Investigator Grant 27705. S.J.H was supported by the National Institutes of Health grant R35GM133732. alternative_title: - Words of Advice article_processing_charge: No article_type: original author: - first_name: Sarvenaz full_name: Sarabipour, Sarvenaz last_name: Sarabipour - first_name: Sarah J. full_name: Hainer, Sarah J. last_name: Hainer - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Charlotte M. full_name: De Winde, Charlotte M. last_name: De Winde - first_name: Emily full_name: Furlong, Emily last_name: Furlong - first_name: Natalia full_name: Bielczyk, Natalia last_name: Bielczyk - first_name: Nafisa M. full_name: Jadavji, Nafisa M. last_name: Jadavji - first_name: Aparna P. full_name: Shah, Aparna P. last_name: Shah - first_name: Sejal full_name: Davla, Sejal last_name: Davla citation: ama: Sarabipour S, Hainer SJ, Arslan FN, et al. Building and sustaining mentor interactions as a mentee. FEBS Journal. 2021. doi:10.1111/febs.15823 apa: Sarabipour, S., Hainer, S. J., Arslan, F. N., De Winde, C. M., Furlong, E., Bielczyk, N., … Davla, S. (2021). Building and sustaining mentor interactions as a mentee. FEBS Journal. Wiley. https://doi.org/10.1111/febs.15823 chicago: Sarabipour, Sarvenaz, Sarah J. Hainer, Feyza N Arslan, Charlotte M. De Winde, Emily Furlong, Natalia Bielczyk, Nafisa M. Jadavji, Aparna P. Shah, and Sejal Davla. “Building and Sustaining Mentor Interactions as a Mentee.” FEBS Journal. Wiley, 2021. https://doi.org/10.1111/febs.15823. ieee: S. Sarabipour et al., “Building and sustaining mentor interactions as a mentee,” FEBS Journal. Wiley, 2021. ista: Sarabipour S, Hainer SJ, Arslan FN, De Winde CM, Furlong E, Bielczyk N, Jadavji NM, Shah AP, Davla S. 2021. Building and sustaining mentor interactions as a mentee. FEBS Journal. mla: Sarabipour, Sarvenaz, et al. “Building and Sustaining Mentor Interactions as a Mentee.” FEBS Journal, Wiley, 2021, doi:10.1111/febs.15823. short: S. Sarabipour, S.J. Hainer, F.N. Arslan, C.M. De Winde, E. Furlong, N. Bielczyk, N.M. Jadavji, A.P. Shah, S. Davla, FEBS Journal (2021). date_created: 2021-04-18T22:01:43Z date_published: 2021-04-05T00:00:00Z date_updated: 2023-08-08T13:12:55Z day: '05' department: - _id: CaHe doi: 10.1111/febs.15823 external_id: isi: - '000636678800001' pmid: - '33818917' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/febs.15823 month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: FEBS Journal publication_identifier: eissn: - 1742-4658 issn: - 1742-464X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Building and sustaining mentor interactions as a mentee type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9350' abstract: - lang: eng text: Intercellular adhesion is the key to multicellularity, and its malfunction plays an important role in various developmental and disease-related processes. Although it has been intensively studied by both biologists and physicists, a commonly accepted definition of cell-cell adhesion is still being debated. Cell-cell adhesion has been described at the molecular scale as a function of adhesion receptors controlling binding affinity, at the cellular scale as resistance to detachment forces or modulation of surface tension, and at the tissue scale as a regulator of cellular rearrangements and morphogenesis. In this review, we aim to summarize and discuss recent advances in the molecular, cellular, and theoretical description of cell-cell adhesion, ranging from biomimetic models to the complexity of cells and tissues in an organismal context. In particular, we will focus on cadherin-mediated cell-cell adhesion and the role of adhesion signaling and mechanosensation therein, two processes central for understanding the biological and physical basis of cell-cell adhesion. acknowledgement: T.S. acknowledges funding by the research program “The Active Matter Physics of Collective Metastasis,” which is financed by the Dutch Research Council (NWO). article_processing_charge: No article_type: original author: - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Julia full_name: Eckert, Julia last_name: Eckert - first_name: Thomas full_name: Schmidt, Thomas last_name: Schmidt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Arslan FN, Eckert J, Schmidt T, Heisenberg C-PJ. Holding it together: when cadherin meets cadherin. Biophysical Journal. 2021;120:4182-4192. doi:10.1016/j.bpj.2021.03.025' apa: 'Arslan, F. N., Eckert, J., Schmidt, T., & Heisenberg, C.-P. J. (2021). Holding it together: when cadherin meets cadherin. Biophysical Journal. Biophysical Society. https://doi.org/10.1016/j.bpj.2021.03.025' chicago: 'Arslan, Feyza N, Julia Eckert, Thomas Schmidt, and Carl-Philipp J Heisenberg. “Holding It Together: When Cadherin Meets Cadherin.” Biophysical Journal. Biophysical Society, 2021. https://doi.org/10.1016/j.bpj.2021.03.025.' ieee: 'F. N. Arslan, J. Eckert, T. Schmidt, and C.-P. J. Heisenberg, “Holding it together: when cadherin meets cadherin,” Biophysical Journal, vol. 120. Biophysical Society, pp. 4182–4192, 2021.' ista: 'Arslan FN, Eckert J, Schmidt T, Heisenberg C-PJ. 2021. Holding it together: when cadherin meets cadherin. Biophysical Journal. 120, 4182–4192.' mla: 'Arslan, Feyza N., et al. “Holding It Together: When Cadherin Meets Cadherin.” Biophysical Journal, vol. 120, Biophysical Society, 2021, pp. 4182–92, doi:10.1016/j.bpj.2021.03.025.' short: F.N. Arslan, J. Eckert, T. Schmidt, C.-P.J. Heisenberg, Biophysical Journal 120 (2021) 4182–4192. date_created: 2021-04-25T22:01:30Z date_published: 2021-10-05T00:00:00Z date_updated: 2023-08-08T13:14:10Z day: '05' department: - _id: CaHe doi: 10.1016/j.bpj.2021.03.025 external_id: isi: - '000704646900006' pmid: - '33794149' intvolume: ' 120' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://scholarlypublications.universiteitleiden.nl/access/item%3A3251048/view month: '10' oa: 1 oa_version: Published Version page: 4182-4192 pmid: 1 publication: Biophysical Journal publication_identifier: eissn: - 1542-0086 issn: - 0006-3495 publication_status: published publisher: Biophysical Society quality_controlled: '1' related_material: record: - id: '12368' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Holding it together: when cadherin meets cadherin' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 120 year: '2021' ... --- _id: '9759' acknowledgement: The authors thank Inez Lam of Johns Hopkins University for valuable comments on an earlier version of the manuscript. We also thank the facilitators of the 2019–2020 eLife Community Ambassador program. article_number: e1009124 article_processing_charge: Yes article_type: letter_note author: - first_name: Michael John full_name: Bartlett, Michael John last_name: Bartlett - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Adriana full_name: Bankston, Adriana last_name: Bankston - first_name: Sarvenaz full_name: Sarabipour, Sarvenaz last_name: Sarabipour citation: ama: Bartlett MJ, Arslan FN, Bankston A, Sarabipour S. Ten simple rules to improve academic work- life balance. PLoS Computational Biology. 2021;17(7). doi:10.1371/journal.pcbi.1009124 apa: Bartlett, M. J., Arslan, F. N., Bankston, A., & Sarabipour, S. (2021). Ten simple rules to improve academic work- life balance. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1009124 chicago: Bartlett, Michael John, Feyza N Arslan, Adriana Bankston, and Sarvenaz Sarabipour. “Ten Simple Rules to Improve Academic Work- Life Balance.” PLoS Computational Biology. Public Library of Science, 2021. https://doi.org/10.1371/journal.pcbi.1009124. ieee: M. J. Bartlett, F. N. Arslan, A. Bankston, and S. Sarabipour, “Ten simple rules to improve academic work- life balance,” PLoS Computational Biology, vol. 17, no. 7. Public Library of Science, 2021. ista: Bartlett MJ, Arslan FN, Bankston A, Sarabipour S. 2021. Ten simple rules to improve academic work- life balance. PLoS Computational Biology. 17(7), e1009124. mla: Bartlett, Michael John, et al. “Ten Simple Rules to Improve Academic Work- Life Balance.” PLoS Computational Biology, vol. 17, no. 7, e1009124, Public Library of Science, 2021, doi:10.1371/journal.pcbi.1009124. short: M.J. Bartlett, F.N. Arslan, A. Bankston, S. Sarabipour, PLoS Computational Biology 17 (2021). date_created: 2021-08-01T22:01:21Z date_published: 2021-07-15T00:00:00Z date_updated: 2023-08-10T14:16:46Z day: '15' ddc: - '613' department: - _id: CaHe doi: 10.1371/journal.pcbi.1009124 external_id: isi: - '000677713500008' pmid: - '34264932' file: - access_level: open_access checksum: e56d91f0eeadb36f143a90e2c1b3ab63 content_type: application/pdf creator: cchlebak date_created: 2021-08-05T12:06:49Z date_updated: 2021-08-05T12:06:49Z file_id: '9771' file_name: 2021_PlosCompBio_Bartlett.pdf file_size: 693633 relation: main_file file_date_updated: 2021-08-05T12:06:49Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 publication: PLoS Computational Biology publication_identifier: eissn: - '15537358' issn: - 1553734X publication_status: published publisher: Public Library of Science scopus_import: '1' status: public title: Ten simple rules to improve academic work- life balance tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ... --- _id: '9999' abstract: - lang: eng text: 'The developmental strategies used by progenitor cells to endure a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here we uncovered a progenitor cell allocation mechanism that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the surface epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-term apical contacts that enable the epithelial layer to pull a subset of progenitors along their way towards the vegetal pole. The remaining delaminated progenitors follow apically-attached progenitors’ movement by a co-attraction mechanism, avoiding sequestration by the adjacent endoderm, ensuring their fate and collective allocation at the differentiation site. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development. Impact Statement: Incomplete delamination serves as a cellular platform for coordinated tissue movements during development, guiding newly formed progenitor cell groups to the differentiation site.' article_number: e66483 article_processing_charge: Yes article_type: original author: - first_name: Eduardo full_name: Pulgar, Eduardo last_name: Pulgar - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 - first_name: Néstor full_name: Guerrero, Néstor last_name: Guerrero - first_name: Loreto full_name: López, Loreto last_name: López - first_name: Susana full_name: Márquez, Susana last_name: Márquez - first_name: Steffen full_name: Härtel, Steffen last_name: Härtel - first_name: Rodrigo full_name: Soto, Rodrigo last_name: Soto - first_name: Carl Philipp full_name: Heisenberg, Carl Philipp last_name: Heisenberg - first_name: Miguel L. full_name: Concha, Miguel L. last_name: Concha citation: ama: Pulgar E, Schwayer C, Guerrero N, et al. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife. 2021;10. doi:10.7554/eLife.66483 apa: Pulgar, E., Schwayer, C., Guerrero, N., López, L., Márquez, S., Härtel, S., … Concha, M. L. (2021). Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.66483 chicago: Pulgar, Eduardo, Cornelia Schwayer, Néstor Guerrero, Loreto López, Susana Márquez, Steffen Härtel, Rodrigo Soto, Carl Philipp Heisenberg, and Miguel L. Concha. “Apical Contacts Stemming from Incomplete Delamination Guide Progenitor Cell Allocation through a Dragging Mechanism.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/eLife.66483. ieee: E. Pulgar et al., “Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism,” eLife, vol. 10. eLife Sciences Publications, 2021. ista: Pulgar E, Schwayer C, Guerrero N, López L, Márquez S, Härtel S, Soto R, Heisenberg CP, Concha ML. 2021. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife. 10, e66483. mla: Pulgar, Eduardo, et al. “Apical Contacts Stemming from Incomplete Delamination Guide Progenitor Cell Allocation through a Dragging Mechanism.” ELife, vol. 10, e66483, eLife Sciences Publications, 2021, doi:10.7554/eLife.66483. short: E. Pulgar, C. Schwayer, N. Guerrero, L. López, S. Márquez, S. Härtel, R. Soto, C.P. Heisenberg, M.L. Concha, ELife 10 (2021). date_created: 2021-09-12T22:01:23Z date_published: 2021-08-27T00:00:00Z date_updated: 2023-08-14T06:53:33Z day: '27' ddc: - '570' department: - _id: CaHe doi: 10.7554/eLife.66483 ec_funded: 1 external_id: isi: - '000700428500001' pmid: - '34448451' file: - access_level: open_access checksum: a3f82b0499cc822ac1eab48a01f3f57e content_type: application/pdf creator: dernst date_created: 2022-05-13T08:03:37Z date_updated: 2022-05-13T08:03:37Z file_id: '11371' file_name: 2021_eLife_Pulgar.pdf file_size: 9010446 relation: main_file success: 1 file_date_updated: 2022-05-13T08:03:37Z has_accepted_license: '1' intvolume: ' 10' isi: 1 keyword: - cell delamination - apical constriction - dragging - mechanical forces - collective 18 locomotion - dorsal forerunner cells - zebrafish language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2021' ... --- _id: '10202' abstract: - lang: eng text: Zygotic genome activation (ZGA) initiates regionalized transcription underlying distinct cellular identities. ZGA is dependent upon dynamic chromatin architecture sculpted by conserved DNA-binding proteins. However, the direct mechanistic link between the onset of ZGA and the tissue-specific transcription remains unclear. Here, we have addressed the involvement of chromatin organizer Satb2 in orchestrating both processes during zebrafish embryogenesis. Integrative analysis of transcriptome, genome-wide occupancy and chromatin accessibility reveals contrasting molecular activities of maternally deposited and zygotically synthesized Satb2. Maternal Satb2 prevents premature transcription of zygotic genes by influencing the interplay between the pluripotency factors. By contrast, zygotic Satb2 activates transcription of the same group of genes during neural crest development and organogenesis. Thus, our comparative analysis of maternal versus zygotic function of Satb2 underscores how these antithetical activities are temporally coordinated and functionally implemented highlighting the evolutionary implications of the biphasic and bimodal regulation of landmark developmental transitions by a single determinant. acknowledgement: 'We are grateful to the members of C.-P.H. and SG lab for discussions. Authors thank Shubha Tole for providing embryonic mouse tissues. Authors are grateful to Alessandro Mongera and Chetana Sachidanandan for generous help with Tg: Sox10: GFP line. Authors would like to thank Satyajeet Khare, Vanessa Barone, Jyothish S., Shalini Mishra, Yoshita Bhide, and Keshav Jha for assistance in experiments. We would also like to thank Chaitanya Dingare for valuable suggestions. We thank Diana Pinhiero and Alexandra Schauer for critical reading of early versions of the manuscript. This work was supported by the Centre of Excellence in Epigenetics program of the Department of Biotechnology, Government of India Phase I (BT/01/COE/09/07) to S.G. and R.K.M., and Phase II (BT/COE/34/SP17426/2016) to S.G. and JC Bose Fellowship (JCB/2019/000013) from Science and Engineering Research Board, Government of India to S.G., DST-BMWF Indo-Austrian bilateral program grant to S.G. and C.-P.H. The work using animal models was partly supported by the infrastructure support grants from the Department of Biotechnology (National Facility for Laboratory Model Organisms: BT/INF/22/SP17358/2016 and Establishment of a Pune Biotech Cluster, Model Organism to Human Disease: B-2 Whole Animal Imaging & Tissue Processing FacilityBT/Pune-Biocluster/01/2015). S.J.P. was supported by Fellowship from the Council of Scientific and Industrial Research, India and travel fellowship from the Company of Biologists, UK. P.C.R. was supported by the Early Career Fellowship of the Wellcome Trust-DBT India Alliance (IA/E/16/1/503057). A.S. was supported by UGC and R.S. was supported by CSIR India. M.S. was supported by core funding from the Tata Institute of Fundamental Research (TIFR 12P-121).' article_number: '6094' article_processing_charge: Yes article_type: original author: - first_name: Saurabh J. full_name: Pradhan, Saurabh J. last_name: Pradhan - first_name: Puli Chandramouli full_name: Reddy, Puli Chandramouli last_name: Reddy - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Ankita full_name: Sharma, Ankita last_name: Sharma - first_name: Keisuke full_name: Sako, Keisuke id: 3BED66BE-F248-11E8-B48F-1D18A9856A87 last_name: Sako orcid: 0000-0002-6453-8075 - first_name: Meghana S. full_name: Oak, Meghana S. last_name: Oak - first_name: Rini full_name: Shah, Rini last_name: Shah - first_name: Mrinmoy full_name: Pal, Mrinmoy last_name: Pal - first_name: Ojas full_name: Deshpande, Ojas last_name: Deshpande - first_name: Greg full_name: Dsilva, Greg last_name: Dsilva - first_name: Yin full_name: Tang, Yin last_name: Tang - first_name: Rakesh full_name: Mishra, Rakesh last_name: Mishra - first_name: Girish full_name: Deshpande, Girish last_name: Deshpande - first_name: Antonio J. full_name: Giraldez, Antonio J. last_name: Giraldez - first_name: Mahendra full_name: Sonawane, Mahendra last_name: Sonawane - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Sanjeev full_name: Galande, Sanjeev last_name: Galande citation: ama: Pradhan SJ, Reddy PC, Smutny M, et al. Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis. Nature Communications. 2021;12(1). doi:10.1038/s41467-021-26234-7 apa: Pradhan, S. J., Reddy, P. C., Smutny, M., Sharma, A., Sako, K., Oak, M. S., … Galande, S. (2021). Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-021-26234-7 chicago: Pradhan, Saurabh J., Puli Chandramouli Reddy, Michael Smutny, Ankita Sharma, Keisuke Sako, Meghana S. Oak, Rini Shah, et al. “Satb2 Acts as a Gatekeeper for Major Developmental Transitions during Early Vertebrate Embryogenesis.” Nature Communications. Springer Nature, 2021. https://doi.org/10.1038/s41467-021-26234-7. ieee: S. J. Pradhan et al., “Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis,” Nature Communications, vol. 12, no. 1. Springer Nature, 2021. ista: Pradhan SJ, Reddy PC, Smutny M, Sharma A, Sako K, Oak MS, Shah R, Pal M, Deshpande O, Dsilva G, Tang Y, Mishra R, Deshpande G, Giraldez AJ, Sonawane M, Heisenberg C-PJ, Galande S. 2021. Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis. Nature Communications. 12(1), 6094. mla: Pradhan, Saurabh J., et al. “Satb2 Acts as a Gatekeeper for Major Developmental Transitions during Early Vertebrate Embryogenesis.” Nature Communications, vol. 12, no. 1, 6094, Springer Nature, 2021, doi:10.1038/s41467-021-26234-7. short: S.J. Pradhan, P.C. Reddy, M. Smutny, A. Sharma, K. Sako, M.S. Oak, R. Shah, M. Pal, O. Deshpande, G. Dsilva, Y. Tang, R. Mishra, G. Deshpande, A.J. Giraldez, M. Sonawane, C.-P.J. Heisenberg, S. Galande, Nature Communications 12 (2021). date_created: 2021-10-31T23:01:29Z date_published: 2021-10-19T00:00:00Z date_updated: 2023-08-14T10:32:48Z day: '19' ddc: - '570' department: - _id: CaHe doi: 10.1038/s41467-021-26234-7 external_id: isi: - '000709050300016' pmid: - '34667153' file: - access_level: open_access checksum: c40a69ae94435ecd3a30c9874a11ef2b content_type: application/pdf creator: cziletti date_created: 2021-11-09T13:59:26Z date_updated: 2021-11-09T13:59:26Z file_id: '10262' file_name: 2021_NatureComm_Pradhan.pdf file_size: 7144437 relation: main_file success: 1 file_date_updated: 2021-11-09T13:59:26Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: Preprint relation: earlier_version url: 'https://doi.org/10.1101/2020.11.23.394171 ' scopus_import: '1' status: public title: Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ...