--- _id: '14795' abstract: - lang: eng text: Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: "We are grateful to Edwin Munro for their feedback and help with the single particle analysis. We thank members of the Heisenberg and Loose labs for their help and feedback on the manuscript, notably Xin Tong for making the PCS2-mCherry-AHPH plasmid. Finally, we thank the Aquatics and Imaging & Optics facilities of ISTA for their continuous support, especially Yann Cesbron for assistance with the laser cutter. This work was supported by an ERC\r\nAdvanced Grant (MECSPEC) to C.-P.H." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Arslan FN, Hannezo EB, Merrin J, Loose M, Heisenberg C-PJ. Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts. Current Biology. 2024;34(1):171-182.e8. doi:10.1016/j.cub.2023.11.067 apa: Arslan, F. N., Hannezo, E. B., Merrin, J., Loose, M., & Heisenberg, C.-P. J. (2024). Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts. Current Biology. Elsevier. https://doi.org/10.1016/j.cub.2023.11.067 chicago: Arslan, Feyza N, Edouard B Hannezo, Jack Merrin, Martin Loose, and Carl-Philipp J Heisenberg. “Adhesion-Induced Cortical Flows Pattern E-Cadherin-Mediated Cell Contacts.” Current Biology. Elsevier, 2024. https://doi.org/10.1016/j.cub.2023.11.067. ieee: F. N. Arslan, E. B. Hannezo, J. Merrin, M. Loose, and C.-P. J. Heisenberg, “Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts,” Current Biology, vol. 34, no. 1. Elsevier, p. 171–182.e8, 2024. ista: Arslan FN, Hannezo EB, Merrin J, Loose M, Heisenberg C-PJ. 2024. Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts. Current Biology. 34(1), 171–182.e8. mla: Arslan, Feyza N., et al. “Adhesion-Induced Cortical Flows Pattern E-Cadherin-Mediated Cell Contacts.” Current Biology, vol. 34, no. 1, Elsevier, 2024, p. 171–182.e8, doi:10.1016/j.cub.2023.11.067. short: F.N. Arslan, E.B. Hannezo, J. Merrin, M. Loose, C.-P.J. Heisenberg, Current Biology 34 (2024) 171–182.e8. date_created: 2024-01-14T23:00:56Z date_published: 2024-01-08T00:00:00Z date_updated: 2024-01-17T08:20:40Z day: '08' ddc: - '570' department: - _id: CaHe - _id: EdHa - _id: MaLo - _id: NanoFab doi: 10.1016/j.cub.2023.11.067 ec_funded: 1 file: - access_level: open_access checksum: 51220b76d72a614208f84bdbfbaf9b72 content_type: application/pdf creator: dernst date_created: 2024-01-16T10:53:31Z date_updated: 2024-01-16T10:53:31Z file_id: '14813' file_name: 2024_CurrentBiology_Arslan.pdf file_size: 5183861 relation: main_file success: 1 file_date_updated: 2024-01-16T10:53:31Z has_accepted_license: '1' intvolume: ' 34' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 171-182.e8 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Current Biology publication_identifier: eissn: - 1879-0445 issn: - 0960-9822 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2024' ... --- _id: '15048' abstract: - lang: eng text: Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: "We thank Patrick Müller for sharing the chordintt250 mutant zebrafish line as well as the plasmid for chrd-GFP, Katherine Rogers for sharing the bmp2b plasmid and Andrea Pauli for sharing the draculin plasmid. Diana Pinheiro generated the MZlefty1,2;Tg(sebox::EGFP) line. We are grateful to Patrick Müller, Diana Pinheiro and Katherine Rogers and members of the Heisenberg lab for discussions, technical advice and feedback on the manuscript. We also thank Anna Kicheva and Edouard Hannezo for discussions. We thank the Imaging and Optics Facility as well as the Life Science facility at IST Austria for support with microscopy and fish maintenance.\r\nThis work was supported by a European Research Council Advanced Grant\r\n(MECSPEC 742573 to C.-P.H.). A.S. is a recipient of a DOC Fellowship of the Austrian\r\nAcademy of Sciences at IST Austria. Open Access funding provided by Institute of\r\nScience and Technology Austria. " article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Alexandra full_name: Schauer, Alexandra id: 30A536BA-F248-11E8-B48F-1D18A9856A87 last_name: Schauer orcid: 0000-0001-7659-9142 - first_name: Kornelija full_name: Pranjic-Ferscha, Kornelija id: 4362B3C2-F248-11E8-B48F-1D18A9856A87 last_name: Pranjic-Ferscha - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 2024;151(4):1-18. doi:10.1242/dev.202316 apa: Schauer, A., Pranjic-Ferscha, K., Hauschild, R., & Heisenberg, C.-P. J. (2024). Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. The Company of Biologists. https://doi.org/10.1242/dev.202316 chicago: Schauer, Alexandra, Kornelija Pranjic-Ferscha, Robert Hauschild, and Carl-Philipp J Heisenberg. “Robust Axis Elongation by Nodal-Dependent Restriction of BMP Signaling.” Development. The Company of Biologists, 2024. https://doi.org/10.1242/dev.202316. ieee: A. Schauer, K. Pranjic-Ferscha, R. Hauschild, and C.-P. J. Heisenberg, “Robust axis elongation by Nodal-dependent restriction of BMP signaling,” Development, vol. 151, no. 4. The Company of Biologists, pp. 1–18, 2024. ista: Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. 2024. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 151(4), 1–18. mla: Schauer, Alexandra, et al. “Robust Axis Elongation by Nodal-Dependent Restriction of BMP Signaling.” Development, vol. 151, no. 4, The Company of Biologists, 2024, pp. 1–18, doi:10.1242/dev.202316. short: A. Schauer, K. Pranjic-Ferscha, R. Hauschild, C.-P.J. Heisenberg, Development 151 (2024) 1–18. date_created: 2024-03-03T23:00:50Z date_published: 2024-02-01T00:00:00Z date_updated: 2024-03-04T07:28:25Z day: '01' ddc: - '570' department: - _id: CaHe - _id: Bio doi: 10.1242/dev.202316 ec_funded: 1 file: - access_level: open_access checksum: 6961ea10012bf0d266681f9628bb8f13 content_type: application/pdf creator: dernst date_created: 2024-03-04T07:24:43Z date_updated: 2024-03-04T07:24:43Z file_id: '15050' file_name: 2024_Development_Schauer.pdf file_size: 14839986 relation: main_file success: 1 file_date_updated: 2024-03-04T07:24:43Z has_accepted_license: '1' intvolume: ' 151' issue: '4' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1-18 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 26B1E39C-B435-11E9-9278-68D0E5697425 grant_number: '25239' name: 'Mesendoderm specification in zebrafish: The role of extraembryonic tissues' publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' related_material: record: - id: '14926' relation: research_data status: public scopus_import: '1' status: public title: Robust axis elongation by Nodal-dependent restriction of BMP signaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 151 year: '2024' ... --- _id: '14846' abstract: - lang: eng text: Contraction and flow of the actin cell cortex have emerged as a common principle by which cells reorganize their cytoplasm and take shape. However, how these cortical flows interact with adjacent cytoplasmic components, changing their form and localization, and how this affects cytoplasmic organization and cell shape remains unclear. Here we show that in ascidian oocytes, the cooperative activities of cortical actomyosin flows and deformation of the adjacent mitochondria-rich myoplasm drive oocyte cytoplasmic reorganization and shape changes following fertilization. We show that vegetal-directed cortical actomyosin flows, established upon oocyte fertilization, lead to both the accumulation of cortical actin at the vegetal pole of the zygote and compression and local buckling of the adjacent elastic solid-like myoplasm layer due to friction forces generated at their interface. Once cortical flows have ceased, the multiple myoplasm buckles resolve into one larger buckle, which again drives the formation of the contraction pole—a protuberance of the zygote’s vegetal pole where maternal mRNAs accumulate. Thus, our findings reveal a mechanism where cortical actomyosin network flows determine cytoplasmic reorganization and cell shape by deforming adjacent cytoplasmic components through friction forces. acknowledged_ssus: - _id: EM-Fac - _id: Bio - _id: NanoFab acknowledgement: We would like to thank A. McDougall, E. Hannezo and the Heisenberg lab for fruitful discussions and reagents. We also thank E. Munro for the iMyo-YFP and Bra>iMyo-mScarlet constructs. This research was supported by the Scientific Service Units of the Institute of Science and Technology Austria through resources provided by the Electron Microscopy Facility, Imaging and Optics Facility and the Nanofabrication Facility. This work was supported by a Joint Project Grant from the FWF (I 3601-B27). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Silvia full_name: Caballero Mancebo, Silvia id: 2F1E1758-F248-11E8-B48F-1D18A9856A87 last_name: Caballero Mancebo orcid: 0000-0002-5223-3346 - first_name: Rushikesh full_name: Shinde, Rushikesh last_name: Shinde - first_name: Madison full_name: Bolger-Munro, Madison id: 516F03FA-93A3-11EA-A7C5-D6BE3DDC885E last_name: Bolger-Munro orcid: 0000-0002-8176-4824 - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Gregory full_name: Szep, Gregory id: 4BFB7762-F248-11E8-B48F-1D18A9856A87 last_name: Szep - first_name: Irene full_name: Steccari, Irene id: 2705C766-9FE2-11EA-B224-C6773DDC885E last_name: Steccari - first_name: David full_name: Labrousse Arias, David id: CD573DF4-9ED3-11E9-9D77-3223E6697425 last_name: Labrousse Arias - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Andrew full_name: Callan-Jones, Andrew last_name: Callan-Jones - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Caballero Mancebo S, Shinde R, Bolger-Munro M, et al. Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. 2024. doi:10.1038/s41567-023-02302-1 apa: Caballero Mancebo, S., Shinde, R., Bolger-Munro, M., Peruzzo, M., Szep, G., Steccari, I., … Heisenberg, C.-P. J. (2024). Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02302-1 chicago: Caballero Mancebo, Silvia, Rushikesh Shinde, Madison Bolger-Munro, Matilda Peruzzo, Gregory Szep, Irene Steccari, David Labrousse Arias, et al. “Friction Forces Determine Cytoplasmic Reorganization and Shape Changes of Ascidian Oocytes upon Fertilization.” Nature Physics. Springer Nature, 2024. https://doi.org/10.1038/s41567-023-02302-1. ieee: S. Caballero Mancebo et al., “Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization,” Nature Physics. Springer Nature, 2024. ista: Caballero Mancebo S, Shinde R, Bolger-Munro M, Peruzzo M, Szep G, Steccari I, Labrousse Arias D, Zheden V, Merrin J, Callan-Jones A, Voituriez R, Heisenberg C-PJ. 2024. Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. mla: Caballero Mancebo, Silvia, et al. “Friction Forces Determine Cytoplasmic Reorganization and Shape Changes of Ascidian Oocytes upon Fertilization.” Nature Physics, Springer Nature, 2024, doi:10.1038/s41567-023-02302-1. short: S. Caballero Mancebo, R. Shinde, M. Bolger-Munro, M. Peruzzo, G. Szep, I. Steccari, D. Labrousse Arias, V. Zheden, J. Merrin, A. Callan-Jones, R. Voituriez, C.-P.J. Heisenberg, Nature Physics (2024). date_created: 2024-01-21T23:00:57Z date_published: 2024-01-09T00:00:00Z date_updated: 2024-03-05T09:33:38Z day: '09' department: - _id: CaHe - _id: JoFi - _id: MiSi - _id: EM-Fac - _id: NanoFab doi: 10.1038/s41567-023-02302-1 has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41567-023-02302-1 month: '01' oa: 1 oa_version: Published Version project: - _id: 2646861A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03601 name: Control of embryonic cleavage pattern publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/stranger-than-friction-a-force-initiating-life/ scopus_import: '1' status: public title: Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '12830' abstract: - lang: eng text: Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization. acknowledged_ssus: - _id: PreCl - _id: Bio acknowledgement: We thank Andrea Pauli (IMP) and Edouard Hannezo (ISTA) for fruitful discussions and support with the SPIM experiments; the Heisenberg group, and especially Feyza Nur Arslan and Alexandra Schauer, for discussions and feedback; Michaela Jović (ISTA) for help with the quantitative real-time PCR protocol; the bioimaging and zebrafish facilities of ISTA for continuous support; Stephan Preibisch (Janelia Research Campus) for support with the SPIM data analysis; and Nobuhiro Nakamura (Tokyo Institute of Technology) for sharing α1-Na+/K+-ATPase antibody. This work was supported by funding from the European Union (European Research Council Advanced grant 742573 to C.-P.H.), postdoctoral fellowships from EMBO (LTF-850-2017) and HFSP (LT000429/2018-L2) to D.P., and a PhD fellowship from the Studienstiftung des deutschen Volkes to F.P. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Karla full_name: Huljev, Karla id: 44C6F6A6-F248-11E8-B48F-1D18A9856A87 last_name: Huljev - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Diana C full_name: Nunes Pinheiro, Diana C id: 2E839F16-F248-11E8-B48F-1D18A9856A87 last_name: Nunes Pinheiro orcid: 0000-0003-4333-7503 - first_name: Friedrich full_name: Preusser, Friedrich last_name: Preusser - first_name: Irene full_name: Steccari, Irene id: 2705C766-9FE2-11EA-B224-C6773DDC885E last_name: Steccari - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Suyash full_name: Naik, Suyash id: 2C0B105C-F248-11E8-B48F-1D18A9856A87 last_name: Naik orcid: 0000-0001-8421-5508 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Huljev K, Shamipour S, Nunes Pinheiro DC, et al. A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Developmental Cell. 2023;58(7):582-596.e7. doi:10.1016/j.devcel.2023.02.016 apa: Huljev, K., Shamipour, S., Nunes Pinheiro, D. C., Preusser, F., Steccari, I., Sommer, C. M., … Heisenberg, C.-P. J. (2023). A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2023.02.016 chicago: Huljev, Karla, Shayan Shamipour, Diana C Nunes Pinheiro, Friedrich Preusser, Irene Steccari, Christoph M Sommer, Suyash Naik, and Carl-Philipp J Heisenberg. “A Hydraulic Feedback Loop between Mesendoderm Cell Migration and Interstitial Fluid Relocalization Promotes Embryonic Axis Formation in Zebrafish.” Developmental Cell. Elsevier, 2023. https://doi.org/10.1016/j.devcel.2023.02.016. ieee: K. Huljev et al., “A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish,” Developmental Cell, vol. 58, no. 7. Elsevier, p. 582–596.e7, 2023. ista: Huljev K, Shamipour S, Nunes Pinheiro DC, Preusser F, Steccari I, Sommer CM, Naik S, Heisenberg C-PJ. 2023. A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Developmental Cell. 58(7), 582–596.e7. mla: Huljev, Karla, et al. “A Hydraulic Feedback Loop between Mesendoderm Cell Migration and Interstitial Fluid Relocalization Promotes Embryonic Axis Formation in Zebrafish.” Developmental Cell, vol. 58, no. 7, Elsevier, 2023, p. 582–596.e7, doi:10.1016/j.devcel.2023.02.016. short: K. Huljev, S. Shamipour, D.C. Nunes Pinheiro, F. Preusser, I. Steccari, C.M. Sommer, S. Naik, C.-P.J. Heisenberg, Developmental Cell 58 (2023) 582–596.e7. date_created: 2023-04-16T22:01:07Z date_published: 2023-04-10T00:00:00Z date_updated: 2023-08-01T14:10:38Z day: '10' ddc: - '570' department: - _id: CaHe - _id: Bio doi: 10.1016/j.devcel.2023.02.016 ec_funded: 1 external_id: isi: - '000982111800001' file: - access_level: open_access checksum: c80ca2ebc241232aacdb5aa4b4c80957 content_type: application/pdf creator: dernst date_created: 2023-04-17T07:41:25Z date_updated: 2023-04-17T07:41:25Z file_id: '12842' file_name: 2023_DevelopmentalCell_Huljev.pdf file_size: 7925886 relation: main_file success: 1 file_date_updated: 2023-04-17T07:41:25Z has_accepted_license: '1' intvolume: ' 58' isi: 1 issue: '7' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 582-596.e7 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 26520D1E-B435-11E9-9278-68D0E5697425 grant_number: ALTF 850-2017 name: Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation - _id: 266BC5CE-B435-11E9-9278-68D0E5697425 grant_number: LT000429 name: Coordination of mesendoderm fate specification and internalization during zebrafish gastrulation publication: Developmental Cell publication_identifier: eissn: - 1878-1551 issn: - 1534-5807 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 58 year: '2023' ... --- _id: '13229' abstract: - lang: eng text: Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation. acknowledgement: This work was supported by funding from the European Union (European Research Council Advanced grant 742573) to C.-P.H. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. article_processing_charge: No article_type: original author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Laura full_name: Hofmann, Laura id: b88d43f2-dc74-11ea-a0a7-e41b7912e031 last_name: Hofmann - first_name: Irene full_name: Steccari, Irene id: 2705C766-9FE2-11EA-B224-C6773DDC885E last_name: Steccari - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg C-PJ. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biology. 2023;21(6):e3002146. doi:10.1371/journal.pbio.3002146 apa: Shamipour, S., Hofmann, L., Steccari, I., Kardos, R., & Heisenberg, C.-P. J. (2023). Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.3002146 chicago: Shamipour, Shayan, Laura Hofmann, Irene Steccari, Roland Kardos, and Carl-Philipp J Heisenberg. “Yolk Granule Fusion and Microtubule Aster Formation Regulate Cortical Granule Translocation and Exocytosis in Zebrafish Oocytes.” PLoS Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pbio.3002146. ieee: S. Shamipour, L. Hofmann, I. Steccari, R. Kardos, and C.-P. J. Heisenberg, “Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes,” PLoS Biology, vol. 21, no. 6. Public Library of Science, p. e3002146, 2023. ista: Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg C-PJ. 2023. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biology. 21(6), e3002146. mla: Shamipour, Shayan, et al. “Yolk Granule Fusion and Microtubule Aster Formation Regulate Cortical Granule Translocation and Exocytosis in Zebrafish Oocytes.” PLoS Biology, vol. 21, no. 6, Public Library of Science, 2023, p. e3002146, doi:10.1371/journal.pbio.3002146. short: S. Shamipour, L. Hofmann, I. Steccari, R. Kardos, C.-P.J. Heisenberg, PLoS Biology 21 (2023) e3002146. date_created: 2023-07-16T22:01:09Z date_published: 2023-06-08T00:00:00Z date_updated: 2023-08-02T06:33:14Z day: '08' ddc: - '570' department: - _id: CaHe doi: 10.1371/journal.pbio.3002146 ec_funded: 1 external_id: isi: - '001003199100005' pmid: - '37289834' file: - access_level: open_access checksum: 8e88cb0e5a6433a2f1939a9030bed384 content_type: application/pdf creator: dernst date_created: 2023-07-18T07:59:58Z date_updated: 2023-07-18T07:59:58Z file_id: '13246' file_name: 2023_PloSBiology_Shamipour.pdf file_size: 4431723 relation: main_file success: 1 file_date_updated: 2023-07-18T07:59:58Z has_accepted_license: '1' intvolume: ' 21' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: e3002146 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: PLoS Biology publication_identifier: eissn: - 1545-7885 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2023' ... --- _id: '12891' abstract: - lang: eng text: "The tight spatiotemporal coordination of signaling activity determining embryo\r\npatterning and the physical processes driving embryo morphogenesis renders\r\nembryonic development robust, such that key developmental processes can unfold\r\nrelatively normally even outside of the full embryonic context. For instance, embryonic\r\nstem cell cultures can recapitulate the hallmarks of gastrulation, i.e. break symmetry\r\nleading to germ layer formation and morphogenesis, in a very reduced environment.\r\nThis leads to questions on specific contributions of embryo-specific features, such as\r\nthe presence of extraembryonic tissues, which are inherently involved in gastrulation\r\nin the full embryonic context. To address this, we established zebrafish embryonic\r\nexplants without the extraembryonic yolk cell, an important player as a signaling\r\nsource and for morphogenesis during gastrulation, as a model of ex vivo development.\r\nWe found that dorsal-marginal determinants are required and sufficient in these\r\nexplants to form and pattern all three germ layers. However, formation of tissues,\r\nwhich require the highest Nodal-signaling levels, is variable, demonstrating a\r\ncontribution of extraembryonic tissues for reaching peak Nodal signaling levels.\r\nBlastoderm explants also undergo gastrulation-like axis elongation. We found that this\r\nelongation movement shows hallmarks of oriented mesendoderm cell intercalations\r\ntypically associated with dorsal tissues in the intact embryo. These are disrupted by\r\nuniform upregulation of BMP signaling activity and concomitant explant ventralization,\r\nsuggesting that tight spatial control of BMP signaling is a prerequisite for explant\r\nmorphogenesis. This control is achieved by Nodal signaling, which is critical for\r\neffectively downregulating BMP signaling in the mesendoderm, highlighting that Nodal\r\nsignaling is not only directly required for mesendoderm cell fate specification and\r\nmorphogenesis, but also by maintaining low levels of BMP signaling at the dorsal side.\r\nCollectively, we provide insights into the capacity and organization of signaling and\r\nmorphogenetic domains to recapitulate features of zebrafish gastrulation outside of\r\nthe full embryonic context." acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexandra full_name: Schauer, Alexandra id: 30A536BA-F248-11E8-B48F-1D18A9856A87 last_name: Schauer orcid: 0000-0001-7659-9142 citation: ama: 'Schauer A. Mesendoderm formation in zebrafish gastrulation: The role of extraembryonic tissues. 2023. doi:10.15479/at:ista:12891' apa: 'Schauer, A. (2023). Mesendoderm formation in zebrafish gastrulation: The role of extraembryonic tissues. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12891' chicago: 'Schauer, Alexandra. “Mesendoderm Formation in Zebrafish Gastrulation: The Role of Extraembryonic Tissues.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12891.' ieee: 'A. Schauer, “Mesendoderm formation in zebrafish gastrulation: The role of extraembryonic tissues,” Institute of Science and Technology Austria, 2023.' ista: 'Schauer A. 2023. Mesendoderm formation in zebrafish gastrulation: The role of extraembryonic tissues. Institute of Science and Technology Austria.' mla: 'Schauer, Alexandra. Mesendoderm Formation in Zebrafish Gastrulation: The Role of Extraembryonic Tissues. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12891.' short: 'A. Schauer, Mesendoderm Formation in Zebrafish Gastrulation: The Role of Extraembryonic Tissues, Institute of Science and Technology Austria, 2023.' date_created: 2023-05-05T08:48:20Z date_published: 2023-05-05T00:00:00Z date_updated: 2023-08-21T06:25:48Z day: '05' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: CaHe doi: 10.15479/at:ista:12891 ec_funded: 1 file: - access_level: closed checksum: 59b0303dc483f40a96a610a90aab7ee9 content_type: application/pdf creator: aschauer date_created: 2023-05-05T13:01:14Z date_updated: 2023-05-05T13:01:14Z embargo: 2024-05-05 embargo_to: open_access file_id: '12907' file_name: Thesis_Schauer_final.pdf file_size: 31434230 relation: main_file - access_level: closed checksum: 25f54e12479b6adaabd129a20568e6c1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: aschauer date_created: 2023-05-05T13:04:15Z date_updated: 2023-05-05T13:04:15Z file_id: '12908' file_name: Thesis_Schauer_final.docx file_size: 43809109 relation: source_file file_date_updated: 2023-05-05T13:04:15Z has_accepted_license: '1' language: - iso: eng month: '05' oa_version: Published Version page: '190' project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 26B1E39C-B435-11E9-9278-68D0E5697425 grant_number: '25239' name: 'Mesendoderm specification in zebrafish: The role of extraembryonic tissues' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8966' relation: part_of_dissertation status: public - id: '7888' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: 'Mesendoderm formation in zebrafish gastrulation: The role of extraembryonic tissues' type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14041' abstract: - lang: eng text: Tissue morphogenesis and patterning during development involve the segregation of cell types. Segregation is driven by differential tissue surface tensions generated by cell types through controlling cell-cell contact formation by regulating adhesion and actomyosin contractility-based cellular cortical tensions. We use vertebrate tissue cell types and zebrafish germ layer progenitors as in vitro models of 3-dimensional heterotypic segregation and developed a quantitative analysis of their dynamics based on 3D time-lapse microscopy. We show that general inhibition of actomyosin contractility by the Rho kinase inhibitor Y27632 delays segregation. Cell type-specific inhibition of non-muscle myosin2 activity by overexpression of myosin assembly inhibitor S100A4 reduces tissue surface tension, manifested in decreased compaction during aggregation and inverted geometry observed during segregation. The same is observed when we express a constitutively active Rho kinase isoform to ubiquitously keep actomyosin contractility high at cell-cell and cell-medium interfaces and thus overriding the interface-specific regulation of cortical tensions. Tissue surface tension regulation can become an effective tool in tissue engineering. acknowledgement: "We thank Marton Gulyas (ELTE Eötvös University) for development of videomicroscopy experiment manager and image analysis software. Authors are grateful to Gabor Forgacs (University of Missouri) for critical reading of earlier versions of this manuscript as well as to Zsuzsa Akos and Andras Czirok (ELTE Eötvös University) for fruitful discussions. This work was supported by EU FP7, ERC COLLMOT Project No 227878 to TV, the National Research Development and Innovation Fund of Hungary, K119359 and also Project No 2018-1.2.1-NKP-2018-00005 to LN. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955576. MV was supported by the Ja´nos Bolyai Fellowship of the Hungarian Academy of Sciences.\r\nOpen access funding provided by Eötvös Loránd University." article_number: '817' article_processing_charge: Yes article_type: original author: - first_name: Elod full_name: Méhes, Elod last_name: Méhes - first_name: Enys full_name: Mones, Enys last_name: Mones - first_name: Máté full_name: Varga, Máté last_name: Varga - first_name: Áron full_name: Zsigmond, Áron last_name: Zsigmond - first_name: Beáta full_name: Biri-Kovács, Beáta last_name: Biri-Kovács - first_name: László full_name: Nyitray, László last_name: Nyitray - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Tamás full_name: Vicsek, Tamás last_name: Vicsek citation: ama: Méhes E, Mones E, Varga M, et al. 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation. Communications Biology. 2023;6. doi:10.1038/s42003-023-05181-7 apa: Méhes, E., Mones, E., Varga, M., Zsigmond, Á., Biri-Kovács, B., Nyitray, L., … Vicsek, T. (2023). 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation. Communications Biology. Springer Nature. https://doi.org/10.1038/s42003-023-05181-7 chicago: Méhes, Elod, Enys Mones, Máté Varga, Áron Zsigmond, Beáta Biri-Kovács, László Nyitray, Vanessa Barone, Gabriel Krens, Carl-Philipp J Heisenberg, and Tamás Vicsek. “3D Cell Segregation Geometry and Dynamics Are Governed by Tissue Surface Tension Regulation.” Communications Biology. Springer Nature, 2023. https://doi.org/10.1038/s42003-023-05181-7. ieee: E. Méhes et al., “3D cell segregation geometry and dynamics are governed by tissue surface tension regulation,” Communications Biology, vol. 6. Springer Nature, 2023. ista: Méhes E, Mones E, Varga M, Zsigmond Á, Biri-Kovács B, Nyitray L, Barone V, Krens G, Heisenberg C-PJ, Vicsek T. 2023. 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation. Communications Biology. 6, 817. mla: Méhes, Elod, et al. “3D Cell Segregation Geometry and Dynamics Are Governed by Tissue Surface Tension Regulation.” Communications Biology, vol. 6, 817, Springer Nature, 2023, doi:10.1038/s42003-023-05181-7. short: E. Méhes, E. Mones, M. Varga, Á. Zsigmond, B. Biri-Kovács, L. Nyitray, V. Barone, G. Krens, C.-P.J. Heisenberg, T. Vicsek, Communications Biology 6 (2023). date_created: 2023-08-13T22:01:13Z date_published: 2023-08-04T00:00:00Z date_updated: 2023-12-13T12:07:33Z day: '04' ddc: - '570' department: - _id: CaHe - _id: Bio doi: 10.1038/s42003-023-05181-7 external_id: isi: - '001042544100001' pmid: - '37542157' file: - access_level: open_access checksum: 1f9324f736bdbb76426b07736651c4cd content_type: application/pdf creator: dernst date_created: 2023-08-14T07:17:36Z date_updated: 2023-08-14T07:17:36Z file_id: '14045' file_name: 2023_CommBiology_Mehes.pdf file_size: 10181997 relation: main_file success: 1 file_date_updated: 2023-08-14T07:17:36Z has_accepted_license: '1' intvolume: ' 6' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 publication: Communications Biology publication_identifier: eissn: - 2399-3642 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2023' ... --- _id: '14082' abstract: - lang: eng text: Epithelial barrier function is commonly analyzed using transepithelial electrical resistance, which measures ion flux across a monolayer, or by adding traceable macromolecules and monitoring their passage across the monolayer. Although these methods measure changes in global barrier function, they lack the sensitivity needed to detect local or transient barrier breaches, and they do not reveal the location of barrier leaks. Therefore, we previously developed a method that we named the zinc-based ultrasensitive microscopic barrier assay (ZnUMBA), which overcomes these limitations, allowing for detection of local tight junction leaks with high spatiotemporal resolution. Here, we present expanded applications for ZnUMBA. ZnUMBA can be used in Xenopus embryos to measure the dynamics of barrier restoration and actin accumulation following laser injury. ZnUMBA can also be effectively utilized in developing zebrafish embryos as well as cultured monolayers of Madin–Darby canine kidney (MDCK) II epithelial cells. ZnUMBA is a powerful and flexible method that, with minimal optimization, can be applied to multiple systems to measure dynamic changes in barrier function with spatiotemporal precision. acknowledged_ssus: - _id: PreCl - _id: Bio acknowledgement: "The authors thank their respective lab members for feedback and helpful discussions. We thank the bioimaging and zebrafish facilities of IST Austria for their support.\r\nThis work was supported by the National Institutes of Health [R01GM112794 to A.L.M.], by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science [21K06156 to T.H.], by the Grant Program for Biomedical Engineering Research from the Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering [to T.H.] and by funding from the European Research Council [advanced grant 742573 to C.-P.H.]. " article_number: jcs260668 article_processing_charge: No article_type: original author: - first_name: Tomohito full_name: Higashi, Tomohito last_name: Higashi - first_name: Rachel E. full_name: Stephenson, Rachel E. last_name: Stephenson - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 - first_name: Karla full_name: Huljev, Karla id: 44C6F6A6-F248-11E8-B48F-1D18A9856A87 last_name: Huljev - first_name: Atsuko Y. full_name: Higashi, Atsuko Y. last_name: Higashi - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Hideki full_name: Chiba, Hideki last_name: Chiba - first_name: Ann L. full_name: Miller, Ann L. last_name: Miller citation: ama: Higashi T, Stephenson RE, Schwayer C, et al. ZnUMBA - a live imaging method to detect local barrier breaches. Journal of Cell Science. 2023;136(15). doi:10.1242/jcs.260668 apa: Higashi, T., Stephenson, R. E., Schwayer, C., Huljev, K., Higashi, A. Y., Heisenberg, C.-P. J., … Miller, A. L. (2023). ZnUMBA - a live imaging method to detect local barrier breaches. Journal of Cell Science. The Company of Biologists. https://doi.org/10.1242/jcs.260668 chicago: Higashi, Tomohito, Rachel E. Stephenson, Cornelia Schwayer, Karla Huljev, Atsuko Y. Higashi, Carl-Philipp J Heisenberg, Hideki Chiba, and Ann L. Miller. “ZnUMBA - a Live Imaging Method to Detect Local Barrier Breaches.” Journal of Cell Science. The Company of Biologists, 2023. https://doi.org/10.1242/jcs.260668. ieee: T. Higashi et al., “ZnUMBA - a live imaging method to detect local barrier breaches,” Journal of Cell Science, vol. 136, no. 15. The Company of Biologists, 2023. ista: Higashi T, Stephenson RE, Schwayer C, Huljev K, Higashi AY, Heisenberg C-PJ, Chiba H, Miller AL. 2023. ZnUMBA - a live imaging method to detect local barrier breaches. Journal of Cell Science. 136(15), jcs260668. mla: Higashi, Tomohito, et al. “ZnUMBA - a Live Imaging Method to Detect Local Barrier Breaches.” Journal of Cell Science, vol. 136, no. 15, jcs260668, The Company of Biologists, 2023, doi:10.1242/jcs.260668. short: T. Higashi, R.E. Stephenson, C. Schwayer, K. Huljev, A.Y. Higashi, C.-P.J. Heisenberg, H. Chiba, A.L. Miller, Journal of Cell Science 136 (2023). date_created: 2023-08-20T22:01:13Z date_published: 2023-08-01T00:00:00Z date_updated: 2023-12-13T12:11:18Z day: '01' ddc: - '570' department: - _id: CaHe - _id: EvBe doi: 10.1242/jcs.260668 ec_funded: 1 external_id: isi: - '001070149000001' file: - access_level: closed checksum: a399389b7e3d072f1788b63e612a10b3 content_type: application/pdf creator: dernst date_created: 2023-08-21T07:37:54Z date_updated: 2023-08-21T07:37:54Z embargo: 2024-08-10 embargo_to: open_access file_id: '14092' file_name: 2023_JourCellScience_Higashi.pdf file_size: 18665315 relation: main_file file_date_updated: 2023-08-21T07:37:54Z has_accepted_license: '1' intvolume: ' 136' isi: 1 issue: '15' language: - iso: eng month: '08' oa_version: None project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Journal of Cell Science publication_identifier: eissn: - 1477-9137 issn: - 0021-9533 publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: ZnUMBA - a live imaging method to detect local barrier breaches type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 136 year: '2023' ... --- _id: '14827' abstract: - lang: eng text: Understanding complex living systems, which are fundamentally constrained by physical phenomena, requires combining experimental data with theoretical physical and mathematical models. To develop such models, collaborations between experimental cell biologists and theoreticians are increasingly important but these two groups often face challenges achieving mutual understanding. To help navigate these challenges, this Perspective discusses different modelling approaches, including bottom-up hypothesis-driven and top-down data-driven models, and highlights their strengths and applications. Using cell mechanics as an example, we explore the integration of specific physical models with experimental data from the molecular, cellular and tissue level up to multiscale input. We also emphasize the importance of constraining model complexity and outline strategies for crosstalk between experimental design and model development. Furthermore, we highlight how physical models can provide conceptual insights and produce unifying and generalizable frameworks for biological phenomena. Overall, this Perspective aims to promote fruitful collaborations that advance our understanding of complex biological systems. acknowledgement: "We thank Prisca Liberali and Edouard Hannezo for many inspiring discussions; Mehmet Can Uçar, Nicoletta I Petridou and Qiutan Yang for a critical reading of the manuscript, and Claudia Flandoli for the artwork in Figs 2 and 3. We would also like to thank The Company of Biologists for the opportunity to attend the 2023 workshop on Collective Cell Migration, and all workshop participants for discussions.\r\nC.S. was supported by a European Molecular Biology Organization (EMBO) Postdoctoral Fellowship (ALTF 660-2020) and Human Frontier Science Program (HFSP) Postdoctoral fellowship (LT000746/2021-L). D.B.B. was supported by the NOMIS Foundation as a NOMIS Fellow and by an EMBO Postdoctoral Fellowship (ALTF 343-2022)." article_number: jcs.261515 article_processing_charge: No article_type: original author: - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 - first_name: David full_name: Brückner, David id: e1e86031-6537-11eb-953a-f7ab92be508d last_name: Brückner orcid: 0000-0001-7205-2975 citation: ama: Schwayer C, Brückner D. Connecting theory and experiment in cell and tissue mechanics. Journal of Cell Science. 2023;136(24). doi:10.1242/jcs.261515 apa: Schwayer, C., & Brückner, D. (2023). Connecting theory and experiment in cell and tissue mechanics. Journal of Cell Science. The Company of Biologists. https://doi.org/10.1242/jcs.261515 chicago: Schwayer, Cornelia, and David Brückner. “Connecting Theory and Experiment in Cell and Tissue Mechanics.” Journal of Cell Science. The Company of Biologists, 2023. https://doi.org/10.1242/jcs.261515. ieee: C. Schwayer and D. Brückner, “Connecting theory and experiment in cell and tissue mechanics,” Journal of Cell Science, vol. 136, no. 24. The Company of Biologists, 2023. ista: Schwayer C, Brückner D. 2023. Connecting theory and experiment in cell and tissue mechanics. Journal of Cell Science. 136(24), jcs. 261515. mla: Schwayer, Cornelia, and David Brückner. “Connecting Theory and Experiment in Cell and Tissue Mechanics.” Journal of Cell Science, vol. 136, no. 24, jcs. 261515, The Company of Biologists, 2023, doi:10.1242/jcs.261515. short: C. Schwayer, D. Brückner, Journal of Cell Science 136 (2023). date_created: 2024-01-17T12:46:55Z date_published: 2023-12-27T00:00:00Z date_updated: 2024-01-22T13:35:48Z day: '27' department: - _id: EdHa - _id: CaHe doi: 10.1242/jcs.261515 external_id: pmid: - '38149871' intvolume: ' 136' issue: '24' keyword: - Cell Biology language: - iso: eng month: '12' oa_version: None pmid: 1 project: - _id: 34e2a5b5-11ca-11ed-8bc3-b2265616ef0b grant_number: 343-2022 name: A mechano-chemical theory for stem cell fate decisions in organoid development publication: Journal of Cell Science publication_identifier: eissn: - 1477-9137 issn: - 0021-9533 publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: Connecting theory and experiment in cell and tissue mechanics type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 136 year: '2023' ... --- _id: '14080' abstract: - lang: eng text: Extracellular signal-regulated kinase (ERK) has been recognized as a critical regulator in various physiological and pathological processes. Extensive research has elucidated the signaling mechanisms governing ERK activation via biochemical regulations with upstream molecules, particularly receptor tyrosine kinases (RTKs). However, recent advances have highlighted the role of mechanical forces in activating the RTK–ERK signaling pathways, thereby opening new avenues of research into mechanochemical interplay in multicellular tissues. Here, we review the force-induced ERK activation in cells and propose possible mechanosensing mechanisms underlying the mechanoresponsive ERK activation. We conclude that mechanical forces are not merely passive factors shaping cells and tissues but also active regulators of cellular signaling pathways controlling collective cell behaviors. acknowledgement: TH was supported by JSPS KAKENHI Grant (no. 21H05290) and the Ministry of Education under the Research Centres of Excellence programme through the Mechanobiology Institute at National University of Singapore and by Department of Physiology at National University of Singapore. NH was supported by JSPS KAKENHI Grant (no. 20K22653). KA was supported by JSPS KAKENHI Grants (no. 19H05798 and no. 22H02625). MM was supported by JSPS KAKENHI Grants (no. 19H00993 and no. 20H05898) and JST Moonshot R&D Grant JPMJPS2022. We appreciate Virgile Viasnoff and the lab members for their valuable comments on the manuscript. We apologize to authors whose work could not be highlighted due to space limitations. article_number: '102217' article_processing_charge: Yes (in subscription journal) article_type: review author: - first_name: Tsuyoshi full_name: Hirashima, Tsuyoshi last_name: Hirashima - first_name: Naoya full_name: Hino, Naoya id: 5299a9ce-7679-11eb-a7bc-d1e62b936307 last_name: Hino - first_name: Kazuhiro full_name: Aoki, Kazuhiro last_name: Aoki - first_name: Michiyuki full_name: Matsuda, Michiyuki last_name: Matsuda citation: ama: Hirashima T, Hino N, Aoki K, Matsuda M. Stretching the limits of extracellular signal-related kinase (ERK) signaling — Cell mechanosensing to ERK activation. Current Opinion in Cell Biology. 2023;84(10). doi:10.1016/j.ceb.2023.102217 apa: Hirashima, T., Hino, N., Aoki, K., & Matsuda, M. (2023). Stretching the limits of extracellular signal-related kinase (ERK) signaling — Cell mechanosensing to ERK activation. Current Opinion in Cell Biology. Elsevier. https://doi.org/10.1016/j.ceb.2023.102217 chicago: Hirashima, Tsuyoshi, Naoya Hino, Kazuhiro Aoki, and Michiyuki Matsuda. “Stretching the Limits of Extracellular Signal-Related Kinase (ERK) Signaling — Cell Mechanosensing to ERK Activation.” Current Opinion in Cell Biology. Elsevier, 2023. https://doi.org/10.1016/j.ceb.2023.102217. ieee: T. Hirashima, N. Hino, K. Aoki, and M. Matsuda, “Stretching the limits of extracellular signal-related kinase (ERK) signaling — Cell mechanosensing to ERK activation,” Current Opinion in Cell Biology, vol. 84, no. 10. Elsevier, 2023. ista: Hirashima T, Hino N, Aoki K, Matsuda M. 2023. Stretching the limits of extracellular signal-related kinase (ERK) signaling — Cell mechanosensing to ERK activation. Current Opinion in Cell Biology. 84(10), 102217. mla: Hirashima, Tsuyoshi, et al. “Stretching the Limits of Extracellular Signal-Related Kinase (ERK) Signaling — Cell Mechanosensing to ERK Activation.” Current Opinion in Cell Biology, vol. 84, no. 10, 102217, Elsevier, 2023, doi:10.1016/j.ceb.2023.102217. short: T. Hirashima, N. Hino, K. Aoki, M. Matsuda, Current Opinion in Cell Biology 84 (2023). date_created: 2023-08-20T22:01:12Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-30T12:52:42Z day: '01' ddc: - '570' department: - _id: CaHe doi: 10.1016/j.ceb.2023.102217 external_id: isi: - '001054692200001' pmid: - '37574635' file: - access_level: open_access checksum: 25923f8ae71344e8974530dd23c71bdc content_type: application/pdf creator: dernst date_created: 2024-01-30T12:52:12Z date_updated: 2024-01-30T12:52:12Z file_id: '14909' file_name: 2023_CurrentOpinionCellBio_Hirashima.pdf file_size: 1173762 relation: main_file success: 1 file_date_updated: 2024-01-30T12:52:12Z has_accepted_license: '1' intvolume: ' 84' isi: 1 issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: Current Opinion in Cell Biology publication_identifier: eissn: - 1879-0410 issn: - 0955-0674 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Stretching the limits of extracellular signal-related kinase (ERK) signaling — Cell mechanosensing to ERK activation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 84 year: '2023' ... --- _id: '9794' abstract: - lang: eng text: 'Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.' acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: PreCl - _id: LifeSc acknowledgement: This research was supported by the Scientific Service Units of IST Austria through resources provided by the Imaging and Optics, Electron Microscopy, Preclinical and Life Science Facilities. We thank C. Moussion for providing anti-PNAd antibody and D. Critchley for Talin1-floxed mice, and E. Papusheva for providing a custom 3D channel alignment script. This work was supported by a European Research Council grant ERC-CoG-72437 to M.S. M.H. was supported by Czech Sciencundation GACR 20-24603Y and Charles University PRIMUS/20/MED/013. article_processing_charge: No article_type: original author: - first_name: Frank P full_name: Assen, Frank P id: 3A8E7F24-F248-11E8-B48F-1D18A9856A87 last_name: Assen orcid: 0000-0003-3470-6119 - first_name: Jun full_name: Abe, Jun last_name: Abe - first_name: Miroslav full_name: Hons, Miroslav id: 4167FE56-F248-11E8-B48F-1D18A9856A87 last_name: Hons orcid: 0000-0002-6625-3348 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Markus full_name: Brown, Markus id: 3DAB9AFC-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Burkhard full_name: Ludewig, Burkhard last_name: Ludewig - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Wolfgang full_name: Weninger, Wolfgang last_name: Weninger - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Sanjiv A. full_name: Luther, Sanjiv A. last_name: Luther - first_name: Jens V. full_name: Stein, Jens V. last_name: Stein - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-4561-241X citation: ama: Assen FP, Abe J, Hons M, et al. Multitier mechanics control stromal adaptations in swelling lymph nodes. Nature Immunology. 2022;23:1246-1255. doi:10.1038/s41590-022-01257-4 apa: Assen, F. P., Abe, J., Hons, M., Hauschild, R., Shamipour, S., Kaufmann, W., … Sixt, M. K. (2022). Multitier mechanics control stromal adaptations in swelling lymph nodes. Nature Immunology. Springer Nature. https://doi.org/10.1038/s41590-022-01257-4 chicago: Assen, Frank P, Jun Abe, Miroslav Hons, Robert Hauschild, Shayan Shamipour, Walter Kaufmann, Tommaso Costanzo, et al. “Multitier Mechanics Control Stromal Adaptations in Swelling Lymph Nodes.” Nature Immunology. Springer Nature, 2022. https://doi.org/10.1038/s41590-022-01257-4. ieee: F. P. Assen et al., “Multitier mechanics control stromal adaptations in swelling lymph nodes,” Nature Immunology, vol. 23. Springer Nature, pp. 1246–1255, 2022. ista: Assen FP, Abe J, Hons M, Hauschild R, Shamipour S, Kaufmann W, Costanzo T, Krens G, Brown M, Ludewig B, Hippenmeyer S, Heisenberg C-PJ, Weninger W, Hannezo EB, Luther SA, Stein JV, Sixt MK. 2022. Multitier mechanics control stromal adaptations in swelling lymph nodes. Nature Immunology. 23, 1246–1255. mla: Assen, Frank P., et al. “Multitier Mechanics Control Stromal Adaptations in Swelling Lymph Nodes.” Nature Immunology, vol. 23, Springer Nature, 2022, pp. 1246–55, doi:10.1038/s41590-022-01257-4. short: F.P. Assen, J. Abe, M. Hons, R. Hauschild, S. Shamipour, W. Kaufmann, T. Costanzo, G. Krens, M. Brown, B. Ludewig, S. Hippenmeyer, C.-P.J. Heisenberg, W. Weninger, E.B. Hannezo, S.A. Luther, J.V. Stein, M.K. Sixt, Nature Immunology 23 (2022) 1246–1255. date_created: 2021-08-06T09:09:11Z date_published: 2022-07-11T00:00:00Z date_updated: 2023-08-02T06:53:07Z day: '11' ddc: - '570' department: - _id: SiHi - _id: CaHe - _id: EdHa - _id: EM-Fac - _id: Bio - _id: MiSi doi: 10.1038/s41590-022-01257-4 ec_funded: 1 external_id: isi: - '000822975900002' file: - access_level: open_access checksum: 628e7b49809f22c75b428842efe70c68 content_type: application/pdf creator: dernst date_created: 2022-07-25T07:11:32Z date_updated: 2022-07-25T07:11:32Z file_id: '11642' file_name: 2022_NatureImmunology_Assen.pdf file_size: 11475325 relation: main_file success: 1 file_date_updated: 2022-07-25T07:11:32Z has_accepted_license: '1' intvolume: ' 23' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 1246-1255 project: - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients publication: Nature Immunology publication_identifier: eissn: - 1529-2916 issn: - 1529-2908 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Multitier mechanics control stromal adaptations in swelling lymph nodes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2022' ... --- _id: '10705' abstract: - lang: eng text: Although rigidity and jamming transitions have been widely studied in physics and material science, their importance in a number of biological processes, including embryo development, tissue homeostasis, wound healing, and disease progression, has only begun to be recognized in the past few years. The hypothesis that biological systems can undergo rigidity/jamming transitions is attractive, as it would allow these systems to change their material properties rapidly and strongly. However, whether such transitions indeed occur in biological systems, how they are being regulated, and what their physiological relevance might be, is still being debated. Here, we review theoretical and experimental advances from the past few years, focusing on the regulation and role of potential tissue rigidity transitions in different biological processes. acknowledgement: We thank present and former members of the Heisenberg and Hannezo groups, in particular Bernat Corominas-Murtra and Nicoletta Petridou, for helpful discussions, and Claudia Flandoli for the artwork. We apologize for not being able to cite a number of highly relevant studies, to stay within the maximum allowed number of citations. article_processing_charge: No article_type: original author: - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Hannezo EB, Heisenberg C-PJ. Rigidity transitions in development and disease. Trends in Cell Biology. 2022;32(5):P433-444. doi:10.1016/j.tcb.2021.12.006 apa: Hannezo, E. B., & Heisenberg, C.-P. J. (2022). Rigidity transitions in development and disease. Trends in Cell Biology. Cell Press. https://doi.org/10.1016/j.tcb.2021.12.006 chicago: Hannezo, Edouard B, and Carl-Philipp J Heisenberg. “Rigidity Transitions in Development and Disease.” Trends in Cell Biology. Cell Press, 2022. https://doi.org/10.1016/j.tcb.2021.12.006. ieee: E. B. Hannezo and C.-P. J. Heisenberg, “Rigidity transitions in development and disease,” Trends in Cell Biology, vol. 32, no. 5. Cell Press, pp. P433-444, 2022. ista: Hannezo EB, Heisenberg C-PJ. 2022. Rigidity transitions in development and disease. Trends in Cell Biology. 32(5), P433-444. mla: Hannezo, Edouard B., and Carl-Philipp J. Heisenberg. “Rigidity Transitions in Development and Disease.” Trends in Cell Biology, vol. 32, no. 5, Cell Press, 2022, pp. P433-444, doi:10.1016/j.tcb.2021.12.006. short: E.B. Hannezo, C.-P.J. Heisenberg, Trends in Cell Biology 32 (2022) P433-444. date_created: 2022-01-30T23:01:34Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-08-02T14:03:53Z day: '01' department: - _id: EdHa - _id: CaHe doi: 10.1016/j.tcb.2021.12.006 external_id: isi: - '000795773900009' pmid: - '35058104' intvolume: ' 32' isi: 1 issue: '5' language: - iso: eng month: '05' oa_version: None page: P433-444 pmid: 1 publication: Trends in Cell Biology publication_identifier: eissn: - 1879-3088 issn: - 0962-8924 publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Rigidity transitions in development and disease type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 32 year: '2022' ... --- _id: '10766' abstract: - lang: eng text: Tension of the actomyosin cell cortex plays a key role in determining cell–cell contact growth and size. The level of cortical tension outside of the cell–cell contact, when pulling at the contact edge, scales with the total size to which a cell–cell contact can grow [J.-L. Maître et al., Science 338, 253–256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell–cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell–cell contact size is limited by tension-stabilizing E-cadherin–actin complexes at the contact. acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: PreCl acknowledgement: 'We thank Guillaume Salbreaux, Silvia Grigolon, Edouard Hannezo, and Vanessa Barone for discussions and comments on the manuscript and Shayan Shamipour and Daniel Capek for help with data analysis. We also thank the Imaging & Optics, Electron Microscopy, and Zebrafish Facility Scientific Service Units at the Institute of Science and Technology Austria (ISTA)Nasser Darwish-Miranda for continuous support. We acknowledge Hitoshi Morita for the gift of VinculinB-GFP plasmid. This research was supported by an ISTA Fellow Marie-Curie Co-funding of regional, national, and international programmes Grant P_IST_EU01 (to J.S.), European Molecular Biology Organization Long-Term Fellowship Grant, ALTF reference number: 187-2013 (to M.S.), Schroedinger Fellowship J4332-B28 (to M.S.), and European Research Council Advanced Grant (MECSPEC; to C.-P.H.).' article_number: e2122030119 article_processing_charge: No article_type: original author: - first_name: Jana full_name: Slovakova, Jana id: 30F3F2F0-F248-11E8-B48F-1D18A9856A87 last_name: Slovakova - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Silvia full_name: Caballero Mancebo, Silvia id: 2F1E1758-F248-11E8-B48F-1D18A9856A87 last_name: Caballero Mancebo orcid: 0000-0002-5223-3346 - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Slovakova J, Sikora MK, Arslan FN, et al. Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. 2022;119(8). doi:10.1073/pnas.2122030119 apa: Slovakova, J., Sikora, M. K., Arslan, F. N., Caballero Mancebo, S., Krens, G., Kaufmann, W., … Heisenberg, C.-P. J. (2022). Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2122030119 chicago: Slovakova, Jana, Mateusz K Sikora, Feyza N Arslan, Silvia Caballero Mancebo, Gabriel Krens, Walter Kaufmann, Jack Merrin, and Carl-Philipp J Heisenberg. “Tension-Dependent Stabilization of E-Cadherin Limits Cell-Cell Contact Expansion in Zebrafish Germ-Layer Progenitor Cells.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2022. https://doi.org/10.1073/pnas.2122030119. ieee: J. Slovakova et al., “Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 8. Proceedings of the National Academy of Sciences, 2022. ista: Slovakova J, Sikora MK, Arslan FN, Caballero Mancebo S, Krens G, Kaufmann W, Merrin J, Heisenberg C-PJ. 2022. Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. 119(8), e2122030119. mla: Slovakova, Jana, et al. “Tension-Dependent Stabilization of E-Cadherin Limits Cell-Cell Contact Expansion in Zebrafish Germ-Layer Progenitor Cells.” Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 8, e2122030119, Proceedings of the National Academy of Sciences, 2022, doi:10.1073/pnas.2122030119. short: J. Slovakova, M.K. Sikora, F.N. Arslan, S. Caballero Mancebo, G. Krens, W. Kaufmann, J. Merrin, C.-P.J. Heisenberg, Proceedings of the National Academy of Sciences of the United States of America 119 (2022). date_created: 2022-02-20T23:01:31Z date_published: 2022-02-14T00:00:00Z date_updated: 2023-08-02T14:26:51Z day: '14' ddc: - '570' department: - _id: CaHe - _id: EM-Fac - _id: Bio doi: 10.1073/pnas.2122030119 ec_funded: 1 external_id: isi: - '000766926900009' file: - access_level: open_access checksum: d49f83c3580613966f71768ddb9a55a5 content_type: application/pdf creator: dernst date_created: 2022-02-21T08:45:11Z date_updated: 2022-02-21T08:45:11Z file_id: '10780' file_name: 2022_PNAS_Slovakova.pdf file_size: 1609678 relation: main_file success: 1 file_date_updated: 2022-02-21T08:45:11Z has_accepted_license: '1' intvolume: ' 119' isi: 1 issue: '8' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 2521E28E-B435-11E9-9278-68D0E5697425 grant_number: 187-2013 name: Modulation of adhesion function in cell-cell contact formation by cortical tension publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - '10916490' publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: record: - id: '9750' relation: earlier_version status: public scopus_import: '1' status: public title: Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 119 year: '2022' ... --- _id: '12209' abstract: - lang: eng text: Embryo development requires biochemical signalling to generate patterns of cell fates and active mechanical forces to drive tissue shape changes. However, how these processes are coordinated, and how tissue patterning is preserved despite the cellular flows occurring during morphogenesis, remains poorly understood. Gastrulation is a crucial embryonic stage that involves both patterning and internalization of the mesendoderm germ layer tissue. Here we show that, in zebrafish embryos, a gradient in Nodal signalling orchestrates pattern-preserving internalization movements by triggering a motility-driven unjamming transition. In addition to its role as a morphogen determining embryo patterning, graded Nodal signalling mechanically subdivides the mesendoderm into a small fraction of highly protrusive leader cells, able to autonomously internalize via local unjamming, and less protrusive followers, which need to be pulled inwards by the leaders. The Nodal gradient further enforces a code of preferential adhesion coupling leaders to their immediate followers, resulting in a collective and ordered mode of internalization that preserves mesendoderm patterning. Integrating this dual mechanical role of Nodal signalling into minimal active particle simulations quantitatively predicts both physiological and experimentally perturbed internalization movements. This provides a quantitative framework for how a morphogen-encoded unjamming transition can bidirectionally couple tissue mechanics with patterning during complex three-dimensional morphogenesis. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: "We thank K. Sampath, A. Pauli and Y. Bellaїche for feedback on the manuscript. We also thank the members of the Heisenberg group, in particular A. Schauer and F. Nur Arslan, for help, technical advice and discussions, and the Bioimaging and Life Science facilities at IST\r\nAustria for continuous support. We thank C. Flandoli for the artwork in the figures. This work was supported by postdoctoral fellowships from EMBO (LTF-850-2017) and HFSP (LT000429/2018-L2) to D.P. and the European Union (European Research Council starting grant 851288 to É.H. and European Research Council advanced grant 742573 to C.-P.H.)." article_processing_charge: No article_type: original author: - first_name: Diana C full_name: Nunes Pinheiro, Diana C id: 2E839F16-F248-11E8-B48F-1D18A9856A87 last_name: Nunes Pinheiro orcid: 0000-0003-4333-7503 - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Nunes Pinheiro DC, Kardos R, Hannezo EB, Heisenberg C-PJ. Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nature Physics. 2022;18(12):1482-1493. doi:10.1038/s41567-022-01787-6 apa: Nunes Pinheiro, D. C., Kardos, R., Hannezo, E. B., & Heisenberg, C.-P. J. (2022). Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-022-01787-6 chicago: Nunes Pinheiro, Diana C, Roland Kardos, Edouard B Hannezo, and Carl-Philipp J Heisenberg. “Morphogen Gradient Orchestrates Pattern-Preserving Tissue Morphogenesis via Motility-Driven Unjamming.” Nature Physics. Springer Nature, 2022. https://doi.org/10.1038/s41567-022-01787-6. ieee: D. C. Nunes Pinheiro, R. Kardos, E. B. Hannezo, and C.-P. J. Heisenberg, “Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming,” Nature Physics, vol. 18, no. 12. Springer Nature, pp. 1482–1493, 2022. ista: Nunes Pinheiro DC, Kardos R, Hannezo EB, Heisenberg C-PJ. 2022. Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nature Physics. 18(12), 1482–1493. mla: Nunes Pinheiro, Diana C., et al. “Morphogen Gradient Orchestrates Pattern-Preserving Tissue Morphogenesis via Motility-Driven Unjamming.” Nature Physics, vol. 18, no. 12, Springer Nature, 2022, pp. 1482–93, doi:10.1038/s41567-022-01787-6. short: D.C. Nunes Pinheiro, R. Kardos, E.B. Hannezo, C.-P.J. Heisenberg, Nature Physics 18 (2022) 1482–1493. date_created: 2023-01-16T09:45:19Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-04T09:15:58Z day: '01' ddc: - '570' department: - _id: CaHe - _id: EdHa doi: 10.1038/s41567-022-01787-6 ec_funded: 1 external_id: isi: - '000871319900002' file: - access_level: open_access checksum: c86a8e8d80d1bfc46d56a01e88a2526a content_type: application/pdf creator: dernst date_created: 2023-01-27T07:32:01Z date_updated: 2023-01-27T07:32:01Z file_id: '12412' file_name: 2022_NaturePhysics_Pinheiro.pdf file_size: 36703569 relation: main_file success: 1 file_date_updated: 2023-01-27T07:32:01Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '12' keyword: - General Physics and Astronomy language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 1482-1493 project: - _id: 26520D1E-B435-11E9-9278-68D0E5697425 grant_number: ALTF 850-2017 name: Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation - _id: 26520D1E-B435-11E9-9278-68D0E5697425 grant_number: ALTF 850-2017 name: Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2022' ... --- _id: '12231' abstract: - lang: eng text: Ventral tail bending, which is transient but pronounced, is found in many chordate embryos and constitutes an interesting model of how tissue interactions control embryo shape. Here, we identify one key upstream regulator of ventral tail bending in embryos of the ascidian Ciona. We show that during the early tailbud stages, ventral epidermal cells exhibit a boat-shaped morphology (boat cell) with a narrow apical surface where phosphorylated myosin light chain (pMLC) accumulates. We further show that interfering with the function of the BMP ligand Admp led to pMLC localizing to the basal instead of the apical side of ventral epidermal cells and a reduced number of boat cells. Finally, we show that cutting ventral epidermal midline cells at their apex using an ultraviolet laser relaxed ventral tail bending. Based on these results, we propose a previously unreported function for Admp in localizing pMLC to the apical side of ventral epidermal cells, which causes the tail to bend ventrally by resisting antero-posterior notochord extension at the ventral side of the tail. acknowledgement: "iona intestinalis adults were provided by Dr Yutaka Satou (Kyoto University) and Dr Manabu Yoshida (the University of Tokyo) with support from the National Bio-Resource Project of AMED, Japan. We thank Dr Hidehiko Hashimoto and Dr Yuji Mizotani for technical information about 1P-myosin antibody staining. We thank Dr Kaoru Imai and Dr Yutaka Satou for valuable discussion about Admp and for the DNA construct of Bmp2/4 under the Dlx.b upstream sequence. We thank Ms Maki Kogure for constructing the FUSION360 of the intercalating epidermal cell.\r\nThis work was supported by funding from the Japan Society for the Promotion of Science (JP16H01451, JP21H00440). Open Access funding provided by Keio University: Keio Gijuku Daigaku." article_number: dev200215 article_processing_charge: No article_type: original author: - first_name: Yuki S. full_name: Kogure, Yuki S. last_name: Kogure - first_name: Hiromochi full_name: Muraoka, Hiromochi last_name: Muraoka - first_name: Wataru C. full_name: Koizumi, Wataru C. last_name: Koizumi - first_name: Raphaël full_name: Gelin-alessi, Raphaël last_name: Gelin-alessi - first_name: Benoit G full_name: Godard, Benoit G id: 3263621A-F248-11E8-B48F-1D18A9856A87 last_name: Godard - first_name: Kotaro full_name: Oka, Kotaro last_name: Oka - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Kohji full_name: Hotta, Kohji last_name: Hotta citation: ama: Kogure YS, Muraoka H, Koizumi WC, et al. Admp regulates tail bending by controlling ventral epidermal cell polarity via phosphorylated myosin localization in Ciona. Development. 2022;149(21). doi:10.1242/dev.200215 apa: Kogure, Y. S., Muraoka, H., Koizumi, W. C., Gelin-alessi, R., Godard, B. G., Oka, K., … Hotta, K. (2022). Admp regulates tail bending by controlling ventral epidermal cell polarity via phosphorylated myosin localization in Ciona. Development. The Company of Biologists. https://doi.org/10.1242/dev.200215 chicago: Kogure, Yuki S., Hiromochi Muraoka, Wataru C. Koizumi, Raphaël Gelin-alessi, Benoit G Godard, Kotaro Oka, Carl-Philipp J Heisenberg, and Kohji Hotta. “Admp Regulates Tail Bending by Controlling Ventral Epidermal Cell Polarity via Phosphorylated Myosin Localization in Ciona.” Development. The Company of Biologists, 2022. https://doi.org/10.1242/dev.200215. ieee: Y. S. Kogure et al., “Admp regulates tail bending by controlling ventral epidermal cell polarity via phosphorylated myosin localization in Ciona,” Development, vol. 149, no. 21. The Company of Biologists, 2022. ista: Kogure YS, Muraoka H, Koizumi WC, Gelin-alessi R, Godard BG, Oka K, Heisenberg C-PJ, Hotta K. 2022. Admp regulates tail bending by controlling ventral epidermal cell polarity via phosphorylated myosin localization in Ciona. Development. 149(21), dev200215. mla: Kogure, Yuki S., et al. “Admp Regulates Tail Bending by Controlling Ventral Epidermal Cell Polarity via Phosphorylated Myosin Localization in Ciona.” Development, vol. 149, no. 21, dev200215, The Company of Biologists, 2022, doi:10.1242/dev.200215. short: Y.S. Kogure, H. Muraoka, W.C. Koizumi, R. Gelin-alessi, B.G. Godard, K. Oka, C.-P.J. Heisenberg, K. Hotta, Development 149 (2022). date_created: 2023-01-16T09:50:12Z date_published: 2022-11-01T00:00:00Z date_updated: 2023-08-04T09:33:24Z day: '01' ddc: - '570' department: - _id: CaHe doi: 10.1242/dev.200215 external_id: isi: - '000903991700002' pmid: - '36227591' file: - access_level: open_access checksum: 871b9c58eb79b9e60752de25a46938d6 content_type: application/pdf creator: dernst date_created: 2023-01-27T10:36:50Z date_updated: 2023-01-27T10:36:50Z file_id: '12423' file_name: 2022_Development_Kogure.pdf file_size: 9160451 relation: main_file success: 1 file_date_updated: 2023-01-27T10:36:50Z has_accepted_license: '1' intvolume: ' 149' isi: 1 issue: '21' keyword: - Developmental Biology - Molecular Biology language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: Admp regulates tail bending by controlling ventral epidermal cell polarity via phosphorylated myosin localization in Ciona tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 149 year: '2022' ... --- _id: '12238' abstract: - lang: eng text: Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration. acknowledgement: We thank the members of the Matsuda Laboratory for their helpful discussion and encouragement, and we thank K. Hirano and K. Takakura for their technical assistance. This work was supported by the Kyoto University Live Imaging Center. Financial support was provided in the form of JSPS KAKENHI grants (nos. 17J02107 and 20K22653 to N.H., and 20H05898 and 19H00993 to M.M.), a JST CREST grant (no. JPMJCR1654 to M.M.), a Moonshot R&D grant (no. JPMJPS2022-11 to M.M.), Generalitat de Catalunya and the CERCA Programme (no. SGR-2017-01602 to X.T.), MICCINN/FEDER (no. PGC2018-099645-B-I00 to X.T.), and European Research Council (no. Adv-883739 to X.T.). IBEC is a recipient of a Severo Ochoa Award of Excellence from the MINECO. This work was partly supported by an Extramural Collaborative Research Grant of Cancer Research Institute, Kanazawa University. article_processing_charge: No article_type: original author: - first_name: Naoya full_name: Hino, Naoya id: 5299a9ce-7679-11eb-a7bc-d1e62b936307 last_name: Hino - first_name: Kimiya full_name: Matsuda, Kimiya last_name: Matsuda - first_name: Yuya full_name: Jikko, Yuya last_name: Jikko - first_name: Gembu full_name: Maryu, Gembu last_name: Maryu - first_name: Katsuya full_name: Sakai, Katsuya last_name: Sakai - first_name: Ryu full_name: Imamura, Ryu last_name: Imamura - first_name: Shinya full_name: Tsukiji, Shinya last_name: Tsukiji - first_name: Kazuhiro full_name: Aoki, Kazuhiro last_name: Aoki - first_name: Kenta full_name: Terai, Kenta last_name: Terai - first_name: Tsuyoshi full_name: Hirashima, Tsuyoshi last_name: Hirashima - first_name: Xavier full_name: Trepat, Xavier last_name: Trepat - first_name: Michiyuki full_name: Matsuda, Michiyuki last_name: Matsuda citation: ama: Hino N, Matsuda K, Jikko Y, et al. A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration. Developmental Cell. 2022;57(19):2290-2304.e7. doi:10.1016/j.devcel.2022.09.003 apa: Hino, N., Matsuda, K., Jikko, Y., Maryu, G., Sakai, K., Imamura, R., … Matsuda, M. (2022). A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2022.09.003 chicago: Hino, Naoya, Kimiya Matsuda, Yuya Jikko, Gembu Maryu, Katsuya Sakai, Ryu Imamura, Shinya Tsukiji, et al. “A Feedback Loop between Lamellipodial Extension and HGF-ERK Signaling Specifies Leader Cells during Collective Cell Migration.” Developmental Cell. Elsevier, 2022. https://doi.org/10.1016/j.devcel.2022.09.003. ieee: N. Hino et al., “A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration,” Developmental Cell, vol. 57, no. 19. Elsevier, p. 2290–2304.e7, 2022. ista: Hino N, Matsuda K, Jikko Y, Maryu G, Sakai K, Imamura R, Tsukiji S, Aoki K, Terai K, Hirashima T, Trepat X, Matsuda M. 2022. A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration. Developmental Cell. 57(19), 2290–2304.e7. mla: Hino, Naoya, et al. “A Feedback Loop between Lamellipodial Extension and HGF-ERK Signaling Specifies Leader Cells during Collective Cell Migration.” Developmental Cell, vol. 57, no. 19, Elsevier, 2022, p. 2290–2304.e7, doi:10.1016/j.devcel.2022.09.003. short: N. Hino, K. Matsuda, Y. Jikko, G. Maryu, K. Sakai, R. Imamura, S. Tsukiji, K. Aoki, K. Terai, T. Hirashima, X. Trepat, M. Matsuda, Developmental Cell 57 (2022) 2290–2304.e7. date_created: 2023-01-16T09:51:39Z date_published: 2022-10-01T00:00:00Z date_updated: 2023-08-04T09:38:53Z day: '01' department: - _id: CaHe doi: 10.1016/j.devcel.2022.09.003 external_id: isi: - '000898428700006' pmid: - '36174555' intvolume: ' 57' isi: 1 issue: '19' keyword: - Developmental Biology - Cell Biology - General Biochemistry - Genetics and Molecular Biology - Molecular Biology language: - iso: eng month: '10' oa_version: None page: 2290-2304.e7 pmid: 1 publication: Developmental Cell publication_identifier: issn: - 1534-5807 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 57 year: '2022' ... --- _id: '12368' abstract: - lang: eng text: "Metazoan development relies on the formation and remodeling of cell-cell contacts. The \r\nbinding of adhesion receptors and remodeling of the actomyosin cell cortex at cell-cell \r\ninteraction sites have been implicated in cell-cell contact formation. Yet, how these two \r\nprocesses functionally interact to drive cell-cell contact expansion and strengthening \r\nremains unclear. Here, we study how primary germ layer progenitor cells from zebrafish \r\nbind to supported lipid bilayers (SLB) functionalized with E-cadherin ectodomains as an \r\nassay system for monitoring cell-cell contact formation at high spatiotemporal resolution. \r\nWe show that cell-cell contact formation represents a two-tiered process: E-cadherin\x02mediated downregulation of the small GTPase RhoA at the forming contact leads to both \r\ndepletion of Myosin-2 and decrease of F-actin. This is followed by centrifugal actin \r\nnetwork flows at the contact triggered by a sharp gradient of Myosin-2 at the rim of the \r\ncontact zone, with Myosin-2 displaying higher cortical localization outside than inside of \r\nthe contact. These centrifugal cortical actin flows, in turn, not only further dilute the actin \r\nnetwork at the contact disc, but also lead to an accumulation of both F-actin and E\x02cadherin at the contact rim. Eventually, this combination of actomyosin downregulation \r\nand flows at the contact contribute to the characteristic molecular organization implicated \r\nin contact formation and maintenance: depletion of cortical actomyosin at the contact disc, \r\ndriving contact expansion by lowering interfacial tension at the contact, and accumulation \r\nof both E-cadherin and F-actin at the contact rim, mechanically linking the contractile \r\ncortices of the adhering cells. Thus, using a biomimetic assay, we exemplify how \r\nadhesion signaling and cell mechanics function together to modulate the spatial \r\norganization of cell-cell contacts." acknowledged_ssus: - _id: LifeSc - _id: Bio - _id: NanoFab alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 citation: ama: Arslan FN. Remodeling of E-cadherin-mediated contacts via cortical  flows. 2022. doi:10.15479/at:ista:12153 apa: Arslan, F. N. (2022). Remodeling of E-cadherin-mediated contacts via cortical  flows. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12153 chicago: Arslan, Feyza N. “Remodeling of E-Cadherin-Mediated Contacts via Cortical  Flows.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:12153. ieee: F. N. Arslan, “Remodeling of E-cadherin-mediated contacts via cortical  flows,” Institute of Science and Technology Austria, 2022. ista: Arslan FN. 2022. Remodeling of E-cadherin-mediated contacts via cortical  flows. Institute of Science and Technology Austria. mla: Arslan, Feyza N. Remodeling of E-Cadherin-Mediated Contacts via Cortical  Flows. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:12153. short: F.N. Arslan, Remodeling of E-Cadherin-Mediated Contacts via Cortical  Flows, Institute of Science and Technology Austria, 2022. date_created: 2023-01-25T10:43:24Z date_published: 2022-09-29T00:00:00Z date_updated: 2023-08-08T13:14:10Z day: '29' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: CaHe doi: 10.15479/at:ista:12153 ec_funded: 1 file: - access_level: open_access checksum: e54a3e69b83ebf166544164afd25608e content_type: application/pdf creator: cchlebak date_created: 2023-01-25T10:52:46Z date_updated: 2023-01-25T10:52:46Z file_id: '12369' file_name: THESIS_FINAL_FArslan_pdfa.pdf file_size: 14581024 relation: main_file success: 1 file_date_updated: 2023-01-25T10:52:46Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '113' project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication_identifier: isbn: - ' 978-3-99078-025-1 ' issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9350' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Remodeling of E-cadherin-mediated contacts via cortical flows tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '9245' abstract: - lang: eng text: Tissue morphogenesis is driven by mechanical forces triggering cell movements and shape changes. Quantitatively measuring tension within tissues is of great importance for understanding the role of mechanical signals acting on the cell and tissue level during morphogenesis. Here we introduce laser ablation as a useful tool to probe tissue tension within the granulosa layer, an epithelial monolayer of somatic cells that surround the zebrafish female gamete during folliculogenesis. We describe in detail how to isolate follicles, mount samples, perform laser surgery, and analyze the data. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We thank Prof. Masazumi Tada and Roland Dosch for providing transgenic zebrafish lines, the Heisenberg lab for technical assistance and feedback on the manuscript, and the Bioimaging and Fish facilities of IST Austria for continuous support. This work was funded by an ERC advanced grant (MECSPEC to C.-P.H.). alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Peng full_name: Xia, Peng id: 4AB6C7D0-F248-11E8-B48F-1D18A9856A87 last_name: Xia orcid: 0000-0002-5419-7756 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Xia P, Heisenberg C-PJ. Quantifying tissue tension in the granulosa layer after laser surgery. In: Dosch R, ed. Germline Development in the Zebrafish. Vol 2218. Humana; 2021:117-128. doi:10.1007/978-1-0716-0970-5_10' apa: Xia, P., & Heisenberg, C.-P. J. (2021). Quantifying tissue tension in the granulosa layer after laser surgery. In R. Dosch (Ed.), Germline Development in the Zebrafish (Vol. 2218, pp. 117–128). Humana. https://doi.org/10.1007/978-1-0716-0970-5_10 chicago: Xia, Peng, and Carl-Philipp J Heisenberg. “Quantifying Tissue Tension in the Granulosa Layer after Laser Surgery.” In Germline Development in the Zebrafish, edited by Roland Dosch, 2218:117–28. Humana, 2021. https://doi.org/10.1007/978-1-0716-0970-5_10. ieee: P. Xia and C.-P. J. Heisenberg, “Quantifying tissue tension in the granulosa layer after laser surgery,” in Germline Development in the Zebrafish, vol. 2218, R. Dosch, Ed. Humana, 2021, pp. 117–128. ista: 'Xia P, Heisenberg C-PJ. 2021.Quantifying tissue tension in the granulosa layer after laser surgery. In: Germline Development in the Zebrafish. Methods in Molecular Biology, vol. 2218, 117–128.' mla: Xia, Peng, and Carl-Philipp J. Heisenberg. “Quantifying Tissue Tension in the Granulosa Layer after Laser Surgery.” Germline Development in the Zebrafish, edited by Roland Dosch, vol. 2218, Humana, 2021, pp. 117–28, doi:10.1007/978-1-0716-0970-5_10. short: P. Xia, C.-P.J. Heisenberg, in:, R. Dosch (Ed.), Germline Development in the Zebrafish, Humana, 2021, pp. 117–128. date_created: 2021-03-14T23:01:34Z date_published: 2021-02-20T00:00:00Z date_updated: 2022-06-03T10:57:55Z day: '20' department: - _id: CaHe doi: 10.1007/978-1-0716-0970-5_10 ec_funded: 1 editor: - first_name: Roland full_name: Dosch, Roland last_name: Dosch external_id: pmid: - '33606227' intvolume: ' 2218' keyword: - Tissue tension - Morphogenesis - Laser ablation - Zebrafish folliculogenesis - Granulosa cells language: - iso: eng month: '02' oa_version: None page: 117-128 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Germline Development in the Zebrafish publication_identifier: eisbn: - 978-1-0716-0970-5 eissn: - 1940-6029 isbn: - 978-1-0716-0969-9 issn: - 1064-3745 publication_status: published publisher: Humana quality_controlled: '1' scopus_import: '1' status: public title: Quantifying tissue tension in the granulosa layer after laser surgery type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2218 year: '2021' ... --- _id: '8966' abstract: - lang: eng text: During development, a single cell is transformed into a highly complex organism through progressive cell division, specification and rearrangement. An important prerequisite for the emergence of patterns within the developing organism is to establish asymmetries at various scales, ranging from individual cells to the entire embryo, eventually giving rise to the different body structures. This becomes especially apparent during gastrulation, when the earliest major lineage restriction events lead to the formation of the different germ layers. Traditionally, the unfolding of the developmental program from symmetry breaking to germ layer formation has been studied by dissecting the contributions of different signaling pathways and cellular rearrangements in the in vivo context of intact embryos. Recent efforts, using the intrinsic capacity of embryonic stem cells to self-assemble and generate embryo-like structures de novo, have opened new avenues for understanding the many ways by which an embryo can be built and the influence of extrinsic factors therein. Here, we discuss and compare divergent and conserved strategies leading to germ layer formation in embryos as compared to in vitro systems, their upstream molecular cascades and the role of extrinsic factors in this process. acknowledgement: We thank Nicoletta Petridou, Diana Pinheiro, Cornelia Schwayer and Stefania Tavano for feedback on the manuscript. Research in the Heisenberg lab is supported by an ERC Advanced Grant (MECSPEC 742573) to C.-P.H. A.S. is a recipient of a DOC Fellowship of the Austrian Academy of Science. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Alexandra full_name: Schauer, Alexandra id: 30A536BA-F248-11E8-B48F-1D18A9856A87 last_name: Schauer orcid: 0000-0001-7659-9142 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Schauer A, Heisenberg C-PJ. Reassembling gastrulation. Developmental Biology. 2021;474:71-81. doi:10.1016/j.ydbio.2020.12.014 apa: Schauer, A., & Heisenberg, C.-P. J. (2021). Reassembling gastrulation. Developmental Biology. Elsevier. https://doi.org/10.1016/j.ydbio.2020.12.014 chicago: Schauer, Alexandra, and Carl-Philipp J Heisenberg. “Reassembling Gastrulation.” Developmental Biology. Elsevier, 2021. https://doi.org/10.1016/j.ydbio.2020.12.014. ieee: A. Schauer and C.-P. J. Heisenberg, “Reassembling gastrulation,” Developmental Biology, vol. 474. Elsevier, pp. 71–81, 2021. ista: Schauer A, Heisenberg C-PJ. 2021. Reassembling gastrulation. Developmental Biology. 474, 71–81. mla: Schauer, Alexandra, and Carl-Philipp J. Heisenberg. “Reassembling Gastrulation.” Developmental Biology, vol. 474, Elsevier, 2021, pp. 71–81, doi:10.1016/j.ydbio.2020.12.014. short: A. Schauer, C.-P.J. Heisenberg, Developmental Biology 474 (2021) 71–81. date_created: 2020-12-22T09:53:34Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-08-07T13:30:01Z day: '01' ddc: - '570' department: - _id: CaHe doi: 10.1016/j.ydbio.2020.12.014 ec_funded: 1 external_id: isi: - '000639461800008' file: - access_level: open_access checksum: fa2a5731fd16ab171b029f32f031c440 content_type: application/pdf creator: kschuh date_created: 2021-08-11T10:28:06Z date_updated: 2021-08-11T10:28:06Z file_id: '9880' file_name: 2021_DevBiology_Schauer.pdf file_size: 1440321 relation: main_file success: 1 file_date_updated: 2021-08-11T10:28:06Z has_accepted_license: '1' intvolume: ' 474' isi: 1 keyword: - Developmental Biology - Cell Biology - Molecular Biology language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 71-81 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 26B1E39C-B435-11E9-9278-68D0E5697425 grant_number: '25239' name: 'Mesendoderm specification in zebrafish: The role of extraembryonic tissues' publication: Developmental Biology publication_identifier: issn: - 0012-1606 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '12891' relation: dissertation_contains status: public scopus_import: '1' status: public title: Reassembling gastrulation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 474 year: '2021' ... --- _id: '9316' abstract: - lang: eng text: Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We thank Carl Goodrich and the members of the Heisenberg and Hannezo groups, in particular Reka Korei, for help, technical advice, and discussions; and the Bioimaging and zebrafish facilities of the IST Austria for continuous support. This work was supported by the Elise Richter Program of Austrian Science Fund (FWF) to N.I.P. ( V 736-B26 ) and the European Union (European Research Council Advanced Grant 742573 to C.-P.H. and European Research Council Starting Grant 851288 to E.H.). article_processing_charge: No article_type: original author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Bernat full_name: Corominas-Murtra, Bernat id: 43BE2298-F248-11E8-B48F-1D18A9856A87 last_name: Corominas-Murtra orcid: 0000-0001-9806-5643 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 citation: ama: Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 2021;184(7):1914-1928.e19. doi:10.1016/j.cell.2021.02.017 apa: Petridou, N., Corominas-Murtra, B., Heisenberg, C.-P. J., & Hannezo, E. B. (2021). Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. Elsevier. https://doi.org/10.1016/j.cell.2021.02.017 chicago: Petridou, Nicoletta, Bernat Corominas-Murtra, Carl-Philipp J Heisenberg, and Edouard B Hannezo. “Rigidity Percolation Uncovers a Structural Basis for Embryonic Tissue Phase Transitions.” Cell. Elsevier, 2021. https://doi.org/10.1016/j.cell.2021.02.017. ieee: N. Petridou, B. Corominas-Murtra, C.-P. J. Heisenberg, and E. B. Hannezo, “Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions,” Cell, vol. 184, no. 7. Elsevier, p. 1914–1928.e19, 2021. ista: Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. 2021. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 184(7), 1914–1928.e19. mla: Petridou, Nicoletta, et al. “Rigidity Percolation Uncovers a Structural Basis for Embryonic Tissue Phase Transitions.” Cell, vol. 184, no. 7, Elsevier, 2021, p. 1914–1928.e19, doi:10.1016/j.cell.2021.02.017. short: N. Petridou, B. Corominas-Murtra, C.-P.J. Heisenberg, E.B. Hannezo, Cell 184 (2021) 1914–1928.e19. date_created: 2021-04-11T22:01:14Z date_published: 2021-04-01T00:00:00Z date_updated: 2023-08-07T14:33:59Z day: '01' ddc: - '570' department: - _id: CaHe - _id: EdHa doi: 10.1016/j.cell.2021.02.017 ec_funded: 1 external_id: isi: - '000636734000022' pmid: - '33730596' file: - access_level: open_access checksum: 1e5295fbd9c2a459173ec45a0e8a7c2e content_type: application/pdf creator: cziletti date_created: 2021-06-08T10:04:10Z date_updated: 2021-06-08T10:04:10Z file_id: '9534' file_name: 2021_Cell_Petridou.pdf file_size: 11405875 relation: main_file success: 1 file_date_updated: 2021-06-08T10:04:10Z has_accepted_license: '1' intvolume: ' 184' isi: 1 issue: '7' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 1914-1928.e19 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis - _id: 2693FD8C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00736 name: Tissue material properties in embryonic development publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/embryonic-tissue-undergoes-phase-transition/ scopus_import: '1' status: public title: Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 184 year: '2021' ... --- _id: '9336' abstract: - lang: eng text: Mentorship is experience and/or knowledge‐based guidance. Mentors support, sponsor and advocate for mentees. Having one or more mentors when you seek advice can significantly influence and improve your research endeavours, well‐being and career development. Positive mentee–mentor relationships are vital for maintaining work–life balance and success in careers. Early‐career researchers (ECRs), in particular, can benefit from mentorship to navigate challenges in academic and nonacademic life and careers. Yet, strategies for selecting mentors and maintaining interactions with them are often underdiscussed within research environments. In this Words of Advice, we provide recommendations for ECRs to seek and manage mentorship interactions. Our article draws from our experiences as ECRs and published work, to provide suggestions for mentees to proactively promote beneficial mentorship interactions. The recommended practices highlight the importance of identifying mentorship needs, planning and selecting multiple and diverse mentors, setting goals, and maintaining constructive, and mutually beneficial working relationships with mentors. acknowledgement: The authors thank Nicholas Asby of the University of Chicago for valuable comments on an earlier version of this work. A.P.S. was partially supported by the NARSAD Young Investigator Grant 27705. S.J.H was supported by the National Institutes of Health grant R35GM133732. alternative_title: - Words of Advice article_processing_charge: No article_type: original author: - first_name: Sarvenaz full_name: Sarabipour, Sarvenaz last_name: Sarabipour - first_name: Sarah J. full_name: Hainer, Sarah J. last_name: Hainer - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Charlotte M. full_name: De Winde, Charlotte M. last_name: De Winde - first_name: Emily full_name: Furlong, Emily last_name: Furlong - first_name: Natalia full_name: Bielczyk, Natalia last_name: Bielczyk - first_name: Nafisa M. full_name: Jadavji, Nafisa M. last_name: Jadavji - first_name: Aparna P. full_name: Shah, Aparna P. last_name: Shah - first_name: Sejal full_name: Davla, Sejal last_name: Davla citation: ama: Sarabipour S, Hainer SJ, Arslan FN, et al. Building and sustaining mentor interactions as a mentee. FEBS Journal. 2021. doi:10.1111/febs.15823 apa: Sarabipour, S., Hainer, S. J., Arslan, F. N., De Winde, C. M., Furlong, E., Bielczyk, N., … Davla, S. (2021). Building and sustaining mentor interactions as a mentee. FEBS Journal. Wiley. https://doi.org/10.1111/febs.15823 chicago: Sarabipour, Sarvenaz, Sarah J. Hainer, Feyza N Arslan, Charlotte M. De Winde, Emily Furlong, Natalia Bielczyk, Nafisa M. Jadavji, Aparna P. Shah, and Sejal Davla. “Building and Sustaining Mentor Interactions as a Mentee.” FEBS Journal. Wiley, 2021. https://doi.org/10.1111/febs.15823. ieee: S. Sarabipour et al., “Building and sustaining mentor interactions as a mentee,” FEBS Journal. Wiley, 2021. ista: Sarabipour S, Hainer SJ, Arslan FN, De Winde CM, Furlong E, Bielczyk N, Jadavji NM, Shah AP, Davla S. 2021. Building and sustaining mentor interactions as a mentee. FEBS Journal. mla: Sarabipour, Sarvenaz, et al. “Building and Sustaining Mentor Interactions as a Mentee.” FEBS Journal, Wiley, 2021, doi:10.1111/febs.15823. short: S. Sarabipour, S.J. Hainer, F.N. Arslan, C.M. De Winde, E. Furlong, N. Bielczyk, N.M. Jadavji, A.P. Shah, S. Davla, FEBS Journal (2021). date_created: 2021-04-18T22:01:43Z date_published: 2021-04-05T00:00:00Z date_updated: 2023-08-08T13:12:55Z day: '05' department: - _id: CaHe doi: 10.1111/febs.15823 external_id: isi: - '000636678800001' pmid: - '33818917' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/febs.15823 month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: FEBS Journal publication_identifier: eissn: - 1742-4658 issn: - 1742-464X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Building and sustaining mentor interactions as a mentee type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9350' abstract: - lang: eng text: Intercellular adhesion is the key to multicellularity, and its malfunction plays an important role in various developmental and disease-related processes. Although it has been intensively studied by both biologists and physicists, a commonly accepted definition of cell-cell adhesion is still being debated. Cell-cell adhesion has been described at the molecular scale as a function of adhesion receptors controlling binding affinity, at the cellular scale as resistance to detachment forces or modulation of surface tension, and at the tissue scale as a regulator of cellular rearrangements and morphogenesis. In this review, we aim to summarize and discuss recent advances in the molecular, cellular, and theoretical description of cell-cell adhesion, ranging from biomimetic models to the complexity of cells and tissues in an organismal context. In particular, we will focus on cadherin-mediated cell-cell adhesion and the role of adhesion signaling and mechanosensation therein, two processes central for understanding the biological and physical basis of cell-cell adhesion. acknowledgement: T.S. acknowledges funding by the research program “The Active Matter Physics of Collective Metastasis,” which is financed by the Dutch Research Council (NWO). article_processing_charge: No article_type: original author: - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Julia full_name: Eckert, Julia last_name: Eckert - first_name: Thomas full_name: Schmidt, Thomas last_name: Schmidt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Arslan FN, Eckert J, Schmidt T, Heisenberg C-PJ. Holding it together: when cadherin meets cadherin. Biophysical Journal. 2021;120:4182-4192. doi:10.1016/j.bpj.2021.03.025' apa: 'Arslan, F. N., Eckert, J., Schmidt, T., & Heisenberg, C.-P. J. (2021). Holding it together: when cadherin meets cadherin. Biophysical Journal. Biophysical Society. https://doi.org/10.1016/j.bpj.2021.03.025' chicago: 'Arslan, Feyza N, Julia Eckert, Thomas Schmidt, and Carl-Philipp J Heisenberg. “Holding It Together: When Cadherin Meets Cadherin.” Biophysical Journal. Biophysical Society, 2021. https://doi.org/10.1016/j.bpj.2021.03.025.' ieee: 'F. N. Arslan, J. Eckert, T. Schmidt, and C.-P. J. Heisenberg, “Holding it together: when cadherin meets cadherin,” Biophysical Journal, vol. 120. Biophysical Society, pp. 4182–4192, 2021.' ista: 'Arslan FN, Eckert J, Schmidt T, Heisenberg C-PJ. 2021. Holding it together: when cadherin meets cadherin. Biophysical Journal. 120, 4182–4192.' mla: 'Arslan, Feyza N., et al. “Holding It Together: When Cadherin Meets Cadherin.” Biophysical Journal, vol. 120, Biophysical Society, 2021, pp. 4182–92, doi:10.1016/j.bpj.2021.03.025.' short: F.N. Arslan, J. Eckert, T. Schmidt, C.-P.J. Heisenberg, Biophysical Journal 120 (2021) 4182–4192. date_created: 2021-04-25T22:01:30Z date_published: 2021-10-05T00:00:00Z date_updated: 2023-08-08T13:14:10Z day: '05' department: - _id: CaHe doi: 10.1016/j.bpj.2021.03.025 external_id: isi: - '000704646900006' pmid: - '33794149' intvolume: ' 120' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://scholarlypublications.universiteitleiden.nl/access/item%3A3251048/view month: '10' oa: 1 oa_version: Published Version page: 4182-4192 pmid: 1 publication: Biophysical Journal publication_identifier: eissn: - 1542-0086 issn: - 0006-3495 publication_status: published publisher: Biophysical Society quality_controlled: '1' related_material: record: - id: '12368' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Holding it together: when cadherin meets cadherin' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 120 year: '2021' ... --- _id: '9759' acknowledgement: The authors thank Inez Lam of Johns Hopkins University for valuable comments on an earlier version of the manuscript. We also thank the facilitators of the 2019–2020 eLife Community Ambassador program. article_number: e1009124 article_processing_charge: Yes article_type: letter_note author: - first_name: Michael John full_name: Bartlett, Michael John last_name: Bartlett - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Adriana full_name: Bankston, Adriana last_name: Bankston - first_name: Sarvenaz full_name: Sarabipour, Sarvenaz last_name: Sarabipour citation: ama: Bartlett MJ, Arslan FN, Bankston A, Sarabipour S. Ten simple rules to improve academic work- life balance. PLoS Computational Biology. 2021;17(7). doi:10.1371/journal.pcbi.1009124 apa: Bartlett, M. J., Arslan, F. N., Bankston, A., & Sarabipour, S. (2021). Ten simple rules to improve academic work- life balance. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1009124 chicago: Bartlett, Michael John, Feyza N Arslan, Adriana Bankston, and Sarvenaz Sarabipour. “Ten Simple Rules to Improve Academic Work- Life Balance.” PLoS Computational Biology. Public Library of Science, 2021. https://doi.org/10.1371/journal.pcbi.1009124. ieee: M. J. Bartlett, F. N. Arslan, A. Bankston, and S. Sarabipour, “Ten simple rules to improve academic work- life balance,” PLoS Computational Biology, vol. 17, no. 7. Public Library of Science, 2021. ista: Bartlett MJ, Arslan FN, Bankston A, Sarabipour S. 2021. Ten simple rules to improve academic work- life balance. PLoS Computational Biology. 17(7), e1009124. mla: Bartlett, Michael John, et al. “Ten Simple Rules to Improve Academic Work- Life Balance.” PLoS Computational Biology, vol. 17, no. 7, e1009124, Public Library of Science, 2021, doi:10.1371/journal.pcbi.1009124. short: M.J. Bartlett, F.N. Arslan, A. Bankston, S. Sarabipour, PLoS Computational Biology 17 (2021). date_created: 2021-08-01T22:01:21Z date_published: 2021-07-15T00:00:00Z date_updated: 2023-08-10T14:16:46Z day: '15' ddc: - '613' department: - _id: CaHe doi: 10.1371/journal.pcbi.1009124 external_id: isi: - '000677713500008' pmid: - '34264932' file: - access_level: open_access checksum: e56d91f0eeadb36f143a90e2c1b3ab63 content_type: application/pdf creator: cchlebak date_created: 2021-08-05T12:06:49Z date_updated: 2021-08-05T12:06:49Z file_id: '9771' file_name: 2021_PlosCompBio_Bartlett.pdf file_size: 693633 relation: main_file file_date_updated: 2021-08-05T12:06:49Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 publication: PLoS Computational Biology publication_identifier: eissn: - '15537358' issn: - 1553734X publication_status: published publisher: Public Library of Science scopus_import: '1' status: public title: Ten simple rules to improve academic work- life balance tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ... --- _id: '9999' abstract: - lang: eng text: 'The developmental strategies used by progenitor cells to endure a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here we uncovered a progenitor cell allocation mechanism that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the surface epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-term apical contacts that enable the epithelial layer to pull a subset of progenitors along their way towards the vegetal pole. The remaining delaminated progenitors follow apically-attached progenitors’ movement by a co-attraction mechanism, avoiding sequestration by the adjacent endoderm, ensuring their fate and collective allocation at the differentiation site. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development. Impact Statement: Incomplete delamination serves as a cellular platform for coordinated tissue movements during development, guiding newly formed progenitor cell groups to the differentiation site.' article_number: e66483 article_processing_charge: Yes article_type: original author: - first_name: Eduardo full_name: Pulgar, Eduardo last_name: Pulgar - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 - first_name: Néstor full_name: Guerrero, Néstor last_name: Guerrero - first_name: Loreto full_name: López, Loreto last_name: López - first_name: Susana full_name: Márquez, Susana last_name: Márquez - first_name: Steffen full_name: Härtel, Steffen last_name: Härtel - first_name: Rodrigo full_name: Soto, Rodrigo last_name: Soto - first_name: Carl Philipp full_name: Heisenberg, Carl Philipp last_name: Heisenberg - first_name: Miguel L. full_name: Concha, Miguel L. last_name: Concha citation: ama: Pulgar E, Schwayer C, Guerrero N, et al. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife. 2021;10. doi:10.7554/eLife.66483 apa: Pulgar, E., Schwayer, C., Guerrero, N., López, L., Márquez, S., Härtel, S., … Concha, M. L. (2021). Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.66483 chicago: Pulgar, Eduardo, Cornelia Schwayer, Néstor Guerrero, Loreto López, Susana Márquez, Steffen Härtel, Rodrigo Soto, Carl Philipp Heisenberg, and Miguel L. Concha. “Apical Contacts Stemming from Incomplete Delamination Guide Progenitor Cell Allocation through a Dragging Mechanism.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/eLife.66483. ieee: E. Pulgar et al., “Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism,” eLife, vol. 10. eLife Sciences Publications, 2021. ista: Pulgar E, Schwayer C, Guerrero N, López L, Márquez S, Härtel S, Soto R, Heisenberg CP, Concha ML. 2021. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife. 10, e66483. mla: Pulgar, Eduardo, et al. “Apical Contacts Stemming from Incomplete Delamination Guide Progenitor Cell Allocation through a Dragging Mechanism.” ELife, vol. 10, e66483, eLife Sciences Publications, 2021, doi:10.7554/eLife.66483. short: E. Pulgar, C. Schwayer, N. Guerrero, L. López, S. Márquez, S. Härtel, R. Soto, C.P. Heisenberg, M.L. Concha, ELife 10 (2021). date_created: 2021-09-12T22:01:23Z date_published: 2021-08-27T00:00:00Z date_updated: 2023-08-14T06:53:33Z day: '27' ddc: - '570' department: - _id: CaHe doi: 10.7554/eLife.66483 ec_funded: 1 external_id: isi: - '000700428500001' pmid: - '34448451' file: - access_level: open_access checksum: a3f82b0499cc822ac1eab48a01f3f57e content_type: application/pdf creator: dernst date_created: 2022-05-13T08:03:37Z date_updated: 2022-05-13T08:03:37Z file_id: '11371' file_name: 2021_eLife_Pulgar.pdf file_size: 9010446 relation: main_file success: 1 file_date_updated: 2022-05-13T08:03:37Z has_accepted_license: '1' intvolume: ' 10' isi: 1 keyword: - cell delamination - apical constriction - dragging - mechanical forces - collective 18 locomotion - dorsal forerunner cells - zebrafish language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2021' ... --- _id: '10202' abstract: - lang: eng text: Zygotic genome activation (ZGA) initiates regionalized transcription underlying distinct cellular identities. ZGA is dependent upon dynamic chromatin architecture sculpted by conserved DNA-binding proteins. However, the direct mechanistic link between the onset of ZGA and the tissue-specific transcription remains unclear. Here, we have addressed the involvement of chromatin organizer Satb2 in orchestrating both processes during zebrafish embryogenesis. Integrative analysis of transcriptome, genome-wide occupancy and chromatin accessibility reveals contrasting molecular activities of maternally deposited and zygotically synthesized Satb2. Maternal Satb2 prevents premature transcription of zygotic genes by influencing the interplay between the pluripotency factors. By contrast, zygotic Satb2 activates transcription of the same group of genes during neural crest development and organogenesis. Thus, our comparative analysis of maternal versus zygotic function of Satb2 underscores how these antithetical activities are temporally coordinated and functionally implemented highlighting the evolutionary implications of the biphasic and bimodal regulation of landmark developmental transitions by a single determinant. acknowledgement: 'We are grateful to the members of C.-P.H. and SG lab for discussions. Authors thank Shubha Tole for providing embryonic mouse tissues. Authors are grateful to Alessandro Mongera and Chetana Sachidanandan for generous help with Tg: Sox10: GFP line. Authors would like to thank Satyajeet Khare, Vanessa Barone, Jyothish S., Shalini Mishra, Yoshita Bhide, and Keshav Jha for assistance in experiments. We would also like to thank Chaitanya Dingare for valuable suggestions. We thank Diana Pinhiero and Alexandra Schauer for critical reading of early versions of the manuscript. This work was supported by the Centre of Excellence in Epigenetics program of the Department of Biotechnology, Government of India Phase I (BT/01/COE/09/07) to S.G. and R.K.M., and Phase II (BT/COE/34/SP17426/2016) to S.G. and JC Bose Fellowship (JCB/2019/000013) from Science and Engineering Research Board, Government of India to S.G., DST-BMWF Indo-Austrian bilateral program grant to S.G. and C.-P.H. The work using animal models was partly supported by the infrastructure support grants from the Department of Biotechnology (National Facility for Laboratory Model Organisms: BT/INF/22/SP17358/2016 and Establishment of a Pune Biotech Cluster, Model Organism to Human Disease: B-2 Whole Animal Imaging & Tissue Processing FacilityBT/Pune-Biocluster/01/2015). S.J.P. was supported by Fellowship from the Council of Scientific and Industrial Research, India and travel fellowship from the Company of Biologists, UK. P.C.R. was supported by the Early Career Fellowship of the Wellcome Trust-DBT India Alliance (IA/E/16/1/503057). A.S. was supported by UGC and R.S. was supported by CSIR India. M.S. was supported by core funding from the Tata Institute of Fundamental Research (TIFR 12P-121).' article_number: '6094' article_processing_charge: Yes article_type: original author: - first_name: Saurabh J. full_name: Pradhan, Saurabh J. last_name: Pradhan - first_name: Puli Chandramouli full_name: Reddy, Puli Chandramouli last_name: Reddy - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Ankita full_name: Sharma, Ankita last_name: Sharma - first_name: Keisuke full_name: Sako, Keisuke id: 3BED66BE-F248-11E8-B48F-1D18A9856A87 last_name: Sako orcid: 0000-0002-6453-8075 - first_name: Meghana S. full_name: Oak, Meghana S. last_name: Oak - first_name: Rini full_name: Shah, Rini last_name: Shah - first_name: Mrinmoy full_name: Pal, Mrinmoy last_name: Pal - first_name: Ojas full_name: Deshpande, Ojas last_name: Deshpande - first_name: Greg full_name: Dsilva, Greg last_name: Dsilva - first_name: Yin full_name: Tang, Yin last_name: Tang - first_name: Rakesh full_name: Mishra, Rakesh last_name: Mishra - first_name: Girish full_name: Deshpande, Girish last_name: Deshpande - first_name: Antonio J. full_name: Giraldez, Antonio J. last_name: Giraldez - first_name: Mahendra full_name: Sonawane, Mahendra last_name: Sonawane - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Sanjeev full_name: Galande, Sanjeev last_name: Galande citation: ama: Pradhan SJ, Reddy PC, Smutny M, et al. Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis. Nature Communications. 2021;12(1). doi:10.1038/s41467-021-26234-7 apa: Pradhan, S. J., Reddy, P. C., Smutny, M., Sharma, A., Sako, K., Oak, M. S., … Galande, S. (2021). Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-021-26234-7 chicago: Pradhan, Saurabh J., Puli Chandramouli Reddy, Michael Smutny, Ankita Sharma, Keisuke Sako, Meghana S. Oak, Rini Shah, et al. “Satb2 Acts as a Gatekeeper for Major Developmental Transitions during Early Vertebrate Embryogenesis.” Nature Communications. Springer Nature, 2021. https://doi.org/10.1038/s41467-021-26234-7. ieee: S. J. Pradhan et al., “Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis,” Nature Communications, vol. 12, no. 1. Springer Nature, 2021. ista: Pradhan SJ, Reddy PC, Smutny M, Sharma A, Sako K, Oak MS, Shah R, Pal M, Deshpande O, Dsilva G, Tang Y, Mishra R, Deshpande G, Giraldez AJ, Sonawane M, Heisenberg C-PJ, Galande S. 2021. Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis. Nature Communications. 12(1), 6094. mla: Pradhan, Saurabh J., et al. “Satb2 Acts as a Gatekeeper for Major Developmental Transitions during Early Vertebrate Embryogenesis.” Nature Communications, vol. 12, no. 1, 6094, Springer Nature, 2021, doi:10.1038/s41467-021-26234-7. short: S.J. Pradhan, P.C. Reddy, M. Smutny, A. Sharma, K. Sako, M.S. Oak, R. Shah, M. Pal, O. Deshpande, G. Dsilva, Y. Tang, R. Mishra, G. Deshpande, A.J. Giraldez, M. Sonawane, C.-P.J. Heisenberg, S. Galande, Nature Communications 12 (2021). date_created: 2021-10-31T23:01:29Z date_published: 2021-10-19T00:00:00Z date_updated: 2023-08-14T10:32:48Z day: '19' ddc: - '570' department: - _id: CaHe doi: 10.1038/s41467-021-26234-7 external_id: isi: - '000709050300016' pmid: - '34667153' file: - access_level: open_access checksum: c40a69ae94435ecd3a30c9874a11ef2b content_type: application/pdf creator: cziletti date_created: 2021-11-09T13:59:26Z date_updated: 2021-11-09T13:59:26Z file_id: '10262' file_name: 2021_NatureComm_Pradhan.pdf file_size: 7144437 relation: main_file success: 1 file_date_updated: 2021-11-09T13:59:26Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: Preprint relation: earlier_version url: 'https://doi.org/10.1101/2020.11.23.394171 ' scopus_import: '1' status: public title: Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '10366' article_number: '203758' article_processing_charge: No article_type: letter_note author: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Ana Maria full_name: Lennon, Ana Maria last_name: Lennon - first_name: Roberto full_name: Mayor, Roberto last_name: Mayor - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux citation: ama: 'Heisenberg C-PJ, Lennon AM, Mayor R, Salbreux G. Special rebranding issue: “Quantitative cell and developmental biology.” Cells and Development. 2021;168(12). doi:10.1016/j.cdev.2021.203758' apa: 'Heisenberg, C.-P. J., Lennon, A. M., Mayor, R., & Salbreux, G. (2021). Special rebranding issue: “Quantitative cell and developmental biology.” Cells and Development. Elsevier. https://doi.org/10.1016/j.cdev.2021.203758' chicago: 'Heisenberg, Carl-Philipp J, Ana Maria Lennon, Roberto Mayor, and Guillaume Salbreux. “Special Rebranding Issue: ‘Quantitative Cell and Developmental Biology.’” Cells and Development. Elsevier, 2021. https://doi.org/10.1016/j.cdev.2021.203758.' ieee: 'C.-P. J. Heisenberg, A. M. Lennon, R. Mayor, and G. Salbreux, “Special rebranding issue: ‘Quantitative cell and developmental biology,’” Cells and Development, vol. 168, no. 12. Elsevier, 2021.' ista: 'Heisenberg C-PJ, Lennon AM, Mayor R, Salbreux G. 2021. Special rebranding issue: “Quantitative cell and developmental biology”. Cells and Development. 168(12), 203758.' mla: 'Heisenberg, Carl-Philipp J., et al. “Special Rebranding Issue: ‘Quantitative Cell and Developmental Biology.’” Cells and Development, vol. 168, no. 12, 203758, Elsevier, 2021, doi:10.1016/j.cdev.2021.203758.' short: C.-P.J. Heisenberg, A.M. Lennon, R. Mayor, G. Salbreux, Cells and Development 168 (2021). date_created: 2021-11-28T23:01:30Z date_published: 2021-11-17T00:00:00Z date_updated: 2023-08-14T13:02:40Z day: '17' department: - _id: CaHe doi: 10.1016/j.cdev.2021.203758 external_id: isi: - '000974771600028' pmid: - '34800748' intvolume: ' 168' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cdev.2021.203758 month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Cells and Development publication_identifier: issn: - 2667-2901 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Special rebranding issue: “Quantitative cell and developmental biology”' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 168 year: '2021' ... --- _id: '10406' abstract: - lang: eng text: Multicellular organisms develop complex shapes from much simpler, single-celled zygotes through a process commonly called morphogenesis. Morphogenesis involves an interplay between several factors, ranging from the gene regulatory networks determining cell fate and differentiation to the mechanical processes underlying cell and tissue shape changes. Thus, the study of morphogenesis has historically been based on multidisciplinary approaches at the interface of biology with physics and mathematics. Recent technological advances have further improved our ability to study morphogenesis by bridging the gap between the genetic and biophysical factors through the development of new tools for visualizing, analyzing, and perturbing these factors and their biochemical intermediaries. Here, we review how a combination of genetic, microscopic, biophysical, and biochemical approaches has aided our attempts to understand morphogenesis and discuss potential approaches that may be beneficial to such an inquiry in the future. acknowledgement: The authors would like to thank Feyza Nur Arslan, Suyash Naik, Diana Pinheiro, Alexandra Schauer, and Shayan Shamipour for their comments on the draft. N.M. is supported by an ISTplus postdoctoral fellowship (H2020 Marie-Sklodowska-Curie COFUND Action). article_processing_charge: No article_type: original author: - first_name: Nikhil full_name: Mishra, Nikhil id: C4D70E82-1081-11EA-B3ED-9A4C3DDC885E last_name: Mishra orcid: 0000-0002-6425-5788 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Mishra N, Heisenberg C-PJ. Dissecting organismal morphogenesis by bridging genetics and biophysics. Annual Review of Genetics. 2021;55:209-233. doi:10.1146/annurev-genet-071819-103748 apa: Mishra, N., & Heisenberg, C.-P. J. (2021). Dissecting organismal morphogenesis by bridging genetics and biophysics. Annual Review of Genetics. Annual Reviews. https://doi.org/10.1146/annurev-genet-071819-103748 chicago: Mishra, Nikhil, and Carl-Philipp J Heisenberg. “Dissecting Organismal Morphogenesis by Bridging Genetics and Biophysics.” Annual Review of Genetics. Annual Reviews, 2021. https://doi.org/10.1146/annurev-genet-071819-103748. ieee: N. Mishra and C.-P. J. Heisenberg, “Dissecting organismal morphogenesis by bridging genetics and biophysics,” Annual Review of Genetics, vol. 55. Annual Reviews, pp. 209–233, 2021. ista: Mishra N, Heisenberg C-PJ. 2021. Dissecting organismal morphogenesis by bridging genetics and biophysics. Annual Review of Genetics. 55, 209–233. mla: Mishra, Nikhil, and Carl-Philipp J. Heisenberg. “Dissecting Organismal Morphogenesis by Bridging Genetics and Biophysics.” Annual Review of Genetics, vol. 55, Annual Reviews, 2021, pp. 209–33, doi:10.1146/annurev-genet-071819-103748. short: N. Mishra, C.-P.J. Heisenberg, Annual Review of Genetics 55 (2021) 209–233. date_created: 2021-12-05T23:01:41Z date_published: 2021-08-30T00:00:00Z date_updated: 2023-08-14T13:05:13Z day: '30' department: - _id: CaHe doi: 10.1146/annurev-genet-071819-103748 ec_funded: 1 external_id: isi: - '000747220900010' pmid: - '34460295' intvolume: ' 55' isi: 1 keyword: - morphogenesis - forward genetics - high-resolution microscopy - biophysics - biochemistry - patterning language: - iso: eng month: '08' oa_version: None page: 209-233 pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Annual Review of Genetics publication_identifier: eissn: - 1545-2948 issn: - 0066-4197 publication_status: published publisher: Annual Reviews quality_controlled: '1' scopus_import: '1' status: public title: Dissecting organismal morphogenesis by bridging genetics and biophysics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 55 year: '2021' ... --- _id: '10606' abstract: - lang: eng text: Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s). acknowledged_ssus: - _id: NanoFab - _id: Bio acknowledgement: 'We thank members of the Heisenberg and McDougall groups for technical advice and discussion. We are grateful to the Bioimaging and Nanofabrication facilities of IST Austria and the Imaging Platform (PIM) and animal facility (CRB) of Institut de la Mer de Villefranche (IMEV), which is supported by EMBRC-France, whose French state funds are managed by the ANR within the Investments of the Future program under reference ANR-10-INBS-0, for continuous support. This work was supported by a collaborative grant from the French Government funding agency Agence National de la Recherche to McDougall (ANR ''MorCell'': ANR-17-CE 13-0028) and the Austrian Science Fund to Heisenberg (FWF: I 3601-B27).' article_number: e75639 article_processing_charge: No article_type: original author: - first_name: Benoit G full_name: Godard, Benoit G id: 33280250-F248-11E8-B48F-1D18A9856A87 last_name: Godard - first_name: Remi full_name: Dumollard, Remi last_name: Dumollard - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Alex full_name: Mcdougall, Alex last_name: Mcdougall citation: ama: Godard BG, Dumollard R, Heisenberg C-PJ, Mcdougall A. Combined effect of cell geometry and polarity domains determines the orientation of unequal division. eLife. 2021;10. doi:10.7554/eLife.75639 apa: Godard, B. G., Dumollard, R., Heisenberg, C.-P. J., & Mcdougall, A. (2021). Combined effect of cell geometry and polarity domains determines the orientation of unequal division. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.75639 chicago: Godard, Benoit G, Remi Dumollard, Carl-Philipp J Heisenberg, and Alex Mcdougall. “Combined Effect of Cell Geometry and Polarity Domains Determines the Orientation of Unequal Division.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/eLife.75639. ieee: B. G. Godard, R. Dumollard, C.-P. J. Heisenberg, and A. Mcdougall, “Combined effect of cell geometry and polarity domains determines the orientation of unequal division,” eLife, vol. 10. eLife Sciences Publications, 2021. ista: Godard BG, Dumollard R, Heisenberg C-PJ, Mcdougall A. 2021. Combined effect of cell geometry and polarity domains determines the orientation of unequal division. eLife. 10, e75639. mla: Godard, Benoit G., et al. “Combined Effect of Cell Geometry and Polarity Domains Determines the Orientation of Unequal Division.” ELife, vol. 10, e75639, eLife Sciences Publications, 2021, doi:10.7554/eLife.75639. short: B.G. Godard, R. Dumollard, C.-P.J. Heisenberg, A. Mcdougall, ELife 10 (2021). date_created: 2022-01-09T23:01:26Z date_published: 2021-12-21T00:00:00Z date_updated: 2023-08-17T06:32:44Z day: '21' ddc: - '570' department: - _id: CaHe doi: 10.7554/eLife.75639 external_id: isi: - '000733610100001' file: - access_level: open_access checksum: 759c7a873d554c48a6639e6350746ca6 content_type: application/pdf creator: alisjak date_created: 2022-01-10T09:40:37Z date_updated: 2022-01-10T09:40:37Z file_id: '10611' file_name: 2021_eLife_Godard.pdf file_size: 7769934 relation: main_file success: 1 file_date_updated: 2022-01-10T09:40:37Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 2646861A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03601 name: Control of embryonic cleavage pattern publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Combined effect of cell geometry and polarity domains determines the orientation of unequal division tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2021' ... --- _id: '9298' abstract: - lang: eng text: 'In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field. ' acknowledgement: This work was supported by the National Institute of General Medical Sciences [GM131919]. Due to space and other limitations, it is not possible to include all other sources of financial support. article_processing_charge: No article_type: review author: - first_name: Daniel J. full_name: Klionsky, Daniel J. last_name: Klionsky - first_name: Amal Kamal full_name: Abdel-Aziz, Amal Kamal last_name: Abdel-Aziz - first_name: Sara full_name: Abdelfatah, Sara last_name: Abdelfatah - first_name: Mahmoud full_name: Abdellatif, Mahmoud last_name: Abdellatif - first_name: Asghar full_name: Abdoli, Asghar last_name: Abdoli - first_name: Steffen full_name: Abel, Steffen last_name: Abel - first_name: Hagai full_name: Abeliovich, Hagai last_name: Abeliovich - first_name: Marie H. full_name: Abildgaard, Marie H. last_name: Abildgaard - first_name: Yakubu Princely full_name: Abudu, Yakubu Princely last_name: Abudu - first_name: Abraham full_name: Acevedo-Arozena, Abraham last_name: Acevedo-Arozena - first_name: Iannis E. full_name: Adamopoulos, Iannis E. last_name: Adamopoulos - first_name: Khosrow full_name: Adeli, Khosrow last_name: Adeli - first_name: Timon E. full_name: Adolph, Timon E. last_name: Adolph - first_name: Annagrazia full_name: Adornetto, Annagrazia last_name: Adornetto - first_name: Elma full_name: Aflaki, Elma last_name: Aflaki - first_name: Galila full_name: Agam, Galila last_name: Agam - first_name: Anupam full_name: Agarwal, Anupam last_name: Agarwal - first_name: Bharat B. full_name: Aggarwal, Bharat B. last_name: Aggarwal - first_name: Maria full_name: Agnello, Maria last_name: Agnello - first_name: Patrizia full_name: Agostinis, Patrizia last_name: Agostinis - first_name: Javed N. full_name: Agrewala, Javed N. last_name: Agrewala - first_name: Alexander full_name: Agrotis, Alexander last_name: Agrotis - first_name: Patricia V. full_name: Aguilar, Patricia V. last_name: Aguilar - first_name: S. Tariq full_name: Ahmad, S. Tariq last_name: Ahmad - first_name: Zubair M. full_name: Ahmed, Zubair M. last_name: Ahmed - first_name: Ulises full_name: Ahumada-Castro, Ulises last_name: Ahumada-Castro - first_name: Sonja full_name: Aits, Sonja last_name: Aits - first_name: Shu full_name: Aizawa, Shu last_name: Aizawa - first_name: Yunus full_name: Akkoc, Yunus last_name: Akkoc - first_name: Tonia full_name: Akoumianaki, Tonia last_name: Akoumianaki - first_name: Hafize Aysin full_name: Akpinar, Hafize Aysin last_name: Akpinar - first_name: Ahmed M. full_name: Al-Abd, Ahmed M. last_name: Al-Abd - first_name: Lina full_name: Al-Akra, Lina last_name: Al-Akra - first_name: Abeer full_name: Al-Gharaibeh, Abeer last_name: Al-Gharaibeh - first_name: Moulay A. full_name: Alaoui-Jamali, Moulay A. last_name: Alaoui-Jamali - first_name: Simon full_name: Alberti, Simon last_name: Alberti - first_name: Elísabet full_name: Alcocer-Gómez, Elísabet last_name: Alcocer-Gómez - first_name: Cristiano full_name: Alessandri, Cristiano last_name: Alessandri - first_name: Muhammad full_name: Ali, Muhammad last_name: Ali - first_name: M. Abdul full_name: Alim Al-Bari, M. Abdul last_name: Alim Al-Bari - first_name: Saeb full_name: Aliwaini, Saeb last_name: Aliwaini - first_name: Javad full_name: Alizadeh, Javad last_name: Alizadeh - first_name: Eugènia full_name: Almacellas, Eugènia last_name: Almacellas - first_name: Alexandru full_name: Almasan, Alexandru last_name: Almasan - first_name: Alicia full_name: Alonso, Alicia last_name: Alonso - first_name: Guillermo D. full_name: Alonso, Guillermo D. last_name: Alonso - first_name: Nihal full_name: Altan-Bonnet, Nihal last_name: Altan-Bonnet - first_name: Dario C. full_name: Altieri, Dario C. last_name: Altieri - first_name: Élida M.C. full_name: Álvarez, Élida M.C. last_name: Álvarez - first_name: Sara full_name: Alves, Sara last_name: Alves - first_name: Cristine full_name: Alves Da Costa, Cristine last_name: Alves Da Costa - first_name: Mazen M. full_name: Alzaharna, Mazen M. last_name: Alzaharna - first_name: Marialaura full_name: Amadio, Marialaura last_name: Amadio - first_name: Consuelo full_name: Amantini, Consuelo last_name: Amantini - first_name: Cristina full_name: Amaral, Cristina last_name: Amaral - first_name: Susanna full_name: Ambrosio, Susanna last_name: Ambrosio - first_name: Amal O. full_name: Amer, Amal O. last_name: Amer - first_name: Veena full_name: Ammanathan, Veena last_name: Ammanathan - first_name: Zhenyi full_name: An, Zhenyi last_name: An - first_name: Stig U. full_name: Andersen, Stig U. last_name: Andersen - first_name: Shaida A. full_name: Andrabi, Shaida A. last_name: Andrabi - first_name: Magaiver full_name: Andrade-Silva, Magaiver last_name: Andrade-Silva - first_name: Allen M. full_name: Andres, Allen M. last_name: Andres - first_name: Sabrina full_name: Angelini, Sabrina last_name: Angelini - first_name: David full_name: Ann, David last_name: Ann - first_name: Uche C. full_name: Anozie, Uche C. last_name: Anozie - first_name: Mohammad Y. full_name: Ansari, Mohammad Y. last_name: Ansari - first_name: Pedro full_name: Antas, Pedro last_name: Antas - first_name: Adam full_name: Antebi, Adam last_name: Antebi - first_name: Zuriñe full_name: Antón, Zuriñe last_name: Antón - first_name: Tahira full_name: Anwar, Tahira last_name: Anwar - first_name: Lionel full_name: Apetoh, Lionel last_name: Apetoh - first_name: Nadezda full_name: Apostolova, Nadezda last_name: Apostolova - first_name: Toshiyuki full_name: Araki, Toshiyuki last_name: Araki - first_name: Yasuhiro full_name: Araki, Yasuhiro last_name: Araki - first_name: Kohei full_name: Arasaki, Kohei last_name: Arasaki - first_name: Wagner L. full_name: Araújo, Wagner L. last_name: Araújo - first_name: Jun full_name: Araya, Jun last_name: Araya - first_name: Catherine full_name: Arden, Catherine last_name: Arden - first_name: Maria Angeles full_name: Arévalo, Maria Angeles last_name: Arévalo - first_name: Sandro full_name: Arguelles, Sandro last_name: Arguelles - first_name: Esperanza full_name: Arias, Esperanza last_name: Arias - first_name: Jyothi full_name: Arikkath, Jyothi last_name: Arikkath - first_name: Hirokazu full_name: Arimoto, Hirokazu last_name: Arimoto - first_name: Aileen R. full_name: Ariosa, Aileen R. last_name: Ariosa - first_name: Darius full_name: Armstrong-James, Darius last_name: Armstrong-James - first_name: Laetitia full_name: Arnauné-Pelloquin, Laetitia last_name: Arnauné-Pelloquin - first_name: Angeles full_name: Aroca, Angeles last_name: Aroca - first_name: Daniela S. full_name: Arroyo, Daniela S. last_name: Arroyo - first_name: Ivica full_name: Arsov, Ivica last_name: Arsov - first_name: Rubén full_name: Artero, Rubén last_name: Artero - first_name: Dalia Maria Lucia full_name: Asaro, Dalia Maria Lucia last_name: Asaro - first_name: Michael full_name: Aschner, Michael last_name: Aschner - first_name: Milad full_name: Ashrafizadeh, Milad last_name: Ashrafizadeh - first_name: Osnat full_name: Ashur-Fabian, Osnat last_name: Ashur-Fabian - first_name: Atanas G. full_name: Atanasov, Atanas G. last_name: Atanasov - first_name: Alicia K. full_name: Au, Alicia K. last_name: Au - first_name: Patrick full_name: Auberger, Patrick last_name: Auberger - first_name: Holger W. full_name: Auner, Holger W. last_name: Auner - first_name: Laure full_name: Aurelian, Laure last_name: Aurelian - first_name: Riccardo full_name: Autelli, Riccardo last_name: Autelli - first_name: Laura full_name: Avagliano, Laura last_name: Avagliano - first_name: Yenniffer full_name: Ávalos, Yenniffer last_name: Ávalos - first_name: Sanja full_name: Aveic, Sanja last_name: Aveic - first_name: Célia Alexandra full_name: Aveleira, Célia Alexandra last_name: Aveleira - first_name: Tamar full_name: Avin-Wittenberg, Tamar last_name: Avin-Wittenberg - first_name: Yucel full_name: Aydin, Yucel last_name: Aydin - first_name: Scott full_name: Ayton, Scott last_name: Ayton - first_name: Srinivas full_name: Ayyadevara, Srinivas last_name: Ayyadevara - first_name: Maria full_name: Azzopardi, Maria last_name: Azzopardi - first_name: Misuzu full_name: Baba, Misuzu last_name: Baba - first_name: Jonathan M. full_name: Backer, Jonathan M. last_name: Backer - first_name: Steven K. full_name: Backues, Steven K. last_name: Backues - first_name: Dong Hun full_name: Bae, Dong Hun last_name: Bae - first_name: Ok Nam full_name: Bae, Ok Nam last_name: Bae - first_name: Soo Han full_name: Bae, Soo Han last_name: Bae - first_name: Eric H. full_name: Baehrecke, Eric H. last_name: Baehrecke - first_name: Ahruem full_name: Baek, Ahruem last_name: Baek - first_name: Seung Hoon full_name: Baek, Seung Hoon last_name: Baek - first_name: Sung Hee full_name: Baek, Sung Hee last_name: Baek - first_name: Giacinto full_name: Bagetta, Giacinto last_name: Bagetta - first_name: Agnieszka full_name: Bagniewska-Zadworna, Agnieszka last_name: Bagniewska-Zadworna - first_name: Hua full_name: Bai, Hua last_name: Bai - first_name: Jie full_name: Bai, Jie last_name: Bai - first_name: Xiyuan full_name: Bai, Xiyuan last_name: Bai - first_name: Yidong full_name: Bai, Yidong last_name: Bai - first_name: Nandadulal full_name: Bairagi, Nandadulal last_name: Bairagi - first_name: Shounak full_name: Baksi, Shounak last_name: Baksi - first_name: Teresa full_name: Balbi, Teresa last_name: Balbi - first_name: Cosima T. full_name: Baldari, Cosima T. last_name: Baldari - first_name: Walter full_name: Balduini, Walter last_name: Balduini - first_name: Andrea full_name: Ballabio, Andrea last_name: Ballabio - first_name: Maria full_name: Ballester, Maria last_name: Ballester - first_name: Salma full_name: Balazadeh, Salma last_name: Balazadeh - first_name: Rena full_name: Balzan, Rena last_name: Balzan - first_name: Rina full_name: Bandopadhyay, Rina last_name: Bandopadhyay - first_name: Sreeparna full_name: Banerjee, Sreeparna last_name: Banerjee - first_name: Sulagna full_name: Banerjee, Sulagna last_name: Banerjee - first_name: Ágnes full_name: Bánréti, Ágnes last_name: Bánréti - first_name: Yan full_name: Bao, Yan last_name: Bao - first_name: Mauricio S. full_name: Baptista, Mauricio S. last_name: Baptista - first_name: Alessandra full_name: Baracca, Alessandra last_name: Baracca - first_name: Cristiana full_name: Barbati, Cristiana last_name: Barbati - first_name: Ariadna full_name: Bargiela, Ariadna last_name: Bargiela - first_name: Daniela full_name: Barilà, Daniela last_name: Barilà - first_name: Peter G. full_name: Barlow, Peter G. last_name: Barlow - first_name: Sami J. full_name: Barmada, Sami J. last_name: Barmada - first_name: Esther full_name: Barreiro, Esther last_name: Barreiro - first_name: George E. full_name: Barreto, George E. last_name: Barreto - first_name: Jiri full_name: Bartek, Jiri last_name: Bartek - first_name: Bonnie full_name: Bartel, Bonnie last_name: Bartel - first_name: Alberto full_name: Bartolome, Alberto last_name: Bartolome - first_name: Gaurav R. full_name: Barve, Gaurav R. last_name: Barve - first_name: Suresh H. full_name: Basagoudanavar, Suresh H. last_name: Basagoudanavar - first_name: Diane C. full_name: Bassham, Diane C. last_name: Bassham - first_name: Robert C. full_name: Bast, Robert C. last_name: Bast - first_name: Alakananda full_name: Basu, Alakananda last_name: Basu - first_name: Henri full_name: Batoko, Henri last_name: Batoko - first_name: Isabella full_name: Batten, Isabella last_name: Batten - first_name: Etienne E. full_name: Baulieu, Etienne E. last_name: Baulieu - first_name: Bradley L. full_name: Baumgarner, Bradley L. last_name: Baumgarner - first_name: Jagadeesh full_name: Bayry, Jagadeesh last_name: Bayry - first_name: Rupert full_name: Beale, Rupert last_name: Beale - first_name: Isabelle full_name: Beau, Isabelle last_name: Beau - first_name: Florian full_name: Beaumatin, Florian last_name: Beaumatin - first_name: Luiz R.G. full_name: Bechara, Luiz R.G. last_name: Bechara - first_name: George R. full_name: Beck, George R. last_name: Beck - first_name: Michael F. full_name: Beers, Michael F. last_name: Beers - first_name: Jakob full_name: Begun, Jakob last_name: Begun - first_name: Christian full_name: Behrends, Christian last_name: Behrends - first_name: Georg M.N. full_name: Behrens, Georg M.N. last_name: Behrens - first_name: Roberto full_name: Bei, Roberto last_name: Bei - first_name: Eloy full_name: Bejarano, Eloy last_name: Bejarano - first_name: Shai full_name: Bel, Shai last_name: Bel - first_name: Christian full_name: Behl, Christian last_name: Behl - first_name: Amine full_name: Belaid, Amine last_name: Belaid - first_name: Naïma full_name: Belgareh-Touzé, Naïma last_name: Belgareh-Touzé - first_name: Cristina full_name: Bellarosa, Cristina last_name: Bellarosa - first_name: Francesca full_name: Belleudi, Francesca last_name: Belleudi - first_name: Melissa full_name: Belló Pérez, Melissa last_name: Belló Pérez - first_name: Raquel full_name: Bello-Morales, Raquel last_name: Bello-Morales - first_name: Jackeline Soares De Oliveira full_name: Beltran, Jackeline Soares De Oliveira last_name: Beltran - first_name: Sebastián full_name: Beltran, Sebastián last_name: Beltran - first_name: Doris Mangiaracina full_name: Benbrook, Doris Mangiaracina last_name: Benbrook - first_name: Mykolas full_name: Bendorius, Mykolas last_name: Bendorius - first_name: Bruno A. full_name: Benitez, Bruno A. last_name: Benitez - first_name: Irene full_name: Benito-Cuesta, Irene last_name: Benito-Cuesta - first_name: Julien full_name: Bensalem, Julien last_name: Bensalem - first_name: Martin W. full_name: Berchtold, Martin W. last_name: Berchtold - first_name: Sabina full_name: Berezowska, Sabina last_name: Berezowska - first_name: Daniele full_name: Bergamaschi, Daniele last_name: Bergamaschi - first_name: Matteo full_name: Bergami, Matteo last_name: Bergami - first_name: Andreas full_name: Bergmann, Andreas last_name: Bergmann - first_name: Laura full_name: Berliocchi, Laura last_name: Berliocchi - first_name: Clarisse full_name: Berlioz-Torrent, Clarisse last_name: Berlioz-Torrent - first_name: Amélie full_name: Bernard, Amélie last_name: Bernard - first_name: Lionel full_name: Berthoux, Lionel last_name: Berthoux - first_name: Cagri G. full_name: Besirli, Cagri G. last_name: Besirli - first_name: Sebastien full_name: Besteiro, Sebastien last_name: Besteiro - first_name: Virginie M. full_name: Betin, Virginie M. last_name: Betin - first_name: Rudi full_name: Beyaert, Rudi last_name: Beyaert - first_name: Jelena S. full_name: Bezbradica, Jelena S. last_name: Bezbradica - first_name: Kiran full_name: Bhaskar, Kiran last_name: Bhaskar - first_name: Ingrid full_name: Bhatia-Kissova, Ingrid last_name: Bhatia-Kissova - first_name: Resham full_name: Bhattacharya, Resham last_name: Bhattacharya - first_name: Sujoy full_name: Bhattacharya, Sujoy last_name: Bhattacharya - first_name: Shalmoli full_name: Bhattacharyya, Shalmoli last_name: Bhattacharyya - first_name: Md Shenuarin full_name: Bhuiyan, Md Shenuarin last_name: Bhuiyan - first_name: Sujit Kumar full_name: Bhutia, Sujit Kumar last_name: Bhutia - first_name: Lanrong full_name: Bi, Lanrong last_name: Bi - first_name: Xiaolin full_name: Bi, Xiaolin last_name: Bi - first_name: Trevor J. full_name: Biden, Trevor J. last_name: Biden - first_name: Krikor full_name: Bijian, Krikor last_name: Bijian - first_name: Viktor A. full_name: Billes, Viktor A. last_name: Billes - first_name: Nadine full_name: Binart, Nadine last_name: Binart - first_name: Claudia full_name: Bincoletto, Claudia last_name: Bincoletto - first_name: Asa B. full_name: Birgisdottir, Asa B. last_name: Birgisdottir - first_name: Geir full_name: Bjorkoy, Geir last_name: Bjorkoy - first_name: Gonzalo full_name: Blanco, Gonzalo last_name: Blanco - first_name: Ana full_name: Blas-Garcia, Ana last_name: Blas-Garcia - first_name: Janusz full_name: Blasiak, Janusz last_name: Blasiak - first_name: Robert full_name: Blomgran, Robert last_name: Blomgran - first_name: Klas full_name: Blomgren, Klas last_name: Blomgren - first_name: Janice S. full_name: Blum, Janice S. last_name: Blum - first_name: Emilio full_name: Boada-Romero, Emilio last_name: Boada-Romero - first_name: Mirta full_name: Boban, Mirta last_name: Boban - first_name: Kathleen full_name: Boesze-Battaglia, Kathleen last_name: Boesze-Battaglia - first_name: Philippe full_name: Boeuf, Philippe last_name: Boeuf - first_name: Barry full_name: Boland, Barry last_name: Boland - first_name: Pascale full_name: Bomont, Pascale last_name: Bomont - first_name: Paolo full_name: Bonaldo, Paolo last_name: Bonaldo - first_name: Srinivasa Reddy full_name: Bonam, Srinivasa Reddy last_name: Bonam - first_name: Laura full_name: Bonfili, Laura last_name: Bonfili - first_name: Juan S. full_name: Bonifacino, Juan S. last_name: Bonifacino - first_name: Brian A. full_name: Boone, Brian A. last_name: Boone - first_name: Martin D. full_name: Bootman, Martin D. last_name: Bootman - first_name: Matteo full_name: Bordi, Matteo last_name: Bordi - first_name: Christoph full_name: Borner, Christoph last_name: Borner - first_name: Beat C. full_name: Bornhauser, Beat C. last_name: Bornhauser - first_name: Gautam full_name: Borthakur, Gautam last_name: Borthakur - first_name: Jürgen full_name: Bosch, Jürgen last_name: Bosch - first_name: Santanu full_name: Bose, Santanu last_name: Bose - first_name: Luis M. full_name: Botana, Luis M. last_name: Botana - first_name: Juan full_name: Botas, Juan last_name: Botas - first_name: Chantal M. full_name: Boulanger, Chantal M. last_name: Boulanger - first_name: Michael E. full_name: Boulton, Michael E. last_name: Boulton - first_name: Mathieu full_name: Bourdenx, Mathieu last_name: Bourdenx - first_name: Benjamin full_name: Bourgeois, Benjamin last_name: Bourgeois - first_name: Nollaig M. full_name: Bourke, Nollaig M. last_name: Bourke - first_name: Guilhem full_name: Bousquet, Guilhem last_name: Bousquet - first_name: Patricia full_name: Boya, Patricia last_name: Boya - first_name: Peter V. full_name: Bozhkov, Peter V. last_name: Bozhkov - first_name: Luiz H.M. full_name: Bozi, Luiz H.M. last_name: Bozi - first_name: Tolga O. full_name: Bozkurt, Tolga O. last_name: Bozkurt - first_name: Doug E. full_name: Brackney, Doug E. last_name: Brackney - first_name: Christian H. full_name: Brandts, Christian H. last_name: Brandts - first_name: Ralf J. full_name: Braun, Ralf J. last_name: Braun - first_name: Gerhard H. full_name: Braus, Gerhard H. last_name: Braus - first_name: Roberto full_name: Bravo-Sagua, Roberto last_name: Bravo-Sagua - first_name: José M. full_name: Bravo-San Pedro, José M. last_name: Bravo-San Pedro - first_name: Patrick full_name: Brest, Patrick last_name: Brest - first_name: Marie Agnès full_name: Bringer, Marie Agnès last_name: Bringer - first_name: Alfredo full_name: Briones-Herrera, Alfredo last_name: Briones-Herrera - first_name: V. Courtney full_name: Broaddus, V. Courtney last_name: Broaddus - first_name: Peter full_name: Brodersen, Peter last_name: Brodersen - first_name: Jeffrey L. full_name: Brodsky, Jeffrey L. last_name: Brodsky - first_name: Steven L. full_name: Brody, Steven L. last_name: Brody - first_name: Paola G. full_name: Bronson, Paola G. last_name: Bronson - first_name: Jeff M. full_name: Bronstein, Jeff M. last_name: Bronstein - first_name: Carolyn N. full_name: Brown, Carolyn N. last_name: Brown - first_name: Rhoderick E. full_name: Brown, Rhoderick E. last_name: Brown - first_name: Patricia C. full_name: Brum, Patricia C. last_name: Brum - first_name: John H. full_name: Brumell, John H. last_name: Brumell - first_name: Nicola full_name: Brunetti-Pierri, Nicola last_name: Brunetti-Pierri - first_name: Daniele full_name: Bruno, Daniele last_name: Bruno - first_name: Robert J. full_name: Bryson-Richardson, Robert J. last_name: Bryson-Richardson - first_name: Cecilia full_name: Bucci, Cecilia last_name: Bucci - first_name: Carmen full_name: Buchrieser, Carmen last_name: Buchrieser - first_name: Marta full_name: Bueno, Marta last_name: Bueno - first_name: Laura Elisa full_name: Buitrago-Molina, Laura Elisa last_name: Buitrago-Molina - first_name: Simone full_name: Buraschi, Simone last_name: Buraschi - first_name: Shilpa full_name: Buch, Shilpa last_name: Buch - first_name: J. Ross full_name: Buchan, J. Ross last_name: Buchan - first_name: Erin M. full_name: Buckingham, Erin M. last_name: Buckingham - first_name: Hikmet full_name: Budak, Hikmet last_name: Budak - first_name: Mauricio full_name: Budini, Mauricio last_name: Budini - first_name: Geert full_name: Bultynck, Geert last_name: Bultynck - first_name: Florin full_name: Burada, Florin last_name: Burada - first_name: Joseph R. full_name: Burgoyne, Joseph R. last_name: Burgoyne - first_name: M. Isabel full_name: Burón, M. Isabel last_name: Burón - first_name: Victor full_name: Bustos, Victor last_name: Bustos - first_name: Sabrina full_name: Büttner, Sabrina last_name: Büttner - first_name: Elena full_name: Butturini, Elena last_name: Butturini - first_name: Aaron full_name: Byrd, Aaron last_name: Byrd - first_name: Isabel full_name: Cabas, Isabel last_name: Cabas - first_name: Sandra full_name: Cabrera-Benitez, Sandra last_name: Cabrera-Benitez - first_name: Ken full_name: Cadwell, Ken last_name: Cadwell - first_name: Jingjing full_name: Cai, Jingjing last_name: Cai - first_name: Lu full_name: Cai, Lu last_name: Cai - first_name: Qian full_name: Cai, Qian last_name: Cai - first_name: Montserrat full_name: Cairó, Montserrat last_name: Cairó - first_name: Jose A. full_name: Calbet, Jose A. last_name: Calbet - first_name: Guy A. full_name: Caldwell, Guy A. last_name: Caldwell - first_name: Kim A. full_name: Caldwell, Kim A. last_name: Caldwell - first_name: Jarrod A. full_name: Call, Jarrod A. last_name: Call - first_name: Riccardo full_name: Calvani, Riccardo last_name: Calvani - first_name: Ana C. full_name: Calvo, Ana C. last_name: Calvo - first_name: Miguel full_name: Calvo-Rubio Barrera, Miguel last_name: Calvo-Rubio Barrera - first_name: Niels O.S. full_name: Camara, Niels O.S. last_name: Camara - first_name: Jacques H. full_name: Camonis, Jacques H. last_name: Camonis - first_name: Nadine full_name: Camougrand, Nadine last_name: Camougrand - first_name: Michelangelo full_name: Campanella, Michelangelo last_name: Campanella - first_name: Edward M. full_name: Campbell, Edward M. last_name: Campbell - first_name: François Xavier full_name: Campbell-Valois, François Xavier last_name: Campbell-Valois - first_name: Silvia full_name: Campello, Silvia last_name: Campello - first_name: Ilaria full_name: Campesi, Ilaria last_name: Campesi - first_name: Juliane C. full_name: Campos, Juliane C. last_name: Campos - first_name: Olivier full_name: Camuzard, Olivier last_name: Camuzard - first_name: Jorge full_name: Cancino, Jorge last_name: Cancino - first_name: Danilo full_name: Candido De Almeida, Danilo last_name: Candido De Almeida - first_name: Laura full_name: Canesi, Laura last_name: Canesi - first_name: Isabella full_name: Caniggia, Isabella last_name: Caniggia - first_name: Barbara full_name: Canonico, Barbara last_name: Canonico - first_name: Carles full_name: Cantí, Carles last_name: Cantí - first_name: Bin full_name: Cao, Bin last_name: Cao - first_name: Michele full_name: Caraglia, Michele last_name: Caraglia - first_name: Beatriz full_name: Caramés, Beatriz last_name: Caramés - first_name: Evie H. full_name: Carchman, Evie H. last_name: Carchman - first_name: Elena full_name: Cardenal-Muñoz, Elena last_name: Cardenal-Muñoz - first_name: Cesar full_name: Cardenas, Cesar last_name: Cardenas - first_name: Luis full_name: Cardenas, Luis last_name: Cardenas - first_name: Sandra M. full_name: Cardoso, Sandra M. last_name: Cardoso - first_name: Jennifer S. full_name: Carew, Jennifer S. last_name: Carew - first_name: Georges F. full_name: Carle, Georges F. last_name: Carle - first_name: Gillian full_name: Carleton, Gillian last_name: Carleton - first_name: Silvia full_name: Carloni, Silvia last_name: Carloni - first_name: Didac full_name: Carmona-Gutierrez, Didac last_name: Carmona-Gutierrez - first_name: Leticia A. full_name: Carneiro, Leticia A. last_name: Carneiro - first_name: Oliana full_name: Carnevali, Oliana last_name: Carnevali - first_name: Julian M. full_name: Carosi, Julian M. last_name: Carosi - first_name: Serena full_name: Carra, Serena last_name: Carra - first_name: Alice full_name: Carrier, Alice last_name: Carrier - first_name: Lucie full_name: Carrier, Lucie last_name: Carrier - first_name: Bernadette full_name: Carroll, Bernadette last_name: Carroll - first_name: A. Brent full_name: Carter, A. Brent last_name: Carter - first_name: Andreia Neves full_name: Carvalho, Andreia Neves last_name: Carvalho - first_name: Magali full_name: Casanova, Magali last_name: Casanova - first_name: Caty full_name: Casas, Caty last_name: Casas - first_name: Josefina full_name: Casas, Josefina last_name: Casas - first_name: Chiara full_name: Cassioli, Chiara last_name: Cassioli - first_name: Eliseo F. full_name: Castillo, Eliseo F. last_name: Castillo - first_name: Karen full_name: Castillo, Karen last_name: Castillo - first_name: Sonia full_name: Castillo-Lluva, Sonia last_name: Castillo-Lluva - first_name: Francesca full_name: Castoldi, Francesca last_name: Castoldi - first_name: Marco full_name: Castori, Marco last_name: Castori - first_name: Ariel F. full_name: Castro, Ariel F. last_name: Castro - first_name: Margarida full_name: Castro-Caldas, Margarida last_name: Castro-Caldas - first_name: Javier full_name: Castro-Hernandez, Javier last_name: Castro-Hernandez - first_name: Susana full_name: Castro-Obregon, Susana last_name: Castro-Obregon - first_name: Sergio D. full_name: Catz, Sergio D. last_name: Catz - first_name: Claudia full_name: Cavadas, Claudia last_name: Cavadas - first_name: Federica full_name: Cavaliere, Federica last_name: Cavaliere - first_name: Gabriella full_name: Cavallini, Gabriella last_name: Cavallini - first_name: Maria full_name: Cavinato, Maria last_name: Cavinato - first_name: Maria L. full_name: Cayuela, Maria L. last_name: Cayuela - first_name: Paula full_name: Cebollada Rica, Paula last_name: Cebollada Rica - first_name: Valentina full_name: Cecarini, Valentina last_name: Cecarini - first_name: Francesco full_name: Cecconi, Francesco last_name: Cecconi - first_name: Marzanna full_name: Cechowska-Pasko, Marzanna last_name: Cechowska-Pasko - first_name: Simone full_name: Cenci, Simone last_name: Cenci - first_name: Victòria full_name: Ceperuelo-Mallafré, Victòria last_name: Ceperuelo-Mallafré - first_name: João J. full_name: Cerqueira, João J. last_name: Cerqueira - first_name: Janete M. full_name: Cerutti, Janete M. last_name: Cerutti - first_name: Davide full_name: Cervia, Davide last_name: Cervia - first_name: Vildan Bozok full_name: Cetintas, Vildan Bozok last_name: Cetintas - first_name: Silvia full_name: Cetrullo, Silvia last_name: Cetrullo - first_name: Han Jung full_name: Chae, Han Jung last_name: Chae - first_name: Andrei S. full_name: Chagin, Andrei S. last_name: Chagin - first_name: Chee Yin full_name: Chai, Chee Yin last_name: Chai - first_name: Gopal full_name: Chakrabarti, Gopal last_name: Chakrabarti - first_name: Oishee full_name: Chakrabarti, Oishee last_name: Chakrabarti - first_name: Tapas full_name: Chakraborty, Tapas last_name: Chakraborty - first_name: Trinad full_name: Chakraborty, Trinad last_name: Chakraborty - first_name: Mounia full_name: Chami, Mounia last_name: Chami - first_name: Georgios full_name: Chamilos, Georgios last_name: Chamilos - first_name: David W. full_name: Chan, David W. last_name: Chan - first_name: Edmond Y.W. full_name: Chan, Edmond Y.W. last_name: Chan - first_name: Edward D. full_name: Chan, Edward D. last_name: Chan - first_name: H. Y.Edwin full_name: Chan, H. Y.Edwin last_name: Chan - first_name: Helen H. full_name: Chan, Helen H. last_name: Chan - first_name: Hung full_name: Chan, Hung last_name: Chan - first_name: Matthew T.V. full_name: Chan, Matthew T.V. last_name: Chan - first_name: Yau Sang full_name: Chan, Yau Sang last_name: Chan - first_name: Partha K. full_name: Chandra, Partha K. last_name: Chandra - first_name: Chih Peng full_name: Chang, Chih Peng last_name: Chang - first_name: Chunmei full_name: Chang, Chunmei last_name: Chang - first_name: Hao Chun full_name: Chang, Hao Chun last_name: Chang - first_name: Kai full_name: Chang, Kai last_name: Chang - first_name: Jie full_name: Chao, Jie last_name: Chao - first_name: Tracey full_name: Chapman, Tracey last_name: Chapman - first_name: Nicolas full_name: Charlet-Berguerand, Nicolas last_name: Charlet-Berguerand - first_name: Samrat full_name: Chatterjee, Samrat last_name: Chatterjee - first_name: Shail K. full_name: Chaube, Shail K. last_name: Chaube - first_name: Anu full_name: Chaudhary, Anu last_name: Chaudhary - first_name: Santosh full_name: Chauhan, Santosh last_name: Chauhan - first_name: Edward full_name: Chaum, Edward last_name: Chaum - first_name: Frédéric full_name: Checler, Frédéric last_name: Checler - first_name: Michael E. full_name: Cheetham, Michael E. last_name: Cheetham - first_name: Chang Shi full_name: Chen, Chang Shi last_name: Chen - first_name: Guang Chao full_name: Chen, Guang Chao last_name: Chen - first_name: Jian Fu full_name: Chen, Jian Fu last_name: Chen - first_name: Liam L. full_name: Chen, Liam L. last_name: Chen - first_name: Leilei full_name: Chen, Leilei last_name: Chen - first_name: Lin full_name: Chen, Lin last_name: Chen - first_name: Mingliang full_name: Chen, Mingliang last_name: Chen - first_name: Mu Kuan full_name: Chen, Mu Kuan last_name: Chen - first_name: Ning full_name: Chen, Ning last_name: Chen - first_name: Quan full_name: Chen, Quan last_name: Chen - first_name: Ruey Hwa full_name: Chen, Ruey Hwa last_name: Chen - first_name: Shi full_name: Chen, Shi last_name: Chen - first_name: Wei full_name: Chen, Wei last_name: Chen - first_name: Weiqiang full_name: Chen, Weiqiang last_name: Chen - first_name: Xin Ming full_name: Chen, Xin Ming last_name: Chen - first_name: Xiong Wen full_name: Chen, Xiong Wen last_name: Chen - first_name: Xu full_name: Chen, Xu id: 4E5ADCAA-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Yan full_name: Chen, Yan last_name: Chen - first_name: Ye Guang full_name: Chen, Ye Guang last_name: Chen - first_name: Yingyu full_name: Chen, Yingyu last_name: Chen - first_name: Yongqiang full_name: Chen, Yongqiang last_name: Chen - first_name: Yu Jen full_name: Chen, Yu Jen last_name: Chen - first_name: Yue Qin full_name: Chen, Yue Qin last_name: Chen - first_name: Zhefan Stephen full_name: Chen, Zhefan Stephen last_name: Chen - first_name: Zhi full_name: Chen, Zhi last_name: Chen - first_name: Zhi Hua full_name: Chen, Zhi Hua last_name: Chen - first_name: Zhijian J. full_name: Chen, Zhijian J. last_name: Chen - first_name: Zhixiang full_name: Chen, Zhixiang last_name: Chen - first_name: Hanhua full_name: Cheng, Hanhua last_name: Cheng - first_name: Jun full_name: Cheng, Jun last_name: Cheng - first_name: Shi Yuan full_name: Cheng, Shi Yuan last_name: Cheng - first_name: Wei full_name: Cheng, Wei last_name: Cheng - first_name: Xiaodong full_name: Cheng, Xiaodong last_name: Cheng - first_name: Xiu Tang full_name: Cheng, Xiu Tang last_name: Cheng - first_name: Yiyun full_name: Cheng, Yiyun last_name: Cheng - first_name: Zhiyong full_name: Cheng, Zhiyong last_name: Cheng - first_name: Zhong full_name: Chen, Zhong last_name: Chen - first_name: Heesun full_name: Cheong, Heesun last_name: Cheong - first_name: Jit Kong full_name: Cheong, Jit Kong last_name: Cheong - first_name: Boris V. full_name: Chernyak, Boris V. last_name: Chernyak - first_name: Sara full_name: Cherry, Sara last_name: Cherry - first_name: Chi Fai Randy full_name: Cheung, Chi Fai Randy last_name: Cheung - first_name: Chun Hei Antonio full_name: Cheung, Chun Hei Antonio last_name: Cheung - first_name: King Ho full_name: Cheung, King Ho last_name: Cheung - first_name: Eric full_name: Chevet, Eric last_name: Chevet - first_name: Richard J. full_name: Chi, Richard J. last_name: Chi - first_name: Alan Kwok Shing full_name: Chiang, Alan Kwok Shing last_name: Chiang - first_name: Ferdinando full_name: Chiaradonna, Ferdinando last_name: Chiaradonna - first_name: Roberto full_name: Chiarelli, Roberto last_name: Chiarelli - first_name: Mario full_name: Chiariello, Mario last_name: Chiariello - first_name: Nathalia full_name: Chica, Nathalia last_name: Chica - first_name: Susanna full_name: Chiocca, Susanna last_name: Chiocca - first_name: Mario full_name: Chiong, Mario last_name: Chiong - first_name: Shih Hwa full_name: Chiou, Shih Hwa last_name: Chiou - first_name: Abhilash I. full_name: Chiramel, Abhilash I. last_name: Chiramel - first_name: Valerio full_name: Chiurchiù, Valerio last_name: Chiurchiù - first_name: Dong Hyung full_name: Cho, Dong Hyung last_name: Cho - first_name: Seong Kyu full_name: Choe, Seong Kyu last_name: Choe - first_name: Augustine M.K. full_name: Choi, Augustine M.K. last_name: Choi - first_name: Mary E. full_name: Choi, Mary E. last_name: Choi - first_name: Kamalika Roy full_name: Choudhury, Kamalika Roy last_name: Choudhury - first_name: Norman S. full_name: Chow, Norman S. last_name: Chow - first_name: Charleen T. full_name: Chu, Charleen T. last_name: Chu - first_name: Jason P. full_name: Chua, Jason P. last_name: Chua - first_name: John Jia En full_name: Chua, John Jia En last_name: Chua - first_name: Hyewon full_name: Chung, Hyewon last_name: Chung - first_name: Kin Pan full_name: Chung, Kin Pan last_name: Chung - first_name: Seockhoon full_name: Chung, Seockhoon last_name: Chung - first_name: So Hyang full_name: Chung, So Hyang last_name: Chung - first_name: Yuen Li full_name: Chung, Yuen Li last_name: Chung - first_name: Valentina full_name: Cianfanelli, Valentina last_name: Cianfanelli - first_name: Iwona A. full_name: Ciechomska, Iwona A. last_name: Ciechomska - first_name: Mariana full_name: Cifuentes, Mariana last_name: Cifuentes - first_name: Laura full_name: Cinque, Laura last_name: Cinque - first_name: Sebahattin full_name: Cirak, Sebahattin last_name: Cirak - first_name: Mara full_name: Cirone, Mara last_name: Cirone - first_name: Michael J. full_name: Clague, Michael J. last_name: Clague - first_name: Robert full_name: Clarke, Robert last_name: Clarke - first_name: Emilio full_name: Clementi, Emilio last_name: Clementi - first_name: Eliana M. full_name: Coccia, Eliana M. last_name: Coccia - first_name: Patrice full_name: Codogno, Patrice last_name: Codogno - first_name: Ehud full_name: Cohen, Ehud last_name: Cohen - first_name: Mickael M. full_name: Cohen, Mickael M. last_name: Cohen - first_name: Tania full_name: Colasanti, Tania last_name: Colasanti - first_name: Fiorella full_name: Colasuonno, Fiorella last_name: Colasuonno - first_name: Robert A. full_name: Colbert, Robert A. last_name: Colbert - first_name: Anna full_name: Colell, Anna last_name: Colell - first_name: Miodrag full_name: Čolić, Miodrag last_name: Čolić - first_name: Nuria S. full_name: Coll, Nuria S. last_name: Coll - first_name: Mark O. full_name: Collins, Mark O. last_name: Collins - first_name: María I. full_name: Colombo, María I. last_name: Colombo - first_name: Daniel A. full_name: Colón-Ramos, Daniel A. last_name: Colón-Ramos - first_name: Lydie full_name: Combaret, Lydie last_name: Combaret - first_name: Sergio full_name: Comincini, Sergio last_name: Comincini - first_name: Márcia R. full_name: Cominetti, Márcia R. last_name: Cominetti - first_name: Antonella full_name: Consiglio, Antonella last_name: Consiglio - first_name: Andrea full_name: Conte, Andrea last_name: Conte - first_name: Fabrizio full_name: Conti, Fabrizio last_name: Conti - first_name: Viorica Raluca full_name: Contu, Viorica Raluca last_name: Contu - first_name: Mark R. full_name: Cookson, Mark R. last_name: Cookson - first_name: Kevin M. full_name: Coombs, Kevin M. last_name: Coombs - first_name: Isabelle full_name: Coppens, Isabelle last_name: Coppens - first_name: Maria Tiziana full_name: Corasaniti, Maria Tiziana last_name: Corasaniti - first_name: Dale P. full_name: Corkery, Dale P. last_name: Corkery - first_name: Nils full_name: Cordes, Nils last_name: Cordes - first_name: Katia full_name: Cortese, Katia last_name: Cortese - first_name: Maria Do Carmo full_name: Costa, Maria Do Carmo last_name: Costa - first_name: Sarah full_name: Costantino, Sarah last_name: Costantino - first_name: Paola full_name: Costelli, Paola last_name: Costelli - first_name: Ana full_name: Coto-Montes, Ana last_name: Coto-Montes - first_name: Peter J. full_name: Crack, Peter J. last_name: Crack - first_name: Jose L. full_name: Crespo, Jose L. last_name: Crespo - first_name: Alfredo full_name: Criollo, Alfredo last_name: Criollo - first_name: Valeria full_name: Crippa, Valeria last_name: Crippa - first_name: Riccardo full_name: Cristofani, Riccardo last_name: Cristofani - first_name: Tamas full_name: Csizmadia, Tamas last_name: Csizmadia - first_name: Antonio full_name: Cuadrado, Antonio last_name: Cuadrado - first_name: Bing full_name: Cui, Bing last_name: Cui - first_name: Jun full_name: Cui, Jun last_name: Cui - first_name: Yixian full_name: Cui, Yixian last_name: Cui - first_name: Yong full_name: Cui, Yong last_name: Cui - first_name: Emmanuel full_name: Culetto, Emmanuel last_name: Culetto - first_name: Andrea C. full_name: Cumino, Andrea C. last_name: Cumino - first_name: Andrey V. full_name: Cybulsky, Andrey V. last_name: Cybulsky - first_name: Mark J. full_name: Czaja, Mark J. last_name: Czaja - first_name: Stanislaw J. full_name: Czuczwar, Stanislaw J. last_name: Czuczwar - first_name: Stefania full_name: D’Adamo, Stefania last_name: D’Adamo - first_name: Marcello full_name: D’Amelio, Marcello last_name: D’Amelio - first_name: Daniela full_name: D’Arcangelo, Daniela last_name: D’Arcangelo - first_name: Andrew C. full_name: D’Lugos, Andrew C. last_name: D’Lugos - first_name: Gabriella full_name: D’Orazi, Gabriella last_name: D’Orazi - first_name: James A. full_name: Da Silva, James A. last_name: Da Silva - first_name: Hormos Salimi full_name: Dafsari, Hormos Salimi last_name: Dafsari - first_name: Ruben K. full_name: Dagda, Ruben K. last_name: Dagda - first_name: Yasin full_name: Dagdas, Yasin last_name: Dagdas - first_name: Maria full_name: Daglia, Maria last_name: Daglia - first_name: Xiaoxia full_name: Dai, Xiaoxia last_name: Dai - first_name: Yun full_name: Dai, Yun last_name: Dai - first_name: Yuyuan full_name: Dai, Yuyuan last_name: Dai - first_name: Jessica full_name: Dal Col, Jessica last_name: Dal Col - first_name: Paul full_name: Dalhaimer, Paul last_name: Dalhaimer - first_name: Luisa full_name: Dalla Valle, Luisa last_name: Dalla Valle - first_name: Tobias full_name: Dallenga, Tobias last_name: Dallenga - first_name: Guillaume full_name: Dalmasso, Guillaume last_name: Dalmasso - first_name: Markus full_name: Damme, Markus last_name: Damme - first_name: Ilaria full_name: Dando, Ilaria last_name: Dando - first_name: Nico P. full_name: Dantuma, Nico P. last_name: Dantuma - first_name: April L. full_name: Darling, April L. last_name: Darling - first_name: Hiranmoy full_name: Das, Hiranmoy last_name: Das - first_name: Srinivasan full_name: Dasarathy, Srinivasan last_name: Dasarathy - first_name: Santosh K. full_name: Dasari, Santosh K. last_name: Dasari - first_name: Srikanta full_name: Dash, Srikanta last_name: Dash - first_name: Oliver full_name: Daumke, Oliver last_name: Daumke - first_name: Adrian N. full_name: Dauphinee, Adrian N. last_name: Dauphinee - first_name: Jeffrey S. full_name: Davies, Jeffrey S. last_name: Davies - first_name: Valeria A. full_name: Dávila, Valeria A. last_name: Dávila - first_name: Roger J. full_name: Davis, Roger J. last_name: Davis - first_name: Tanja full_name: Davis, Tanja last_name: Davis - first_name: Sharadha full_name: Dayalan Naidu, Sharadha last_name: Dayalan Naidu - first_name: Francesca full_name: De Amicis, Francesca last_name: De Amicis - first_name: Karolien full_name: De Bosscher, Karolien last_name: De Bosscher - first_name: Francesca full_name: De Felice, Francesca last_name: De Felice - first_name: Lucia full_name: De Franceschi, Lucia last_name: De Franceschi - first_name: Chiara full_name: De Leonibus, Chiara last_name: De Leonibus - first_name: Mayara G. full_name: De Mattos Barbosa, Mayara G. last_name: De Mattos Barbosa - first_name: Guido R.Y. full_name: De Meyer, Guido R.Y. last_name: De Meyer - first_name: Angelo full_name: De Milito, Angelo last_name: De Milito - first_name: Cosimo full_name: De Nunzio, Cosimo last_name: De Nunzio - first_name: Clara full_name: De Palma, Clara last_name: De Palma - first_name: Mauro full_name: De Santi, Mauro last_name: De Santi - first_name: Claudio full_name: De Virgilio, Claudio last_name: De Virgilio - first_name: Daniela full_name: De Zio, Daniela last_name: De Zio - first_name: Jayanta full_name: Debnath, Jayanta last_name: Debnath - first_name: Brian J. full_name: Debosch, Brian J. last_name: Debosch - first_name: Jean Paul full_name: Decuypere, Jean Paul last_name: Decuypere - first_name: Mark A. full_name: Deehan, Mark A. last_name: Deehan - first_name: Gianluca full_name: Deflorian, Gianluca last_name: Deflorian - first_name: James full_name: Degregori, James last_name: Degregori - first_name: Benjamin full_name: Dehay, Benjamin last_name: Dehay - first_name: Gabriel full_name: Del Rio, Gabriel last_name: Del Rio - first_name: Joe R. full_name: Delaney, Joe R. last_name: Delaney - first_name: Lea M.D. full_name: Delbridge, Lea M.D. last_name: Delbridge - first_name: Elizabeth full_name: Delorme-Axford, Elizabeth last_name: Delorme-Axford - first_name: M. Victoria full_name: Delpino, M. Victoria last_name: Delpino - first_name: Francesca full_name: Demarchi, Francesca last_name: Demarchi - first_name: Vilma full_name: Dembitz, Vilma last_name: Dembitz - first_name: Nicholas D. full_name: Demers, Nicholas D. last_name: Demers - first_name: Hongbin full_name: Deng, Hongbin last_name: Deng - first_name: Zhiqiang full_name: Deng, Zhiqiang last_name: Deng - first_name: Joern full_name: Dengjel, Joern last_name: Dengjel - first_name: Paul full_name: Dent, Paul last_name: Dent - first_name: Donna full_name: Denton, Donna last_name: Denton - first_name: Melvin L. full_name: Depamphilis, Melvin L. last_name: Depamphilis - first_name: Channing J. full_name: Der, Channing J. last_name: Der - first_name: Vojo full_name: Deretic, Vojo last_name: Deretic - first_name: Albert full_name: Descoteaux, Albert last_name: Descoteaux - first_name: Laura full_name: Devis, Laura last_name: Devis - first_name: Sushil full_name: Devkota, Sushil last_name: Devkota - first_name: Olivier full_name: Devuyst, Olivier last_name: Devuyst - first_name: Grant full_name: Dewson, Grant last_name: Dewson - first_name: Mahendiran full_name: Dharmasivam, Mahendiran last_name: Dharmasivam - first_name: Rohan full_name: Dhiman, Rohan last_name: Dhiman - first_name: Diego full_name: Di Bernardo, Diego last_name: Di Bernardo - first_name: Manlio full_name: Di Cristina, Manlio last_name: Di Cristina - first_name: Fabio full_name: Di Domenico, Fabio last_name: Di Domenico - first_name: Pietro full_name: Di Fazio, Pietro last_name: Di Fazio - first_name: Alessio full_name: Di Fonzo, Alessio last_name: Di Fonzo - first_name: Giovanni full_name: Di Guardo, Giovanni last_name: Di Guardo - first_name: Gianni M. full_name: Di Guglielmo, Gianni M. last_name: Di Guglielmo - first_name: Luca full_name: Di Leo, Luca last_name: Di Leo - first_name: Chiara full_name: Di Malta, Chiara last_name: Di Malta - first_name: Alessia full_name: Di Nardo, Alessia last_name: Di Nardo - first_name: Martina full_name: Di Rienzo, Martina last_name: Di Rienzo - first_name: Federica full_name: Di Sano, Federica last_name: Di Sano - first_name: George full_name: Diallinas, George last_name: Diallinas - first_name: Jiajie full_name: Diao, Jiajie last_name: Diao - first_name: Guillermo full_name: Diaz-Araya, Guillermo last_name: Diaz-Araya - first_name: Inés full_name: Díaz-Laviada, Inés last_name: Díaz-Laviada - first_name: Jared M. full_name: Dickinson, Jared M. last_name: Dickinson - first_name: Marc full_name: Diederich, Marc last_name: Diederich - first_name: Mélanie full_name: Dieudé, Mélanie last_name: Dieudé - first_name: Ivan full_name: Dikic, Ivan last_name: Dikic - first_name: Shiping full_name: Ding, Shiping last_name: Ding - first_name: Wen Xing full_name: Ding, Wen Xing last_name: Ding - first_name: Luciana full_name: Dini, Luciana last_name: Dini - first_name: Jelena full_name: Dinić, Jelena last_name: Dinić - first_name: Miroslav full_name: Dinic, Miroslav last_name: Dinic - first_name: Albena T. full_name: Dinkova-Kostova, Albena T. last_name: Dinkova-Kostova - first_name: Marc S. full_name: Dionne, Marc S. last_name: Dionne - first_name: Jörg H.W. full_name: Distler, Jörg H.W. last_name: Distler - first_name: Abhinav full_name: Diwan, Abhinav last_name: Diwan - first_name: Ian M.C. full_name: Dixon, Ian M.C. last_name: Dixon - first_name: Mojgan full_name: Djavaheri-Mergny, Mojgan last_name: Djavaheri-Mergny - first_name: Ina full_name: Dobrinski, Ina last_name: Dobrinski - first_name: Oxana full_name: Dobrovinskaya, Oxana last_name: Dobrovinskaya - first_name: Radek full_name: Dobrowolski, Radek last_name: Dobrowolski - first_name: Renwick C.J. full_name: Dobson, Renwick C.J. last_name: Dobson - first_name: Jelena full_name: Đokić, Jelena last_name: Đokić - first_name: Serap full_name: Dokmeci Emre, Serap last_name: Dokmeci Emre - first_name: Massimo full_name: Donadelli, Massimo last_name: Donadelli - first_name: Bo full_name: Dong, Bo last_name: Dong - first_name: Xiaonan full_name: Dong, Xiaonan last_name: Dong - first_name: Zhiwu full_name: Dong, Zhiwu last_name: Dong - first_name: Gerald W. full_name: Dorn, Gerald W. last_name: Dorn - first_name: Volker full_name: Dotsch, Volker last_name: Dotsch - first_name: Huan full_name: Dou, Huan last_name: Dou - first_name: Juan full_name: Dou, Juan last_name: Dou - first_name: Moataz full_name: Dowaidar, Moataz last_name: Dowaidar - first_name: Sami full_name: Dridi, Sami last_name: Dridi - first_name: Liat full_name: Drucker, Liat last_name: Drucker - first_name: Ailian full_name: Du, Ailian last_name: Du - first_name: Caigan full_name: Du, Caigan last_name: Du - first_name: Guangwei full_name: Du, Guangwei last_name: Du - first_name: Hai Ning full_name: Du, Hai Ning last_name: Du - first_name: Li Lin full_name: Du, Li Lin last_name: Du - first_name: André full_name: Du Toit, André last_name: Du Toit - first_name: Shao Bin full_name: Duan, Shao Bin last_name: Duan - first_name: Xiaoqiong full_name: Duan, Xiaoqiong last_name: Duan - first_name: Sónia P. full_name: Duarte, Sónia P. last_name: Duarte - first_name: Anna full_name: Dubrovska, Anna last_name: Dubrovska - first_name: Elaine A. full_name: Dunlop, Elaine A. last_name: Dunlop - first_name: Nicolas full_name: Dupont, Nicolas last_name: Dupont - first_name: Raúl V. full_name: Durán, Raúl V. last_name: Durán - first_name: Bilikere S. full_name: Dwarakanath, Bilikere S. last_name: Dwarakanath - first_name: Sergey A. full_name: Dyshlovoy, Sergey A. last_name: Dyshlovoy - first_name: Darius full_name: Ebrahimi-Fakhari, Darius last_name: Ebrahimi-Fakhari - first_name: Leopold full_name: Eckhart, Leopold last_name: Eckhart - first_name: Charles L. full_name: Edelstein, Charles L. last_name: Edelstein - first_name: Thomas full_name: Efferth, Thomas last_name: Efferth - first_name: Eftekhar full_name: Eftekharpour, Eftekhar last_name: Eftekharpour - first_name: Ludwig full_name: Eichinger, Ludwig last_name: Eichinger - first_name: Nabil full_name: Eid, Nabil last_name: Eid - first_name: Tobias full_name: Eisenberg, Tobias last_name: Eisenberg - first_name: N. Tony full_name: Eissa, N. Tony last_name: Eissa - first_name: Sanaa full_name: Eissa, Sanaa last_name: Eissa - first_name: Miriam full_name: Ejarque, Miriam last_name: Ejarque - first_name: Abdeljabar full_name: El Andaloussi, Abdeljabar last_name: El Andaloussi - first_name: Nazira full_name: El-Hage, Nazira last_name: El-Hage - first_name: Shahenda full_name: El-Naggar, Shahenda last_name: El-Naggar - first_name: Anna Maria full_name: Eleuteri, Anna Maria last_name: Eleuteri - first_name: Eman S. full_name: El-Shafey, Eman S. last_name: El-Shafey - first_name: Mohamed full_name: Elgendy, Mohamed last_name: Elgendy - first_name: Aristides G. full_name: Eliopoulos, Aristides G. last_name: Eliopoulos - first_name: María M. full_name: Elizalde, María M. last_name: Elizalde - first_name: Philip M. full_name: Elks, Philip M. last_name: Elks - first_name: Hans Peter full_name: Elsasser, Hans Peter last_name: Elsasser - first_name: Eslam S. full_name: Elsherbiny, Eslam S. last_name: Elsherbiny - first_name: Brooke M. full_name: Emerling, Brooke M. last_name: Emerling - first_name: N. C.Tolga full_name: Emre, N. C.Tolga last_name: Emre - first_name: Christina H. full_name: Eng, Christina H. last_name: Eng - first_name: Nikolai full_name: Engedal, Nikolai last_name: Engedal - first_name: Anna Mart full_name: Engelbrecht, Anna Mart last_name: Engelbrecht - first_name: Agnete S.T. full_name: Engelsen, Agnete S.T. last_name: Engelsen - first_name: Jorrit M. full_name: Enserink, Jorrit M. last_name: Enserink - first_name: Ricardo full_name: Escalante, Ricardo last_name: Escalante - first_name: Audrey full_name: Esclatine, Audrey last_name: Esclatine - first_name: Mafalda full_name: Escobar-Henriques, Mafalda last_name: Escobar-Henriques - first_name: Eeva Liisa full_name: Eskelinen, Eeva Liisa last_name: Eskelinen - first_name: Lucile full_name: Espert, Lucile last_name: Espert - first_name: Makandjou Ola full_name: Eusebio, Makandjou Ola last_name: Eusebio - first_name: Gemma full_name: Fabrias, Gemma last_name: Fabrias - first_name: Cinzia full_name: Fabrizi, Cinzia last_name: Fabrizi - first_name: Antonio full_name: Facchiano, Antonio last_name: Facchiano - first_name: Francesco full_name: Facchiano, Francesco last_name: Facchiano - first_name: Bengt full_name: Fadeel, Bengt last_name: Fadeel - first_name: Claudio full_name: Fader, Claudio last_name: Fader - first_name: Alex C. full_name: Faesen, Alex C. last_name: Faesen - first_name: W. Douglas full_name: Fairlie, W. Douglas last_name: Fairlie - first_name: Alberto full_name: Falcó, Alberto last_name: Falcó - first_name: Bjorn H. full_name: Falkenburger, Bjorn H. last_name: Falkenburger - first_name: Daping full_name: Fan, Daping last_name: Fan - first_name: Jie full_name: Fan, Jie last_name: Fan - first_name: Yanbo full_name: Fan, Yanbo last_name: Fan - first_name: Evandro F. full_name: Fang, Evandro F. last_name: Fang - first_name: Yanshan full_name: Fang, Yanshan last_name: Fang - first_name: Yognqi full_name: Fang, Yognqi last_name: Fang - first_name: Manolis full_name: Fanto, Manolis last_name: Fanto - first_name: Tamar full_name: Farfel-Becker, Tamar last_name: Farfel-Becker - first_name: Mathias full_name: Faure, Mathias last_name: Faure - first_name: Gholamreza full_name: Fazeli, Gholamreza last_name: Fazeli - first_name: Anthony O. full_name: Fedele, Anthony O. last_name: Fedele - first_name: Arthur M. full_name: Feldman, Arthur M. last_name: Feldman - first_name: Du full_name: Feng, Du last_name: Feng - first_name: Jiachun full_name: Feng, Jiachun last_name: Feng - first_name: Lifeng full_name: Feng, Lifeng last_name: Feng - first_name: Yibin full_name: Feng, Yibin last_name: Feng - first_name: Yuchen full_name: Feng, Yuchen last_name: Feng - first_name: Wei full_name: Feng, Wei last_name: Feng - first_name: Thais full_name: Fenz Araujo, Thais last_name: Fenz Araujo - first_name: Thomas A. full_name: Ferguson, Thomas A. last_name: Ferguson - first_name: Álvaro F. full_name: Fernández, Álvaro F. last_name: Fernández - first_name: Jose C. full_name: Fernandez-Checa, Jose C. last_name: Fernandez-Checa - first_name: Sonia full_name: Fernández-Veledo, Sonia last_name: Fernández-Veledo - first_name: Alisdair R. full_name: Fernie, Alisdair R. last_name: Fernie - first_name: Anthony W. full_name: Ferrante, Anthony W. last_name: Ferrante - first_name: Alessandra full_name: Ferraresi, Alessandra last_name: Ferraresi - first_name: Merari F. full_name: Ferrari, Merari F. last_name: Ferrari - first_name: Julio C.B. full_name: Ferreira, Julio C.B. last_name: Ferreira - first_name: Susan full_name: Ferro-Novick, Susan last_name: Ferro-Novick - first_name: Antonio full_name: Figueras, Antonio last_name: Figueras - first_name: Riccardo full_name: Filadi, Riccardo last_name: Filadi - first_name: Nicoletta full_name: Filigheddu, Nicoletta last_name: Filigheddu - first_name: Eduardo full_name: Filippi-Chiela, Eduardo last_name: Filippi-Chiela - first_name: Giuseppe full_name: Filomeni, Giuseppe last_name: Filomeni - first_name: Gian Maria full_name: Fimia, Gian Maria last_name: Fimia - first_name: Vittorio full_name: Fineschi, Vittorio last_name: Fineschi - first_name: Francesca full_name: Finetti, Francesca last_name: Finetti - first_name: Steven full_name: Finkbeiner, Steven last_name: Finkbeiner - first_name: Edward A. full_name: Fisher, Edward A. last_name: Fisher - first_name: Paul B. full_name: Fisher, Paul B. last_name: Fisher - first_name: Flavio full_name: Flamigni, Flavio last_name: Flamigni - first_name: Steven J. full_name: Fliesler, Steven J. last_name: Fliesler - first_name: Trude H. full_name: Flo, Trude H. last_name: Flo - first_name: Ida full_name: Florance, Ida last_name: Florance - first_name: Oliver full_name: Florey, Oliver last_name: Florey - first_name: Tullio full_name: Florio, Tullio last_name: Florio - first_name: Erika full_name: Fodor, Erika last_name: Fodor - first_name: Carlo full_name: Follo, Carlo last_name: Follo - first_name: Edward A. full_name: Fon, Edward A. last_name: Fon - first_name: Antonella full_name: Forlino, Antonella last_name: Forlino - first_name: Francesco full_name: Fornai, Francesco last_name: Fornai - first_name: Paola full_name: Fortini, Paola last_name: Fortini - first_name: Anna full_name: Fracassi, Anna last_name: Fracassi - first_name: Alessandro full_name: Fraldi, Alessandro last_name: Fraldi - first_name: Brunella full_name: Franco, Brunella last_name: Franco - first_name: Rodrigo full_name: Franco, Rodrigo last_name: Franco - first_name: Flavia full_name: Franconi, Flavia last_name: Franconi - first_name: Lisa B. full_name: Frankel, Lisa B. last_name: Frankel - first_name: Scott L. full_name: Friedman, Scott L. last_name: Friedman - first_name: Leopold F. full_name: Fröhlich, Leopold F. last_name: Fröhlich - first_name: Gema full_name: Frühbeck, Gema last_name: Frühbeck - first_name: Jose M. full_name: Fuentes, Jose M. last_name: Fuentes - first_name: Yukio full_name: Fujiki, Yukio last_name: Fujiki - first_name: Naonobu full_name: Fujita, Naonobu last_name: Fujita - first_name: Yuuki full_name: Fujiwara, Yuuki last_name: Fujiwara - first_name: Mitsunori full_name: Fukuda, Mitsunori last_name: Fukuda - first_name: Simone full_name: Fulda, Simone last_name: Fulda - first_name: Luc full_name: Furic, Luc last_name: Furic - first_name: Norihiko full_name: Furuya, Norihiko last_name: Furuya - first_name: Carmela full_name: Fusco, Carmela last_name: Fusco - first_name: Michaela U. full_name: Gack, Michaela U. last_name: Gack - first_name: Lidia full_name: Gaffke, Lidia last_name: Gaffke - first_name: Sehamuddin full_name: Galadari, Sehamuddin last_name: Galadari - first_name: Alessia full_name: Galasso, Alessia last_name: Galasso - first_name: Maria F. full_name: Galindo, Maria F. last_name: Galindo - first_name: Sachith full_name: Gallolu Kankanamalage, Sachith last_name: Gallolu Kankanamalage - first_name: Lorenzo full_name: Galluzzi, Lorenzo last_name: Galluzzi - first_name: Vincent full_name: Galy, Vincent last_name: Galy - first_name: Noor full_name: Gammoh, Noor last_name: Gammoh - first_name: Boyi full_name: Gan, Boyi last_name: Gan - first_name: Ian G. full_name: Ganley, Ian G. last_name: Ganley - first_name: Feng full_name: Gao, Feng last_name: Gao - first_name: Hui full_name: Gao, Hui last_name: Gao - first_name: Minghui full_name: Gao, Minghui last_name: Gao - first_name: Ping full_name: Gao, Ping last_name: Gao - first_name: Shou Jiang full_name: Gao, Shou Jiang last_name: Gao - first_name: Wentao full_name: Gao, Wentao last_name: Gao - first_name: Xiaobo full_name: Gao, Xiaobo last_name: Gao - first_name: Ana full_name: Garcera, Ana last_name: Garcera - first_name: Maria Noé full_name: Garcia, Maria Noé last_name: Garcia - first_name: Verónica E. full_name: Garcia, Verónica E. last_name: Garcia - first_name: Francisco full_name: García-Del Portillo, Francisco last_name: García-Del Portillo - first_name: Vega full_name: Garcia-Escudero, Vega last_name: Garcia-Escudero - first_name: Aracely full_name: Garcia-Garcia, Aracely last_name: Garcia-Garcia - first_name: Marina full_name: Garcia-Macia, Marina last_name: Garcia-Macia - first_name: Diana full_name: García-Moreno, Diana last_name: García-Moreno - first_name: Carmen full_name: Garcia-Ruiz, Carmen last_name: Garcia-Ruiz - first_name: Patricia full_name: García-Sanz, Patricia last_name: García-Sanz - first_name: Abhishek D. full_name: Garg, Abhishek D. last_name: Garg - first_name: Ricardo full_name: Gargini, Ricardo last_name: Gargini - first_name: Tina full_name: Garofalo, Tina last_name: Garofalo - first_name: Robert F. full_name: Garry, Robert F. last_name: Garry - first_name: Nils C. full_name: Gassen, Nils C. last_name: Gassen - first_name: Damian full_name: Gatica, Damian last_name: Gatica - first_name: Liang full_name: Ge, Liang last_name: Ge - first_name: Wanzhong full_name: Ge, Wanzhong last_name: Ge - first_name: Ruth full_name: Geiss-Friedlander, Ruth last_name: Geiss-Friedlander - first_name: Cecilia full_name: Gelfi, Cecilia last_name: Gelfi - first_name: Pascal full_name: Genschik, Pascal last_name: Genschik - first_name: Ian E. full_name: Gentle, Ian E. last_name: Gentle - first_name: Valeria full_name: Gerbino, Valeria last_name: Gerbino - first_name: Christoph full_name: Gerhardt, Christoph last_name: Gerhardt - first_name: Kyla full_name: Germain, Kyla last_name: Germain - first_name: Marc full_name: Germain, Marc last_name: Germain - first_name: David A. full_name: Gewirtz, David A. last_name: Gewirtz - first_name: Elham full_name: Ghasemipour Afshar, Elham last_name: Ghasemipour Afshar - first_name: Saeid full_name: Ghavami, Saeid last_name: Ghavami - first_name: Alessandra full_name: Ghigo, Alessandra last_name: Ghigo - first_name: Manosij full_name: Ghosh, Manosij last_name: Ghosh - first_name: Georgios full_name: Giamas, Georgios last_name: Giamas - first_name: Claudia full_name: Giampietri, Claudia last_name: Giampietri - first_name: Alexandra full_name: Giatromanolaki, Alexandra last_name: Giatromanolaki - first_name: Gary E. full_name: Gibson, Gary E. last_name: Gibson - first_name: Spencer B. full_name: Gibson, Spencer B. last_name: Gibson - first_name: Vanessa full_name: Ginet, Vanessa last_name: Ginet - first_name: Edward full_name: Giniger, Edward last_name: Giniger - first_name: Carlotta full_name: Giorgi, Carlotta last_name: Giorgi - first_name: Henrique full_name: Girao, Henrique last_name: Girao - first_name: Stephen E. full_name: Girardin, Stephen E. last_name: Girardin - first_name: Mridhula full_name: Giridharan, Mridhula last_name: Giridharan - first_name: Sandy full_name: Giuliano, Sandy last_name: Giuliano - first_name: Cecilia full_name: Giulivi, Cecilia last_name: Giulivi - first_name: Sylvie full_name: Giuriato, Sylvie last_name: Giuriato - first_name: Julien full_name: Giustiniani, Julien last_name: Giustiniani - first_name: Alexander full_name: Gluschko, Alexander last_name: Gluschko - first_name: Veit full_name: Goder, Veit last_name: Goder - first_name: Alexander full_name: Goginashvili, Alexander last_name: Goginashvili - first_name: Jakub full_name: Golab, Jakub last_name: Golab - first_name: David C. full_name: Goldstone, David C. last_name: Goldstone - first_name: Anna full_name: Golebiewska, Anna last_name: Golebiewska - first_name: Luciana R. full_name: Gomes, Luciana R. last_name: Gomes - first_name: Rodrigo full_name: Gomez, Rodrigo last_name: Gomez - first_name: Rubén full_name: Gómez-Sánchez, Rubén last_name: Gómez-Sánchez - first_name: Maria Catalina full_name: Gomez-Puerto, Maria Catalina last_name: Gomez-Puerto - first_name: Raquel full_name: Gomez-Sintes, Raquel last_name: Gomez-Sintes - first_name: Qingqiu full_name: Gong, Qingqiu last_name: Gong - first_name: Felix M. full_name: Goni, Felix M. last_name: Goni - first_name: Javier full_name: González-Gallego, Javier last_name: González-Gallego - first_name: Tomas full_name: Gonzalez-Hernandez, Tomas last_name: Gonzalez-Hernandez - first_name: Rosa A. full_name: Gonzalez-Polo, Rosa A. last_name: Gonzalez-Polo - first_name: Jose A. full_name: Gonzalez-Reyes, Jose A. last_name: Gonzalez-Reyes - first_name: Patricia full_name: González-Rodríguez, Patricia last_name: González-Rodríguez - first_name: Ing Swie full_name: Goping, Ing Swie last_name: Goping - first_name: Marina S. full_name: Gorbatyuk, Marina S. last_name: Gorbatyuk - first_name: Nikolai V. full_name: Gorbunov, Nikolai V. last_name: Gorbunov - first_name: Kıvanç full_name: Görgülü, Kıvanç last_name: Görgülü - first_name: Roxana M. full_name: Gorojod, Roxana M. last_name: Gorojod - first_name: Sharon M. full_name: Gorski, Sharon M. last_name: Gorski - first_name: Sandro full_name: Goruppi, Sandro last_name: Goruppi - first_name: Cecilia full_name: Gotor, Cecilia last_name: Gotor - first_name: Roberta A. full_name: Gottlieb, Roberta A. last_name: Gottlieb - first_name: Illana full_name: Gozes, Illana last_name: Gozes - first_name: Devrim full_name: Gozuacik, Devrim last_name: Gozuacik - first_name: Martin full_name: Graef, Martin last_name: Graef - first_name: Markus H. full_name: Gräler, Markus H. last_name: Gräler - first_name: Veronica full_name: Granatiero, Veronica last_name: Granatiero - first_name: Daniel full_name: Grasso, Daniel last_name: Grasso - first_name: Joshua P. full_name: Gray, Joshua P. last_name: Gray - first_name: Douglas R. full_name: Green, Douglas R. last_name: Green - first_name: Alexander full_name: Greenhough, Alexander last_name: Greenhough - first_name: Stephen L. full_name: Gregory, Stephen L. last_name: Gregory - first_name: Edward F. full_name: Griffin, Edward F. last_name: Griffin - first_name: Mark W. full_name: Grinstaff, Mark W. last_name: Grinstaff - first_name: Frederic full_name: Gros, Frederic last_name: Gros - first_name: Charles full_name: Grose, Charles last_name: Grose - first_name: Angelina S. full_name: Gross, Angelina S. last_name: Gross - first_name: Florian full_name: Gruber, Florian last_name: Gruber - first_name: Paolo full_name: Grumati, Paolo last_name: Grumati - first_name: Tilman full_name: Grune, Tilman last_name: Grune - first_name: Xueyan full_name: Gu, Xueyan last_name: Gu - first_name: Jun Lin full_name: Guan, Jun Lin last_name: Guan - first_name: Carlos M. full_name: Guardia, Carlos M. last_name: Guardia - first_name: Kishore full_name: Guda, Kishore last_name: Guda - first_name: Flora full_name: Guerra, Flora last_name: Guerra - first_name: Consuelo full_name: Guerri, Consuelo last_name: Guerri - first_name: Prasun full_name: Guha, Prasun last_name: Guha - first_name: Carlos full_name: Guillén, Carlos last_name: Guillén - first_name: Shashi full_name: Gujar, Shashi last_name: Gujar - first_name: Anna full_name: Gukovskaya, Anna last_name: Gukovskaya - first_name: Ilya full_name: Gukovsky, Ilya last_name: Gukovsky - first_name: Jan full_name: Gunst, Jan last_name: Gunst - first_name: Andreas full_name: Günther, Andreas last_name: Günther - first_name: Anyonya R. full_name: Guntur, Anyonya R. last_name: Guntur - first_name: Chuanyong full_name: Guo, Chuanyong last_name: Guo - first_name: Chun full_name: Guo, Chun last_name: Guo - first_name: Hongqing full_name: Guo, Hongqing last_name: Guo - first_name: Lian Wang full_name: Guo, Lian Wang last_name: Guo - first_name: Ming full_name: Guo, Ming last_name: Guo - first_name: Pawan full_name: Gupta, Pawan last_name: Gupta - first_name: Shashi Kumar full_name: Gupta, Shashi Kumar last_name: Gupta - first_name: Swapnil full_name: Gupta, Swapnil last_name: Gupta - first_name: Veer Bala full_name: Gupta, Veer Bala last_name: Gupta - first_name: Vivek full_name: Gupta, Vivek last_name: Gupta - first_name: Asa B. full_name: Gustafsson, Asa B. last_name: Gustafsson - first_name: David D. full_name: Gutterman, David D. last_name: Gutterman - first_name: Ranjitha full_name: H.B, Ranjitha last_name: H.B - first_name: Annakaisa full_name: Haapasalo, Annakaisa last_name: Haapasalo - first_name: James E. full_name: Haber, James E. last_name: Haber - first_name: Aleksandra full_name: Hać, Aleksandra last_name: Hać - first_name: Shinji full_name: Hadano, Shinji last_name: Hadano - first_name: Anders J. full_name: Hafrén, Anders J. last_name: Hafrén - first_name: Mansour full_name: Haidar, Mansour last_name: Haidar - first_name: Belinda S. full_name: Hall, Belinda S. last_name: Hall - first_name: Gunnel full_name: Halldén, Gunnel last_name: Halldén - first_name: Anne full_name: Hamacher-Brady, Anne last_name: Hamacher-Brady - first_name: Andrea full_name: Hamann, Andrea last_name: Hamann - first_name: Maho full_name: Hamasaki, Maho last_name: Hamasaki - first_name: Weidong full_name: Han, Weidong last_name: Han - first_name: Malene full_name: Hansen, Malene last_name: Hansen - first_name: Phyllis I. . full_name: Hanson, Phyllis I. . last_name: Hanson - first_name: Zijian full_name: Hao, Zijian last_name: Hao - first_name: Masaru full_name: Harada, Masaru last_name: Harada - first_name: Ljubica full_name: Harhaji-Trajkovic, Ljubica last_name: Harhaji-Trajkovic - first_name: Nirmala full_name: Hariharan, Nirmala last_name: Hariharan - first_name: Nigil full_name: Haroon, Nigil last_name: Haroon - first_name: James full_name: Harris, James last_name: Harris - first_name: Takafumi full_name: Hasegawa, Takafumi last_name: Hasegawa - first_name: Noor full_name: Hasima Nagoor, Noor last_name: Hasima Nagoor - first_name: Jeffrey A. full_name: Haspel, Jeffrey A. last_name: Haspel - first_name: Volker full_name: Haucke, Volker last_name: Haucke - first_name: Wayne D. full_name: Hawkins, Wayne D. last_name: Hawkins - first_name: Bruce A. full_name: Hay, Bruce A. last_name: Hay - first_name: Cole M. full_name: Haynes, Cole M. last_name: Haynes - first_name: Soren B. full_name: Hayrabedyan, Soren B. last_name: Hayrabedyan - first_name: Thomas S. full_name: Hays, Thomas S. last_name: Hays - first_name: Congcong full_name: He, Congcong last_name: He - first_name: Qin full_name: He, Qin last_name: He - first_name: Rong Rong full_name: He, Rong Rong last_name: He - first_name: You Wen full_name: He, You Wen last_name: He - first_name: Yu Ying full_name: He, Yu Ying last_name: He - first_name: Yasser full_name: Heakal, Yasser last_name: Heakal - first_name: Alexander M. full_name: Heberle, Alexander M. last_name: Heberle - first_name: J. Fielding full_name: Hejtmancik, J. Fielding last_name: Hejtmancik - first_name: Gudmundur Vignir full_name: Helgason, Gudmundur Vignir last_name: Helgason - first_name: Vanessa full_name: Henkel, Vanessa last_name: Henkel - first_name: Marc full_name: Herb, Marc last_name: Herb - first_name: Alexander full_name: Hergovich, Alexander last_name: Hergovich - first_name: Anna full_name: Herman-Antosiewicz, Anna last_name: Herman-Antosiewicz - first_name: Agustín full_name: Hernández, Agustín last_name: Hernández - first_name: Carlos full_name: Hernandez, Carlos last_name: Hernandez - first_name: Sergio full_name: Hernandez-Diaz, Sergio last_name: Hernandez-Diaz - first_name: Virginia full_name: Hernandez-Gea, Virginia last_name: Hernandez-Gea - first_name: Amaury full_name: Herpin, Amaury last_name: Herpin - first_name: Judit full_name: Herreros, Judit last_name: Herreros - first_name: Javier H. full_name: Hervás, Javier H. last_name: Hervás - first_name: Daniel full_name: Hesselson, Daniel last_name: Hesselson - first_name: Claudio full_name: Hetz, Claudio last_name: Hetz - first_name: Volker T. full_name: Heussler, Volker T. last_name: Heussler - first_name: Yujiro full_name: Higuchi, Yujiro last_name: Higuchi - first_name: Sabine full_name: Hilfiker, Sabine last_name: Hilfiker - first_name: Joseph A. full_name: Hill, Joseph A. last_name: Hill - first_name: William S. full_name: Hlavacek, William S. last_name: Hlavacek - first_name: Emmanuel A. full_name: Ho, Emmanuel A. last_name: Ho - first_name: Idy H.T. full_name: Ho, Idy H.T. last_name: Ho - first_name: Philip Wing Lok full_name: Ho, Philip Wing Lok last_name: Ho - first_name: Shu Leong full_name: Ho, Shu Leong last_name: Ho - first_name: Wan Yun full_name: Ho, Wan Yun last_name: Ho - first_name: G. Aaron full_name: Hobbs, G. Aaron last_name: Hobbs - first_name: Mark full_name: Hochstrasser, Mark last_name: Hochstrasser - first_name: Peter H.M. full_name: Hoet, Peter H.M. last_name: Hoet - first_name: Daniel full_name: Hofius, Daniel last_name: Hofius - first_name: Paul full_name: Hofman, Paul last_name: Hofman - first_name: Annika full_name: Höhn, Annika last_name: Höhn - first_name: Carina I. full_name: Holmberg, Carina I. last_name: Holmberg - first_name: Jose R. full_name: Hombrebueno, Jose R. last_name: Hombrebueno - first_name: Chang Won Hong full_name: Yi-Ren Hong, Chang Won Hong last_name: Yi-Ren Hong - first_name: Lora V. full_name: Hooper, Lora V. last_name: Hooper - first_name: Thorsten full_name: Hoppe, Thorsten last_name: Hoppe - first_name: Rastislav full_name: Horos, Rastislav last_name: Horos - first_name: Yujin full_name: Hoshida, Yujin last_name: Hoshida - first_name: I. Lun full_name: Hsin, I. Lun last_name: Hsin - first_name: Hsin Yun full_name: Hsu, Hsin Yun last_name: Hsu - first_name: Bing full_name: Hu, Bing last_name: Hu - first_name: Dong full_name: Hu, Dong last_name: Hu - first_name: Li Fang full_name: Hu, Li Fang last_name: Hu - first_name: Ming Chang full_name: Hu, Ming Chang last_name: Hu - first_name: Ronggui full_name: Hu, Ronggui last_name: Hu - first_name: Wei full_name: Hu, Wei last_name: Hu - first_name: Yu Chen full_name: Hu, Yu Chen last_name: Hu - first_name: Zhuo Wei full_name: Hu, Zhuo Wei last_name: Hu - first_name: Fang full_name: Hua, Fang last_name: Hua - first_name: Jinlian full_name: Hua, Jinlian last_name: Hua - first_name: Yingqi full_name: Hua, Yingqi last_name: Hua - first_name: Chongmin full_name: Huan, Chongmin last_name: Huan - first_name: Canhua full_name: Huang, Canhua last_name: Huang - first_name: Chuanshu full_name: Huang, Chuanshu last_name: Huang - first_name: Chuanxin full_name: Huang, Chuanxin last_name: Huang - first_name: Chunling full_name: Huang, Chunling last_name: Huang - first_name: Haishan full_name: Huang, Haishan last_name: Huang - first_name: Kun full_name: Huang, Kun last_name: Huang - first_name: Michael L.H. full_name: Huang, Michael L.H. last_name: Huang - first_name: Rui full_name: Huang, Rui last_name: Huang - first_name: Shan full_name: Huang, Shan last_name: Huang - first_name: Tianzhi full_name: Huang, Tianzhi last_name: Huang - first_name: Xing full_name: Huang, Xing last_name: Huang - first_name: Yuxiang Jack full_name: Huang, Yuxiang Jack last_name: Huang - first_name: Tobias B. full_name: Huber, Tobias B. last_name: Huber - first_name: Virginie full_name: Hubert, Virginie last_name: Hubert - first_name: Christian A. full_name: Hubner, Christian A. last_name: Hubner - first_name: Stephanie M. full_name: Hughes, Stephanie M. last_name: Hughes - first_name: William E. full_name: Hughes, William E. last_name: Hughes - first_name: Magali full_name: Humbert, Magali last_name: Humbert - first_name: Gerhard full_name: Hummer, Gerhard last_name: Hummer - first_name: James H. full_name: Hurley, James H. last_name: Hurley - first_name: Sabah full_name: Hussain, Sabah last_name: Hussain - first_name: Salik full_name: Hussain, Salik last_name: Hussain - first_name: Patrick J. full_name: Hussey, Patrick J. last_name: Hussey - first_name: Martina full_name: Hutabarat, Martina last_name: Hutabarat - first_name: Hui Yun full_name: Hwang, Hui Yun last_name: Hwang - first_name: Seungmin full_name: Hwang, Seungmin last_name: Hwang - first_name: Antonio full_name: Ieni, Antonio last_name: Ieni - first_name: Fumiyo full_name: Ikeda, Fumiyo last_name: Ikeda - first_name: Yusuke full_name: Imagawa, Yusuke last_name: Imagawa - first_name: Yuzuru full_name: Imai, Yuzuru last_name: Imai - first_name: Carol full_name: Imbriano, Carol last_name: Imbriano - first_name: Masaya full_name: Imoto, Masaya last_name: Imoto - first_name: Denise M. full_name: Inman, Denise M. last_name: Inman - first_name: Ken full_name: Inoki, Ken last_name: Inoki - first_name: Juan full_name: Iovanna, Juan last_name: Iovanna - first_name: Renato V. full_name: Iozzo, Renato V. last_name: Iozzo - first_name: Giuseppe full_name: Ippolito, Giuseppe last_name: Ippolito - first_name: Javier E. full_name: Irazoqui, Javier E. last_name: Irazoqui - first_name: Pablo full_name: Iribarren, Pablo last_name: Iribarren - first_name: Mohd full_name: Ishaq, Mohd last_name: Ishaq - first_name: Makoto full_name: Ishikawa, Makoto last_name: Ishikawa - first_name: Nestor full_name: Ishimwe, Nestor last_name: Ishimwe - first_name: Ciro full_name: Isidoro, Ciro last_name: Isidoro - first_name: Nahed full_name: Ismail, Nahed last_name: Ismail - first_name: Shohreh full_name: Issazadeh-Navikas, Shohreh last_name: Issazadeh-Navikas - first_name: Eisuke full_name: Itakura, Eisuke last_name: Itakura - first_name: Daisuke full_name: Ito, Daisuke last_name: Ito - first_name: Davor full_name: Ivankovic, Davor last_name: Ivankovic - first_name: Saška full_name: Ivanova, Saška last_name: Ivanova - first_name: Anand Krishnan V. full_name: Iyer, Anand Krishnan V. last_name: Iyer - first_name: José M. full_name: Izquierdo, José M. last_name: Izquierdo - first_name: Masanori full_name: Izumi, Masanori last_name: Izumi - first_name: Marja full_name: Jäättelä, Marja last_name: Jäättelä - first_name: Majid Sakhi full_name: Jabir, Majid Sakhi last_name: Jabir - first_name: William T. full_name: Jackson, William T. last_name: Jackson - first_name: Nadia full_name: Jacobo-Herrera, Nadia last_name: Jacobo-Herrera - first_name: Anne Claire full_name: Jacomin, Anne Claire last_name: Jacomin - first_name: Elise full_name: Jacquin, Elise last_name: Jacquin - first_name: Pooja full_name: Jadiya, Pooja last_name: Jadiya - first_name: Hartmut full_name: Jaeschke, Hartmut last_name: Jaeschke - first_name: Chinnaswamy full_name: Jagannath, Chinnaswamy last_name: Jagannath - first_name: Arjen J. full_name: Jakobi, Arjen J. last_name: Jakobi - first_name: Johan full_name: Jakobsson, Johan last_name: Jakobsson - first_name: Bassam full_name: Janji, Bassam last_name: Janji - first_name: Pidder full_name: Jansen-Dürr, Pidder last_name: Jansen-Dürr - first_name: Patric J. full_name: Jansson, Patric J. last_name: Jansson - first_name: Jonathan full_name: Jantsch, Jonathan last_name: Jantsch - first_name: Sławomir full_name: Januszewski, Sławomir last_name: Januszewski - first_name: Alagie full_name: Jassey, Alagie last_name: Jassey - first_name: Steve full_name: Jean, Steve last_name: Jean - first_name: Hélène full_name: Jeltsch-David, Hélène last_name: Jeltsch-David - first_name: Pavla full_name: Jendelova, Pavla last_name: Jendelova - first_name: Andreas full_name: Jenny, Andreas last_name: Jenny - first_name: Thomas E. full_name: Jensen, Thomas E. last_name: Jensen - first_name: Niels full_name: Jessen, Niels last_name: Jessen - first_name: Jenna L. full_name: Jewell, Jenna L. last_name: Jewell - first_name: Jing full_name: Ji, Jing last_name: Ji - first_name: Lijun full_name: Jia, Lijun last_name: Jia - first_name: Rui full_name: Jia, Rui last_name: Jia - first_name: Liwen full_name: Jiang, Liwen last_name: Jiang - first_name: Qing full_name: Jiang, Qing last_name: Jiang - first_name: Richeng full_name: Jiang, Richeng last_name: Jiang - first_name: Teng full_name: Jiang, Teng last_name: Jiang - first_name: Xuejun full_name: Jiang, Xuejun last_name: Jiang - first_name: Yu full_name: Jiang, Yu last_name: Jiang - first_name: Maria full_name: Jimenez-Sanchez, Maria last_name: Jimenez-Sanchez - first_name: Eun Jung full_name: Jin, Eun Jung last_name: Jin - first_name: Fengyan full_name: Jin, Fengyan last_name: Jin - first_name: Hongchuan full_name: Jin, Hongchuan last_name: Jin - first_name: Li full_name: Jin, Li last_name: Jin - first_name: Luqi full_name: Jin, Luqi last_name: Jin - first_name: Meiyan full_name: Jin, Meiyan last_name: Jin - first_name: Si full_name: Jin, Si last_name: Jin - first_name: Eun Kyeong full_name: Jo, Eun Kyeong last_name: Jo - first_name: Carine full_name: Joffre, Carine last_name: Joffre - first_name: Terje full_name: Johansen, Terje last_name: Johansen - first_name: Gail V.W. full_name: Johnson, Gail V.W. last_name: Johnson - first_name: Simon A. full_name: Johnston, Simon A. last_name: Johnston - first_name: Eija full_name: Jokitalo, Eija last_name: Jokitalo - first_name: Mohit Kumar full_name: Jolly, Mohit Kumar last_name: Jolly - first_name: Leo A.B. full_name: Joosten, Leo A.B. last_name: Joosten - first_name: Joaquin full_name: Jordan, Joaquin last_name: Jordan - first_name: Bertrand full_name: Joseph, Bertrand last_name: Joseph - first_name: Dianwen full_name: Ju, Dianwen last_name: Ju - first_name: Jeong Sun full_name: Ju, Jeong Sun last_name: Ju - first_name: Jingfang full_name: Ju, Jingfang last_name: Ju - first_name: Esmeralda full_name: Juárez, Esmeralda last_name: Juárez - first_name: Delphine full_name: Judith, Delphine last_name: Judith - first_name: Gábor full_name: Juhász, Gábor last_name: Juhász - first_name: Youngsoo full_name: Jun, Youngsoo last_name: Jun - first_name: Chang Hwa full_name: Jung, Chang Hwa last_name: Jung - first_name: Sung Chul full_name: Jung, Sung Chul last_name: Jung - first_name: Yong Keun full_name: Jung, Yong Keun last_name: Jung - first_name: Heinz full_name: Jungbluth, Heinz last_name: Jungbluth - first_name: Johannes full_name: Jungverdorben, Johannes last_name: Jungverdorben - first_name: Steffen full_name: Just, Steffen last_name: Just - first_name: Kai full_name: Kaarniranta, Kai last_name: Kaarniranta - first_name: Allen full_name: Kaasik, Allen last_name: Kaasik - first_name: Tomohiro full_name: Kabuta, Tomohiro last_name: Kabuta - first_name: Daniel full_name: Kaganovich, Daniel last_name: Kaganovich - first_name: Alon full_name: Kahana, Alon last_name: Kahana - first_name: Renate full_name: Kain, Renate last_name: Kain - first_name: Shinjo full_name: Kajimura, Shinjo last_name: Kajimura - first_name: Maria full_name: Kalamvoki, Maria last_name: Kalamvoki - first_name: Manjula full_name: Kalia, Manjula last_name: Kalia - first_name: Danuta S. full_name: Kalinowski, Danuta S. last_name: Kalinowski - first_name: Nina full_name: Kaludercic, Nina last_name: Kaludercic - first_name: Ioanna full_name: Kalvari, Ioanna last_name: Kalvari - first_name: Joanna full_name: Kaminska, Joanna last_name: Kaminska - first_name: Vitaliy O. full_name: Kaminskyy, Vitaliy O. last_name: Kaminskyy - first_name: Hiromitsu full_name: Kanamori, Hiromitsu last_name: Kanamori - first_name: Keizo full_name: Kanasaki, Keizo last_name: Kanasaki - first_name: Chanhee full_name: Kang, Chanhee last_name: Kang - first_name: Rui full_name: Kang, Rui last_name: Kang - first_name: Sang Sun full_name: Kang, Sang Sun last_name: Kang - first_name: Senthilvelrajan full_name: Kaniyappan, Senthilvelrajan last_name: Kaniyappan - first_name: Tomotake full_name: Kanki, Tomotake last_name: Kanki - first_name: Thirumala Devi full_name: Kanneganti, Thirumala Devi last_name: Kanneganti - first_name: Anumantha G. full_name: Kanthasamy, Anumantha G. last_name: Kanthasamy - first_name: Arthi full_name: Kanthasamy, Arthi last_name: Kanthasamy - first_name: Marc full_name: Kantorow, Marc last_name: Kantorow - first_name: Orsolya full_name: Kapuy, Orsolya last_name: Kapuy - first_name: Michalis V. full_name: Karamouzis, Michalis V. last_name: Karamouzis - first_name: Md Razaul full_name: Karim, Md Razaul last_name: Karim - first_name: Parimal full_name: Karmakar, Parimal last_name: Karmakar - first_name: Rajesh G. full_name: Katare, Rajesh G. last_name: Katare - first_name: Masaru full_name: Kato, Masaru last_name: Kato - first_name: Stefan H.E. full_name: Kaufmann, Stefan H.E. last_name: Kaufmann - first_name: Anu full_name: Kauppinen, Anu last_name: Kauppinen - first_name: Gur P. full_name: Kaushal, Gur P. last_name: Kaushal - first_name: Susmita full_name: Kaushik, Susmita last_name: Kaushik - first_name: Kiyoshi full_name: Kawasaki, Kiyoshi last_name: Kawasaki - first_name: Kemal full_name: Kazan, Kemal last_name: Kazan - first_name: Po Yuan full_name: Ke, Po Yuan last_name: Ke - first_name: Damien J. full_name: Keating, Damien J. last_name: Keating - first_name: Ursula full_name: Keber, Ursula last_name: Keber - first_name: John H. full_name: Kehrl, John H. last_name: Kehrl - first_name: Kate E. full_name: Keller, Kate E. last_name: Keller - first_name: Christian W. full_name: Keller, Christian W. last_name: Keller - first_name: Jongsook Kim full_name: Kemper, Jongsook Kim last_name: Kemper - first_name: Candia M. full_name: Kenific, Candia M. last_name: Kenific - first_name: Oliver full_name: Kepp, Oliver last_name: Kepp - first_name: Stephanie full_name: Kermorgant, Stephanie last_name: Kermorgant - first_name: Andreas full_name: Kern, Andreas last_name: Kern - first_name: Robin full_name: Ketteler, Robin last_name: Ketteler - first_name: Tom G. full_name: Keulers, Tom G. last_name: Keulers - first_name: Boris full_name: Khalfin, Boris last_name: Khalfin - first_name: Hany full_name: Khalil, Hany last_name: Khalil - first_name: Bilon full_name: Khambu, Bilon last_name: Khambu - first_name: Shahid Y. full_name: Khan, Shahid Y. last_name: Khan - first_name: Vinoth Kumar Megraj full_name: Khandelwal, Vinoth Kumar Megraj last_name: Khandelwal - first_name: Rekha full_name: Khandia, Rekha last_name: Khandia - first_name: Widuri full_name: Kho, Widuri last_name: Kho - first_name: Noopur V. full_name: Khobrekar, Noopur V. last_name: Khobrekar - first_name: Sataree full_name: Khuansuwan, Sataree last_name: Khuansuwan - first_name: Mukhran full_name: Khundadze, Mukhran last_name: Khundadze - first_name: Samuel A. full_name: Killackey, Samuel A. last_name: Killackey - first_name: Dasol full_name: Kim, Dasol last_name: Kim - first_name: Deok Ryong full_name: Kim, Deok Ryong last_name: Kim - first_name: Do Hyung full_name: Kim, Do Hyung last_name: Kim - first_name: Dong Eun full_name: Kim, Dong Eun last_name: Kim - first_name: Eun Young full_name: Kim, Eun Young last_name: Kim - first_name: Eun Kyoung full_name: Kim, Eun Kyoung last_name: Kim - first_name: Hak Rim full_name: Kim, Hak Rim last_name: Kim - first_name: Hee Sik full_name: Kim, Hee Sik last_name: Kim - first_name: Unknown full_name: Hyung-Ryong Kim, Unknown last_name: Hyung-Ryong Kim - first_name: Jeong Hun full_name: Kim, Jeong Hun last_name: Kim - first_name: Jin Kyung full_name: Kim, Jin Kyung last_name: Kim - first_name: Jin Hoi full_name: Kim, Jin Hoi last_name: Kim - first_name: Joungmok full_name: Kim, Joungmok last_name: Kim - first_name: Ju Hwan full_name: Kim, Ju Hwan last_name: Kim - first_name: Keun Il full_name: Kim, Keun Il last_name: Kim - first_name: Peter K. full_name: Kim, Peter K. last_name: Kim - first_name: Seong Jun full_name: Kim, Seong Jun last_name: Kim - first_name: Scot R. full_name: Kimball, Scot R. last_name: Kimball - first_name: Adi full_name: Kimchi, Adi last_name: Kimchi - first_name: Alec C. full_name: Kimmelman, Alec C. last_name: Kimmelman - first_name: Tomonori full_name: Kimura, Tomonori last_name: Kimura - first_name: Matthew A. full_name: King, Matthew A. last_name: King - first_name: Kerri J. full_name: Kinghorn, Kerri J. last_name: Kinghorn - first_name: Conan G. full_name: Kinsey, Conan G. last_name: Kinsey - first_name: Vladimir full_name: Kirkin, Vladimir last_name: Kirkin - first_name: Lorrie A. full_name: Kirshenbaum, Lorrie A. last_name: Kirshenbaum - first_name: Sergey L. full_name: Kiselev, Sergey L. last_name: Kiselev - first_name: Shuji full_name: Kishi, Shuji last_name: Kishi - first_name: Katsuhiko full_name: Kitamoto, Katsuhiko last_name: Kitamoto - first_name: Yasushi full_name: Kitaoka, Yasushi last_name: Kitaoka - first_name: Kaio full_name: Kitazato, Kaio last_name: Kitazato - first_name: Richard N. full_name: Kitsis, Richard N. last_name: Kitsis - first_name: Josef T. full_name: Kittler, Josef T. last_name: Kittler - first_name: Ole full_name: Kjaerulff, Ole last_name: Kjaerulff - first_name: Peter S. full_name: Klein, Peter S. last_name: Klein - first_name: Thomas full_name: Klopstock, Thomas last_name: Klopstock - first_name: Jochen full_name: Klucken, Jochen last_name: Klucken - first_name: Helene full_name: Knævelsrud, Helene last_name: Knævelsrud - first_name: Roland L. full_name: Knorr, Roland L. last_name: Knorr - first_name: Ben C.B. full_name: Ko, Ben C.B. last_name: Ko - first_name: Fred full_name: Ko, Fred last_name: Ko - first_name: Jiunn Liang full_name: Ko, Jiunn Liang last_name: Ko - first_name: Hotaka full_name: Kobayashi, Hotaka last_name: Kobayashi - first_name: Satoru full_name: Kobayashi, Satoru last_name: Kobayashi - first_name: Ina full_name: Koch, Ina last_name: Koch - first_name: Jan C. full_name: Koch, Jan C. last_name: Koch - first_name: Ulrich full_name: Koenig, Ulrich last_name: Koenig - first_name: Donat full_name: Kögel, Donat last_name: Kögel - first_name: Young Ho full_name: Koh, Young Ho last_name: Koh - first_name: Masato full_name: Koike, Masato last_name: Koike - first_name: Sepp D. full_name: Kohlwein, Sepp D. last_name: Kohlwein - first_name: Nur M. full_name: Kocaturk, Nur M. last_name: Kocaturk - first_name: Masaaki full_name: Komatsu, Masaaki last_name: Komatsu - first_name: Jeannette full_name: König, Jeannette last_name: König - first_name: Toru full_name: Kono, Toru last_name: Kono - first_name: Benjamin T. full_name: Kopp, Benjamin T. last_name: Kopp - first_name: Tamas full_name: Korcsmaros, Tamas last_name: Korcsmaros - first_name: Gözde full_name: Korkmaz, Gözde last_name: Korkmaz - first_name: Viktor I. full_name: Korolchuk, Viktor I. last_name: Korolchuk - first_name: Mónica Suárez full_name: Korsnes, Mónica Suárez last_name: Korsnes - first_name: Ali full_name: Koskela, Ali last_name: Koskela - first_name: Janaiah full_name: Kota, Janaiah last_name: Kota - first_name: Yaichiro full_name: Kotake, Yaichiro last_name: Kotake - first_name: Monica L. full_name: Kotler, Monica L. last_name: Kotler - first_name: Yanjun full_name: Kou, Yanjun last_name: Kou - first_name: Michael I. full_name: Koukourakis, Michael I. last_name: Koukourakis - first_name: Evangelos full_name: Koustas, Evangelos last_name: Koustas - first_name: Attila L. full_name: Kovacs, Attila L. last_name: Kovacs - first_name: Tibor full_name: Kovács, Tibor last_name: Kovács - first_name: Daisuke full_name: Koya, Daisuke last_name: Koya - first_name: Tomohiro full_name: Kozako, Tomohiro last_name: Kozako - first_name: Claudine full_name: Kraft, Claudine last_name: Kraft - first_name: Dimitri full_name: Krainc, Dimitri last_name: Krainc - first_name: Helmut full_name: Krämer, Helmut last_name: Krämer - first_name: Anna D. full_name: Krasnodembskaya, Anna D. last_name: Krasnodembskaya - first_name: Carole full_name: Kretz-Remy, Carole last_name: Kretz-Remy - first_name: Guido full_name: Kroemer, Guido last_name: Kroemer - first_name: Nicholas T. full_name: Ktistakis, Nicholas T. last_name: Ktistakis - first_name: Kazuyuki full_name: Kuchitsu, Kazuyuki last_name: Kuchitsu - first_name: Sabine full_name: Kuenen, Sabine last_name: Kuenen - first_name: Lars full_name: Kuerschner, Lars last_name: Kuerschner - first_name: Thomas full_name: Kukar, Thomas last_name: Kukar - first_name: Ajay full_name: Kumar, Ajay last_name: Kumar - first_name: Ashok full_name: Kumar, Ashok last_name: Kumar - first_name: Deepak full_name: Kumar, Deepak last_name: Kumar - first_name: Dhiraj full_name: Kumar, Dhiraj last_name: Kumar - first_name: Sharad full_name: Kumar, Sharad last_name: Kumar - first_name: Shinji full_name: Kume, Shinji last_name: Kume - first_name: Caroline full_name: Kumsta, Caroline last_name: Kumsta - first_name: Chanakya N. full_name: Kundu, Chanakya N. last_name: Kundu - first_name: Mondira full_name: Kundu, Mondira last_name: Kundu - first_name: Ajaikumar B. full_name: Kunnumakkara, Ajaikumar B. last_name: Kunnumakkara - first_name: Lukasz full_name: Kurgan, Lukasz last_name: Kurgan - first_name: Tatiana G. full_name: Kutateladze, Tatiana G. last_name: Kutateladze - first_name: Ozlem full_name: Kutlu, Ozlem last_name: Kutlu - first_name: Seong Ae full_name: Kwak, Seong Ae last_name: Kwak - first_name: Ho Jeong full_name: Kwon, Ho Jeong last_name: Kwon - first_name: Taeg Kyu full_name: Kwon, Taeg Kyu last_name: Kwon - first_name: Yong Tae full_name: Kwon, Yong Tae last_name: Kwon - first_name: Irene full_name: Kyrmizi, Irene last_name: Kyrmizi - first_name: Albert full_name: La Spada, Albert last_name: La Spada - first_name: Patrick full_name: Labonté, Patrick last_name: Labonté - first_name: Sylvain full_name: Ladoire, Sylvain last_name: Ladoire - first_name: Ilaria full_name: Laface, Ilaria last_name: Laface - first_name: Frank full_name: Lafont, Frank last_name: Lafont - first_name: Diane C. full_name: Lagace, Diane C. last_name: Lagace - first_name: Vikramjit full_name: Lahiri, Vikramjit last_name: Lahiri - first_name: Zhibing full_name: Lai, Zhibing last_name: Lai - first_name: Angela S. full_name: Laird, Angela S. last_name: Laird - first_name: Aparna full_name: Lakkaraju, Aparna last_name: Lakkaraju - first_name: Trond full_name: Lamark, Trond last_name: Lamark - first_name: Sheng Hui full_name: Lan, Sheng Hui last_name: Lan - first_name: Ane full_name: Landajuela, Ane last_name: Landajuela - first_name: Darius J.R. full_name: Lane, Darius J.R. last_name: Lane - first_name: Jon D. full_name: Lane, Jon D. last_name: Lane - first_name: Charles H. full_name: Lang, Charles H. last_name: Lang - first_name: Carsten full_name: Lange, Carsten last_name: Lange - first_name: Ülo full_name: Langel, Ülo last_name: Langel - first_name: Rupert full_name: Langer, Rupert last_name: Langer - first_name: Pierre full_name: Lapaquette, Pierre last_name: Lapaquette - first_name: Jocelyn full_name: Laporte, Jocelyn last_name: Laporte - first_name: Nicholas F. full_name: Larusso, Nicholas F. last_name: Larusso - first_name: Isabel full_name: Lastres-Becker, Isabel last_name: Lastres-Becker - first_name: Wilson Chun Yu full_name: Lau, Wilson Chun Yu last_name: Lau - first_name: Gordon W. full_name: Laurie, Gordon W. last_name: Laurie - first_name: Sergio full_name: Lavandero, Sergio last_name: Lavandero - first_name: Betty Yuen Kwan full_name: Law, Betty Yuen Kwan last_name: Law - first_name: Helen Ka Wai full_name: Law, Helen Ka Wai last_name: Law - first_name: Rob full_name: Layfield, Rob last_name: Layfield - first_name: Weidong full_name: Le, Weidong last_name: Le - first_name: Herve full_name: Le Stunff, Herve last_name: Le Stunff - first_name: Alexandre Y. full_name: Leary, Alexandre Y. last_name: Leary - first_name: Jean Jacques full_name: Lebrun, Jean Jacques last_name: Lebrun - first_name: Lionel Y.W. full_name: Leck, Lionel Y.W. last_name: Leck - first_name: Jean Philippe full_name: Leduc-Gaudet, Jean Philippe last_name: Leduc-Gaudet - first_name: Changwook full_name: Lee, Changwook last_name: Lee - first_name: Chung Pei full_name: Lee, Chung Pei last_name: Lee - first_name: Da Hye full_name: Lee, Da Hye last_name: Lee - first_name: Edward B. full_name: Lee, Edward B. last_name: Lee - first_name: Erinna F. full_name: Lee, Erinna F. last_name: Lee - first_name: Gyun Min full_name: Lee, Gyun Min last_name: Lee - first_name: He Jin full_name: Lee, He Jin last_name: Lee - first_name: Heung Kyu full_name: Lee, Heung Kyu last_name: Lee - first_name: Jae Man full_name: Lee, Jae Man last_name: Lee - first_name: Jason S. full_name: Lee, Jason S. last_name: Lee - first_name: Jin A. full_name: Lee, Jin A. last_name: Lee - first_name: Joo Yong full_name: Lee, Joo Yong last_name: Lee - first_name: Jun Hee full_name: Lee, Jun Hee last_name: Lee - first_name: Michael full_name: Lee, Michael last_name: Lee - first_name: Min Goo full_name: Lee, Min Goo last_name: Lee - first_name: Min Jae full_name: Lee, Min Jae last_name: Lee - first_name: Myung Shik full_name: Lee, Myung Shik last_name: Lee - first_name: Sang Yoon full_name: Lee, Sang Yoon last_name: Lee - first_name: Seung Jae full_name: Lee, Seung Jae last_name: Lee - first_name: Stella Y. full_name: Lee, Stella Y. last_name: Lee - first_name: Sung Bae full_name: Lee, Sung Bae last_name: Lee - first_name: Won Hee full_name: Lee, Won Hee last_name: Lee - first_name: Ying Ray full_name: Lee, Ying Ray last_name: Lee - first_name: Yong Ho full_name: Lee, Yong Ho last_name: Lee - first_name: Youngil full_name: Lee, Youngil last_name: Lee - first_name: Christophe full_name: Lefebvre, Christophe last_name: Lefebvre - first_name: Renaud full_name: Legouis, Renaud last_name: Legouis - first_name: Yu L. full_name: Lei, Yu L. last_name: Lei - first_name: Yuchen full_name: Lei, Yuchen last_name: Lei - first_name: Sergey full_name: Leikin, Sergey last_name: Leikin - first_name: Gerd full_name: Leitinger, Gerd last_name: Leitinger - first_name: Leticia full_name: Lemus, Leticia last_name: Lemus - first_name: Shuilong full_name: Leng, Shuilong last_name: Leng - first_name: Olivia full_name: Lenoir, Olivia last_name: Lenoir - first_name: Guido full_name: Lenz, Guido last_name: Lenz - first_name: Heinz Josef full_name: Lenz, Heinz Josef last_name: Lenz - first_name: Paola full_name: Lenzi, Paola last_name: Lenzi - first_name: Yolanda full_name: León, Yolanda last_name: León - first_name: Andréia M. full_name: Leopoldino, Andréia M. last_name: Leopoldino - first_name: Christoph full_name: Leschczyk, Christoph last_name: Leschczyk - first_name: Stina full_name: Leskelä, Stina last_name: Leskelä - first_name: Elisabeth full_name: Letellier, Elisabeth last_name: Letellier - first_name: Chi Ting full_name: Leung, Chi Ting last_name: Leung - first_name: Po Sing full_name: Leung, Po Sing last_name: Leung - first_name: Jeremy S. full_name: Leventhal, Jeremy S. last_name: Leventhal - first_name: Beth full_name: Levine, Beth last_name: Levine - first_name: Patrick A. full_name: Lewis, Patrick A. last_name: Lewis - first_name: Klaus full_name: Ley, Klaus last_name: Ley - first_name: Bin full_name: Li, Bin last_name: Li - first_name: Da Qiang full_name: Li, Da Qiang last_name: Li - first_name: Jianming full_name: Li, Jianming last_name: Li - first_name: Jing full_name: Li, Jing last_name: Li - first_name: Jiong full_name: Li, Jiong last_name: Li - first_name: Ke full_name: Li, Ke last_name: Li - first_name: Liwu full_name: Li, Liwu last_name: Li - first_name: Mei full_name: Li, Mei last_name: Li - first_name: Min full_name: Li, Min last_name: Li - first_name: Min full_name: Li, Min last_name: Li - first_name: Ming full_name: Li, Ming last_name: Li - first_name: Mingchuan full_name: Li, Mingchuan last_name: Li - first_name: Pin Lan full_name: Li, Pin Lan last_name: Li - first_name: Ming Qing full_name: Li, Ming Qing last_name: Li - first_name: Qing full_name: Li, Qing last_name: Li - first_name: Sheng full_name: Li, Sheng last_name: Li - first_name: Tiangang full_name: Li, Tiangang last_name: Li - first_name: Wei full_name: Li, Wei last_name: Li - first_name: Wenming full_name: Li, Wenming last_name: Li - first_name: Xue full_name: Li, Xue last_name: Li - first_name: Yi Ping full_name: Li, Yi Ping last_name: Li - first_name: Yuan full_name: Li, Yuan last_name: Li - first_name: Zhiqiang full_name: Li, Zhiqiang last_name: Li - first_name: Zhiyong full_name: Li, Zhiyong last_name: Li - first_name: Zhiyuan full_name: Li, Zhiyuan last_name: Li - first_name: Jiqin full_name: Lian, Jiqin last_name: Lian - first_name: Chengyu full_name: Liang, Chengyu last_name: Liang - first_name: Qiangrong full_name: Liang, Qiangrong last_name: Liang - first_name: Weicheng full_name: Liang, Weicheng last_name: Liang - first_name: Yongheng full_name: Liang, Yongheng last_name: Liang - first_name: Yong Tian full_name: Liang, Yong Tian last_name: Liang - first_name: Guanghong full_name: Liao, Guanghong last_name: Liao - first_name: Lujian full_name: Liao, Lujian last_name: Liao - first_name: Mingzhi full_name: Liao, Mingzhi last_name: Liao - first_name: Yung Feng full_name: Liao, Yung Feng last_name: Liao - first_name: Mariangela full_name: Librizzi, Mariangela last_name: Librizzi - first_name: Pearl P.Y. full_name: Lie, Pearl P.Y. last_name: Lie - first_name: Mary A. full_name: Lilly, Mary A. last_name: Lilly - first_name: Hyunjung J. full_name: Lim, Hyunjung J. last_name: Lim - first_name: Thania R.R. full_name: Lima, Thania R.R. last_name: Lima - first_name: Federica full_name: Limana, Federica last_name: Limana - first_name: Chao full_name: Lin, Chao last_name: Lin - first_name: Chih Wen full_name: Lin, Chih Wen last_name: Lin - first_name: Dar Shong full_name: Lin, Dar Shong last_name: Lin - first_name: Fu Cheng full_name: Lin, Fu Cheng last_name: Lin - first_name: Jiandie D. full_name: Lin, Jiandie D. last_name: Lin - first_name: Kurt M. full_name: Lin, Kurt M. last_name: Lin - first_name: Kwang Huei full_name: Lin, Kwang Huei last_name: Lin - first_name: Liang Tzung full_name: Lin, Liang Tzung last_name: Lin - first_name: Pei Hui full_name: Lin, Pei Hui last_name: Lin - first_name: Qiong full_name: Lin, Qiong last_name: Lin - first_name: Shaofeng full_name: Lin, Shaofeng last_name: Lin - first_name: Su Ju full_name: Lin, Su Ju last_name: Lin - first_name: Wenyu full_name: Lin, Wenyu last_name: Lin - first_name: Xueying full_name: Lin, Xueying last_name: Lin - first_name: Yao Xin full_name: Lin, Yao Xin last_name: Lin - first_name: Yee Shin full_name: Lin, Yee Shin last_name: Lin - first_name: Rafael full_name: Linden, Rafael last_name: Linden - first_name: Paula full_name: Lindner, Paula last_name: Lindner - first_name: Shuo Chien full_name: Ling, Shuo Chien last_name: Ling - first_name: Paul full_name: Lingor, Paul last_name: Lingor - first_name: Amelia K. full_name: Linnemann, Amelia K. last_name: Linnemann - first_name: Yih Cherng full_name: Liou, Yih Cherng last_name: Liou - first_name: Marta M. full_name: Lipinski, Marta M. last_name: Lipinski - first_name: Saška full_name: Lipovšek, Saška last_name: Lipovšek - first_name: Vitor A. full_name: Lira, Vitor A. last_name: Lira - first_name: Natalia full_name: Lisiak, Natalia last_name: Lisiak - first_name: Paloma B. full_name: Liton, Paloma B. last_name: Liton - first_name: Chao full_name: Liu, Chao last_name: Liu - first_name: Ching Hsuan full_name: Liu, Ching Hsuan last_name: Liu - first_name: Chun Feng full_name: Liu, Chun Feng last_name: Liu - first_name: Cui Hua full_name: Liu, Cui Hua last_name: Liu - first_name: Fang full_name: Liu, Fang last_name: Liu - first_name: Hao full_name: Liu, Hao last_name: Liu - first_name: Hsiao Sheng full_name: Liu, Hsiao Sheng last_name: Liu - first_name: Hua Feng full_name: Liu, Hua Feng last_name: Liu - first_name: Huifang full_name: Liu, Huifang last_name: Liu - first_name: Jia full_name: Liu, Jia last_name: Liu - first_name: Jing full_name: Liu, Jing last_name: Liu - first_name: Julia full_name: Liu, Julia last_name: Liu - first_name: Leyuan full_name: Liu, Leyuan last_name: Liu - first_name: Longhua full_name: Liu, Longhua last_name: Liu - first_name: Meilian full_name: Liu, Meilian last_name: Liu - first_name: Qin full_name: Liu, Qin last_name: Liu - first_name: Wei full_name: Liu, Wei last_name: Liu - first_name: Wende full_name: Liu, Wende last_name: Liu - first_name: Xiao Hong full_name: Liu, Xiao Hong last_name: Liu - first_name: Xiaodong full_name: Liu, Xiaodong last_name: Liu - first_name: Xingguo full_name: Liu, Xingguo last_name: Liu - first_name: Xu full_name: Liu, Xu last_name: Liu - first_name: Xuedong full_name: Liu, Xuedong last_name: Liu - first_name: Yanfen full_name: Liu, Yanfen last_name: Liu - first_name: Yang full_name: Liu, Yang last_name: Liu - first_name: Yang full_name: Liu, Yang last_name: Liu - first_name: Yueyang full_name: Liu, Yueyang last_name: Liu - first_name: Yule full_name: Liu, Yule last_name: Liu - first_name: J. Andrew full_name: Livingston, J. Andrew last_name: Livingston - first_name: Gerard full_name: Lizard, Gerard last_name: Lizard - first_name: Jose M. full_name: Lizcano, Jose M. last_name: Lizcano - first_name: Senka full_name: Ljubojevic-Holzer, Senka last_name: Ljubojevic-Holzer - first_name: Matilde E. full_name: Lleonart, Matilde E. last_name: Lleonart - first_name: David full_name: Llobet-Navàs, David last_name: Llobet-Navàs - first_name: Alicia full_name: Llorente, Alicia last_name: Llorente - first_name: Chih Hung full_name: Lo, Chih Hung last_name: Lo - first_name: Damián full_name: Lobato-Márquez, Damián last_name: Lobato-Márquez - first_name: Qi full_name: Long, Qi last_name: Long - first_name: Yun Chau full_name: Long, Yun Chau last_name: Long - first_name: Ben full_name: Loos, Ben last_name: Loos - first_name: Julia A. full_name: Loos, Julia A. last_name: Loos - first_name: Manuela G. full_name: López, Manuela G. last_name: López - first_name: Guillermo full_name: López-Doménech, Guillermo last_name: López-Doménech - first_name: José Antonio full_name: López-Guerrero, José Antonio last_name: López-Guerrero - first_name: Ana T. full_name: López-Jiménez, Ana T. last_name: López-Jiménez - first_name: Óscar full_name: López-Pérez, Óscar last_name: López-Pérez - first_name: Israel full_name: López-Valero, Israel last_name: López-Valero - first_name: Magdalena J. full_name: Lorenowicz, Magdalena J. last_name: Lorenowicz - first_name: Mar full_name: Lorente, Mar last_name: Lorente - first_name: Peter full_name: Lorincz, Peter last_name: Lorincz - first_name: Laura full_name: Lossi, Laura last_name: Lossi - first_name: Sophie full_name: Lotersztajn, Sophie last_name: Lotersztajn - first_name: Penny E. full_name: Lovat, Penny E. last_name: Lovat - first_name: Jonathan F. full_name: Lovell, Jonathan F. last_name: Lovell - first_name: Alenka full_name: Lovy, Alenka last_name: Lovy - first_name: Péter full_name: Lőw, Péter last_name: Lőw - first_name: Guang full_name: Lu, Guang last_name: Lu - first_name: Haocheng full_name: Lu, Haocheng last_name: Lu - first_name: Jia Hong full_name: Lu, Jia Hong last_name: Lu - first_name: Jin Jian full_name: Lu, Jin Jian last_name: Lu - first_name: Mengji full_name: Lu, Mengji last_name: Lu - first_name: Shuyan full_name: Lu, Shuyan last_name: Lu - first_name: Alessandro full_name: Luciani, Alessandro last_name: Luciani - first_name: John M. full_name: Lucocq, John M. last_name: Lucocq - first_name: Paula full_name: Ludovico, Paula last_name: Ludovico - first_name: Micah A. full_name: Luftig, Micah A. last_name: Luftig - first_name: Morten full_name: Luhr, Morten last_name: Luhr - first_name: Diego full_name: Luis-Ravelo, Diego last_name: Luis-Ravelo - first_name: Julian J. full_name: Lum, Julian J. last_name: Lum - first_name: Liany full_name: Luna-Dulcey, Liany last_name: Luna-Dulcey - first_name: Anders H. full_name: Lund, Anders H. last_name: Lund - first_name: Viktor K. full_name: Lund, Viktor K. last_name: Lund - first_name: Jan D. full_name: Lünemann, Jan D. last_name: Lünemann - first_name: Patrick full_name: Lüningschrör, Patrick last_name: Lüningschrör - first_name: Honglin full_name: Luo, Honglin last_name: Luo - first_name: Rongcan full_name: Luo, Rongcan last_name: Luo - first_name: Shouqing full_name: Luo, Shouqing last_name: Luo - first_name: Zhi full_name: Luo, Zhi last_name: Luo - first_name: Claudio full_name: Luparello, Claudio last_name: Luparello - first_name: Bernhard full_name: Lüscher, Bernhard last_name: Lüscher - first_name: Luan full_name: Luu, Luan last_name: Luu - first_name: Alex full_name: Lyakhovich, Alex last_name: Lyakhovich - first_name: Konstantin G. full_name: Lyamzaev, Konstantin G. last_name: Lyamzaev - first_name: Alf Håkon full_name: Lystad, Alf Håkon last_name: Lystad - first_name: Lyubomyr full_name: Lytvynchuk, Lyubomyr last_name: Lytvynchuk - first_name: Alvin C. full_name: Ma, Alvin C. last_name: Ma - first_name: Changle full_name: Ma, Changle last_name: Ma - first_name: Mengxiao full_name: Ma, Mengxiao last_name: Ma - first_name: Ning Fang full_name: Ma, Ning Fang last_name: Ma - first_name: Quan Hong full_name: Ma, Quan Hong last_name: Ma - first_name: Xinliang full_name: Ma, Xinliang last_name: Ma - first_name: Yueyun full_name: Ma, Yueyun last_name: Ma - first_name: Zhenyi full_name: Ma, Zhenyi last_name: Ma - first_name: Ormond A. full_name: Macdougald, Ormond A. last_name: Macdougald - first_name: Fernando full_name: Macian, Fernando last_name: Macian - first_name: Gustavo C. full_name: Macintosh, Gustavo C. last_name: Macintosh - first_name: Jeffrey P. full_name: Mackeigan, Jeffrey P. last_name: Mackeigan - first_name: Kay F. full_name: Macleod, Kay F. last_name: Macleod - first_name: Sandra full_name: Maday, Sandra last_name: Maday - first_name: Frank full_name: Madeo, Frank last_name: Madeo - first_name: Muniswamy full_name: Madesh, Muniswamy last_name: Madesh - first_name: Tobias full_name: Madl, Tobias last_name: Madl - first_name: Julio full_name: Madrigal-Matute, Julio last_name: Madrigal-Matute - first_name: Akiko full_name: Maeda, Akiko last_name: Maeda - first_name: Yasuhiro full_name: Maejima, Yasuhiro last_name: Maejima - first_name: Marta full_name: Magarinos, Marta last_name: Magarinos - first_name: Poornima full_name: Mahavadi, Poornima last_name: Mahavadi - first_name: Emiliano full_name: Maiani, Emiliano last_name: Maiani - first_name: Kenneth full_name: Maiese, Kenneth last_name: Maiese - first_name: Panchanan full_name: Maiti, Panchanan last_name: Maiti - first_name: Maria Chiara full_name: Maiuri, Maria Chiara last_name: Maiuri - first_name: Barbara full_name: Majello, Barbara last_name: Majello - first_name: Michael B. full_name: Major, Michael B. last_name: Major - first_name: Elena full_name: Makareeva, Elena last_name: Makareeva - first_name: Fayaz full_name: Malik, Fayaz last_name: Malik - first_name: Karthik full_name: Mallilankaraman, Karthik last_name: Mallilankaraman - first_name: Walter full_name: Malorni, Walter last_name: Malorni - first_name: Alina full_name: Maloyan, Alina last_name: Maloyan - first_name: Najiba full_name: Mammadova, Najiba last_name: Mammadova - first_name: Gene Chi Wai full_name: Man, Gene Chi Wai last_name: Man - first_name: Federico full_name: Manai, Federico last_name: Manai - first_name: Joseph D. full_name: Mancias, Joseph D. last_name: Mancias - first_name: Eva Maria full_name: Mandelkow, Eva Maria last_name: Mandelkow - first_name: Michael A. full_name: Mandell, Michael A. last_name: Mandell - first_name: Angelo A. full_name: Manfredi, Angelo A. last_name: Manfredi - first_name: Masoud H. full_name: Manjili, Masoud H. last_name: Manjili - first_name: Ravi full_name: Manjithaya, Ravi last_name: Manjithaya - first_name: Patricio full_name: Manque, Patricio last_name: Manque - first_name: Bella B. full_name: Manshian, Bella B. last_name: Manshian - first_name: Raquel full_name: Manzano, Raquel last_name: Manzano - first_name: Claudia full_name: Manzoni, Claudia last_name: Manzoni - first_name: Kai full_name: Mao, Kai last_name: Mao - first_name: Cinzia full_name: Marchese, Cinzia last_name: Marchese - first_name: Sandrine full_name: Marchetti, Sandrine last_name: Marchetti - first_name: Anna Maria full_name: Marconi, Anna Maria last_name: Marconi - first_name: Fabrizio full_name: Marcucci, Fabrizio last_name: Marcucci - first_name: Stefania full_name: Mardente, Stefania last_name: Mardente - first_name: Olga A. full_name: Mareninova, Olga A. last_name: Mareninova - first_name: Marta full_name: Margeta, Marta last_name: Margeta - first_name: Muriel full_name: Mari, Muriel last_name: Mari - first_name: Sara full_name: Marinelli, Sara last_name: Marinelli - first_name: Oliviero full_name: Marinelli, Oliviero last_name: Marinelli - first_name: Guillermo full_name: Mariño, Guillermo last_name: Mariño - first_name: Sofia full_name: Mariotto, Sofia last_name: Mariotto - first_name: Richard S. full_name: Marshall, Richard S. last_name: Marshall - first_name: Mark R. full_name: Marten, Mark R. last_name: Marten - first_name: Sascha full_name: Martens, Sascha last_name: Martens - first_name: Alexandre P.J. full_name: Martin, Alexandre P.J. last_name: Martin - first_name: Katie R. full_name: Martin, Katie R. last_name: Martin - first_name: Sara full_name: Martin, Sara last_name: Martin - first_name: Shaun full_name: Martin, Shaun last_name: Martin - first_name: Adrián full_name: Martín-Segura, Adrián last_name: Martín-Segura - first_name: Miguel A. full_name: Martín-Acebes, Miguel A. last_name: Martín-Acebes - first_name: Inmaculada full_name: Martin-Burriel, Inmaculada last_name: Martin-Burriel - first_name: Marcos full_name: Martin-Rincon, Marcos last_name: Martin-Rincon - first_name: Paloma full_name: Martin-Sanz, Paloma last_name: Martin-Sanz - first_name: José A. full_name: Martina, José A. last_name: Martina - first_name: Wim full_name: Martinet, Wim last_name: Martinet - first_name: Aitor full_name: Martinez, Aitor last_name: Martinez - first_name: Ana full_name: Martinez, Ana last_name: Martinez - first_name: Jennifer full_name: Martinez, Jennifer last_name: Martinez - first_name: Moises full_name: Martinez Velazquez, Moises last_name: Martinez Velazquez - first_name: Nuria full_name: Martinez-Lopez, Nuria last_name: Martinez-Lopez - first_name: Marta full_name: Martinez-Vicente, Marta last_name: Martinez-Vicente - first_name: Daniel O. full_name: Martins, Daniel O. last_name: Martins - first_name: Joilson O. full_name: Martins, Joilson O. last_name: Martins - first_name: Waleska K. full_name: Martins, Waleska K. last_name: Martins - first_name: Tania full_name: Martins-Marques, Tania last_name: Martins-Marques - first_name: Emanuele full_name: Marzetti, Emanuele last_name: Marzetti - first_name: Shashank full_name: Masaldan, Shashank last_name: Masaldan - first_name: Celine full_name: Masclaux-Daubresse, Celine last_name: Masclaux-Daubresse - first_name: Douglas G. full_name: Mashek, Douglas G. last_name: Mashek - first_name: Valentina full_name: Massa, Valentina last_name: Massa - first_name: Lourdes full_name: Massieu, Lourdes last_name: Massieu - first_name: Glenn R. full_name: Masson, Glenn R. last_name: Masson - first_name: Laura full_name: Masuelli, Laura last_name: Masuelli - first_name: Anatoliy I. full_name: Masyuk, Anatoliy I. last_name: Masyuk - first_name: Tetyana V. full_name: Masyuk, Tetyana V. last_name: Masyuk - first_name: Paola full_name: Matarrese, Paola last_name: Matarrese - first_name: Ander full_name: Matheu, Ander last_name: Matheu - first_name: Satoaki full_name: Matoba, Satoaki last_name: Matoba - first_name: Sachiko full_name: Matsuzaki, Sachiko last_name: Matsuzaki - first_name: Pamela full_name: Mattar, Pamela last_name: Mattar - first_name: Alessandro full_name: Matte, Alessandro last_name: Matte - first_name: Domenico full_name: Mattoscio, Domenico last_name: Mattoscio - first_name: José L. full_name: Mauriz, José L. last_name: Mauriz - first_name: Mario full_name: Mauthe, Mario last_name: Mauthe - first_name: Caroline full_name: Mauvezin, Caroline last_name: Mauvezin - first_name: Emanual full_name: Maverakis, Emanual last_name: Maverakis - first_name: Paola full_name: Maycotte, Paola last_name: Maycotte - first_name: Johanna full_name: Mayer, Johanna last_name: Mayer - first_name: Gianluigi full_name: Mazzoccoli, Gianluigi last_name: Mazzoccoli - first_name: Cristina full_name: Mazzoni, Cristina last_name: Mazzoni - first_name: Joseph R. full_name: Mazzulli, Joseph R. last_name: Mazzulli - first_name: Nami full_name: Mccarty, Nami last_name: Mccarty - first_name: Christine full_name: Mcdonald, Christine last_name: Mcdonald - first_name: Mitchell R. full_name: Mcgill, Mitchell R. last_name: Mcgill - first_name: Sharon L. full_name: Mckenna, Sharon L. last_name: Mckenna - first_name: Beth Ann full_name: Mclaughlin, Beth Ann last_name: Mclaughlin - first_name: Fionn full_name: Mcloughlin, Fionn last_name: Mcloughlin - first_name: Mark A. full_name: Mcniven, Mark A. last_name: Mcniven - first_name: Thomas G. full_name: Mcwilliams, Thomas G. last_name: Mcwilliams - first_name: Fatima full_name: Mechta-Grigoriou, Fatima last_name: Mechta-Grigoriou - first_name: Tania Catarina full_name: Medeiros, Tania Catarina last_name: Medeiros - first_name: Diego L. full_name: Medina, Diego L. last_name: Medina - first_name: Lynn A. full_name: Megeney, Lynn A. last_name: Megeney - first_name: Klara full_name: Megyeri, Klara last_name: Megyeri - first_name: Maryam full_name: Mehrpour, Maryam last_name: Mehrpour - first_name: Jawahar L. full_name: Mehta, Jawahar L. last_name: Mehta - first_name: Alfred J. full_name: Meijer, Alfred J. last_name: Meijer - first_name: Annemarie H. full_name: Meijer, Annemarie H. last_name: Meijer - first_name: Jakob full_name: Mejlvang, Jakob last_name: Mejlvang - first_name: Alicia full_name: Meléndez, Alicia last_name: Meléndez - first_name: Annette full_name: Melk, Annette last_name: Melk - first_name: Gonen full_name: Memisoglu, Gonen last_name: Memisoglu - first_name: Alexandrina F. full_name: Mendes, Alexandrina F. last_name: Mendes - first_name: Delong full_name: Meng, Delong last_name: Meng - first_name: Fei full_name: Meng, Fei last_name: Meng - first_name: Tian full_name: Meng, Tian last_name: Meng - first_name: Rubem full_name: Menna-Barreto, Rubem last_name: Menna-Barreto - first_name: Manoj B. full_name: Menon, Manoj B. last_name: Menon - first_name: Carol full_name: Mercer, Carol last_name: Mercer - first_name: Anne E. full_name: Mercier, Anne E. last_name: Mercier - first_name: Jean Louis full_name: Mergny, Jean Louis last_name: Mergny - first_name: Adalberto full_name: Merighi, Adalberto last_name: Merighi - first_name: Seth D. full_name: Merkley, Seth D. last_name: Merkley - first_name: Giuseppe full_name: Merla, Giuseppe last_name: Merla - first_name: Volker full_name: Meske, Volker last_name: Meske - first_name: Ana Cecilia full_name: Mestre, Ana Cecilia last_name: Mestre - first_name: Shree Padma full_name: Metur, Shree Padma last_name: Metur - first_name: Christian full_name: Meyer, Christian last_name: Meyer - first_name: Hemmo full_name: Meyer, Hemmo last_name: Meyer - first_name: Wenyi full_name: Mi, Wenyi last_name: Mi - first_name: Jeanne full_name: Mialet-Perez, Jeanne last_name: Mialet-Perez - first_name: Junying full_name: Miao, Junying last_name: Miao - first_name: Lucia full_name: Micale, Lucia last_name: Micale - first_name: Yasuo full_name: Miki, Yasuo last_name: Miki - first_name: Enrico full_name: Milan, Enrico last_name: Milan - first_name: Małgorzata full_name: Milczarek, Małgorzata last_name: Milczarek - first_name: Dana L. full_name: Miller, Dana L. last_name: Miller - first_name: Samuel I. full_name: Miller, Samuel I. last_name: Miller - first_name: Silke full_name: Miller, Silke last_name: Miller - first_name: Steven W. full_name: Millward, Steven W. last_name: Millward - first_name: Ira full_name: Milosevic, Ira last_name: Milosevic - first_name: Elena A. full_name: Minina, Elena A. last_name: Minina - first_name: Hamed full_name: Mirzaei, Hamed last_name: Mirzaei - first_name: Hamid Reza full_name: Mirzaei, Hamid Reza last_name: Mirzaei - first_name: Mehdi full_name: Mirzaei, Mehdi last_name: Mirzaei - first_name: Amit full_name: Mishra, Amit last_name: Mishra - first_name: Nandita full_name: Mishra, Nandita last_name: Mishra - first_name: Paras Kumar full_name: Mishra, Paras Kumar last_name: Mishra - first_name: Maja full_name: Misirkic Marjanovic, Maja last_name: Misirkic Marjanovic - first_name: Roberta full_name: Misasi, Roberta last_name: Misasi - first_name: Amit full_name: Misra, Amit last_name: Misra - first_name: Gabriella full_name: Misso, Gabriella last_name: Misso - first_name: Claire full_name: Mitchell, Claire last_name: Mitchell - first_name: Geraldine full_name: Mitou, Geraldine last_name: Mitou - first_name: Tetsuji full_name: Miura, Tetsuji last_name: Miura - first_name: Shigeki full_name: Miyamoto, Shigeki last_name: Miyamoto - first_name: Makoto full_name: Miyazaki, Makoto last_name: Miyazaki - first_name: Mitsunori full_name: Miyazaki, Mitsunori last_name: Miyazaki - first_name: Taiga full_name: Miyazaki, Taiga last_name: Miyazaki - first_name: Keisuke full_name: Miyazawa, Keisuke last_name: Miyazawa - first_name: Noboru full_name: Mizushima, Noboru last_name: Mizushima - first_name: Trine H. full_name: Mogensen, Trine H. last_name: Mogensen - first_name: Baharia full_name: Mograbi, Baharia last_name: Mograbi - first_name: Reza full_name: Mohammadinejad, Reza last_name: Mohammadinejad - first_name: Yasir full_name: Mohamud, Yasir last_name: Mohamud - first_name: Abhishek full_name: Mohanty, Abhishek last_name: Mohanty - first_name: Sipra full_name: Mohapatra, Sipra last_name: Mohapatra - first_name: Torsten full_name: Möhlmann, Torsten last_name: Möhlmann - first_name: Asif full_name: Mohmmed, Asif last_name: Mohmmed - first_name: Anna full_name: Moles, Anna last_name: Moles - first_name: Kelle H. full_name: Moley, Kelle H. last_name: Moley - first_name: Maurizio full_name: Molinari, Maurizio last_name: Molinari - first_name: Vincenzo full_name: Mollace, Vincenzo last_name: Mollace - first_name: Andreas Buch full_name: Møller, Andreas Buch last_name: Møller - first_name: Bertrand full_name: Mollereau, Bertrand last_name: Mollereau - first_name: Faustino full_name: Mollinedo, Faustino last_name: Mollinedo - first_name: Costanza full_name: Montagna, Costanza last_name: Montagna - first_name: Mervyn J. full_name: Monteiro, Mervyn J. last_name: Monteiro - first_name: Andrea full_name: Montella, Andrea last_name: Montella - first_name: L. Ruth full_name: Montes, L. Ruth last_name: Montes - first_name: Barbara full_name: Montico, Barbara last_name: Montico - first_name: Vinod K. full_name: Mony, Vinod K. last_name: Mony - first_name: Giacomo full_name: Monzio Compagnoni, Giacomo last_name: Monzio Compagnoni - first_name: Michael N. full_name: Moore, Michael N. last_name: Moore - first_name: Mohammad A. full_name: Moosavi, Mohammad A. last_name: Moosavi - first_name: Ana L. full_name: Mora, Ana L. last_name: Mora - first_name: Marina full_name: Mora, Marina last_name: Mora - first_name: David full_name: Morales-Alamo, David last_name: Morales-Alamo - first_name: Rosario full_name: Moratalla, Rosario last_name: Moratalla - first_name: Paula I. full_name: Moreira, Paula I. last_name: Moreira - first_name: Elena full_name: Morelli, Elena last_name: Morelli - first_name: Sandra full_name: Moreno, Sandra last_name: Moreno - first_name: Daniel full_name: Moreno-Blas, Daniel last_name: Moreno-Blas - first_name: Viviana full_name: Moresi, Viviana last_name: Moresi - first_name: Benjamin full_name: Morga, Benjamin last_name: Morga - first_name: Alwena H. full_name: Morgan, Alwena H. last_name: Morgan - first_name: Fabrice full_name: Morin, Fabrice last_name: Morin - first_name: Hideaki full_name: Morishita, Hideaki last_name: Morishita - first_name: Orson L. full_name: Moritz, Orson L. last_name: Moritz - first_name: Mariko full_name: Moriyama, Mariko last_name: Moriyama - first_name: Yuji full_name: Moriyasu, Yuji last_name: Moriyasu - first_name: Manuela full_name: Morleo, Manuela last_name: Morleo - first_name: Eugenia full_name: Morselli, Eugenia last_name: Morselli - first_name: Jose F. full_name: Moruno-Manchon, Jose F. last_name: Moruno-Manchon - first_name: Jorge full_name: Moscat, Jorge last_name: Moscat - first_name: Serge full_name: Mostowy, Serge last_name: Mostowy - first_name: Elisa full_name: Motori, Elisa last_name: Motori - first_name: Andrea Felinto full_name: Moura, Andrea Felinto last_name: Moura - first_name: Naima full_name: Moustaid-Moussa, Naima last_name: Moustaid-Moussa - first_name: Maria full_name: Mrakovcic, Maria last_name: Mrakovcic - first_name: Gabriel full_name: Muciño-Hernández, Gabriel last_name: Muciño-Hernández - first_name: Anupam full_name: Mukherjee, Anupam last_name: Mukherjee - first_name: Subhadip full_name: Mukhopadhyay, Subhadip last_name: Mukhopadhyay - first_name: Jean M. full_name: Mulcahy Levy, Jean M. last_name: Mulcahy Levy - first_name: Victoriano full_name: Mulero, Victoriano last_name: Mulero - first_name: Sylviane full_name: Muller, Sylviane last_name: Muller - first_name: Christian full_name: Münch, Christian last_name: Münch - first_name: Ashok full_name: Munjal, Ashok last_name: Munjal - first_name: Pura full_name: Munoz-Canoves, Pura last_name: Munoz-Canoves - first_name: Teresa full_name: Muñoz-Galdeano, Teresa last_name: Muñoz-Galdeano - first_name: Christian full_name: Münz, Christian last_name: Münz - first_name: Tomokazu full_name: Murakawa, Tomokazu last_name: Murakawa - first_name: Claudia full_name: Muratori, Claudia last_name: Muratori - first_name: Brona M. full_name: Murphy, Brona M. last_name: Murphy - first_name: J. Patrick full_name: Murphy, J. Patrick last_name: Murphy - first_name: Aditya full_name: Murthy, Aditya last_name: Murthy - first_name: Timo T. full_name: Myöhänen, Timo T. last_name: Myöhänen - first_name: Indira U. full_name: Mysorekar, Indira U. last_name: Mysorekar - first_name: Jennifer full_name: Mytych, Jennifer last_name: Mytych - first_name: Seyed Mohammad full_name: Nabavi, Seyed Mohammad last_name: Nabavi - first_name: Massimo full_name: Nabissi, Massimo last_name: Nabissi - first_name: Péter full_name: Nagy, Péter last_name: Nagy - first_name: Jihoon full_name: Nah, Jihoon last_name: Nah - first_name: Aimable full_name: Nahimana, Aimable last_name: Nahimana - first_name: Ichiro full_name: Nakagawa, Ichiro last_name: Nakagawa - first_name: Ken full_name: Nakamura, Ken last_name: Nakamura - first_name: Hitoshi full_name: Nakatogawa, Hitoshi last_name: Nakatogawa - first_name: Shyam S. full_name: Nandi, Shyam S. last_name: Nandi - first_name: Meera full_name: Nanjundan, Meera last_name: Nanjundan - first_name: Monica full_name: Nanni, Monica last_name: Nanni - first_name: Gennaro full_name: Napolitano, Gennaro last_name: Napolitano - first_name: Roberta full_name: Nardacci, Roberta last_name: Nardacci - first_name: Masashi full_name: Narita, Masashi last_name: Narita - first_name: Melissa full_name: Nassif, Melissa last_name: Nassif - first_name: Ilana full_name: Nathan, Ilana last_name: Nathan - first_name: Manabu full_name: Natsumeda, Manabu last_name: Natsumeda - first_name: Ryno J. full_name: Naude, Ryno J. last_name: Naude - first_name: Christin full_name: Naumann, Christin last_name: Naumann - first_name: Olaia full_name: Naveiras, Olaia last_name: Naveiras - first_name: Fatemeh full_name: Navid, Fatemeh last_name: Navid - first_name: Steffan T. full_name: Nawrocki, Steffan T. last_name: Nawrocki - first_name: Taras Y. full_name: Nazarko, Taras Y. last_name: Nazarko - first_name: Francesca full_name: Nazio, Francesca last_name: Nazio - first_name: Florentina full_name: Negoita, Florentina last_name: Negoita - first_name: Thomas full_name: Neill, Thomas last_name: Neill - first_name: Amanda L. full_name: Neisch, Amanda L. last_name: Neisch - first_name: Luca M. full_name: Neri, Luca M. last_name: Neri - first_name: Mihai G. full_name: Netea, Mihai G. last_name: Netea - first_name: Patrick full_name: Neubert, Patrick last_name: Neubert - first_name: Thomas P. full_name: Neufeld, Thomas P. last_name: Neufeld - first_name: Dietbert full_name: Neumann, Dietbert last_name: Neumann - first_name: Albert full_name: Neutzner, Albert last_name: Neutzner - first_name: Phillip T. full_name: Newton, Phillip T. last_name: Newton - first_name: Paul A. full_name: Ney, Paul A. last_name: Ney - first_name: Ioannis P. full_name: Nezis, Ioannis P. last_name: Nezis - first_name: Charlene C.W. full_name: Ng, Charlene C.W. last_name: Ng - first_name: Tzi Bun full_name: Ng, Tzi Bun last_name: Ng - first_name: Hang T.T. full_name: Nguyen, Hang T.T. last_name: Nguyen - first_name: Long T. full_name: Nguyen, Long T. last_name: Nguyen - first_name: Hong Min full_name: Ni, Hong Min last_name: Ni - first_name: Clíona full_name: Ní Cheallaigh, Clíona last_name: Ní Cheallaigh - first_name: Zhenhong full_name: Ni, Zhenhong last_name: Ni - first_name: M. Celeste full_name: Nicolao, M. Celeste last_name: Nicolao - first_name: Francesco full_name: Nicoli, Francesco last_name: Nicoli - first_name: Manuel full_name: Nieto-Diaz, Manuel last_name: Nieto-Diaz - first_name: Per full_name: Nilsson, Per last_name: Nilsson - first_name: Shunbin full_name: Ning, Shunbin last_name: Ning - first_name: Rituraj full_name: Niranjan, Rituraj last_name: Niranjan - first_name: Hiroshi full_name: Nishimune, Hiroshi last_name: Nishimune - first_name: Mireia full_name: Niso-Santano, Mireia last_name: Niso-Santano - first_name: Ralph A. full_name: Nixon, Ralph A. last_name: Nixon - first_name: Annalisa full_name: Nobili, Annalisa last_name: Nobili - first_name: Clevio full_name: Nobrega, Clevio last_name: Nobrega - first_name: Takeshi full_name: Noda, Takeshi last_name: Noda - first_name: Uxía full_name: Nogueira-Recalde, Uxía last_name: Nogueira-Recalde - first_name: Trevor M. full_name: Nolan, Trevor M. last_name: Nolan - first_name: Ivan full_name: Nombela, Ivan last_name: Nombela - first_name: Ivana full_name: Novak, Ivana last_name: Novak - first_name: Beatriz full_name: Novoa, Beatriz last_name: Novoa - first_name: Takashi full_name: Nozawa, Takashi last_name: Nozawa - first_name: Nobuyuki full_name: Nukina, Nobuyuki last_name: Nukina - first_name: Carmen full_name: Nussbaum-Krammer, Carmen last_name: Nussbaum-Krammer - first_name: Jesper full_name: Nylandsted, Jesper last_name: Nylandsted - first_name: Tracey R. full_name: O’Donovan, Tracey R. last_name: O’Donovan - first_name: Seónadh M. full_name: O’Leary, Seónadh M. last_name: O’Leary - first_name: Eyleen J. full_name: O’Rourke, Eyleen J. last_name: O’Rourke - first_name: Mary P. full_name: O’Sullivan, Mary P. last_name: O’Sullivan - first_name: Timothy E. full_name: O’Sullivan, Timothy E. last_name: O’Sullivan - first_name: Salvatore full_name: Oddo, Salvatore last_name: Oddo - first_name: Ina full_name: Oehme, Ina last_name: Oehme - first_name: Michinaga full_name: Ogawa, Michinaga last_name: Ogawa - first_name: Eric full_name: Ogier-Denis, Eric last_name: Ogier-Denis - first_name: Margret H. full_name: Ogmundsdottir, Margret H. last_name: Ogmundsdottir - first_name: Besim full_name: Ogretmen, Besim last_name: Ogretmen - first_name: Goo Taeg full_name: Oh, Goo Taeg last_name: Oh - first_name: Seon Hee full_name: Oh, Seon Hee last_name: Oh - first_name: Young J. full_name: Oh, Young J. last_name: Oh - first_name: Takashi full_name: Ohama, Takashi last_name: Ohama - first_name: Yohei full_name: Ohashi, Yohei last_name: Ohashi - first_name: Masaki full_name: Ohmuraya, Masaki last_name: Ohmuraya - first_name: Vasileios full_name: Oikonomou, Vasileios last_name: Oikonomou - first_name: Rani full_name: Ojha, Rani last_name: Ojha - first_name: Koji full_name: Okamoto, Koji last_name: Okamoto - first_name: Hitoshi full_name: Okazawa, Hitoshi last_name: Okazawa - first_name: Masahide full_name: Oku, Masahide last_name: Oku - first_name: Sara full_name: Oliván, Sara last_name: Oliván - first_name: Jorge M.A. full_name: Oliveira, Jorge M.A. last_name: Oliveira - first_name: Michael full_name: Ollmann, Michael last_name: Ollmann - first_name: James A. full_name: Olzmann, James A. last_name: Olzmann - first_name: Shakib full_name: Omari, Shakib last_name: Omari - first_name: M. Bishr full_name: Omary, M. Bishr last_name: Omary - first_name: Gizem full_name: Önal, Gizem last_name: Önal - first_name: Martin full_name: Ondrej, Martin last_name: Ondrej - first_name: Sang Bing full_name: Ong, Sang Bing last_name: Ong - first_name: Sang Ging full_name: Ong, Sang Ging last_name: Ong - first_name: Anna full_name: Onnis, Anna last_name: Onnis - first_name: Juan A. full_name: Orellana, Juan A. last_name: Orellana - first_name: Sara full_name: Orellana-Muñoz, Sara last_name: Orellana-Muñoz - first_name: Maria Del Mar full_name: Ortega-Villaizan, Maria Del Mar last_name: Ortega-Villaizan - first_name: Xilma R. full_name: Ortiz-Gonzalez, Xilma R. last_name: Ortiz-Gonzalez - first_name: Elena full_name: Ortona, Elena last_name: Ortona - first_name: Heinz D. full_name: Osiewacz, Heinz D. last_name: Osiewacz - first_name: Abdel Hamid K. full_name: Osman, Abdel Hamid K. last_name: Osman - first_name: Rosario full_name: Osta, Rosario last_name: Osta - first_name: Marisa S. full_name: Otegui, Marisa S. last_name: Otegui - first_name: Kinya full_name: Otsu, Kinya last_name: Otsu - first_name: Christiane full_name: Ott, Christiane last_name: Ott - first_name: Luisa full_name: Ottobrini, Luisa last_name: Ottobrini - first_name: Jing Hsiung James full_name: Ou, Jing Hsiung James last_name: Ou - first_name: Tiago F. full_name: Outeiro, Tiago F. last_name: Outeiro - first_name: Inger full_name: Oynebraten, Inger last_name: Oynebraten - first_name: Melek full_name: Ozturk, Melek last_name: Ozturk - first_name: Gilles full_name: Pagès, Gilles last_name: Pagès - first_name: Susanta full_name: Pahari, Susanta last_name: Pahari - first_name: Marta full_name: Pajares, Marta last_name: Pajares - first_name: Utpal B. full_name: Pajvani, Utpal B. last_name: Pajvani - first_name: Rituraj full_name: Pal, Rituraj last_name: Pal - first_name: Simona full_name: Paladino, Simona last_name: Paladino - first_name: Nicolas full_name: Pallet, Nicolas last_name: Pallet - first_name: Michela full_name: Palmieri, Michela last_name: Palmieri - first_name: Giuseppe full_name: Palmisano, Giuseppe last_name: Palmisano - first_name: Camilla full_name: Palumbo, Camilla last_name: Palumbo - first_name: Francesco full_name: Pampaloni, Francesco last_name: Pampaloni - first_name: Lifeng full_name: Pan, Lifeng last_name: Pan - first_name: Qingjun full_name: Pan, Qingjun last_name: Pan - first_name: Wenliang full_name: Pan, Wenliang last_name: Pan - first_name: Xin full_name: Pan, Xin last_name: Pan - first_name: Ganna full_name: Panasyuk, Ganna last_name: Panasyuk - first_name: Rahul full_name: Pandey, Rahul last_name: Pandey - first_name: Udai B. full_name: Pandey, Udai B. last_name: Pandey - first_name: Vrajesh full_name: Pandya, Vrajesh last_name: Pandya - first_name: Francesco full_name: Paneni, Francesco last_name: Paneni - first_name: Shirley Y. full_name: Pang, Shirley Y. last_name: Pang - first_name: Elisa full_name: Panzarini, Elisa last_name: Panzarini - first_name: Daniela L. full_name: Papademetrio, Daniela L. last_name: Papademetrio - first_name: Elena full_name: Papaleo, Elena last_name: Papaleo - first_name: Daniel full_name: Papinski, Daniel last_name: Papinski - first_name: Diana full_name: Papp, Diana last_name: Papp - first_name: Eun Chan full_name: Park, Eun Chan last_name: Park - first_name: Hwan Tae full_name: Park, Hwan Tae last_name: Park - first_name: Ji Man full_name: Park, Ji Man last_name: Park - first_name: Jong In full_name: Park, Jong In last_name: Park - first_name: Joon Tae full_name: Park, Joon Tae last_name: Park - first_name: Junsoo full_name: Park, Junsoo last_name: Park - first_name: Sang Chul full_name: Park, Sang Chul last_name: Park - first_name: Sang Youel full_name: Park, Sang Youel last_name: Park - first_name: Abraham H. full_name: Parola, Abraham H. last_name: Parola - first_name: Jan B. full_name: Parys, Jan B. last_name: Parys - first_name: Adrien full_name: Pasquier, Adrien last_name: Pasquier - first_name: Benoit full_name: Pasquier, Benoit last_name: Pasquier - first_name: João F. full_name: Passos, João F. last_name: Passos - first_name: Nunzia full_name: Pastore, Nunzia last_name: Pastore - first_name: Hemal H. full_name: Patel, Hemal H. last_name: Patel - first_name: Daniel full_name: Patschan, Daniel last_name: Patschan - first_name: Sophie full_name: Pattingre, Sophie last_name: Pattingre - first_name: Gustavo full_name: Pedraza-Alva, Gustavo last_name: Pedraza-Alva - first_name: Jose full_name: Pedraza-Chaverri, Jose last_name: Pedraza-Chaverri - first_name: Zully full_name: Pedrozo, Zully last_name: Pedrozo - first_name: Gang full_name: Pei, Gang last_name: Pei - first_name: Jianming full_name: Pei, Jianming last_name: Pei - first_name: Hadas full_name: Peled-Zehavi, Hadas last_name: Peled-Zehavi - first_name: Joaquín M. full_name: Pellegrini, Joaquín M. last_name: Pellegrini - first_name: Joffrey full_name: Pelletier, Joffrey last_name: Pelletier - first_name: Miguel A. full_name: Peñalva, Miguel A. last_name: Peñalva - first_name: Di full_name: Peng, Di last_name: Peng - first_name: Ying full_name: Peng, Ying last_name: Peng - first_name: Fabio full_name: Penna, Fabio last_name: Penna - first_name: Maria full_name: Pennuto, Maria last_name: Pennuto - first_name: Francesca full_name: Pentimalli, Francesca last_name: Pentimalli - first_name: Cláudia M.F. full_name: Pereira, Cláudia M.F. last_name: Pereira - first_name: Gustavo J.S. full_name: Pereira, Gustavo J.S. last_name: Pereira - first_name: Lilian C. full_name: Pereira, Lilian C. last_name: Pereira - first_name: Luis full_name: Pereira De Almeida, Luis last_name: Pereira De Almeida - first_name: Nirma D. full_name: Perera, Nirma D. last_name: Perera - first_name: Ángel full_name: Pérez-Lara, Ángel last_name: Pérez-Lara - first_name: Ana B. full_name: Perez-Oliva, Ana B. last_name: Perez-Oliva - first_name: María Esther full_name: Pérez-Pérez, María Esther last_name: Pérez-Pérez - first_name: Palsamy full_name: Periyasamy, Palsamy last_name: Periyasamy - first_name: Andras full_name: Perl, Andras last_name: Perl - first_name: Cristiana full_name: Perrotta, Cristiana last_name: Perrotta - first_name: Ida full_name: Perrotta, Ida last_name: Perrotta - first_name: Richard G. full_name: Pestell, Richard G. last_name: Pestell - first_name: Morten full_name: Petersen, Morten last_name: Petersen - first_name: Irina full_name: Petrache, Irina last_name: Petrache - first_name: Goran full_name: Petrovski, Goran last_name: Petrovski - first_name: Thorsten full_name: Pfirrmann, Thorsten last_name: Pfirrmann - first_name: Astrid S. full_name: Pfister, Astrid S. last_name: Pfister - first_name: Jennifer A. full_name: Philips, Jennifer A. last_name: Philips - first_name: Huifeng full_name: Pi, Huifeng last_name: Pi - first_name: Anna full_name: Picca, Anna last_name: Picca - first_name: Alicia M. full_name: Pickrell, Alicia M. last_name: Pickrell - first_name: Sandy full_name: Picot, Sandy last_name: Picot - first_name: Giovanna M. full_name: Pierantoni, Giovanna M. last_name: Pierantoni - first_name: Marina full_name: Pierdominici, Marina last_name: Pierdominici - first_name: Philippe full_name: Pierre, Philippe last_name: Pierre - first_name: Valérie full_name: Pierrefite-Carle, Valérie last_name: Pierrefite-Carle - first_name: Karolina full_name: Pierzynowska, Karolina last_name: Pierzynowska - first_name: Federico full_name: Pietrocola, Federico last_name: Pietrocola - first_name: Miroslawa full_name: Pietruczuk, Miroslawa last_name: Pietruczuk - first_name: Claudio full_name: Pignata, Claudio last_name: Pignata - first_name: Felipe X. full_name: Pimentel-Muiños, Felipe X. last_name: Pimentel-Muiños - first_name: Mario full_name: Pinar, Mario last_name: Pinar - first_name: Roberta O. full_name: Pinheiro, Roberta O. last_name: Pinheiro - first_name: Ronit full_name: Pinkas-Kramarski, Ronit last_name: Pinkas-Kramarski - first_name: Paolo full_name: Pinton, Paolo last_name: Pinton - first_name: Karolina full_name: Pircs, Karolina last_name: Pircs - first_name: Sujan full_name: Piya, Sujan last_name: Piya - first_name: Paola full_name: Pizzo, Paola last_name: Pizzo - first_name: Theo S. full_name: Plantinga, Theo S. last_name: Plantinga - first_name: Harald W. full_name: Platta, Harald W. last_name: Platta - first_name: Ainhoa full_name: Plaza-Zabala, Ainhoa last_name: Plaza-Zabala - first_name: Markus full_name: Plomann, Markus last_name: Plomann - first_name: Egor Y. full_name: Plotnikov, Egor Y. last_name: Plotnikov - first_name: Helene full_name: Plun-Favreau, Helene last_name: Plun-Favreau - first_name: Ryszard full_name: Pluta, Ryszard last_name: Pluta - first_name: Roger full_name: Pocock, Roger last_name: Pocock - first_name: Stefanie full_name: Pöggeler, Stefanie last_name: Pöggeler - first_name: Christian full_name: Pohl, Christian last_name: Pohl - first_name: Marc full_name: Poirot, Marc last_name: Poirot - first_name: Angelo full_name: Poletti, Angelo last_name: Poletti - first_name: Marisa full_name: Ponpuak, Marisa last_name: Ponpuak - first_name: Hana full_name: Popelka, Hana last_name: Popelka - first_name: Blagovesta full_name: Popova, Blagovesta last_name: Popova - first_name: Helena full_name: Porta, Helena last_name: Porta - first_name: Soledad full_name: Porte Alcon, Soledad last_name: Porte Alcon - first_name: Eliana full_name: Portilla-Fernandez, Eliana last_name: Portilla-Fernandez - first_name: Martin full_name: Post, Martin last_name: Post - first_name: Malia B. full_name: Potts, Malia B. last_name: Potts - first_name: Joanna full_name: Poulton, Joanna last_name: Poulton - first_name: Ted full_name: Powers, Ted last_name: Powers - first_name: Veena full_name: Prahlad, Veena last_name: Prahlad - first_name: Tomasz K. full_name: Prajsnar, Tomasz K. last_name: Prajsnar - first_name: Domenico full_name: Praticò, Domenico last_name: Praticò - first_name: Rosaria full_name: Prencipe, Rosaria last_name: Prencipe - first_name: Muriel full_name: Priault, Muriel last_name: Priault - first_name: Tassula full_name: Proikas-Cezanne, Tassula last_name: Proikas-Cezanne - first_name: Vasilis J. full_name: Promponas, Vasilis J. last_name: Promponas - first_name: Christopher G. full_name: Proud, Christopher G. last_name: Proud - first_name: Rosa full_name: Puertollano, Rosa last_name: Puertollano - first_name: Luigi full_name: Puglielli, Luigi last_name: Puglielli - first_name: Thomas full_name: Pulinilkunnil, Thomas last_name: Pulinilkunnil - first_name: Deepika full_name: Puri, Deepika last_name: Puri - first_name: Rajat full_name: Puri, Rajat last_name: Puri - first_name: Julien full_name: Puyal, Julien last_name: Puyal - first_name: Xiaopeng full_name: Qi, Xiaopeng last_name: Qi - first_name: Yongmei full_name: Qi, Yongmei last_name: Qi - first_name: Wenbin full_name: Qian, Wenbin last_name: Qian - first_name: Lei full_name: Qiang, Lei last_name: Qiang - first_name: Yu full_name: Qiu, Yu last_name: Qiu - first_name: Joe full_name: Quadrilatero, Joe last_name: Quadrilatero - first_name: Jorge full_name: Quarleri, Jorge last_name: Quarleri - first_name: Nina full_name: Raben, Nina last_name: Raben - first_name: Hannah full_name: Rabinowich, Hannah last_name: Rabinowich - first_name: Debora full_name: Ragona, Debora last_name: Ragona - first_name: Michael J. full_name: Ragusa, Michael J. last_name: Ragusa - first_name: Nader full_name: Rahimi, Nader last_name: Rahimi - first_name: Marveh full_name: Rahmati, Marveh last_name: Rahmati - first_name: Valeria full_name: Raia, Valeria last_name: Raia - first_name: Nuno full_name: Raimundo, Nuno last_name: Raimundo - first_name: Namakkal Soorappan full_name: Rajasekaran, Namakkal Soorappan last_name: Rajasekaran - first_name: Sriganesh full_name: Ramachandra Rao, Sriganesh last_name: Ramachandra Rao - first_name: Abdelhaq full_name: Rami, Abdelhaq last_name: Rami - first_name: Ignacio full_name: Ramírez-Pardo, Ignacio last_name: Ramírez-Pardo - first_name: David B. full_name: Ramsden, David B. last_name: Ramsden - first_name: Felix full_name: Randow, Felix last_name: Randow - first_name: Pundi N. full_name: Rangarajan, Pundi N. last_name: Rangarajan - first_name: Danilo full_name: Ranieri, Danilo last_name: Ranieri - first_name: Hai full_name: Rao, Hai last_name: Rao - first_name: Lang full_name: Rao, Lang last_name: Rao - first_name: Rekha full_name: Rao, Rekha last_name: Rao - first_name: Sumit full_name: Rathore, Sumit last_name: Rathore - first_name: J. Arjuna full_name: Ratnayaka, J. Arjuna last_name: Ratnayaka - first_name: Edward A. full_name: Ratovitski, Edward A. last_name: Ratovitski - first_name: Palaniyandi full_name: Ravanan, Palaniyandi last_name: Ravanan - first_name: Gloria full_name: Ravegnini, Gloria last_name: Ravegnini - first_name: Swapan K. full_name: Ray, Swapan K. last_name: Ray - first_name: Babak full_name: Razani, Babak last_name: Razani - first_name: Vito full_name: Rebecca, Vito last_name: Rebecca - first_name: Fulvio full_name: Reggiori, Fulvio last_name: Reggiori - first_name: Anne full_name: Régnier-Vigouroux, Anne last_name: Régnier-Vigouroux - first_name: Andreas S. full_name: Reichert, Andreas S. last_name: Reichert - first_name: David full_name: Reigada, David last_name: Reigada - first_name: Jan H. full_name: Reiling, Jan H. last_name: Reiling - first_name: Theo full_name: Rein, Theo last_name: Rein - first_name: Siegfried full_name: Reipert, Siegfried last_name: Reipert - first_name: Rokeya Sultana full_name: Rekha, Rokeya Sultana last_name: Rekha - first_name: Hongmei full_name: Ren, Hongmei last_name: Ren - first_name: Jun full_name: Ren, Jun last_name: Ren - first_name: Weichao full_name: Ren, Weichao last_name: Ren - first_name: Tristan full_name: Renault, Tristan last_name: Renault - first_name: Giorgia full_name: Renga, Giorgia last_name: Renga - first_name: Karen full_name: Reue, Karen last_name: Reue - first_name: Kim full_name: Rewitz, Kim last_name: Rewitz - first_name: Bruna full_name: Ribeiro De Andrade Ramos, Bruna last_name: Ribeiro De Andrade Ramos - first_name: S. Amer full_name: Riazuddin, S. Amer last_name: Riazuddin - first_name: Teresa M. full_name: Ribeiro-Rodrigues, Teresa M. last_name: Ribeiro-Rodrigues - first_name: Jean Ehrland full_name: Ricci, Jean Ehrland last_name: Ricci - first_name: Romeo full_name: Ricci, Romeo last_name: Ricci - first_name: Victoria full_name: Riccio, Victoria last_name: Riccio - first_name: Des R. full_name: Richardson, Des R. last_name: Richardson - first_name: Yasuko full_name: Rikihisa, Yasuko last_name: Rikihisa - first_name: Makarand V. full_name: Risbud, Makarand V. last_name: Risbud - first_name: Ruth M. full_name: Risueño, Ruth M. last_name: Risueño - first_name: Konstantinos full_name: Ritis, Konstantinos last_name: Ritis - first_name: Salvatore full_name: Rizza, Salvatore last_name: Rizza - first_name: Rosario full_name: Rizzuto, Rosario last_name: Rizzuto - first_name: Helen C. full_name: Roberts, Helen C. last_name: Roberts - first_name: Luke D. full_name: Roberts, Luke D. last_name: Roberts - first_name: Katherine J. full_name: Robinson, Katherine J. last_name: Robinson - first_name: Maria Carmela full_name: Roccheri, Maria Carmela last_name: Roccheri - first_name: Stephane full_name: Rocchi, Stephane last_name: Rocchi - first_name: George G. full_name: Rodney, George G. last_name: Rodney - first_name: Tiago full_name: Rodrigues, Tiago last_name: Rodrigues - first_name: Vagner Ramon full_name: Rodrigues Silva, Vagner Ramon last_name: Rodrigues Silva - first_name: Amaia full_name: Rodriguez, Amaia last_name: Rodriguez - first_name: Ruth full_name: Rodriguez-Barrueco, Ruth last_name: Rodriguez-Barrueco - first_name: Nieves full_name: Rodriguez-Henche, Nieves last_name: Rodriguez-Henche - first_name: Humberto full_name: Rodriguez-Rocha, Humberto last_name: Rodriguez-Rocha - first_name: Jeroen full_name: Roelofs, Jeroen last_name: Roelofs - first_name: Robert S. full_name: Rogers, Robert S. last_name: Rogers - first_name: Vladimir V. full_name: Rogov, Vladimir V. last_name: Rogov - first_name: Ana I. full_name: Rojo, Ana I. last_name: Rojo - first_name: Krzysztof full_name: Rolka, Krzysztof last_name: Rolka - first_name: Vanina full_name: Romanello, Vanina last_name: Romanello - first_name: Luigina full_name: Romani, Luigina last_name: Romani - first_name: Alessandra full_name: Romano, Alessandra last_name: Romano - first_name: Patricia S. full_name: Romano, Patricia S. last_name: Romano - first_name: David full_name: Romeo-Guitart, David last_name: Romeo-Guitart - first_name: Luis C. full_name: Romero, Luis C. last_name: Romero - first_name: Montserrat full_name: Romero, Montserrat last_name: Romero - first_name: Joseph C. full_name: Roney, Joseph C. last_name: Roney - first_name: Christopher full_name: Rongo, Christopher last_name: Rongo - first_name: Sante full_name: Roperto, Sante last_name: Roperto - first_name: Mathias T. full_name: Rosenfeldt, Mathias T. last_name: Rosenfeldt - first_name: Philip full_name: Rosenstiel, Philip last_name: Rosenstiel - first_name: Anne G. full_name: Rosenwald, Anne G. last_name: Rosenwald - first_name: Kevin A. full_name: Roth, Kevin A. last_name: Roth - first_name: Lynn full_name: Roth, Lynn last_name: Roth - first_name: Steven full_name: Roth, Steven last_name: Roth - first_name: Kasper M.A. full_name: Rouschop, Kasper M.A. last_name: Rouschop - first_name: Benoit D. full_name: Roussel, Benoit D. last_name: Roussel - first_name: Sophie full_name: Roux, Sophie last_name: Roux - first_name: Patrizia full_name: Rovere-Querini, Patrizia last_name: Rovere-Querini - first_name: Ajit full_name: Roy, Ajit last_name: Roy - first_name: Aurore full_name: Rozieres, Aurore last_name: Rozieres - first_name: Diego full_name: Ruano, Diego last_name: Ruano - first_name: David C. full_name: Rubinsztein, David C. last_name: Rubinsztein - first_name: Maria P. full_name: Rubtsova, Maria P. last_name: Rubtsova - first_name: Klaus full_name: Ruckdeschel, Klaus last_name: Ruckdeschel - first_name: Christoph full_name: Ruckenstuhl, Christoph last_name: Ruckenstuhl - first_name: Emil full_name: Rudolf, Emil last_name: Rudolf - first_name: Rüdiger full_name: Rudolf, Rüdiger last_name: Rudolf - first_name: Alessandra full_name: Ruggieri, Alessandra last_name: Ruggieri - first_name: Avnika Ashok full_name: Ruparelia, Avnika Ashok last_name: Ruparelia - first_name: Paola full_name: Rusmini, Paola last_name: Rusmini - first_name: Ryan R. full_name: Russell, Ryan R. last_name: Russell - first_name: Gian Luigi full_name: Russo, Gian Luigi last_name: Russo - first_name: Maria full_name: Russo, Maria last_name: Russo - first_name: Rossella full_name: Russo, Rossella last_name: Russo - first_name: Oxana O. full_name: Ryabaya, Oxana O. last_name: Ryabaya - first_name: Kevin M. full_name: Ryan, Kevin M. last_name: Ryan - first_name: Kwon Yul full_name: Ryu, Kwon Yul last_name: Ryu - first_name: Maria full_name: Sabater-Arcis, Maria last_name: Sabater-Arcis - first_name: Ulka full_name: Sachdev, Ulka last_name: Sachdev - first_name: Michael full_name: Sacher, Michael last_name: Sacher - first_name: Carsten full_name: Sachse, Carsten last_name: Sachse - first_name: Abhishek full_name: Sadhu, Abhishek last_name: Sadhu - first_name: Junichi full_name: Sadoshima, Junichi last_name: Sadoshima - first_name: Nathaniel full_name: Safren, Nathaniel last_name: Safren - first_name: Paul full_name: Saftig, Paul last_name: Saftig - first_name: Antonia P. full_name: Sagona, Antonia P. last_name: Sagona - first_name: Gaurav full_name: Sahay, Gaurav last_name: Sahay - first_name: Amirhossein full_name: Sahebkar, Amirhossein last_name: Sahebkar - first_name: Mustafa full_name: Sahin, Mustafa last_name: Sahin - first_name: Ozgur full_name: Sahin, Ozgur last_name: Sahin - first_name: Sumit full_name: Sahni, Sumit last_name: Sahni - first_name: Nayuta full_name: Saito, Nayuta last_name: Saito - first_name: Shigeru full_name: Saito, Shigeru last_name: Saito - first_name: Tsunenori full_name: Saito, Tsunenori last_name: Saito - first_name: Ryohei full_name: Sakai, Ryohei last_name: Sakai - first_name: Yasuyoshi full_name: Sakai, Yasuyoshi last_name: Sakai - first_name: Jun Ichi full_name: Sakamaki, Jun Ichi last_name: Sakamaki - first_name: Kalle full_name: Saksela, Kalle last_name: Saksela - first_name: Gloria full_name: Salazar, Gloria last_name: Salazar - first_name: Anna full_name: Salazar-Degracia, Anna last_name: Salazar-Degracia - first_name: Ghasem H. full_name: Salekdeh, Ghasem H. last_name: Salekdeh - first_name: Ashok K. full_name: Saluja, Ashok K. last_name: Saluja - first_name: Belém full_name: Sampaio-Marques, Belém last_name: Sampaio-Marques - first_name: Maria Cecilia full_name: Sanchez, Maria Cecilia last_name: Sanchez - first_name: Jose A. full_name: Sanchez-Alcazar, Jose A. last_name: Sanchez-Alcazar - first_name: Victoria full_name: Sanchez-Vera, Victoria last_name: Sanchez-Vera - first_name: Vanessa full_name: Sancho-Shimizu, Vanessa last_name: Sancho-Shimizu - first_name: J. Thomas full_name: Sanderson, J. Thomas last_name: Sanderson - first_name: Marco full_name: Sandri, Marco last_name: Sandri - first_name: Stefano full_name: Santaguida, Stefano last_name: Santaguida - first_name: Laura full_name: Santambrogio, Laura last_name: Santambrogio - first_name: Magda M. full_name: Santana, Magda M. last_name: Santana - first_name: Giorgio full_name: Santoni, Giorgio last_name: Santoni - first_name: Alberto full_name: Sanz, Alberto last_name: Sanz - first_name: Pascual full_name: Sanz, Pascual last_name: Sanz - first_name: Shweta full_name: Saran, Shweta last_name: Saran - first_name: Marco full_name: Sardiello, Marco last_name: Sardiello - first_name: Timothy J. full_name: Sargeant, Timothy J. last_name: Sargeant - first_name: Apurva full_name: Sarin, Apurva last_name: Sarin - first_name: Chinmoy full_name: Sarkar, Chinmoy last_name: Sarkar - first_name: Sovan full_name: Sarkar, Sovan last_name: Sarkar - first_name: Maria Rosa full_name: Sarrias, Maria Rosa last_name: Sarrias - first_name: Surajit full_name: Sarkar, Surajit last_name: Sarkar - first_name: Dipanka Tanu full_name: Sarmah, Dipanka Tanu last_name: Sarmah - first_name: Jaakko full_name: Sarparanta, Jaakko last_name: Sarparanta - first_name: Aishwarya full_name: Sathyanarayan, Aishwarya last_name: Sathyanarayan - first_name: Ranganayaki full_name: Sathyanarayanan, Ranganayaki last_name: Sathyanarayanan - first_name: K. Matthew full_name: Scaglione, K. Matthew last_name: Scaglione - first_name: Francesca full_name: Scatozza, Francesca last_name: Scatozza - first_name: Liliana full_name: Schaefer, Liliana last_name: Schaefer - first_name: Zachary T. full_name: Schafer, Zachary T. last_name: Schafer - first_name: Ulrich E. full_name: Schaible, Ulrich E. last_name: Schaible - first_name: Anthony H.V. full_name: Schapira, Anthony H.V. last_name: Schapira - first_name: Michael full_name: Scharl, Michael last_name: Scharl - first_name: Hermann M. full_name: Schatzl, Hermann M. last_name: Schatzl - first_name: Catherine H. full_name: Schein, Catherine H. last_name: Schein - first_name: Wiep full_name: Scheper, Wiep last_name: Scheper - first_name: David full_name: Scheuring, David last_name: Scheuring - first_name: Maria Vittoria full_name: Schiaffino, Maria Vittoria last_name: Schiaffino - first_name: Monica full_name: Schiappacassi, Monica last_name: Schiappacassi - first_name: Rainer full_name: Schindl, Rainer last_name: Schindl - first_name: Uwe full_name: Schlattner, Uwe last_name: Schlattner - first_name: Oliver full_name: Schmidt, Oliver last_name: Schmidt - first_name: Roland full_name: Schmitt, Roland last_name: Schmitt - first_name: Stephen D. full_name: Schmidt, Stephen D. last_name: Schmidt - first_name: Ingo full_name: Schmitz, Ingo last_name: Schmitz - first_name: Eran full_name: Schmukler, Eran last_name: Schmukler - first_name: Anja full_name: Schneider, Anja last_name: Schneider - first_name: Bianca E. full_name: Schneider, Bianca E. last_name: Schneider - first_name: Romana full_name: Schober, Romana last_name: Schober - first_name: Alejandra C. full_name: Schoijet, Alejandra C. last_name: Schoijet - first_name: Micah B. full_name: Schott, Micah B. last_name: Schott - first_name: Michael full_name: Schramm, Michael last_name: Schramm - first_name: Bernd full_name: Schröder, Bernd last_name: Schröder - first_name: Kai full_name: Schuh, Kai last_name: Schuh - first_name: Christoph full_name: Schüller, Christoph last_name: Schüller - first_name: Ryan J. full_name: Schulze, Ryan J. last_name: Schulze - first_name: Lea full_name: Schürmanns, Lea last_name: Schürmanns - first_name: Jens C. full_name: Schwamborn, Jens C. last_name: Schwamborn - first_name: Melanie full_name: Schwarten, Melanie last_name: Schwarten - first_name: Filippo full_name: Scialo, Filippo last_name: Scialo - first_name: Sebastiano full_name: Sciarretta, Sebastiano last_name: Sciarretta - first_name: Melanie J. full_name: Scott, Melanie J. last_name: Scott - first_name: Kathleen W. full_name: Scotto, Kathleen W. last_name: Scotto - first_name: A. Ivana full_name: Scovassi, A. Ivana last_name: Scovassi - first_name: Andrea full_name: Scrima, Andrea last_name: Scrima - first_name: Aurora full_name: Scrivo, Aurora last_name: Scrivo - first_name: David full_name: Sebastian, David last_name: Sebastian - first_name: Salwa full_name: Sebti, Salwa last_name: Sebti - first_name: Simon full_name: Sedej, Simon last_name: Sedej - first_name: Laura full_name: Segatori, Laura last_name: Segatori - first_name: Nava full_name: Segev, Nava last_name: Segev - first_name: Per O. full_name: Seglen, Per O. last_name: Seglen - first_name: Iban full_name: Seiliez, Iban last_name: Seiliez - first_name: Ekihiro full_name: Seki, Ekihiro last_name: Seki - first_name: Scott B. full_name: Selleck, Scott B. last_name: Selleck - first_name: Frank W. full_name: Sellke, Frank W. last_name: Sellke - first_name: Joshua T. full_name: Selsby, Joshua T. last_name: Selsby - first_name: Michael full_name: Sendtner, Michael last_name: Sendtner - first_name: Serif full_name: Senturk, Serif last_name: Senturk - first_name: Elena full_name: Seranova, Elena last_name: Seranova - first_name: Consolato full_name: Sergi, Consolato last_name: Sergi - first_name: Ruth full_name: Serra-Moreno, Ruth last_name: Serra-Moreno - first_name: Hiromi full_name: Sesaki, Hiromi last_name: Sesaki - first_name: Carmine full_name: Settembre, Carmine last_name: Settembre - first_name: Subba Rao Gangi full_name: Setty, Subba Rao Gangi last_name: Setty - first_name: Gianluca full_name: Sgarbi, Gianluca last_name: Sgarbi - first_name: Ou full_name: Sha, Ou last_name: Sha - first_name: John J. full_name: Shacka, John J. last_name: Shacka - first_name: Javeed A. full_name: Shah, Javeed A. last_name: Shah - first_name: Dantong full_name: Shang, Dantong last_name: Shang - first_name: Changshun full_name: Shao, Changshun last_name: Shao - first_name: Feng full_name: Shao, Feng last_name: Shao - first_name: Soroush full_name: Sharbati, Soroush last_name: Sharbati - first_name: Lisa M. full_name: Sharkey, Lisa M. last_name: Sharkey - first_name: Dipali full_name: Sharma, Dipali last_name: Sharma - first_name: Gaurav full_name: Sharma, Gaurav last_name: Sharma - first_name: Kulbhushan full_name: Sharma, Kulbhushan last_name: Sharma - first_name: Pawan full_name: Sharma, Pawan last_name: Sharma - first_name: Surendra full_name: Sharma, Surendra last_name: Sharma - first_name: Han Ming full_name: Shen, Han Ming last_name: Shen - first_name: Hongtao full_name: Shen, Hongtao last_name: Shen - first_name: Jiangang full_name: Shen, Jiangang last_name: Shen - first_name: Ming full_name: Shen, Ming last_name: Shen - first_name: Weili full_name: Shen, Weili last_name: Shen - first_name: Zheni full_name: Shen, Zheni last_name: Shen - first_name: Rui full_name: Sheng, Rui last_name: Sheng - first_name: Zhi full_name: Sheng, Zhi last_name: Sheng - first_name: Zu Hang full_name: Sheng, Zu Hang last_name: Sheng - first_name: Jianjian full_name: Shi, Jianjian last_name: Shi - first_name: Xiaobing full_name: Shi, Xiaobing last_name: Shi - first_name: Ying Hong full_name: Shi, Ying Hong last_name: Shi - first_name: Kahori full_name: Shiba-Fukushima, Kahori last_name: Shiba-Fukushima - first_name: Jeng Jer full_name: Shieh, Jeng Jer last_name: Shieh - first_name: Yohta full_name: Shimada, Yohta last_name: Shimada - first_name: Shigeomi full_name: Shimizu, Shigeomi last_name: Shimizu - first_name: Makoto full_name: Shimozawa, Makoto last_name: Shimozawa - first_name: Takahiro full_name: Shintani, Takahiro last_name: Shintani - first_name: Christopher J. full_name: Shoemaker, Christopher J. last_name: Shoemaker - first_name: Shahla full_name: Shojaei, Shahla last_name: Shojaei - first_name: Ikuo full_name: Shoji, Ikuo last_name: Shoji - first_name: Bhupendra V. full_name: Shravage, Bhupendra V. last_name: Shravage - first_name: Viji full_name: Shridhar, Viji last_name: Shridhar - first_name: Chih Wen full_name: Shu, Chih Wen last_name: Shu - first_name: Hong Bing full_name: Shu, Hong Bing last_name: Shu - first_name: Ke full_name: Shui, Ke last_name: Shui - first_name: Arvind K. full_name: Shukla, Arvind K. last_name: Shukla - first_name: Timothy E. full_name: Shutt, Timothy E. last_name: Shutt - first_name: Valentina full_name: Sica, Valentina last_name: Sica - first_name: Aleem full_name: Siddiqui, Aleem last_name: Siddiqui - first_name: Amanda full_name: Sierra, Amanda last_name: Sierra - first_name: Virginia full_name: Sierra-Torre, Virginia last_name: Sierra-Torre - first_name: Santiago full_name: Signorelli, Santiago last_name: Signorelli - first_name: Payel full_name: Sil, Payel last_name: Sil - first_name: Bruno J.De Andrade full_name: Silva, Bruno J.De Andrade last_name: Silva - first_name: Johnatas D. full_name: Silva, Johnatas D. last_name: Silva - first_name: Eduardo full_name: Silva-Pavez, Eduardo last_name: Silva-Pavez - first_name: Sandrine full_name: Silvente-Poirot, Sandrine last_name: Silvente-Poirot - first_name: Rachel E. full_name: Simmonds, Rachel E. last_name: Simmonds - first_name: Anna Katharina full_name: Simon, Anna Katharina last_name: Simon - first_name: Hans Uwe full_name: Simon, Hans Uwe last_name: Simon - first_name: Matias full_name: Simons, Matias last_name: Simons - first_name: Anurag full_name: Singh, Anurag last_name: Singh - first_name: Lalit P. full_name: Singh, Lalit P. last_name: Singh - first_name: Rajat full_name: Singh, Rajat last_name: Singh - first_name: Shivendra V. full_name: Singh, Shivendra V. last_name: Singh - first_name: Shrawan K. full_name: Singh, Shrawan K. last_name: Singh - first_name: Sudha B. full_name: Singh, Sudha B. last_name: Singh - first_name: Sunaina full_name: Singh, Sunaina last_name: Singh - first_name: Surinder Pal full_name: Singh, Surinder Pal last_name: Singh - first_name: Debasish full_name: Sinha, Debasish last_name: Sinha - first_name: Rohit Anthony full_name: Sinha, Rohit Anthony last_name: Sinha - first_name: Sangita full_name: Sinha, Sangita last_name: Sinha - first_name: Agnieszka full_name: Sirko, Agnieszka last_name: Sirko - first_name: Kapil full_name: Sirohi, Kapil last_name: Sirohi - first_name: Efthimios L. full_name: Sivridis, Efthimios L. last_name: Sivridis - first_name: Panagiotis full_name: Skendros, Panagiotis last_name: Skendros - first_name: Aleksandra full_name: Skirycz, Aleksandra last_name: Skirycz - first_name: Iva full_name: Slaninová, Iva last_name: Slaninová - first_name: Soraya S. full_name: Smaili, Soraya S. last_name: Smaili - first_name: Andrei full_name: Smertenko, Andrei last_name: Smertenko - first_name: Matthew D. full_name: Smith, Matthew D. last_name: Smith - first_name: Stefaan J. full_name: Soenen, Stefaan J. last_name: Soenen - first_name: Eun Jung full_name: Sohn, Eun Jung last_name: Sohn - first_name: Sophia P.M. full_name: Sok, Sophia P.M. last_name: Sok - first_name: Giancarlo full_name: Solaini, Giancarlo last_name: Solaini - first_name: Thierry full_name: Soldati, Thierry last_name: Soldati - first_name: Scott A. full_name: Soleimanpour, Scott A. last_name: Soleimanpour - first_name: Rosa M. full_name: Soler, Rosa M. last_name: Soler - first_name: Alexei full_name: Solovchenko, Alexei last_name: Solovchenko - first_name: Jason A. full_name: Somarelli, Jason A. last_name: Somarelli - first_name: Avinash full_name: Sonawane, Avinash last_name: Sonawane - first_name: Fuyong full_name: Song, Fuyong last_name: Song - first_name: Hyun Kyu full_name: Song, Hyun Kyu last_name: Song - first_name: Ju Xian full_name: Song, Ju Xian last_name: Song - first_name: Kunhua full_name: Song, Kunhua last_name: Song - first_name: Zhiyin full_name: Song, Zhiyin last_name: Song - first_name: Leandro R. full_name: Soria, Leandro R. last_name: Soria - first_name: Maurizio full_name: Sorice, Maurizio last_name: Sorice - first_name: Alexander A. full_name: Soukas, Alexander A. last_name: Soukas - first_name: Sandra Fausia full_name: Soukup, Sandra Fausia last_name: Soukup - first_name: Diana full_name: Sousa, Diana last_name: Sousa - first_name: Nadia full_name: Sousa, Nadia last_name: Sousa - first_name: Paul A. full_name: Spagnuolo, Paul A. last_name: Spagnuolo - first_name: Stephen A. full_name: Spector, Stephen A. last_name: Spector - first_name: M. M. full_name: Srinivas Bharath, M. M. last_name: Srinivas Bharath - first_name: Daret full_name: St. Clair, Daret last_name: St. Clair - first_name: Venturina full_name: Stagni, Venturina last_name: Stagni - first_name: Leopoldo full_name: Staiano, Leopoldo last_name: Staiano - first_name: Clint A. full_name: Stalnecker, Clint A. last_name: Stalnecker - first_name: Metodi V. full_name: Stankov, Metodi V. last_name: Stankov - first_name: Peter B. full_name: Stathopulos, Peter B. last_name: Stathopulos - first_name: Katja full_name: Stefan, Katja last_name: Stefan - first_name: Sven Marcel full_name: Stefan, Sven Marcel last_name: Stefan - first_name: Leonidas full_name: Stefanis, Leonidas last_name: Stefanis - first_name: Joan S. full_name: Steffan, Joan S. last_name: Steffan - first_name: Alexander full_name: Steinkasserer, Alexander last_name: Steinkasserer - first_name: Harald full_name: Stenmark, Harald last_name: Stenmark - first_name: Jared full_name: Sterneckert, Jared last_name: Sterneckert - first_name: Craig full_name: Stevens, Craig last_name: Stevens - first_name: Veronika full_name: Stoka, Veronika last_name: Stoka - first_name: Stephan full_name: Storch, Stephan last_name: Storch - first_name: Björn full_name: Stork, Björn last_name: Stork - first_name: Flavie full_name: Strappazzon, Flavie last_name: Strappazzon - first_name: Anne Marie full_name: Strohecker, Anne Marie last_name: Strohecker - first_name: Dwayne G. full_name: Stupack, Dwayne G. last_name: Stupack - first_name: Huanxing full_name: Su, Huanxing last_name: Su - first_name: Ling Yan full_name: Su, Ling Yan last_name: Su - first_name: Longxiang full_name: Su, Longxiang last_name: Su - first_name: Ana M. full_name: Suarez-Fontes, Ana M. last_name: Suarez-Fontes - first_name: Carlos S. full_name: Subauste, Carlos S. last_name: Subauste - first_name: Selvakumar full_name: Subbian, Selvakumar last_name: Subbian - first_name: Paula V. full_name: Subirada, Paula V. last_name: Subirada - first_name: Ganapasam full_name: Sudhandiran, Ganapasam last_name: Sudhandiran - first_name: Carolyn M. full_name: Sue, Carolyn M. last_name: Sue - first_name: Xinbing full_name: Sui, Xinbing last_name: Sui - first_name: Corey full_name: Summers, Corey last_name: Summers - first_name: Guangchao full_name: Sun, Guangchao last_name: Sun - first_name: Jun full_name: Sun, Jun last_name: Sun - first_name: Kang full_name: Sun, Kang last_name: Sun - first_name: Meng Xiang full_name: Sun, Meng Xiang last_name: Sun - first_name: Qiming full_name: Sun, Qiming last_name: Sun - first_name: Yi full_name: Sun, Yi last_name: Sun - first_name: Zhongjie full_name: Sun, Zhongjie last_name: Sun - first_name: Karen K.S. full_name: Sunahara, Karen K.S. last_name: Sunahara - first_name: Eva full_name: Sundberg, Eva last_name: Sundberg - first_name: Katalin full_name: Susztak, Katalin last_name: Susztak - first_name: Peter full_name: Sutovsky, Peter last_name: Sutovsky - first_name: Hidekazu full_name: Suzuki, Hidekazu last_name: Suzuki - first_name: Gary full_name: Sweeney, Gary last_name: Sweeney - first_name: J. David full_name: Symons, J. David last_name: Symons - first_name: Stephen Cho Wing full_name: Sze, Stephen Cho Wing last_name: Sze - first_name: Nathaniel J. full_name: Szewczyk, Nathaniel J. last_name: Szewczyk - first_name: Anna full_name: Tabęcka-Łonczynska, Anna last_name: Tabęcka-Łonczynska - first_name: Claudio full_name: Tabolacci, Claudio last_name: Tabolacci - first_name: Frank full_name: Tacke, Frank last_name: Tacke - first_name: Heinrich full_name: Taegtmeyer, Heinrich last_name: Taegtmeyer - first_name: Marco full_name: Tafani, Marco last_name: Tafani - first_name: Mitsuo full_name: Tagaya, Mitsuo last_name: Tagaya - first_name: Haoran full_name: Tai, Haoran last_name: Tai - first_name: Stephen W.G. full_name: Tait, Stephen W.G. last_name: Tait - first_name: Yoshinori full_name: Takahashi, Yoshinori last_name: Takahashi - first_name: Szabolcs full_name: Takats, Szabolcs last_name: Takats - first_name: Priti full_name: Talwar, Priti last_name: Talwar - first_name: Chit full_name: Tam, Chit last_name: Tam - first_name: Shing Yau full_name: Tam, Shing Yau last_name: Tam - first_name: Davide full_name: Tampellini, Davide last_name: Tampellini - first_name: Atsushi full_name: Tamura, Atsushi last_name: Tamura - first_name: Chong Teik full_name: Tan, Chong Teik last_name: Tan - first_name: Eng King full_name: Tan, Eng King last_name: Tan - first_name: Ya Qin full_name: Tan, Ya Qin last_name: Tan - first_name: Masaki full_name: Tanaka, Masaki last_name: Tanaka - first_name: Motomasa full_name: Tanaka, Motomasa last_name: Tanaka - first_name: Daolin full_name: Tang, Daolin last_name: Tang - first_name: Jingfeng full_name: Tang, Jingfeng last_name: Tang - first_name: Tie Shan full_name: Tang, Tie Shan last_name: Tang - first_name: Isei full_name: Tanida, Isei last_name: Tanida - first_name: Zhipeng full_name: Tao, Zhipeng last_name: Tao - first_name: Mohammed full_name: Taouis, Mohammed last_name: Taouis - first_name: Lars full_name: Tatenhorst, Lars last_name: Tatenhorst - first_name: Nektarios full_name: Tavernarakis, Nektarios last_name: Tavernarakis - first_name: Allen full_name: Taylor, Allen last_name: Taylor - first_name: Gregory A. full_name: Taylor, Gregory A. last_name: Taylor - first_name: Joan M. full_name: Taylor, Joan M. last_name: Taylor - first_name: Elena full_name: Tchetina, Elena last_name: Tchetina - first_name: Andrew R. full_name: Tee, Andrew R. last_name: Tee - first_name: Irmgard full_name: Tegeder, Irmgard last_name: Tegeder - first_name: David full_name: Teis, David last_name: Teis - first_name: Natercia full_name: Teixeira, Natercia last_name: Teixeira - first_name: Fatima full_name: Teixeira-Clerc, Fatima last_name: Teixeira-Clerc - first_name: Kumsal A. full_name: Tekirdag, Kumsal A. last_name: Tekirdag - first_name: Tewin full_name: Tencomnao, Tewin last_name: Tencomnao - first_name: Sandra full_name: Tenreiro, Sandra last_name: Tenreiro - first_name: Alexei V. full_name: Tepikin, Alexei V. last_name: Tepikin - first_name: Pilar S. full_name: Testillano, Pilar S. last_name: Testillano - first_name: Gianluca full_name: Tettamanti, Gianluca last_name: Tettamanti - first_name: Pierre Louis full_name: Tharaux, Pierre Louis last_name: Tharaux - first_name: Kathrin full_name: Thedieck, Kathrin last_name: Thedieck - first_name: Arvind A. full_name: Thekkinghat, Arvind A. last_name: Thekkinghat - first_name: Stefano full_name: Thellung, Stefano last_name: Thellung - first_name: Josephine W. full_name: Thinwa, Josephine W. last_name: Thinwa - first_name: V. P. full_name: Thirumalaikumar, V. P. last_name: Thirumalaikumar - first_name: Sufi Mary full_name: Thomas, Sufi Mary last_name: Thomas - first_name: Paul G. full_name: Thomes, Paul G. last_name: Thomes - first_name: Andrew full_name: Thorburn, Andrew last_name: Thorburn - first_name: Lipi full_name: Thukral, Lipi last_name: Thukral - first_name: Thomas full_name: Thum, Thomas last_name: Thum - first_name: Michael full_name: Thumm, Michael last_name: Thumm - first_name: Ling full_name: Tian, Ling last_name: Tian - first_name: Ales full_name: Tichy, Ales last_name: Tichy - first_name: Andreas full_name: Till, Andreas last_name: Till - first_name: Vincent full_name: Timmerman, Vincent last_name: Timmerman - first_name: Vladimir I. full_name: Titorenko, Vladimir I. last_name: Titorenko - first_name: Sokol V. full_name: Todi, Sokol V. last_name: Todi - first_name: Krassimira full_name: Todorova, Krassimira last_name: Todorova - first_name: Janne M. full_name: Toivonen, Janne M. last_name: Toivonen - first_name: Luana full_name: Tomaipitinca, Luana last_name: Tomaipitinca - first_name: Dhanendra full_name: Tomar, Dhanendra last_name: Tomar - first_name: Cristina full_name: Tomas-Zapico, Cristina last_name: Tomas-Zapico - first_name: Sergej full_name: Tomić, Sergej last_name: Tomić - first_name: Benjamin Chun Kit full_name: Tong, Benjamin Chun Kit last_name: Tong - first_name: Chao full_name: Tong, Chao last_name: Tong - first_name: Xin full_name: Tong, Xin id: 50F65CDC-AA30-11E9-A72B-8A12E6697425 last_name: Tong - first_name: Sharon A. full_name: Tooze, Sharon A. last_name: Tooze - first_name: Maria L. full_name: Torgersen, Maria L. last_name: Torgersen - first_name: Satoru full_name: Torii, Satoru last_name: Torii - first_name: Liliana full_name: Torres-López, Liliana last_name: Torres-López - first_name: Alicia full_name: Torriglia, Alicia last_name: Torriglia - first_name: Christina G. full_name: Towers, Christina G. last_name: Towers - first_name: Roberto full_name: Towns, Roberto last_name: Towns - first_name: Shinya full_name: Toyokuni, Shinya last_name: Toyokuni - first_name: Vladimir full_name: Trajkovic, Vladimir last_name: Trajkovic - first_name: Donatella full_name: Tramontano, Donatella last_name: Tramontano - first_name: Quynh Giao full_name: Tran, Quynh Giao last_name: Tran - first_name: Leonardo H. full_name: Travassos, Leonardo H. last_name: Travassos - first_name: Charles B. full_name: Trelford, Charles B. last_name: Trelford - first_name: Shirley full_name: Tremel, Shirley last_name: Tremel - first_name: Ioannis P. full_name: Trougakos, Ioannis P. last_name: Trougakos - first_name: Betty P. full_name: Tsao, Betty P. last_name: Tsao - first_name: Mario P. full_name: Tschan, Mario P. last_name: Tschan - first_name: Hung Fat full_name: Tse, Hung Fat last_name: Tse - first_name: Tak Fu full_name: Tse, Tak Fu last_name: Tse - first_name: Hitoshi full_name: Tsugawa, Hitoshi last_name: Tsugawa - first_name: Andrey S. full_name: Tsvetkov, Andrey S. last_name: Tsvetkov - first_name: David A. full_name: Tumbarello, David A. last_name: Tumbarello - first_name: Yasin full_name: Tumtas, Yasin last_name: Tumtas - first_name: María J. full_name: Tuñón, María J. last_name: Tuñón - first_name: Sandra full_name: Turcotte, Sandra last_name: Turcotte - first_name: Boris full_name: Turk, Boris last_name: Turk - first_name: Vito full_name: Turk, Vito last_name: Turk - first_name: Bradley J. full_name: Turner, Bradley J. last_name: Turner - first_name: Richard I. full_name: Tuxworth, Richard I. last_name: Tuxworth - first_name: Jessica K. full_name: Tyler, Jessica K. last_name: Tyler - first_name: Elena V. full_name: Tyutereva, Elena V. last_name: Tyutereva - first_name: Yasuo full_name: Uchiyama, Yasuo last_name: Uchiyama - first_name: Aslihan full_name: Ugun-Klusek, Aslihan last_name: Ugun-Klusek - first_name: Holm H. full_name: Uhlig, Holm H. last_name: Uhlig - first_name: Marzena full_name: Ułamek-Kozioł, Marzena last_name: Ułamek-Kozioł - first_name: Ilya V. full_name: Ulasov, Ilya V. last_name: Ulasov - first_name: Midori full_name: Umekawa, Midori last_name: Umekawa - first_name: Christian full_name: Ungermann, Christian last_name: Ungermann - first_name: Rei full_name: Unno, Rei last_name: Unno - first_name: Sylvie full_name: Urbe, Sylvie last_name: Urbe - first_name: Elisabet full_name: Uribe-Carretero, Elisabet last_name: Uribe-Carretero - first_name: Suayib full_name: Üstün, Suayib last_name: Üstün - first_name: Vladimir N. full_name: Uversky, Vladimir N. last_name: Uversky - first_name: Thomas full_name: Vaccari, Thomas last_name: Vaccari - first_name: Maria I. full_name: Vaccaro, Maria I. last_name: Vaccaro - first_name: Björn F. full_name: Vahsen, Björn F. last_name: Vahsen - first_name: Helin full_name: Vakifahmetoglu-Norberg, Helin last_name: Vakifahmetoglu-Norberg - first_name: Rut full_name: Valdor, Rut last_name: Valdor - first_name: Maria J. full_name: Valente, Maria J. last_name: Valente - first_name: Ayelén full_name: Valko, Ayelén last_name: Valko - first_name: Richard B. full_name: Vallee, Richard B. last_name: Vallee - first_name: Angela M. full_name: Valverde, Angela M. last_name: Valverde - first_name: Greet full_name: Van Den Berghe, Greet last_name: Van Den Berghe - first_name: Stijn full_name: Van Der Veen, Stijn last_name: Van Der Veen - first_name: Luc full_name: Van Kaer, Luc last_name: Van Kaer - first_name: Jorg full_name: Van Loosdregt, Jorg last_name: Van Loosdregt - first_name: Sjoerd J.L. full_name: Van Wijk, Sjoerd J.L. last_name: Van Wijk - first_name: Wim full_name: Vandenberghe, Wim last_name: Vandenberghe - first_name: Ilse full_name: Vanhorebeek, Ilse last_name: Vanhorebeek - first_name: Marcos A. full_name: Vannier-Santos, Marcos A. last_name: Vannier-Santos - first_name: Nicola full_name: Vannini, Nicola last_name: Vannini - first_name: M. Cristina full_name: Vanrell, M. Cristina last_name: Vanrell - first_name: Chiara full_name: Vantaggiato, Chiara last_name: Vantaggiato - first_name: Gabriele full_name: Varano, Gabriele last_name: Varano - first_name: Isabel full_name: Varela-Nieto, Isabel last_name: Varela-Nieto - first_name: Máté full_name: Varga, Máté last_name: Varga - first_name: M. Helena full_name: Vasconcelos, M. Helena last_name: Vasconcelos - first_name: Somya full_name: Vats, Somya last_name: Vats - first_name: Demetrios G. full_name: Vavvas, Demetrios G. last_name: Vavvas - first_name: Ignacio full_name: Vega-Naredo, Ignacio last_name: Vega-Naredo - first_name: Silvia full_name: Vega-Rubin-De-Celis, Silvia last_name: Vega-Rubin-De-Celis - first_name: Guillermo full_name: Velasco, Guillermo last_name: Velasco - first_name: Ariadna P. full_name: Velázquez, Ariadna P. last_name: Velázquez - first_name: Tibor full_name: Vellai, Tibor last_name: Vellai - first_name: Edo full_name: Vellenga, Edo last_name: Vellenga - first_name: Francesca full_name: Velotti, Francesca last_name: Velotti - first_name: Mireille full_name: Verdier, Mireille last_name: Verdier - first_name: Panayotis full_name: Verginis, Panayotis last_name: Verginis - first_name: Isabelle full_name: Vergne, Isabelle last_name: Vergne - first_name: Paul full_name: Verkade, Paul last_name: Verkade - first_name: Manish full_name: Verma, Manish last_name: Verma - first_name: Patrik full_name: Verstreken, Patrik last_name: Verstreken - first_name: Tim full_name: Vervliet, Tim last_name: Vervliet - first_name: Jörg full_name: Vervoorts, Jörg last_name: Vervoorts - first_name: Alexandre T. full_name: Vessoni, Alexandre T. last_name: Vessoni - first_name: Victor M. full_name: Victor, Victor M. last_name: Victor - first_name: Michel full_name: Vidal, Michel last_name: Vidal - first_name: Chiara full_name: Vidoni, Chiara last_name: Vidoni - first_name: Otilia V. full_name: Vieira, Otilia V. last_name: Vieira - first_name: Richard D. full_name: Vierstra, Richard D. last_name: Vierstra - first_name: Sonia full_name: Viganó, Sonia last_name: Viganó - first_name: Helena full_name: Vihinen, Helena last_name: Vihinen - first_name: Vinoy full_name: Vijayan, Vinoy last_name: Vijayan - first_name: Miquel full_name: Vila, Miquel last_name: Vila - first_name: Marçal full_name: Vilar, Marçal last_name: Vilar - first_name: José M. full_name: Villalba, José M. last_name: Villalba - first_name: Antonio full_name: Villalobo, Antonio last_name: Villalobo - first_name: Beatriz full_name: Villarejo-Zori, Beatriz last_name: Villarejo-Zori - first_name: Francesc full_name: Villarroya, Francesc last_name: Villarroya - first_name: Joan full_name: Villarroya, Joan last_name: Villarroya - first_name: Olivier full_name: Vincent, Olivier last_name: Vincent - first_name: Cecile full_name: Vindis, Cecile last_name: Vindis - first_name: Christophe full_name: Viret, Christophe last_name: Viret - first_name: Maria Teresa full_name: Viscomi, Maria Teresa last_name: Viscomi - first_name: Dora full_name: Visnjic, Dora last_name: Visnjic - first_name: Ilio full_name: Vitale, Ilio last_name: Vitale - first_name: David J. full_name: Vocadlo, David J. last_name: Vocadlo - first_name: Olga V. full_name: Voitsekhovskaja, Olga V. last_name: Voitsekhovskaja - first_name: Cinzia full_name: Volonté, Cinzia last_name: Volonté - first_name: Mattia full_name: Volta, Mattia last_name: Volta - first_name: Marta full_name: Vomero, Marta last_name: Vomero - first_name: Clarissa full_name: Von Haefen, Clarissa last_name: Von Haefen - first_name: Marc A. full_name: Vooijs, Marc A. last_name: Vooijs - first_name: Wolfgang full_name: Voos, Wolfgang last_name: Voos - first_name: Ljubica full_name: Vucicevic, Ljubica last_name: Vucicevic - first_name: Richard full_name: Wade-Martins, Richard last_name: Wade-Martins - first_name: Satoshi full_name: Waguri, Satoshi last_name: Waguri - first_name: Kenrick A. full_name: Waite, Kenrick A. last_name: Waite - first_name: Shuji full_name: Wakatsuki, Shuji last_name: Wakatsuki - first_name: David W. full_name: Walker, David W. last_name: Walker - first_name: Mark J. full_name: Walker, Mark J. last_name: Walker - first_name: Simon A. full_name: Walker, Simon A. last_name: Walker - first_name: Jochen full_name: Walter, Jochen last_name: Walter - first_name: Francisco G. full_name: Wandosell, Francisco G. last_name: Wandosell - first_name: Bo full_name: Wang, Bo last_name: Wang - first_name: Chao Yung full_name: Wang, Chao Yung last_name: Wang - first_name: Chen full_name: Wang, Chen last_name: Wang - first_name: Chenran full_name: Wang, Chenran last_name: Wang - first_name: Chenwei full_name: Wang, Chenwei last_name: Wang - first_name: Cun Yu full_name: Wang, Cun Yu last_name: Wang - first_name: Dong full_name: Wang, Dong last_name: Wang - first_name: Fangyang full_name: Wang, Fangyang last_name: Wang - first_name: Feng full_name: Wang, Feng last_name: Wang - first_name: Fengming full_name: Wang, Fengming last_name: Wang - first_name: Guansong full_name: Wang, Guansong last_name: Wang - first_name: Han full_name: Wang, Han last_name: Wang - first_name: Hao full_name: Wang, Hao last_name: Wang - first_name: Hexiang full_name: Wang, Hexiang last_name: Wang - first_name: Hong Gang full_name: Wang, Hong Gang last_name: Wang - first_name: Jianrong full_name: Wang, Jianrong last_name: Wang - first_name: Jigang full_name: Wang, Jigang last_name: Wang - first_name: Jiou full_name: Wang, Jiou last_name: Wang - first_name: Jundong full_name: Wang, Jundong last_name: Wang - first_name: Kui full_name: Wang, Kui last_name: Wang - first_name: Lianrong full_name: Wang, Lianrong last_name: Wang - first_name: Liming full_name: Wang, Liming last_name: Wang - first_name: Maggie Haitian full_name: Wang, Maggie Haitian last_name: Wang - first_name: Meiqing full_name: Wang, Meiqing last_name: Wang - first_name: Nanbu full_name: Wang, Nanbu last_name: Wang - first_name: Pengwei full_name: Wang, Pengwei last_name: Wang - first_name: Peipei full_name: Wang, Peipei last_name: Wang - first_name: Ping full_name: Wang, Ping last_name: Wang - first_name: Ping full_name: Wang, Ping last_name: Wang - first_name: Qing Jun full_name: Wang, Qing Jun last_name: Wang - first_name: Qing full_name: Wang, Qing last_name: Wang - first_name: Qing Kenneth full_name: Wang, Qing Kenneth last_name: Wang - first_name: Qiong A. full_name: Wang, Qiong A. last_name: Wang - first_name: Wen Tao full_name: Wang, Wen Tao last_name: Wang - first_name: Wuyang full_name: Wang, Wuyang last_name: Wang - first_name: Xinnan full_name: Wang, Xinnan last_name: Wang - first_name: Xuejun full_name: Wang, Xuejun last_name: Wang - first_name: Yan full_name: Wang, Yan last_name: Wang - first_name: Yanchang full_name: Wang, Yanchang last_name: Wang - first_name: Yanzhuang full_name: Wang, Yanzhuang last_name: Wang - first_name: Yen Yun full_name: Wang, Yen Yun last_name: Wang - first_name: Yihua full_name: Wang, Yihua last_name: Wang - first_name: Yipeng full_name: Wang, Yipeng last_name: Wang - first_name: Yu full_name: Wang, Yu last_name: Wang - first_name: Yuqi full_name: Wang, Yuqi last_name: Wang - first_name: Zhe full_name: Wang, Zhe last_name: Wang - first_name: Zhenyu full_name: Wang, Zhenyu last_name: Wang - first_name: Zhouguang full_name: Wang, Zhouguang last_name: Wang - first_name: Gary full_name: Warnes, Gary last_name: Warnes - first_name: Verena full_name: Warnsmann, Verena last_name: Warnsmann - first_name: Hirotaka full_name: Watada, Hirotaka last_name: Watada - first_name: Eizo full_name: Watanabe, Eizo last_name: Watanabe - first_name: Maxinne full_name: Watchon, Maxinne last_name: Watchon - first_name: Anna full_name: Wawrzyńska, Anna last_name: Wawrzyńska - first_name: Timothy E. full_name: Weaver, Timothy E. last_name: Weaver - first_name: Grzegorz full_name: Wegrzyn, Grzegorz last_name: Wegrzyn - first_name: Ann M. full_name: Wehman, Ann M. last_name: Wehman - first_name: Huafeng full_name: Wei, Huafeng last_name: Wei - first_name: Lei full_name: Wei, Lei last_name: Wei - first_name: Taotao full_name: Wei, Taotao last_name: Wei - first_name: Yongjie full_name: Wei, Yongjie last_name: Wei - first_name: Oliver H. full_name: Weiergräber, Oliver H. last_name: Weiergräber - first_name: Conrad C. full_name: Weihl, Conrad C. last_name: Weihl - first_name: Günther full_name: Weindl, Günther last_name: Weindl - first_name: Ralf full_name: Weiskirchen, Ralf last_name: Weiskirchen - first_name: Alan full_name: Wells, Alan last_name: Wells - first_name: Runxia H. full_name: Wen, Runxia H. last_name: Wen - first_name: Xin full_name: Wen, Xin last_name: Wen - first_name: Antonia full_name: Werner, Antonia last_name: Werner - first_name: Beatrice full_name: Weykopf, Beatrice last_name: Weykopf - first_name: Sally P. full_name: Wheatley, Sally P. last_name: Wheatley - first_name: J. Lindsay full_name: Whitton, J. Lindsay last_name: Whitton - first_name: Alexander J. full_name: Whitworth, Alexander J. last_name: Whitworth - first_name: Katarzyna full_name: Wiktorska, Katarzyna last_name: Wiktorska - first_name: Manon E. full_name: Wildenberg, Manon E. last_name: Wildenberg - first_name: Tom full_name: Wileman, Tom last_name: Wileman - first_name: Simon full_name: Wilkinson, Simon last_name: Wilkinson - first_name: Dieter full_name: Willbold, Dieter last_name: Willbold - first_name: Brett full_name: Williams, Brett last_name: Williams - first_name: Robin S.B. full_name: Williams, Robin S.B. last_name: Williams - first_name: Roger L. full_name: Williams, Roger L. last_name: Williams - first_name: Peter R. full_name: Williamson, Peter R. last_name: Williamson - first_name: Richard A. full_name: Wilson, Richard A. last_name: Wilson - first_name: Beate full_name: Winner, Beate last_name: Winner - first_name: Nathaniel J. full_name: Winsor, Nathaniel J. last_name: Winsor - first_name: Steven S. full_name: Witkin, Steven S. last_name: Witkin - first_name: Harald full_name: Wodrich, Harald last_name: Wodrich - first_name: Ute full_name: Woehlbier, Ute last_name: Woehlbier - first_name: Thomas full_name: Wollert, Thomas last_name: Wollert - first_name: Esther full_name: Wong, Esther last_name: Wong - first_name: Jack Ho full_name: Wong, Jack Ho last_name: Wong - first_name: Richard W. full_name: Wong, Richard W. last_name: Wong - first_name: Vincent Kam Wai full_name: Wong, Vincent Kam Wai last_name: Wong - first_name: W. Wei Lynn full_name: Wong, W. Wei Lynn last_name: Wong - first_name: An Guo full_name: Wu, An Guo last_name: Wu - first_name: Chengbiao full_name: Wu, Chengbiao last_name: Wu - first_name: Jian full_name: Wu, Jian last_name: Wu - first_name: Junfang full_name: Wu, Junfang last_name: Wu - first_name: Kenneth K. full_name: Wu, Kenneth K. last_name: Wu - first_name: Min full_name: Wu, Min last_name: Wu - first_name: Shan Ying full_name: Wu, Shan Ying last_name: Wu - first_name: Shengzhou full_name: Wu, Shengzhou last_name: Wu - first_name: Shu Yan full_name: Wu, Shu Yan last_name: Wu - first_name: Shufang full_name: Wu, Shufang last_name: Wu - first_name: William K.K. full_name: Wu, William K.K. last_name: Wu - first_name: Xiaohong full_name: Wu, Xiaohong last_name: Wu - first_name: Xiaoqing full_name: Wu, Xiaoqing last_name: Wu - first_name: Yao Wen full_name: Wu, Yao Wen last_name: Wu - first_name: Yihua full_name: Wu, Yihua last_name: Wu - first_name: Ramnik J. full_name: Xavier, Ramnik J. last_name: Xavier - first_name: Hongguang full_name: Xia, Hongguang last_name: Xia - first_name: Lixin full_name: Xia, Lixin last_name: Xia - first_name: Zhengyuan full_name: Xia, Zhengyuan last_name: Xia - first_name: Ge full_name: Xiang, Ge last_name: Xiang - first_name: Jin full_name: Xiang, Jin last_name: Xiang - first_name: Mingliang full_name: Xiang, Mingliang last_name: Xiang - first_name: Wei full_name: Xiang, Wei last_name: Xiang - first_name: Bin full_name: Xiao, Bin last_name: Xiao - first_name: Guozhi full_name: Xiao, Guozhi last_name: Xiao - first_name: Hengyi full_name: Xiao, Hengyi last_name: Xiao - first_name: Hong Tao full_name: Xiao, Hong Tao last_name: Xiao - first_name: Jian full_name: Xiao, Jian last_name: Xiao - first_name: Lan full_name: Xiao, Lan last_name: Xiao - first_name: Shi full_name: Xiao, Shi last_name: Xiao - first_name: Yin full_name: Xiao, Yin last_name: Xiao - first_name: Baoming full_name: Xie, Baoming last_name: Xie - first_name: Chuan Ming full_name: Xie, Chuan Ming last_name: Xie - first_name: Min full_name: Xie, Min last_name: Xie - first_name: Yuxiang full_name: Xie, Yuxiang last_name: Xie - first_name: Zhiping full_name: Xie, Zhiping last_name: Xie - first_name: Zhonglin full_name: Xie, Zhonglin last_name: Xie - first_name: Maria full_name: Xilouri, Maria last_name: Xilouri - first_name: Congfeng full_name: Xu, Congfeng last_name: Xu - first_name: En full_name: Xu, En last_name: Xu - first_name: Haoxing full_name: Xu, Haoxing last_name: Xu - first_name: Jing full_name: Xu, Jing last_name: Xu - first_name: Jin Rong full_name: Xu, Jin Rong last_name: Xu - first_name: Liang full_name: Xu, Liang last_name: Xu - first_name: Wen Wen full_name: Xu, Wen Wen last_name: Xu - first_name: Xiulong full_name: Xu, Xiulong last_name: Xu - first_name: Yu full_name: Xue, Yu last_name: Xue - first_name: Sokhna M.S. full_name: Yakhine-Diop, Sokhna M.S. last_name: Yakhine-Diop - first_name: Masamitsu full_name: Yamaguchi, Masamitsu last_name: Yamaguchi - first_name: Osamu full_name: Yamaguchi, Osamu last_name: Yamaguchi - first_name: Ai full_name: Yamamoto, Ai last_name: Yamamoto - first_name: Shunhei full_name: Yamashina, Shunhei last_name: Yamashina - first_name: Shengmin full_name: Yan, Shengmin last_name: Yan - first_name: Shian Jang full_name: Yan, Shian Jang last_name: Yan - first_name: Zhen full_name: Yan, Zhen last_name: Yan - first_name: Yasuo full_name: Yanagi, Yasuo last_name: Yanagi - first_name: Chuanbin full_name: Yang, Chuanbin last_name: Yang - first_name: Dun Sheng full_name: Yang, Dun Sheng last_name: Yang - first_name: Huan full_name: Yang, Huan last_name: Yang - first_name: Huang Tian full_name: Yang, Huang Tian last_name: Yang - first_name: Hui full_name: Yang, Hui last_name: Yang - first_name: Jin Ming full_name: Yang, Jin Ming last_name: Yang - first_name: Jing full_name: Yang, Jing last_name: Yang - first_name: Jingyu full_name: Yang, Jingyu last_name: Yang - first_name: Ling full_name: Yang, Ling last_name: Yang - first_name: Liu full_name: Yang, Liu last_name: Yang - first_name: Ming full_name: Yang, Ming last_name: Yang - first_name: Pei Ming full_name: Yang, Pei Ming last_name: Yang - first_name: Qian full_name: Yang, Qian last_name: Yang - first_name: Seungwon full_name: Yang, Seungwon last_name: Yang - first_name: Shu full_name: Yang, Shu last_name: Yang - first_name: Shun Fa full_name: Yang, Shun Fa last_name: Yang - first_name: Wannian full_name: Yang, Wannian last_name: Yang - first_name: Wei Yuan full_name: Yang, Wei Yuan last_name: Yang - first_name: Xiaoyong full_name: Yang, Xiaoyong last_name: Yang - first_name: Xuesong full_name: Yang, Xuesong last_name: Yang - first_name: Yi full_name: Yang, Yi last_name: Yang - first_name: Ying full_name: Yang, Ying last_name: Yang - first_name: Honghong full_name: Yao, Honghong last_name: Yao - first_name: Shenggen full_name: Yao, Shenggen last_name: Yao - first_name: Xiaoqiang full_name: Yao, Xiaoqiang last_name: Yao - first_name: Yong Gang full_name: Yao, Yong Gang last_name: Yao - first_name: Yong Ming full_name: Yao, Yong Ming last_name: Yao - first_name: Takahiro full_name: Yasui, Takahiro last_name: Yasui - first_name: Meysam full_name: Yazdankhah, Meysam last_name: Yazdankhah - first_name: Paul M. full_name: Yen, Paul M. last_name: Yen - first_name: Cong full_name: Yi, Cong last_name: Yi - first_name: Xiao Ming full_name: Yin, Xiao Ming last_name: Yin - first_name: Yanhai full_name: Yin, Yanhai last_name: Yin - first_name: Zhangyuan full_name: Yin, Zhangyuan last_name: Yin - first_name: Ziyi full_name: Yin, Ziyi last_name: Yin - first_name: Meidan full_name: Ying, Meidan last_name: Ying - first_name: Zheng full_name: Ying, Zheng last_name: Ying - first_name: Calvin K. full_name: Yip, Calvin K. last_name: Yip - first_name: Stephanie Pei Tung full_name: Yiu, Stephanie Pei Tung last_name: Yiu - first_name: Young H. full_name: Yoo, Young H. last_name: Yoo - first_name: Kiyotsugu full_name: Yoshida, Kiyotsugu last_name: Yoshida - first_name: Saori R. full_name: Yoshii, Saori R. last_name: Yoshii - first_name: Tamotsu full_name: Yoshimori, Tamotsu last_name: Yoshimori - first_name: Bahman full_name: Yousefi, Bahman last_name: Yousefi - first_name: Boxuan full_name: Yu, Boxuan last_name: Yu - first_name: Haiyang full_name: Yu, Haiyang last_name: Yu - first_name: Jun full_name: Yu, Jun last_name: Yu - first_name: Jun full_name: Yu, Jun last_name: Yu - first_name: Li full_name: Yu, Li last_name: Yu - first_name: Ming Lung full_name: Yu, Ming Lung last_name: Yu - first_name: Seong Woon full_name: Yu, Seong Woon last_name: Yu - first_name: Victor C. full_name: Yu, Victor C. last_name: Yu - first_name: W. Haung full_name: Yu, W. Haung last_name: Yu - first_name: Zhengping full_name: Yu, Zhengping last_name: Yu - first_name: Zhou full_name: Yu, Zhou last_name: Yu - first_name: Junying full_name: Yuan, Junying last_name: Yuan - first_name: Ling Qing full_name: Yuan, Ling Qing last_name: Yuan - first_name: Shilin full_name: Yuan, Shilin last_name: Yuan - first_name: Shyng Shiou F. full_name: Yuan, Shyng Shiou F. last_name: Yuan - first_name: Yanggang full_name: Yuan, Yanggang last_name: Yuan - first_name: Zengqiang full_name: Yuan, Zengqiang last_name: Yuan - first_name: Jianbo full_name: Yue, Jianbo last_name: Yue - first_name: Zhenyu full_name: Yue, Zhenyu last_name: Yue - first_name: Jeanho full_name: Yun, Jeanho last_name: Yun - first_name: Raymond L. full_name: Yung, Raymond L. last_name: Yung - first_name: David N. full_name: Zacks, David N. last_name: Zacks - first_name: Gabriele full_name: Zaffagnini, Gabriele last_name: Zaffagnini - first_name: Vanessa O. full_name: Zambelli, Vanessa O. last_name: Zambelli - first_name: Isabella full_name: Zanella, Isabella last_name: Zanella - first_name: Qun S. full_name: Zang, Qun S. last_name: Zang - first_name: Sara full_name: Zanivan, Sara last_name: Zanivan - first_name: Silvia full_name: Zappavigna, Silvia last_name: Zappavigna - first_name: Pilar full_name: Zaragoza, Pilar last_name: Zaragoza - first_name: Konstantinos S. full_name: Zarbalis, Konstantinos S. last_name: Zarbalis - first_name: Amir full_name: Zarebkohan, Amir last_name: Zarebkohan - first_name: Amira full_name: Zarrouk, Amira last_name: Zarrouk - first_name: Scott O. full_name: Zeitlin, Scott O. last_name: Zeitlin - first_name: Jialiu full_name: Zeng, Jialiu last_name: Zeng - first_name: Ju Deng full_name: Zeng, Ju Deng last_name: Zeng - first_name: Eva full_name: Žerovnik, Eva last_name: Žerovnik - first_name: Lixuan full_name: Zhan, Lixuan last_name: Zhan - first_name: Bin full_name: Zhang, Bin last_name: Zhang - first_name: Donna D. full_name: Zhang, Donna D. last_name: Zhang - first_name: Hanlin full_name: Zhang, Hanlin last_name: Zhang - first_name: Hong full_name: Zhang, Hong last_name: Zhang - first_name: Hong full_name: Zhang, Hong last_name: Zhang - first_name: Honghe full_name: Zhang, Honghe last_name: Zhang - first_name: Huafeng full_name: Zhang, Huafeng last_name: Zhang - first_name: Huaye full_name: Zhang, Huaye last_name: Zhang - first_name: Hui full_name: Zhang, Hui last_name: Zhang - first_name: Hui Ling full_name: Zhang, Hui Ling last_name: Zhang - first_name: Jianbin full_name: Zhang, Jianbin last_name: Zhang - first_name: Jianhua full_name: Zhang, Jianhua last_name: Zhang - first_name: Jing Pu full_name: Zhang, Jing Pu last_name: Zhang - first_name: Kalin Y.B. full_name: Zhang, Kalin Y.B. last_name: Zhang - first_name: Leshuai W. full_name: Zhang, Leshuai W. last_name: Zhang - first_name: Lin full_name: Zhang, Lin last_name: Zhang - first_name: Lisheng full_name: Zhang, Lisheng last_name: Zhang - first_name: Lu full_name: Zhang, Lu last_name: Zhang - first_name: Luoying full_name: Zhang, Luoying last_name: Zhang - first_name: Menghuan full_name: Zhang, Menghuan last_name: Zhang - first_name: Peng full_name: Zhang, Peng last_name: Zhang - first_name: Sheng full_name: Zhang, Sheng last_name: Zhang - first_name: Wei full_name: Zhang, Wei last_name: Zhang - first_name: Xiangnan full_name: Zhang, Xiangnan last_name: Zhang - first_name: Xiao Wei full_name: Zhang, Xiao Wei last_name: Zhang - first_name: Xiaolei full_name: Zhang, Xiaolei last_name: Zhang - first_name: Xiaoyan full_name: Zhang, Xiaoyan last_name: Zhang - first_name: Xin full_name: Zhang, Xin last_name: Zhang - first_name: Xinxin full_name: Zhang, Xinxin last_name: Zhang - first_name: Xu Dong full_name: Zhang, Xu Dong last_name: Zhang - first_name: Yang full_name: Zhang, Yang last_name: Zhang - first_name: Yanjin full_name: Zhang, Yanjin last_name: Zhang - first_name: Yi full_name: Zhang, Yi last_name: Zhang - first_name: Ying Dong full_name: Zhang, Ying Dong last_name: Zhang - first_name: Yingmei full_name: Zhang, Yingmei last_name: Zhang - first_name: Yuan Yuan full_name: Zhang, Yuan Yuan last_name: Zhang - first_name: Yuchen full_name: Zhang, Yuchen last_name: Zhang - first_name: Zhe full_name: Zhang, Zhe last_name: Zhang - first_name: Zhengguang full_name: Zhang, Zhengguang last_name: Zhang - first_name: Zhibing full_name: Zhang, Zhibing last_name: Zhang - first_name: Zhihai full_name: Zhang, Zhihai last_name: Zhang - first_name: Zhiyong full_name: Zhang, Zhiyong last_name: Zhang - first_name: Zili full_name: Zhang, Zili last_name: Zhang - first_name: Haobin full_name: Zhao, Haobin last_name: Zhao - first_name: Lei full_name: Zhao, Lei last_name: Zhao - first_name: Shuang full_name: Zhao, Shuang last_name: Zhao - first_name: Tongbiao full_name: Zhao, Tongbiao last_name: Zhao - first_name: Xiao Fan full_name: Zhao, Xiao Fan last_name: Zhao - first_name: Ying full_name: Zhao, Ying last_name: Zhao - first_name: Yongchao full_name: Zhao, Yongchao last_name: Zhao - first_name: Yongliang full_name: Zhao, Yongliang last_name: Zhao - first_name: Yuting full_name: Zhao, Yuting last_name: Zhao - first_name: Guoping full_name: Zheng, Guoping last_name: Zheng - first_name: Kai full_name: Zheng, Kai last_name: Zheng - first_name: Ling full_name: Zheng, Ling last_name: Zheng - first_name: Shizhong full_name: Zheng, Shizhong last_name: Zheng - first_name: Xi Long full_name: Zheng, Xi Long last_name: Zheng - first_name: Yi full_name: Zheng, Yi last_name: Zheng - first_name: Zu Guo full_name: Zheng, Zu Guo last_name: Zheng - first_name: Boris full_name: Zhivotovsky, Boris last_name: Zhivotovsky - first_name: Qing full_name: Zhong, Qing last_name: Zhong - first_name: Ao full_name: Zhou, Ao last_name: Zhou - first_name: Ben full_name: Zhou, Ben last_name: Zhou - first_name: Cefan full_name: Zhou, Cefan last_name: Zhou - first_name: Gang full_name: Zhou, Gang last_name: Zhou - first_name: Hao full_name: Zhou, Hao last_name: Zhou - first_name: Hong full_name: Zhou, Hong last_name: Zhou - first_name: Hongbo full_name: Zhou, Hongbo last_name: Zhou - first_name: Jie full_name: Zhou, Jie last_name: Zhou - first_name: Jing full_name: Zhou, Jing last_name: Zhou - first_name: Jing full_name: Zhou, Jing last_name: Zhou - first_name: Jiyong full_name: Zhou, Jiyong last_name: Zhou - first_name: Kailiang full_name: Zhou, Kailiang last_name: Zhou - first_name: Rongjia full_name: Zhou, Rongjia last_name: Zhou - first_name: Xu Jie full_name: Zhou, Xu Jie last_name: Zhou - first_name: Yanshuang full_name: Zhou, Yanshuang last_name: Zhou - first_name: Yinghong full_name: Zhou, Yinghong last_name: Zhou - first_name: Yubin full_name: Zhou, Yubin last_name: Zhou - first_name: Zheng Yu full_name: Zhou, Zheng Yu last_name: Zhou - first_name: Zhou full_name: Zhou, Zhou last_name: Zhou - first_name: Binglin full_name: Zhu, Binglin last_name: Zhu - first_name: Changlian full_name: Zhu, Changlian last_name: Zhu - first_name: Guo Qing full_name: Zhu, Guo Qing last_name: Zhu - first_name: Haining full_name: Zhu, Haining last_name: Zhu - first_name: Hongxin full_name: Zhu, Hongxin last_name: Zhu - first_name: Hua full_name: Zhu, Hua last_name: Zhu - first_name: Wei Guo full_name: Zhu, Wei Guo last_name: Zhu - first_name: Yanping full_name: Zhu, Yanping last_name: Zhu - first_name: Yushan full_name: Zhu, Yushan last_name: Zhu - first_name: Haixia full_name: Zhuang, Haixia last_name: Zhuang - first_name: Xiaohong full_name: Zhuang, Xiaohong last_name: Zhuang - first_name: Katarzyna full_name: Zientara-Rytter, Katarzyna last_name: Zientara-Rytter - first_name: Christine M. full_name: Zimmermann, Christine M. last_name: Zimmermann - first_name: Elena full_name: Ziviani, Elena last_name: Ziviani - first_name: Teresa full_name: Zoladek, Teresa last_name: Zoladek - first_name: Wei Xing full_name: Zong, Wei Xing last_name: Zong - first_name: Dmitry B. full_name: Zorov, Dmitry B. last_name: Zorov - first_name: Antonio full_name: Zorzano, Antonio last_name: Zorzano - first_name: Weiping full_name: Zou, Weiping last_name: Zou - first_name: Zhen full_name: Zou, Zhen last_name: Zou - first_name: Zhengzhi full_name: Zou, Zhengzhi last_name: Zou - first_name: Steven full_name: Zuryn, Steven last_name: Zuryn - first_name: Werner full_name: Zwerschke, Werner last_name: Zwerschke - first_name: Beate full_name: Brand-Saberi, Beate last_name: Brand-Saberi - first_name: X. Charlie full_name: Dong, X. Charlie last_name: Dong - first_name: Chandra Shekar full_name: Kenchappa, Chandra Shekar last_name: Kenchappa - first_name: Zuguo full_name: Li, Zuguo last_name: Li - first_name: Yong full_name: Lin, Yong last_name: Lin - first_name: Shigeru full_name: Oshima, Shigeru last_name: Oshima - first_name: Yueguang full_name: Rong, Yueguang last_name: Rong - first_name: Judith C. full_name: Sluimer, Judith C. last_name: Sluimer - first_name: Christina L. full_name: Stallings, Christina L. last_name: Stallings - first_name: Chun Kit full_name: Tong, Chun Kit last_name: Tong citation: ama: Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021;17(1):1-382. doi:10.1080/15548627.2020.1797280 apa: Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., … Tong, C. K. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. Taylor & Francis. https://doi.org/10.1080/15548627.2020.1797280 chicago: Klionsky, Daniel J., Amal Kamal Abdel-Aziz, Sara Abdelfatah, Mahmoud Abdellatif, Asghar Abdoli, Steffen Abel, Hagai Abeliovich, et al. “Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th Edition).” Autophagy. Taylor & Francis, 2021. https://doi.org/10.1080/15548627.2020.1797280. ieee: D. J. Klionsky et al., “Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition),” Autophagy, vol. 17, no. 1. Taylor & Francis, pp. 1–382, 2021. ista: Klionsky DJ et al. 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 17(1), 1–382. mla: Klionsky, Daniel J., et al. “Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th Edition).” Autophagy, vol. 17, no. 1, Taylor & Francis, 2021, pp. 1–382, doi:10.1080/15548627.2020.1797280. short: D.J. Klionsky, A.K. Abdel-Aziz, S. Abdelfatah, M. Abdellatif, A. Abdoli, S. Abel, H. Abeliovich, M.H. Abildgaard, Y.P. Abudu, A. Acevedo-Arozena, I.E. Adamopoulos, K. Adeli, T.E. Adolph, A. Adornetto, E. Aflaki, G. Agam, A. Agarwal, B.B. Aggarwal, M. Agnello, P. Agostinis, J.N. Agrewala, A. Agrotis, P.V. Aguilar, S.T. Ahmad, Z.M. Ahmed, U. Ahumada-Castro, S. Aits, S. Aizawa, Y. Akkoc, T. Akoumianaki, H.A. Akpinar, A.M. Al-Abd, L. Al-Akra, A. Al-Gharaibeh, M.A. Alaoui-Jamali, S. Alberti, E. Alcocer-Gómez, C. Alessandri, M. Ali, M.A. Alim Al-Bari, S. Aliwaini, J. Alizadeh, E. Almacellas, A. Almasan, A. Alonso, G.D. Alonso, N. Altan-Bonnet, D.C. Altieri, É.M.C. Álvarez, S. Alves, C. Alves Da Costa, M.M. Alzaharna, M. Amadio, C. Amantini, C. Amaral, S. Ambrosio, A.O. Amer, V. Ammanathan, Z. An, S.U. Andersen, S.A. Andrabi, M. Andrade-Silva, A.M. Andres, S. Angelini, D. Ann, U.C. Anozie, M.Y. Ansari, P. Antas, A. Antebi, Z. Antón, T. Anwar, L. Apetoh, N. Apostolova, T. Araki, Y. Araki, K. Arasaki, W.L. Araújo, J. Araya, C. Arden, M.A. Arévalo, S. Arguelles, E. Arias, J. Arikkath, H. Arimoto, A.R. Ariosa, D. Armstrong-James, L. Arnauné-Pelloquin, A. Aroca, D.S. Arroyo, I. Arsov, R. Artero, D.M.L. Asaro, M. Aschner, M. Ashrafizadeh, O. Ashur-Fabian, A.G. Atanasov, A.K. Au, P. Auberger, H.W. Auner, L. Aurelian, R. Autelli, L. Avagliano, Y. Ávalos, S. Aveic, C.A. Aveleira, T. Avin-Wittenberg, Y. Aydin, S. Ayton, S. Ayyadevara, M. Azzopardi, M. Baba, J.M. Backer, S.K. Backues, D.H. Bae, O.N. Bae, S.H. Bae, E.H. Baehrecke, A. Baek, S.H. Baek, S.H. Baek, G. Bagetta, A. Bagniewska-Zadworna, H. Bai, J. Bai, X. Bai, Y. Bai, N. Bairagi, S. Baksi, T. Balbi, C.T. Baldari, W. Balduini, A. Ballabio, M. Ballester, S. Balazadeh, R. Balzan, R. Bandopadhyay, S. Banerjee, S. Banerjee, Á. Bánréti, Y. Bao, M.S. Baptista, A. Baracca, C. Barbati, A. Bargiela, D. Barilà, P.G. Barlow, S.J. Barmada, E. Barreiro, G.E. Barreto, J. Bartek, B. Bartel, A. Bartolome, G.R. Barve, S.H. Basagoudanavar, D.C. Bassham, R.C. Bast, A. Basu, H. Batoko, I. Batten, E.E. Baulieu, B.L. Baumgarner, J. Bayry, R. Beale, I. Beau, F. Beaumatin, L.R.G. Bechara, G.R. Beck, M.F. Beers, J. Begun, C. Behrends, G.M.N. Behrens, R. Bei, E. Bejarano, S. Bel, C. Behl, A. Belaid, N. Belgareh-Touzé, C. Bellarosa, F. Belleudi, M. Belló Pérez, R. Bello-Morales, J.S.D.O. Beltran, S. Beltran, D.M. Benbrook, M. Bendorius, B.A. Benitez, I. Benito-Cuesta, J. Bensalem, M.W. Berchtold, S. Berezowska, D. Bergamaschi, M. Bergami, A. Bergmann, L. Berliocchi, C. Berlioz-Torrent, A. Bernard, L. Berthoux, C.G. Besirli, S. Besteiro, V.M. Betin, R. Beyaert, J.S. Bezbradica, K. Bhaskar, I. Bhatia-Kissova, R. Bhattacharya, S. Bhattacharya, S. Bhattacharyya, M.S. Bhuiyan, S.K. Bhutia, L. Bi, X. Bi, T.J. Biden, K. Bijian, V.A. Billes, N. Binart, C. Bincoletto, A.B. Birgisdottir, G. Bjorkoy, G. Blanco, A. Blas-Garcia, J. Blasiak, R. Blomgran, K. Blomgren, J.S. Blum, E. Boada-Romero, M. Boban, K. Boesze-Battaglia, P. Boeuf, B. Boland, P. Bomont, P. Bonaldo, S.R. Bonam, L. Bonfili, J.S. Bonifacino, B.A. Boone, M.D. Bootman, M. Bordi, C. Borner, B.C. Bornhauser, G. Borthakur, J. Bosch, S. Bose, L.M. Botana, J. Botas, C.M. Boulanger, M.E. Boulton, M. Bourdenx, B. Bourgeois, N.M. Bourke, G. Bousquet, P. Boya, P.V. Bozhkov, L.H.M. Bozi, T.O. Bozkurt, D.E. Brackney, C.H. Brandts, R.J. Braun, G.H. Braus, R. Bravo-Sagua, J.M. Bravo-San Pedro, P. Brest, M.A. Bringer, A. Briones-Herrera, V.C. Broaddus, P. Brodersen, J.L. Brodsky, S.L. Brody, P.G. Bronson, J.M. Bronstein, C.N. Brown, R.E. Brown, P.C. Brum, J.H. Brumell, N. Brunetti-Pierri, D. Bruno, R.J. Bryson-Richardson, C. Bucci, C. Buchrieser, M. Bueno, L.E. Buitrago-Molina, S. Buraschi, S. Buch, J.R. Buchan, E.M. Buckingham, H. Budak, M. Budini, G. Bultynck, F. Burada, J.R. Burgoyne, M.I. Burón, V. Bustos, S. Büttner, E. Butturini, A. Byrd, I. Cabas, S. Cabrera-Benitez, K. Cadwell, J. Cai, L. Cai, Q. Cai, M. Cairó, J.A. Calbet, G.A. Caldwell, K.A. Caldwell, J.A. Call, R. Calvani, A.C. Calvo, M. Calvo-Rubio Barrera, N.O.S. Camara, J.H. Camonis, N. Camougrand, M. Campanella, E.M. Campbell, F.X. Campbell-Valois, S. Campello, I. Campesi, J.C. Campos, O. Camuzard, J. Cancino, D. Candido De Almeida, L. Canesi, I. Caniggia, B. Canonico, C. Cantí, B. Cao, M. Caraglia, B. Caramés, E.H. Carchman, E. Cardenal-Muñoz, C. Cardenas, L. Cardenas, S.M. Cardoso, J.S. Carew, G.F. Carle, G. Carleton, S. Carloni, D. Carmona-Gutierrez, L.A. Carneiro, O. Carnevali, J.M. Carosi, S. Carra, A. Carrier, L. Carrier, B. Carroll, A.B. Carter, A.N. Carvalho, M. Casanova, C. Casas, J. Casas, C. Cassioli, E.F. Castillo, K. Castillo, S. Castillo-Lluva, F. Castoldi, M. Castori, A.F. Castro, M. Castro-Caldas, J. Castro-Hernandez, S. Castro-Obregon, S.D. Catz, C. Cavadas, F. Cavaliere, G. Cavallini, M. Cavinato, M.L. Cayuela, P. Cebollada Rica, V. Cecarini, F. Cecconi, M. Cechowska-Pasko, S. Cenci, V. Ceperuelo-Mallafré, J.J. Cerqueira, J.M. Cerutti, D. Cervia, V.B. Cetintas, S. Cetrullo, H.J. Chae, A.S. Chagin, C.Y. Chai, G. Chakrabarti, O. Chakrabarti, T. Chakraborty, T. Chakraborty, M. Chami, G. Chamilos, D.W. Chan, E.Y.W. Chan, E.D. Chan, H.Y.E. Chan, H.H. Chan, H. Chan, M.T.V. Chan, Y.S. Chan, P.K. Chandra, C.P. Chang, C. Chang, H.C. Chang, K. Chang, J. Chao, T. Chapman, N. Charlet-Berguerand, S. Chatterjee, S.K. Chaube, A. Chaudhary, S. Chauhan, E. Chaum, F. Checler, M.E. Cheetham, C.S. Chen, G.C. Chen, J.F. Chen, L.L. Chen, L. Chen, L. Chen, M. Chen, M.K. Chen, N. Chen, Q. Chen, R.H. Chen, S. Chen, W. Chen, W. Chen, X.M. Chen, X.W. Chen, X. Chen, Y. Chen, Y.G. Chen, Y. Chen, Y. Chen, Y.J. Chen, Y.Q. Chen, Z.S. Chen, Z. Chen, Z.H. Chen, Z.J. Chen, Z. Chen, H. Cheng, J. Cheng, S.Y. Cheng, W. Cheng, X. Cheng, X.T. Cheng, Y. Cheng, Z. Cheng, Z. Chen, H. Cheong, J.K. Cheong, B.V. Chernyak, S. Cherry, C.F.R. Cheung, C.H.A. Cheung, K.H. Cheung, E. Chevet, R.J. Chi, A.K.S. Chiang, F. Chiaradonna, R. Chiarelli, M. Chiariello, N. Chica, S. Chiocca, M. Chiong, S.H. Chiou, A.I. Chiramel, V. Chiurchiù, D.H. Cho, S.K. Choe, A.M.K. Choi, M.E. Choi, K.R. Choudhury, N.S. Chow, C.T. Chu, J.P. Chua, J.J.E. Chua, H. Chung, K.P. Chung, S. Chung, S.H. Chung, Y.L. Chung, V. Cianfanelli, I.A. Ciechomska, M. Cifuentes, L. Cinque, S. Cirak, M. Cirone, M.J. Clague, R. Clarke, E. Clementi, E.M. Coccia, P. Codogno, E. Cohen, M.M. Cohen, T. Colasanti, F. Colasuonno, R.A. Colbert, A. Colell, M. Čolić, N.S. Coll, M.O. Collins, M.I. Colombo, D.A. Colón-Ramos, L. Combaret, S. Comincini, M.R. Cominetti, A. Consiglio, A. Conte, F. Conti, V.R. Contu, M.R. Cookson, K.M. Coombs, I. Coppens, M.T. Corasaniti, D.P. Corkery, N. Cordes, K. Cortese, M.D.C. Costa, S. Costantino, P. Costelli, A. Coto-Montes, P.J. Crack, J.L. Crespo, A. Criollo, V. Crippa, R. Cristofani, T. Csizmadia, A. Cuadrado, B. Cui, J. Cui, Y. Cui, Y. Cui, E. Culetto, A.C. Cumino, A.V. Cybulsky, M.J. Czaja, S.J. Czuczwar, S. D’Adamo, M. D’Amelio, D. D’Arcangelo, A.C. D’Lugos, G. D’Orazi, J.A. Da Silva, H.S. Dafsari, R.K. Dagda, Y. Dagdas, M. Daglia, X. Dai, Y. Dai, Y. Dai, J. Dal Col, P. Dalhaimer, L. Dalla Valle, T. Dallenga, G. Dalmasso, M. Damme, I. Dando, N.P. Dantuma, A.L. Darling, H. Das, S. Dasarathy, S.K. Dasari, S. Dash, O. Daumke, A.N. Dauphinee, J.S. Davies, V.A. Dávila, R.J. Davis, T. Davis, S. Dayalan Naidu, F. De Amicis, K. De Bosscher, F. De Felice, L. De Franceschi, C. De Leonibus, M.G. De Mattos Barbosa, G.R.Y. De Meyer, A. De Milito, C. De Nunzio, C. De Palma, M. De Santi, C. De Virgilio, D. De Zio, J. Debnath, B.J. Debosch, J.P. Decuypere, M.A. Deehan, G. Deflorian, J. Degregori, B. Dehay, G. Del Rio, J.R. Delaney, L.M.D. Delbridge, E. Delorme-Axford, M.V. Delpino, F. Demarchi, V. Dembitz, N.D. Demers, H. Deng, Z. Deng, J. Dengjel, P. Dent, D. Denton, M.L. Depamphilis, C.J. Der, V. Deretic, A. Descoteaux, L. Devis, S. Devkota, O. Devuyst, G. Dewson, M. Dharmasivam, R. Dhiman, D. Di Bernardo, M. Di Cristina, F. Di Domenico, P. Di Fazio, A. Di Fonzo, G. Di Guardo, G.M. Di Guglielmo, L. Di Leo, C. Di Malta, A. Di Nardo, M. Di Rienzo, F. Di Sano, G. Diallinas, J. Diao, G. Diaz-Araya, I. Díaz-Laviada, J.M. Dickinson, M. Diederich, M. Dieudé, I. Dikic, S. Ding, W.X. Ding, L. Dini, J. Dinić, M. Dinic, A.T. Dinkova-Kostova, M.S. Dionne, J.H.W. Distler, A. Diwan, I.M.C. Dixon, M. Djavaheri-Mergny, I. Dobrinski, O. Dobrovinskaya, R. Dobrowolski, R.C.J. Dobson, J. Đokić, S. Dokmeci Emre, M. Donadelli, B. Dong, X. Dong, Z. Dong, G.W. Dorn, V. Dotsch, H. Dou, J. Dou, M. Dowaidar, S. Dridi, L. Drucker, A. Du, C. Du, G. Du, H.N. Du, L.L. Du, A. Du Toit, S.B. Duan, X. Duan, S.P. Duarte, A. Dubrovska, E.A. Dunlop, N. Dupont, R.V. Durán, B.S. Dwarakanath, S.A. Dyshlovoy, D. Ebrahimi-Fakhari, L. Eckhart, C.L. Edelstein, T. Efferth, E. Eftekharpour, L. Eichinger, N. Eid, T. Eisenberg, N.T. Eissa, S. Eissa, M. Ejarque, A. El Andaloussi, N. El-Hage, S. El-Naggar, A.M. Eleuteri, E.S. El-Shafey, M. Elgendy, A.G. Eliopoulos, M.M. Elizalde, P.M. Elks, H.P. Elsasser, E.S. Elsherbiny, B.M. Emerling, N.C.T. Emre, C.H. Eng, N. Engedal, A.M. Engelbrecht, A.S.T. Engelsen, J.M. Enserink, R. Escalante, A. Esclatine, M. Escobar-Henriques, E.L. Eskelinen, L. Espert, M.O. Eusebio, G. Fabrias, C. Fabrizi, A. Facchiano, F. Facchiano, B. Fadeel, C. Fader, A.C. Faesen, W.D. Fairlie, A. Falcó, B.H. Falkenburger, D. Fan, J. Fan, Y. Fan, E.F. Fang, Y. Fang, Y. Fang, M. Fanto, T. Farfel-Becker, M. Faure, G. Fazeli, A.O. Fedele, A.M. Feldman, D. Feng, J. Feng, L. Feng, Y. Feng, Y. Feng, W. Feng, T. Fenz Araujo, T.A. Ferguson, Á.F. Fernández, J.C. Fernandez-Checa, S. Fernández-Veledo, A.R. Fernie, A.W. Ferrante, A. Ferraresi, M.F. Ferrari, J.C.B. Ferreira, S. Ferro-Novick, A. Figueras, R. Filadi, N. Filigheddu, E. Filippi-Chiela, G. Filomeni, G.M. Fimia, V. Fineschi, F. Finetti, S. Finkbeiner, E.A. Fisher, P.B. Fisher, F. Flamigni, S.J. Fliesler, T.H. Flo, I. Florance, O. Florey, T. Florio, E. Fodor, C. Follo, E.A. Fon, A. Forlino, F. Fornai, P. Fortini, A. Fracassi, A. Fraldi, B. Franco, R. Franco, F. Franconi, L.B. Frankel, S.L. Friedman, L.F. Fröhlich, G. Frühbeck, J.M. Fuentes, Y. Fujiki, N. Fujita, Y. Fujiwara, M. Fukuda, S. Fulda, L. Furic, N. Furuya, C. Fusco, M.U. Gack, L. Gaffke, S. Galadari, A. Galasso, M.F. Galindo, S. Gallolu Kankanamalage, L. Galluzzi, V. Galy, N. Gammoh, B. Gan, I.G. Ganley, F. Gao, H. Gao, M. Gao, P. Gao, S.J. Gao, W. Gao, X. Gao, A. Garcera, M.N. Garcia, V.E. Garcia, F. García-Del Portillo, V. Garcia-Escudero, A. Garcia-Garcia, M. Garcia-Macia, D. García-Moreno, C. Garcia-Ruiz, P. García-Sanz, A.D. Garg, R. Gargini, T. Garofalo, R.F. Garry, N.C. Gassen, D. Gatica, L. Ge, W. Ge, R. Geiss-Friedlander, C. Gelfi, P. Genschik, I.E. Gentle, V. Gerbino, C. Gerhardt, K. Germain, M. Germain, D.A. Gewirtz, E. Ghasemipour Afshar, S. Ghavami, A. Ghigo, M. Ghosh, G. Giamas, C. Giampietri, A. Giatromanolaki, G.E. Gibson, S.B. Gibson, V. Ginet, E. Giniger, C. Giorgi, H. Girao, S.E. Girardin, M. Giridharan, S. Giuliano, C. Giulivi, S. Giuriato, J. Giustiniani, A. Gluschko, V. Goder, A. Goginashvili, J. Golab, D.C. Goldstone, A. Golebiewska, L.R. Gomes, R. Gomez, R. Gómez-Sánchez, M.C. Gomez-Puerto, R. Gomez-Sintes, Q. Gong, F.M. Goni, J. González-Gallego, T. Gonzalez-Hernandez, R.A. Gonzalez-Polo, J.A. Gonzalez-Reyes, P. González-Rodríguez, I.S. Goping, M.S. Gorbatyuk, N.V. Gorbunov, K. Görgülü, R.M. Gorojod, S.M. Gorski, S. Goruppi, C. Gotor, R.A. Gottlieb, I. Gozes, D. Gozuacik, M. Graef, M.H. Gräler, V. Granatiero, D. Grasso, J.P. Gray, D.R. Green, A. Greenhough, S.L. Gregory, E.F. Griffin, M.W. Grinstaff, F. Gros, C. Grose, A.S. Gross, F. Gruber, P. Grumati, T. Grune, X. Gu, J.L. Guan, C.M. Guardia, K. Guda, F. Guerra, C. Guerri, P. Guha, C. Guillén, S. Gujar, A. Gukovskaya, I. Gukovsky, J. Gunst, A. Günther, A.R. Guntur, C. Guo, C. Guo, H. Guo, L.W. Guo, M. Guo, P. Gupta, S.K. Gupta, S. Gupta, V.B. Gupta, V. Gupta, A.B. Gustafsson, D.D. Gutterman, R. H.B, A. Haapasalo, J.E. Haber, A. Hać, S. Hadano, A.J. Hafrén, M. Haidar, B.S. Hall, G. Halldén, A. Hamacher-Brady, A. Hamann, M. Hamasaki, W. Han, M. Hansen, P.I.. Hanson, Z. Hao, M. Harada, L. Harhaji-Trajkovic, N. Hariharan, N. Haroon, J. Harris, T. Hasegawa, N. Hasima Nagoor, J.A. Haspel, V. Haucke, W.D. Hawkins, B.A. Hay, C.M. Haynes, S.B. Hayrabedyan, T.S. Hays, C. He, Q. He, R.R. He, Y.W. He, Y.Y. He, Y. Heakal, A.M. Heberle, J.F. Hejtmancik, G.V. Helgason, V. Henkel, M. Herb, A. Hergovich, A. Herman-Antosiewicz, A. Hernández, C. Hernandez, S. Hernandez-Diaz, V. Hernandez-Gea, A. Herpin, J. Herreros, J.H. Hervás, D. Hesselson, C. Hetz, V.T. Heussler, Y. Higuchi, S. Hilfiker, J.A. Hill, W.S. Hlavacek, E.A. Ho, I.H.T. Ho, P.W.L. Ho, S.L. Ho, W.Y. Ho, G.A. Hobbs, M. Hochstrasser, P.H.M. Hoet, D. Hofius, P. Hofman, A. Höhn, C.I. Holmberg, J.R. Hombrebueno, C.W.H. Yi-Ren Hong, L.V. Hooper, T. Hoppe, R. Horos, Y. Hoshida, I.L. Hsin, H.Y. Hsu, B. Hu, D. Hu, L.F. Hu, M.C. Hu, R. Hu, W. Hu, Y.C. Hu, Z.W. Hu, F. Hua, J. Hua, Y. Hua, C. Huan, C. Huang, C. Huang, C. Huang, C. Huang, H. Huang, K. Huang, M.L.H. Huang, R. Huang, S. Huang, T. Huang, X. Huang, Y.J. Huang, T.B. Huber, V. Hubert, C.A. Hubner, S.M. Hughes, W.E. Hughes, M. Humbert, G. Hummer, J.H. Hurley, S. Hussain, S. Hussain, P.J. Hussey, M. Hutabarat, H.Y. Hwang, S. Hwang, A. Ieni, F. Ikeda, Y. Imagawa, Y. Imai, C. Imbriano, M. Imoto, D.M. Inman, K. Inoki, J. Iovanna, R.V. Iozzo, G. Ippolito, J.E. Irazoqui, P. Iribarren, M. Ishaq, M. Ishikawa, N. Ishimwe, C. Isidoro, N. Ismail, S. Issazadeh-Navikas, E. Itakura, D. Ito, D. Ivankovic, S. Ivanova, A.K.V. Iyer, J.M. Izquierdo, M. Izumi, M. Jäättelä, M.S. Jabir, W.T. Jackson, N. Jacobo-Herrera, A.C. Jacomin, E. Jacquin, P. Jadiya, H. Jaeschke, C. Jagannath, A.J. Jakobi, J. Jakobsson, B. Janji, P. Jansen-Dürr, P.J. Jansson, J. Jantsch, S. Januszewski, A. Jassey, S. Jean, H. Jeltsch-David, P. Jendelova, A. Jenny, T.E. Jensen, N. Jessen, J.L. Jewell, J. Ji, L. Jia, R. Jia, L. Jiang, Q. Jiang, R. Jiang, T. Jiang, X. Jiang, Y. Jiang, M. Jimenez-Sanchez, E.J. Jin, F. Jin, H. Jin, L. Jin, L. Jin, M. Jin, S. Jin, E.K. Jo, C. Joffre, T. Johansen, G.V.W. Johnson, S.A. Johnston, E. Jokitalo, M.K. Jolly, L.A.B. Joosten, J. Jordan, B. Joseph, D. Ju, J.S. Ju, J. Ju, E. Juárez, D. Judith, G. Juhász, Y. Jun, C.H. Jung, S.C. Jung, Y.K. Jung, H. Jungbluth, J. Jungverdorben, S. Just, K. Kaarniranta, A. Kaasik, T. Kabuta, D. Kaganovich, A. Kahana, R. Kain, S. Kajimura, M. Kalamvoki, M. Kalia, D.S. Kalinowski, N. Kaludercic, I. Kalvari, J. Kaminska, V.O. Kaminskyy, H. Kanamori, K. Kanasaki, C. Kang, R. Kang, S.S. Kang, S. Kaniyappan, T. Kanki, T.D. Kanneganti, A.G. Kanthasamy, A. Kanthasamy, M. Kantorow, O. Kapuy, M.V. Karamouzis, M.R. Karim, P. Karmakar, R.G. Katare, M. Kato, S.H.E. Kaufmann, A. Kauppinen, G.P. Kaushal, S. Kaushik, K. Kawasaki, K. Kazan, P.Y. Ke, D.J. Keating, U. Keber, J.H. Kehrl, K.E. Keller, C.W. Keller, J.K. Kemper, C.M. Kenific, O. Kepp, S. Kermorgant, A. Kern, R. Ketteler, T.G. Keulers, B. Khalfin, H. Khalil, B. Khambu, S.Y. Khan, V.K.M. Khandelwal, R. Khandia, W. Kho, N.V. Khobrekar, S. Khuansuwan, M. Khundadze, S.A. Killackey, D. Kim, D.R. Kim, D.H. Kim, D.E. Kim, E.Y. Kim, E.K. Kim, H.R. Kim, H.S. Kim, U. Hyung-Ryong Kim, J.H. Kim, J.K. Kim, J.H. Kim, J. Kim, J.H. Kim, K.I. Kim, P.K. Kim, S.J. Kim, S.R. Kimball, A. Kimchi, A.C. Kimmelman, T. Kimura, M.A. King, K.J. Kinghorn, C.G. Kinsey, V. Kirkin, L.A. Kirshenbaum, S.L. Kiselev, S. Kishi, K. Kitamoto, Y. Kitaoka, K. Kitazato, R.N. Kitsis, J.T. Kittler, O. Kjaerulff, P.S. Klein, T. Klopstock, J. Klucken, H. Knævelsrud, R.L. Knorr, B.C.B. Ko, F. Ko, J.L. Ko, H. Kobayashi, S. Kobayashi, I. Koch, J.C. Koch, U. Koenig, D. Kögel, Y.H. Koh, M. Koike, S.D. Kohlwein, N.M. Kocaturk, M. Komatsu, J. König, T. Kono, B.T. Kopp, T. Korcsmaros, G. Korkmaz, V.I. Korolchuk, M.S. Korsnes, A. Koskela, J. Kota, Y. Kotake, M.L. Kotler, Y. Kou, M.I. Koukourakis, E. Koustas, A.L. Kovacs, T. Kovács, D. Koya, T. Kozako, C. Kraft, D. Krainc, H. Krämer, A.D. Krasnodembskaya, C. Kretz-Remy, G. Kroemer, N.T. Ktistakis, K. Kuchitsu, S. Kuenen, L. Kuerschner, T. Kukar, A. Kumar, A. Kumar, D. Kumar, D. Kumar, S. Kumar, S. Kume, C. Kumsta, C.N. Kundu, M. Kundu, A.B. Kunnumakkara, L. Kurgan, T.G. Kutateladze, O. Kutlu, S.A. Kwak, H.J. Kwon, T.K. Kwon, Y.T. Kwon, I. Kyrmizi, A. La Spada, P. Labonté, S. Ladoire, I. Laface, F. Lafont, D.C. Lagace, V. Lahiri, Z. Lai, A.S. Laird, A. Lakkaraju, T. Lamark, S.H. Lan, A. Landajuela, D.J.R. Lane, J.D. Lane, C.H. Lang, C. Lange, Ü. Langel, R. Langer, P. Lapaquette, J. Laporte, N.F. Larusso, I. Lastres-Becker, W.C.Y. Lau, G.W. Laurie, S. Lavandero, B.Y.K. Law, H.K.W. Law, R. Layfield, W. Le, H. Le Stunff, A.Y. Leary, J.J. Lebrun, L.Y.W. Leck, J.P. Leduc-Gaudet, C. Lee, C.P. Lee, D.H. Lee, E.B. Lee, E.F. Lee, G.M. Lee, H.J. Lee, H.K. Lee, J.M. Lee, J.S. Lee, J.A. Lee, J.Y. Lee, J.H. Lee, M. Lee, M.G. Lee, M.J. Lee, M.S. Lee, S.Y. Lee, S.J. Lee, S.Y. Lee, S.B. Lee, W.H. Lee, Y.R. Lee, Y.H. Lee, Y. Lee, C. Lefebvre, R. Legouis, Y.L. Lei, Y. Lei, S. Leikin, G. Leitinger, L. Lemus, S. Leng, O. Lenoir, G. Lenz, H.J. Lenz, P. Lenzi, Y. León, A.M. Leopoldino, C. Leschczyk, S. Leskelä, E. Letellier, C.T. Leung, P.S. Leung, J.S. Leventhal, B. Levine, P.A. Lewis, K. Ley, B. Li, D.Q. Li, J. Li, J. Li, J. Li, K. Li, L. Li, M. Li, M. Li, M. Li, M. Li, M. Li, P.L. Li, M.Q. Li, Q. Li, S. Li, T. Li, W. Li, W. Li, X. Li, Y.P. Li, Y. Li, Z. Li, Z. Li, Z. Li, J. Lian, C. Liang, Q. Liang, W. Liang, Y. Liang, Y.T. Liang, G. Liao, L. Liao, M. Liao, Y.F. Liao, M. Librizzi, P.P.Y. Lie, M.A. Lilly, H.J. Lim, T.R.R. Lima, F. Limana, C. Lin, C.W. Lin, D.S. Lin, F.C. Lin, J.D. Lin, K.M. Lin, K.H. Lin, L.T. Lin, P.H. Lin, Q. Lin, S. Lin, S.J. Lin, W. Lin, X. Lin, Y.X. Lin, Y.S. Lin, R. Linden, P. Lindner, S.C. Ling, P. Lingor, A.K. Linnemann, Y.C. Liou, M.M. Lipinski, S. Lipovšek, V.A. Lira, N. Lisiak, P.B. Liton, C. Liu, C.H. Liu, C.F. Liu, C.H. Liu, F. Liu, H. Liu, H.S. Liu, H.F. Liu, H. Liu, J. Liu, J. Liu, J. Liu, L. Liu, L. Liu, M. Liu, Q. Liu, W. Liu, W. Liu, X.H. Liu, X. Liu, X. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. Liu, Y. Liu, Y. Liu, J.A. Livingston, G. Lizard, J.M. Lizcano, S. Ljubojevic-Holzer, M.E. Lleonart, D. Llobet-Navàs, A. Llorente, C.H. Lo, D. Lobato-Márquez, Q. Long, Y.C. Long, B. Loos, J.A. Loos, M.G. López, G. López-Doménech, J.A. López-Guerrero, A.T. López-Jiménez, Ó. López-Pérez, I. López-Valero, M.J. Lorenowicz, M. Lorente, P. Lorincz, L. Lossi, S. Lotersztajn, P.E. Lovat, J.F. Lovell, A. Lovy, P. Lőw, G. Lu, H. Lu, J.H. Lu, J.J. Lu, M. Lu, S. Lu, A. Luciani, J.M. Lucocq, P. Ludovico, M.A. Luftig, M. Luhr, D. Luis-Ravelo, J.J. Lum, L. Luna-Dulcey, A.H. Lund, V.K. Lund, J.D. Lünemann, P. Lüningschrör, H. Luo, R. Luo, S. Luo, Z. Luo, C. Luparello, B. Lüscher, L. Luu, A. Lyakhovich, K.G. Lyamzaev, A.H. Lystad, L. Lytvynchuk, A.C. Ma, C. Ma, M. Ma, N.F. Ma, Q.H. Ma, X. Ma, Y. Ma, Z. Ma, O.A. Macdougald, F. Macian, G.C. Macintosh, J.P. Mackeigan, K.F. Macleod, S. Maday, F. Madeo, M. Madesh, T. Madl, J. Madrigal-Matute, A. Maeda, Y. Maejima, M. Magarinos, P. Mahavadi, E. Maiani, K. Maiese, P. Maiti, M.C. Maiuri, B. Majello, M.B. Major, E. Makareeva, F. Malik, K. Mallilankaraman, W. Malorni, A. Maloyan, N. Mammadova, G.C.W. Man, F. Manai, J.D. Mancias, E.M. Mandelkow, M.A. Mandell, A.A. Manfredi, M.H. Manjili, R. Manjithaya, P. Manque, B.B. Manshian, R. Manzano, C. Manzoni, K. Mao, C. Marchese, S. Marchetti, A.M. Marconi, F. Marcucci, S. Mardente, O.A. Mareninova, M. Margeta, M. Mari, S. Marinelli, O. Marinelli, G. Mariño, S. Mariotto, R.S. Marshall, M.R. Marten, S. Martens, A.P.J. Martin, K.R. Martin, S. Martin, S. Martin, A. Martín-Segura, M.A. Martín-Acebes, I. Martin-Burriel, M. Martin-Rincon, P. Martin-Sanz, J.A. Martina, W. Martinet, A. Martinez, A. Martinez, J. Martinez, M. Martinez Velazquez, N. Martinez-Lopez, M. Martinez-Vicente, D.O. Martins, J.O. Martins, W.K. Martins, T. Martins-Marques, E. Marzetti, S. Masaldan, C. Masclaux-Daubresse, D.G. Mashek, V. Massa, L. Massieu, G.R. Masson, L. Masuelli, A.I. Masyuk, T.V. Masyuk, P. Matarrese, A. Matheu, S. Matoba, S. Matsuzaki, P. Mattar, A. Matte, D. Mattoscio, J.L. Mauriz, M. Mauthe, C. Mauvezin, E. Maverakis, P. Maycotte, J. Mayer, G. Mazzoccoli, C. Mazzoni, J.R. Mazzulli, N. Mccarty, C. Mcdonald, M.R. Mcgill, S.L. Mckenna, B.A. Mclaughlin, F. Mcloughlin, M.A. Mcniven, T.G. Mcwilliams, F. Mechta-Grigoriou, T.C. Medeiros, D.L. Medina, L.A. Megeney, K. Megyeri, M. Mehrpour, J.L. Mehta, A.J. Meijer, A.H. Meijer, J. Mejlvang, A. Meléndez, A. Melk, G. Memisoglu, A.F. Mendes, D. Meng, F. Meng, T. Meng, R. Menna-Barreto, M.B. Menon, C. Mercer, A.E. Mercier, J.L. Mergny, A. Merighi, S.D. Merkley, G. Merla, V. Meske, A.C. Mestre, S.P. Metur, C. Meyer, H. Meyer, W. Mi, J. Mialet-Perez, J. Miao, L. Micale, Y. Miki, E. Milan, M. Milczarek, D.L. Miller, S.I. Miller, S. Miller, S.W. Millward, I. Milosevic, E.A. Minina, H. Mirzaei, H.R. Mirzaei, M. Mirzaei, A. Mishra, N. Mishra, P.K. Mishra, M. Misirkic Marjanovic, R. Misasi, A. Misra, G. Misso, C. Mitchell, G. Mitou, T. Miura, S. Miyamoto, M. Miyazaki, M. Miyazaki, T. Miyazaki, K. Miyazawa, N. Mizushima, T.H. Mogensen, B. Mograbi, R. Mohammadinejad, Y. Mohamud, A. Mohanty, S. Mohapatra, T. Möhlmann, A. Mohmmed, A. Moles, K.H. Moley, M. Molinari, V. Mollace, A.B. Møller, B. Mollereau, F. Mollinedo, C. Montagna, M.J. Monteiro, A. Montella, L.R. Montes, B. Montico, V.K. Mony, G. Monzio Compagnoni, M.N. Moore, M.A. Moosavi, A.L. Mora, M. Mora, D. Morales-Alamo, R. Moratalla, P.I. Moreira, E. Morelli, S. Moreno, D. Moreno-Blas, V. Moresi, B. Morga, A.H. Morgan, F. Morin, H. Morishita, O.L. Moritz, M. Moriyama, Y. Moriyasu, M. Morleo, E. Morselli, J.F. Moruno-Manchon, J. Moscat, S. Mostowy, E. Motori, A.F. Moura, N. Moustaid-Moussa, M. Mrakovcic, G. Muciño-Hernández, A. Mukherjee, S. Mukhopadhyay, J.M. Mulcahy Levy, V. Mulero, S. Muller, C. Münch, A. Munjal, P. Munoz-Canoves, T. Muñoz-Galdeano, C. Münz, T. Murakawa, C. Muratori, B.M. Murphy, J.P. Murphy, A. Murthy, T.T. Myöhänen, I.U. Mysorekar, J. Mytych, S.M. Nabavi, M. Nabissi, P. Nagy, J. Nah, A. Nahimana, I. Nakagawa, K. Nakamura, H. Nakatogawa, S.S. Nandi, M. Nanjundan, M. Nanni, G. Napolitano, R. Nardacci, M. Narita, M. Nassif, I. Nathan, M. Natsumeda, R.J. Naude, C. Naumann, O. Naveiras, F. Navid, S.T. Nawrocki, T.Y. Nazarko, F. Nazio, F. Negoita, T. Neill, A.L. Neisch, L.M. Neri, M.G. Netea, P. Neubert, T.P. Neufeld, D. Neumann, A. Neutzner, P.T. Newton, P.A. Ney, I.P. Nezis, C.C.W. Ng, T.B. Ng, H.T.T. Nguyen, L.T. Nguyen, H.M. Ni, C. Ní Cheallaigh, Z. Ni, M.C. Nicolao, F. Nicoli, M. Nieto-Diaz, P. Nilsson, S. Ning, R. Niranjan, H. Nishimune, M. Niso-Santano, R.A. Nixon, A. Nobili, C. Nobrega, T. Noda, U. Nogueira-Recalde, T.M. Nolan, I. Nombela, I. Novak, B. Novoa, T. Nozawa, N. Nukina, C. Nussbaum-Krammer, J. Nylandsted, T.R. O’Donovan, S.M. O’Leary, E.J. O’Rourke, M.P. O’Sullivan, T.E. O’Sullivan, S. Oddo, I. Oehme, M. Ogawa, E. Ogier-Denis, M.H. Ogmundsdottir, B. Ogretmen, G.T. Oh, S.H. Oh, Y.J. Oh, T. Ohama, Y. Ohashi, M. Ohmuraya, V. Oikonomou, R. Ojha, K. Okamoto, H. Okazawa, M. Oku, S. Oliván, J.M.A. Oliveira, M. Ollmann, J.A. Olzmann, S. Omari, M.B. Omary, G. Önal, M. Ondrej, S.B. Ong, S.G. Ong, A. Onnis, J.A. Orellana, S. Orellana-Muñoz, M.D.M. Ortega-Villaizan, X.R. Ortiz-Gonzalez, E. Ortona, H.D. Osiewacz, A.H.K. Osman, R. Osta, M.S. Otegui, K. Otsu, C. Ott, L. Ottobrini, J.H.J. Ou, T.F. Outeiro, I. Oynebraten, M. Ozturk, G. Pagès, S. Pahari, M. Pajares, U.B. Pajvani, R. Pal, S. Paladino, N. Pallet, M. Palmieri, G. Palmisano, C. Palumbo, F. Pampaloni, L. Pan, Q. Pan, W. Pan, X. Pan, G. Panasyuk, R. Pandey, U.B. Pandey, V. Pandya, F. Paneni, S.Y. Pang, E. Panzarini, D.L. Papademetrio, E. Papaleo, D. Papinski, D. Papp, E.C. Park, H.T. Park, J.M. Park, J.I. Park, J.T. Park, J. Park, S.C. Park, S.Y. Park, A.H. Parola, J.B. Parys, A. Pasquier, B. Pasquier, J.F. Passos, N. Pastore, H.H. Patel, D. Patschan, S. Pattingre, G. Pedraza-Alva, J. Pedraza-Chaverri, Z. Pedrozo, G. Pei, J. Pei, H. Peled-Zehavi, J.M. Pellegrini, J. Pelletier, M.A. Peñalva, D. Peng, Y. Peng, F. Penna, M. Pennuto, F. Pentimalli, C.M.F. Pereira, G.J.S. Pereira, L.C. Pereira, L. Pereira De Almeida, N.D. Perera, Á. Pérez-Lara, A.B. Perez-Oliva, M.E. Pérez-Pérez, P. Periyasamy, A. Perl, C. Perrotta, I. Perrotta, R.G. Pestell, M. Petersen, I. Petrache, G. Petrovski, T. Pfirrmann, A.S. Pfister, J.A. Philips, H. Pi, A. Picca, A.M. Pickrell, S. Picot, G.M. Pierantoni, M. Pierdominici, P. Pierre, V. Pierrefite-Carle, K. Pierzynowska, F. Pietrocola, M. Pietruczuk, C. Pignata, F.X. Pimentel-Muiños, M. Pinar, R.O. Pinheiro, R. Pinkas-Kramarski, P. Pinton, K. Pircs, S. Piya, P. Pizzo, T.S. Plantinga, H.W. Platta, A. Plaza-Zabala, M. Plomann, E.Y. Plotnikov, H. Plun-Favreau, R. Pluta, R. Pocock, S. Pöggeler, C. Pohl, M. Poirot, A. Poletti, M. Ponpuak, H. Popelka, B. Popova, H. Porta, S. Porte Alcon, E. Portilla-Fernandez, M. Post, M.B. Potts, J. Poulton, T. Powers, V. Prahlad, T.K. Prajsnar, D. Praticò, R. Prencipe, M. Priault, T. Proikas-Cezanne, V.J. Promponas, C.G. Proud, R. Puertollano, L. Puglielli, T. Pulinilkunnil, D. Puri, R. Puri, J. Puyal, X. Qi, Y. Qi, W. Qian, L. Qiang, Y. Qiu, J. Quadrilatero, J. Quarleri, N. Raben, H. Rabinowich, D. Ragona, M.J. Ragusa, N. Rahimi, M. Rahmati, V. Raia, N. Raimundo, N.S. Rajasekaran, S. Ramachandra Rao, A. Rami, I. Ramírez-Pardo, D.B. Ramsden, F. Randow, P.N. Rangarajan, D. Ranieri, H. Rao, L. Rao, R. Rao, S. Rathore, J.A. Ratnayaka, E.A. Ratovitski, P. Ravanan, G. Ravegnini, S.K. Ray, B. Razani, V. Rebecca, F. Reggiori, A. Régnier-Vigouroux, A.S. Reichert, D. Reigada, J.H. Reiling, T. Rein, S. Reipert, R.S. Rekha, H. Ren, J. Ren, W. Ren, T. Renault, G. Renga, K. Reue, K. Rewitz, B. Ribeiro De Andrade Ramos, S.A. Riazuddin, T.M. Ribeiro-Rodrigues, J.E. Ricci, R. Ricci, V. Riccio, D.R. Richardson, Y. Rikihisa, M.V. Risbud, R.M. Risueño, K. Ritis, S. Rizza, R. Rizzuto, H.C. Roberts, L.D. Roberts, K.J. Robinson, M.C. Roccheri, S. Rocchi, G.G. Rodney, T. Rodrigues, V.R. Rodrigues Silva, A. Rodriguez, R. Rodriguez-Barrueco, N. Rodriguez-Henche, H. Rodriguez-Rocha, J. Roelofs, R.S. Rogers, V.V. Rogov, A.I. Rojo, K. Rolka, V. Romanello, L. Romani, A. Romano, P.S. Romano, D. Romeo-Guitart, L.C. Romero, M. Romero, J.C. Roney, C. Rongo, S. Roperto, M.T. Rosenfeldt, P. Rosenstiel, A.G. Rosenwald, K.A. Roth, L. Roth, S. Roth, K.M.A. Rouschop, B.D. Roussel, S. Roux, P. Rovere-Querini, A. Roy, A. Rozieres, D. Ruano, D.C. Rubinsztein, M.P. Rubtsova, K. Ruckdeschel, C. Ruckenstuhl, E. Rudolf, R. Rudolf, A. Ruggieri, A.A. Ruparelia, P. Rusmini, R.R. Russell, G.L. Russo, M. Russo, R. Russo, O.O. Ryabaya, K.M. Ryan, K.Y. Ryu, M. Sabater-Arcis, U. Sachdev, M. Sacher, C. Sachse, A. Sadhu, J. Sadoshima, N. Safren, P. Saftig, A.P. Sagona, G. Sahay, A. Sahebkar, M. Sahin, O. Sahin, S. Sahni, N. Saito, S. Saito, T. Saito, R. Sakai, Y. Sakai, J.I. Sakamaki, K. Saksela, G. Salazar, A. Salazar-Degracia, G.H. Salekdeh, A.K. Saluja, B. Sampaio-Marques, M.C. Sanchez, J.A. Sanchez-Alcazar, V. Sanchez-Vera, V. Sancho-Shimizu, J.T. Sanderson, M. Sandri, S. Santaguida, L. Santambrogio, M.M. Santana, G. Santoni, A. Sanz, P. Sanz, S. Saran, M. Sardiello, T.J. Sargeant, A. Sarin, C. Sarkar, S. Sarkar, M.R. Sarrias, S. Sarkar, D.T. Sarmah, J. Sarparanta, A. Sathyanarayan, R. Sathyanarayanan, K.M. Scaglione, F. Scatozza, L. Schaefer, Z.T. Schafer, U.E. Schaible, A.H.V. Schapira, M. Scharl, H.M. Schatzl, C.H. Schein, W. Scheper, D. Scheuring, M.V. Schiaffino, M. Schiappacassi, R. Schindl, U. Schlattner, O. Schmidt, R. Schmitt, S.D. Schmidt, I. Schmitz, E. Schmukler, A. Schneider, B.E. Schneider, R. Schober, A.C. Schoijet, M.B. Schott, M. Schramm, B. Schröder, K. Schuh, C. Schüller, R.J. Schulze, L. Schürmanns, J.C. Schwamborn, M. Schwarten, F. Scialo, S. Sciarretta, M.J. Scott, K.W. Scotto, A.I. Scovassi, A. Scrima, A. Scrivo, D. Sebastian, S. Sebti, S. Sedej, L. Segatori, N. Segev, P.O. Seglen, I. Seiliez, E. Seki, S.B. Selleck, F.W. Sellke, J.T. Selsby, M. Sendtner, S. Senturk, E. Seranova, C. Sergi, R. Serra-Moreno, H. Sesaki, C. Settembre, S.R.G. Setty, G. Sgarbi, O. Sha, J.J. Shacka, J.A. Shah, D. Shang, C. Shao, F. Shao, S. Sharbati, L.M. Sharkey, D. Sharma, G. Sharma, K. Sharma, P. Sharma, S. Sharma, H.M. Shen, H. Shen, J. Shen, M. Shen, W. Shen, Z. Shen, R. Sheng, Z. Sheng, Z.H. Sheng, J. Shi, X. Shi, Y.H. Shi, K. Shiba-Fukushima, J.J. Shieh, Y. Shimada, S. Shimizu, M. Shimozawa, T. Shintani, C.J. Shoemaker, S. Shojaei, I. Shoji, B.V. Shravage, V. Shridhar, C.W. Shu, H.B. Shu, K. Shui, A.K. Shukla, T.E. Shutt, V. Sica, A. Siddiqui, A. Sierra, V. Sierra-Torre, S. Signorelli, P. Sil, B.J.D.A. Silva, J.D. Silva, E. Silva-Pavez, S. Silvente-Poirot, R.E. Simmonds, A.K. Simon, H.U. Simon, M. Simons, A. Singh, L.P. Singh, R. Singh, S.V. Singh, S.K. Singh, S.B. Singh, S. Singh, S.P. Singh, D. Sinha, R.A. Sinha, S. Sinha, A. Sirko, K. Sirohi, E.L. Sivridis, P. Skendros, A. Skirycz, I. Slaninová, S.S. Smaili, A. Smertenko, M.D. Smith, S.J. Soenen, E.J. Sohn, S.P.M. Sok, G. Solaini, T. Soldati, S.A. Soleimanpour, R.M. Soler, A. Solovchenko, J.A. Somarelli, A. Sonawane, F. Song, H.K. Song, J.X. Song, K. Song, Z. Song, L.R. Soria, M. Sorice, A.A. Soukas, S.F. Soukup, D. Sousa, N. Sousa, P.A. Spagnuolo, S.A. Spector, M.M. Srinivas Bharath, D. St. Clair, V. Stagni, L. Staiano, C.A. Stalnecker, M.V. Stankov, P.B. Stathopulos, K. Stefan, S.M. Stefan, L. Stefanis, J.S. Steffan, A. Steinkasserer, H. Stenmark, J. Sterneckert, C. Stevens, V. Stoka, S. Storch, B. Stork, F. Strappazzon, A.M. Strohecker, D.G. Stupack, H. Su, L.Y. Su, L. Su, A.M. Suarez-Fontes, C.S. Subauste, S. Subbian, P.V. Subirada, G. Sudhandiran, C.M. Sue, X. Sui, C. Summers, G. Sun, J. Sun, K. Sun, M.X. Sun, Q. Sun, Y. Sun, Z. Sun, K.K.S. Sunahara, E. Sundberg, K. Susztak, P. Sutovsky, H. Suzuki, G. Sweeney, J.D. Symons, S.C.W. Sze, N.J. Szewczyk, A. Tabęcka-Łonczynska, C. Tabolacci, F. Tacke, H. Taegtmeyer, M. Tafani, M. Tagaya, H. Tai, S.W.G. Tait, Y. Takahashi, S. Takats, P. Talwar, C. Tam, S.Y. Tam, D. Tampellini, A. Tamura, C.T. Tan, E.K. Tan, Y.Q. Tan, M. Tanaka, M. Tanaka, D. Tang, J. Tang, T.S. Tang, I. Tanida, Z. Tao, M. Taouis, L. Tatenhorst, N. Tavernarakis, A. Taylor, G.A. Taylor, J.M. Taylor, E. Tchetina, A.R. Tee, I. Tegeder, D. Teis, N. Teixeira, F. Teixeira-Clerc, K.A. Tekirdag, T. Tencomnao, S. Tenreiro, A.V. Tepikin, P.S. Testillano, G. Tettamanti, P.L. Tharaux, K. Thedieck, A.A. Thekkinghat, S. Thellung, J.W. Thinwa, V.P. Thirumalaikumar, S.M. Thomas, P.G. Thomes, A. Thorburn, L. Thukral, T. Thum, M. Thumm, L. Tian, A. Tichy, A. Till, V. Timmerman, V.I. Titorenko, S.V. Todi, K. Todorova, J.M. Toivonen, L. Tomaipitinca, D. Tomar, C. Tomas-Zapico, S. Tomić, B.C.K. Tong, C. Tong, X. Tong, S.A. Tooze, M.L. Torgersen, S. Torii, L. Torres-López, A. Torriglia, C.G. Towers, R. Towns, S. Toyokuni, V. Trajkovic, D. Tramontano, Q.G. Tran, L.H. Travassos, C.B. Trelford, S. Tremel, I.P. Trougakos, B.P. Tsao, M.P. Tschan, H.F. Tse, T.F. Tse, H. Tsugawa, A.S. Tsvetkov, D.A. Tumbarello, Y. Tumtas, M.J. Tuñón, S. Turcotte, B. Turk, V. Turk, B.J. Turner, R.I. Tuxworth, J.K. Tyler, E.V. Tyutereva, Y. Uchiyama, A. Ugun-Klusek, H.H. Uhlig, M. Ułamek-Kozioł, I.V. Ulasov, M. Umekawa, C. Ungermann, R. Unno, S. Urbe, E. Uribe-Carretero, S. Üstün, V.N. Uversky, T. Vaccari, M.I. Vaccaro, B.F. Vahsen, H. Vakifahmetoglu-Norberg, R. Valdor, M.J. Valente, A. Valko, R.B. Vallee, A.M. Valverde, G. Van Den Berghe, S. Van Der Veen, L. Van Kaer, J. Van Loosdregt, S.J.L. Van Wijk, W. Vandenberghe, I. Vanhorebeek, M.A. Vannier-Santos, N. Vannini, M.C. Vanrell, C. Vantaggiato, G. Varano, I. Varela-Nieto, M. Varga, M.H. Vasconcelos, S. Vats, D.G. Vavvas, I. Vega-Naredo, S. Vega-Rubin-De-Celis, G. Velasco, A.P. Velázquez, T. Vellai, E. Vellenga, F. Velotti, M. Verdier, P. Verginis, I. Vergne, P. Verkade, M. Verma, P. Verstreken, T. Vervliet, J. Vervoorts, A.T. Vessoni, V.M. Victor, M. Vidal, C. Vidoni, O.V. Vieira, R.D. Vierstra, S. Viganó, H. Vihinen, V. Vijayan, M. Vila, M. Vilar, J.M. Villalba, A. Villalobo, B. Villarejo-Zori, F. Villarroya, J. Villarroya, O. Vincent, C. Vindis, C. Viret, M.T. Viscomi, D. Visnjic, I. Vitale, D.J. Vocadlo, O.V. Voitsekhovskaja, C. Volonté, M. Volta, M. Vomero, C. Von Haefen, M.A. Vooijs, W. Voos, L. Vucicevic, R. Wade-Martins, S. Waguri, K.A. Waite, S. Wakatsuki, D.W. Walker, M.J. Walker, S.A. Walker, J. Walter, F.G. Wandosell, B. Wang, C.Y. Wang, C. Wang, C. Wang, C. Wang, C.Y. Wang, D. Wang, F. Wang, F. Wang, F. Wang, G. Wang, H. Wang, H. Wang, H. Wang, H.G. Wang, J. Wang, J. Wang, J. Wang, J. Wang, K. Wang, L. Wang, L. Wang, M.H. Wang, M. Wang, N. Wang, P. Wang, P. Wang, P. Wang, P. Wang, Q.J. Wang, Q. Wang, Q.K. Wang, Q.A. Wang, W.T. Wang, W. Wang, X. Wang, X. Wang, Y. Wang, Y. Wang, Y. Wang, Y.Y. Wang, Y. Wang, Y. Wang, Y. Wang, Y. Wang, Z. Wang, Z. Wang, Z. Wang, G. Warnes, V. Warnsmann, H. Watada, E. Watanabe, M. Watchon, A. Wawrzyńska, T.E. Weaver, G. Wegrzyn, A.M. Wehman, H. Wei, L. Wei, T. Wei, Y. Wei, O.H. Weiergräber, C.C. Weihl, G. Weindl, R. Weiskirchen, A. Wells, R.H. Wen, X. Wen, A. Werner, B. Weykopf, S.P. Wheatley, J.L. Whitton, A.J. Whitworth, K. Wiktorska, M.E. Wildenberg, T. Wileman, S. Wilkinson, D. Willbold, B. Williams, R.S.B. Williams, R.L. Williams, P.R. Williamson, R.A. Wilson, B. Winner, N.J. Winsor, S.S. Witkin, H. Wodrich, U. Woehlbier, T. Wollert, E. Wong, J.H. Wong, R.W. Wong, V.K.W. Wong, W.W.L. Wong, A.G. Wu, C. Wu, J. Wu, J. Wu, K.K. Wu, M. Wu, S.Y. Wu, S. Wu, S.Y. Wu, S. Wu, W.K.K. Wu, X. Wu, X. Wu, Y.W. Wu, Y. Wu, R.J. Xavier, H. Xia, L. Xia, Z. Xia, G. Xiang, J. Xiang, M. Xiang, W. Xiang, B. Xiao, G. Xiao, H. Xiao, H.T. Xiao, J. Xiao, L. Xiao, S. Xiao, Y. Xiao, B. Xie, C.M. Xie, M. Xie, Y. Xie, Z. Xie, Z. Xie, M. Xilouri, C. Xu, E. Xu, H. Xu, J. Xu, J.R. Xu, L. Xu, W.W. Xu, X. Xu, Y. Xue, S.M.S. Yakhine-Diop, M. Yamaguchi, O. Yamaguchi, A. Yamamoto, S. Yamashina, S. Yan, S.J. Yan, Z. Yan, Y. Yanagi, C. Yang, D.S. Yang, H. Yang, H.T. Yang, H. Yang, J.M. Yang, J. Yang, J. Yang, L. Yang, L. Yang, M. Yang, P.M. Yang, Q. Yang, S. Yang, S. Yang, S.F. Yang, W. Yang, W.Y. Yang, X. Yang, X. Yang, Y. Yang, Y. Yang, H. Yao, S. Yao, X. Yao, Y.G. Yao, Y.M. Yao, T. Yasui, M. Yazdankhah, P.M. Yen, C. Yi, X.M. Yin, Y. Yin, Z. Yin, Z. Yin, M. Ying, Z. Ying, C.K. Yip, S.P.T. Yiu, Y.H. Yoo, K. Yoshida, S.R. Yoshii, T. Yoshimori, B. Yousefi, B. Yu, H. Yu, J. Yu, J. Yu, L. Yu, M.L. Yu, S.W. Yu, V.C. Yu, W.H. Yu, Z. Yu, Z. Yu, J. Yuan, L.Q. Yuan, S. Yuan, S.S.F. Yuan, Y. Yuan, Z. Yuan, J. Yue, Z. Yue, J. Yun, R.L. Yung, D.N. Zacks, G. Zaffagnini, V.O. Zambelli, I. Zanella, Q.S. Zang, S. Zanivan, S. Zappavigna, P. Zaragoza, K.S. Zarbalis, A. Zarebkohan, A. Zarrouk, S.O. Zeitlin, J. Zeng, J.D. Zeng, E. Žerovnik, L. Zhan, B. Zhang, D.D. Zhang, H. Zhang, H. Zhang, H. Zhang, H. Zhang, H. Zhang, H. Zhang, H. Zhang, H.L. Zhang, J. Zhang, J. Zhang, J.P. Zhang, K.Y.B. Zhang, L.W. Zhang, L. Zhang, L. Zhang, L. Zhang, L. Zhang, M. Zhang, P. Zhang, S. Zhang, W. Zhang, X. Zhang, X.W. Zhang, X. Zhang, X. Zhang, X. Zhang, X. Zhang, X.D. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y.D. Zhang, Y. Zhang, Y.Y. Zhang, Y. Zhang, Z. Zhang, Z. Zhang, Z. Zhang, Z. Zhang, Z. Zhang, Z. Zhang, H. Zhao, L. Zhao, S. Zhao, T. Zhao, X.F. Zhao, Y. Zhao, Y. Zhao, Y. Zhao, Y. Zhao, G. Zheng, K. Zheng, L. Zheng, S. Zheng, X.L. Zheng, Y. Zheng, Z.G. Zheng, B. Zhivotovsky, Q. Zhong, A. Zhou, B. Zhou, C. Zhou, G. Zhou, H. Zhou, H. Zhou, H. Zhou, J. Zhou, J. Zhou, J. Zhou, J. Zhou, K. Zhou, R. Zhou, X.J. Zhou, Y. Zhou, Y. Zhou, Y. Zhou, Z.Y. Zhou, Z. Zhou, B. Zhu, C. Zhu, G.Q. Zhu, H. Zhu, H. Zhu, H. Zhu, W.G. Zhu, Y. Zhu, Y. Zhu, H. Zhuang, X. Zhuang, K. Zientara-Rytter, C.M. Zimmermann, E. Ziviani, T. Zoladek, W.X. Zong, D.B. Zorov, A. Zorzano, W. Zou, Z. Zou, Z. Zou, S. Zuryn, W. Zwerschke, B. Brand-Saberi, X.C. Dong, C.S. Kenchappa, Z. Li, Y. Lin, S. Oshima, Y. Rong, J.C. Sluimer, C.L. Stallings, C.K. Tong, Autophagy 17 (2021) 1–382. date_created: 2021-03-28T22:01:44Z date_published: 2021-02-08T00:00:00Z date_updated: 2023-10-16T09:43:56Z day: '08' department: - _id: JiFr - _id: CaHe doi: 10.1080/15548627.2020.1797280 external_id: isi: - '000636121800001' pmid: - '33634751' intvolume: ' 17' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1080/15548627.2020.1797280 month: '02' oa: 1 oa_version: Published Version page: 1-382 pmid: 1 publication: Autophagy publication_identifier: eissn: - 1554-8635 issn: - 1554-8627 publication_status: published publisher: Taylor & Francis quality_controlled: '1' scopus_import: '1' status: public title: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2021' ... --- _id: '9379' abstract: - lang: eng text: When B cells encounter membrane-bound antigens, the formation and coalescence of B cell antigen receptor (BCR) microclusters amplifies BCR signaling. The ability of B cells to probe the surface of antigen-presenting cells (APCs) and respond to APC-bound antigens requires remodeling of the actin cytoskeleton. Initial BCR signaling stimulates actin-related protein (Arp) 2/3 complex-dependent actin polymerization, which drives B cell spreading as well as the centripetal movement and coalescence of BCR microclusters at the B cell-APC synapse. Sustained actin polymerization depends on concomitant actin filament depolymerization, which enables the recycling of actin monomers and Arp2/3 complexes. Cofilin-mediated severing of actin filaments is a rate-limiting step in the morphological changes that occur during immune synapse formation. Hence, regulators of cofilin activity such as WD repeat-containing protein 1 (Wdr1), LIM domain kinase (LIMK), and coactosin-like 1 (Cotl1) may also be essential for actin-dependent processes in B cells. Wdr1 enhances cofilin-mediated actin disassembly. Conversely, Cotl1 competes with cofilin for binding to actin and LIMK phosphorylates cofilin and prevents it from binding to actin filaments. We now show that Wdr1 and LIMK have distinct roles in BCR-induced assembly of the peripheral actin structures that drive B cell spreading, and that cofilin, Wdr1, and LIMK all contribute to the actin-dependent amplification of BCR signaling at the immune synapse. Depleting Cotl1 had no effect on these processes. Thus, the Wdr1-LIMK-cofilin axis is critical for BCR-induced actin remodeling and for B cell responses to APC-bound antigens. acknowledgement: We thank the UBC Life Sciences Institute Imaging Facility andthe UBC Flow Cytometry Facility. article_number: '649433' article_processing_charge: No article_type: original author: - first_name: Madison full_name: Bolger-Munro, Madison id: 516F03FA-93A3-11EA-A7C5-D6BE3DDC885E last_name: Bolger-Munro orcid: 0000-0002-8176-4824 - first_name: Kate full_name: Choi, Kate last_name: Choi - first_name: Faith full_name: Cheung, Faith last_name: Cheung - first_name: Yi Tian full_name: Liu, Yi Tian last_name: Liu - first_name: May full_name: Dang-Lawson, May last_name: Dang-Lawson - first_name: Nikola full_name: Deretic, Nikola last_name: Deretic - first_name: Connor full_name: Keane, Connor last_name: Keane - first_name: Michael R. full_name: Gold, Michael R. last_name: Gold citation: ama: Bolger-Munro M, Choi K, Cheung F, et al. The Wdr1-LIMK-Cofilin axis controls B cell antigen receptor-induced actin remodeling and signaling at the immune synapse. Frontiers in Cell and Developmental Biology. 2021;9. doi:10.3389/fcell.2021.649433 apa: Bolger-Munro, M., Choi, K., Cheung, F., Liu, Y. T., Dang-Lawson, M., Deretic, N., … Gold, M. R. (2021). The Wdr1-LIMK-Cofilin axis controls B cell antigen receptor-induced actin remodeling and signaling at the immune synapse. Frontiers in Cell and Developmental Biology. Frontiers Media. https://doi.org/10.3389/fcell.2021.649433 chicago: Bolger-Munro, Madison, Kate Choi, Faith Cheung, Yi Tian Liu, May Dang-Lawson, Nikola Deretic, Connor Keane, and Michael R. Gold. “The Wdr1-LIMK-Cofilin Axis Controls B Cell Antigen Receptor-Induced Actin Remodeling and Signaling at the Immune Synapse.” Frontiers in Cell and Developmental Biology. Frontiers Media, 2021. https://doi.org/10.3389/fcell.2021.649433. ieee: M. Bolger-Munro et al., “The Wdr1-LIMK-Cofilin axis controls B cell antigen receptor-induced actin remodeling and signaling at the immune synapse,” Frontiers in Cell and Developmental Biology, vol. 9. Frontiers Media, 2021. ista: Bolger-Munro M, Choi K, Cheung F, Liu YT, Dang-Lawson M, Deretic N, Keane C, Gold MR. 2021. The Wdr1-LIMK-Cofilin axis controls B cell antigen receptor-induced actin remodeling and signaling at the immune synapse. Frontiers in Cell and Developmental Biology. 9, 649433. mla: Bolger-Munro, Madison, et al. “The Wdr1-LIMK-Cofilin Axis Controls B Cell Antigen Receptor-Induced Actin Remodeling and Signaling at the Immune Synapse.” Frontiers in Cell and Developmental Biology, vol. 9, 649433, Frontiers Media, 2021, doi:10.3389/fcell.2021.649433. short: M. Bolger-Munro, K. Choi, F. Cheung, Y.T. Liu, M. Dang-Lawson, N. Deretic, C. Keane, M.R. Gold, Frontiers in Cell and Developmental Biology 9 (2021). date_created: 2021-05-09T22:01:37Z date_published: 2021-04-13T00:00:00Z date_updated: 2023-10-18T08:19:49Z day: '13' ddc: - '570' department: - _id: CaHe doi: 10.3389/fcell.2021.649433 external_id: isi: - '000644419500001' pmid: - '33928084' file: - access_level: open_access checksum: 8c8a03575d2f7583f88dc3b658b0976b content_type: application/pdf creator: kschuh date_created: 2021-05-11T15:09:23Z date_updated: 2021-05-11T15:09:23Z file_id: '9386' file_name: 2021_Frontiers_Cell_Bolger-Munro.pdf file_size: 4076024 relation: main_file success: 1 file_date_updated: 2021-05-11T15:09:23Z has_accepted_license: '1' intvolume: ' 9' isi: 1 keyword: - B cell - actin - immune synapse - cell spreading - cofilin - WDR1 (AIP1) - LIM domain kinase - B cell receptor (BCR) language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: Frontiers in Cell and Developmental Biology publication_identifier: eissn: - 2296-634X publication_status: published publisher: Frontiers Media quality_controlled: '1' scopus_import: '1' status: public title: The Wdr1-LIMK-Cofilin axis controls B cell antigen receptor-induced actin remodeling and signaling at the immune synapse tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2021' ... --- _id: '9623' abstract: - lang: eng text: "Cytoplasmic reorganizations are essential for morphogenesis. In large cells like oocytes, these reorganizations become crucial in patterning the oocyte for later stages of embryonic development. Ascidians oocytes reorganize their cytoplasm (ooplasm) in a spectacular manner. Ooplasmic reorganization is initiated at fertilization with the contraction of the actomyosin cortex along the animal-vegetal axis of the oocyte, driving the accumulation of cortical endoplasmic reticulum (cER), maternal mRNAs associated to it and a mitochondria-rich subcortical layer – the myoplasm – in a region of the vegetal pole termed contraction pole (CP). Here we have used the species Phallusia mammillata to investigate the changes in cell shape that accompany these reorganizations and the mechanochemical mechanisms underlining CP formation.\r\nWe report that the length of the animal-vegetal (AV) axis oscillates upon fertilization: it first undergoes a cycle of fast elongation-lengthening followed by a slow expansion of mainly the vegetal pole (VP) of the cell. We show that the fast oscillation corresponds to a dynamic polarization of the actin cortex as a result of a fertilization-induced increase in cortical tension in the oocyte that triggers a rupture of the cortex at the animal pole and the establishment of vegetal-directed cortical flows. These flows are responsible for the vegetal accumulation of actin causing the VP to flatten. \r\nWe find that the slow expansion of the VP, leading to CP formation, correlates with a relaxation of the vegetal cortex and that the myoplasm plays a role in the expansion. We show that the myoplasm is a solid-like layer that buckles under compression forces arising from the contracting actin cortex at the VP. Straightening of the myoplasm when actin flows stops, facilitates the expansion of the VP and the CP. Altogether, our results present a previously unrecognized role for the myoplasm in ascidian ooplasmic segregation. \r\n" acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: NanoFab - _id: M-Shop alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Silvia full_name: Caballero Mancebo, Silvia id: 2F1E1758-F248-11E8-B48F-1D18A9856A87 last_name: Caballero Mancebo orcid: 0000-0002-5223-3346 citation: ama: Caballero Mancebo S. Fertilization-induced deformations are controlled by the actin cortex and a mitochondria-rich subcortical layer in ascidian oocytes. 2021. doi:10.15479/at:ista:9623 apa: Caballero Mancebo, S. (2021). Fertilization-induced deformations are controlled by the actin cortex and a mitochondria-rich subcortical layer in ascidian oocytes. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:9623 chicago: Caballero Mancebo, Silvia. “Fertilization-Induced Deformations Are Controlled by the Actin Cortex and a Mitochondria-Rich Subcortical Layer in Ascidian Oocytes.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:9623. ieee: S. Caballero Mancebo, “Fertilization-induced deformations are controlled by the actin cortex and a mitochondria-rich subcortical layer in ascidian oocytes,” Institute of Science and Technology Austria, 2021. ista: Caballero Mancebo S. 2021. Fertilization-induced deformations are controlled by the actin cortex and a mitochondria-rich subcortical layer in ascidian oocytes. Institute of Science and Technology Austria. mla: Caballero Mancebo, Silvia. Fertilization-Induced Deformations Are Controlled by the Actin Cortex and a Mitochondria-Rich Subcortical Layer in Ascidian Oocytes. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:9623. short: S. Caballero Mancebo, Fertilization-Induced Deformations Are Controlled by the Actin Cortex and a Mitochondria-Rich Subcortical Layer in Ascidian Oocytes, Institute of Science and Technology Austria, 2021. date_created: 2021-07-01T14:50:17Z date_published: 2021-07-01T00:00:00Z date_updated: 2023-09-07T13:33:27Z ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: CaHe doi: 10.15479/at:ista:9623 file: - access_level: closed checksum: e039225a47ef32666d59bf35ddd30ecf content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: scaballe date_created: 2021-07-01T14:48:54Z date_updated: 2022-07-02T22:30:06Z embargo_to: open_access file_id: '9624' file_name: PhDThesis_SCM.docx file_size: 131946790 relation: source_file - access_level: open_access checksum: dd4d78962ea94ad95e97ca7d9af08f4b content_type: application/pdf creator: scaballe date_created: 2021-07-01T14:46:25Z date_updated: 2022-07-02T22:30:06Z embargo: 2022-07-01 file_id: '9625' file_name: PhDThesis_SCM.pdf file_size: 17094958 relation: main_file file_date_updated: 2022-07-02T22:30:06Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '111' publication_identifier: isbn: - 978-3-99078-012-1 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9750' relation: part_of_dissertation status: public - id: '9006' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Fertilization-induced deformations are controlled by the actin cortex and a mitochondria-rich subcortical layer in ascidian oocytes tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '9006' abstract: - lang: eng text: Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species. acknowledgement: We would like to thank Justine Renno for illustrations and Edouard Hannezo and members of the Heisenberg group for their comments on previous versions of the manuscript. article_processing_charge: No article_type: original author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Silvia full_name: Caballero Mancebo, Silvia id: 2F1E1758-F248-11E8-B48F-1D18A9856A87 last_name: Caballero Mancebo orcid: 0000-0002-5223-3346 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Shamipour S, Caballero Mancebo S, Heisenberg C-PJ. Cytoplasm’s got moves. Developmental Cell. 2021;56(2):P213-226. doi:10.1016/j.devcel.2020.12.002 apa: Shamipour, S., Caballero Mancebo, S., & Heisenberg, C.-P. J. (2021). Cytoplasm’s got moves. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2020.12.002 chicago: Shamipour, Shayan, Silvia Caballero Mancebo, and Carl-Philipp J Heisenberg. “Cytoplasm’s Got Moves.” Developmental Cell. Elsevier, 2021. https://doi.org/10.1016/j.devcel.2020.12.002. ieee: S. Shamipour, S. Caballero Mancebo, and C.-P. J. Heisenberg, “Cytoplasm’s got moves,” Developmental Cell, vol. 56, no. 2. Elsevier, pp. P213-226, 2021. ista: Shamipour S, Caballero Mancebo S, Heisenberg C-PJ. 2021. Cytoplasm’s got moves. Developmental Cell. 56(2), P213-226. mla: Shamipour, Shayan, et al. “Cytoplasm’s Got Moves.” Developmental Cell, vol. 56, no. 2, Elsevier, 2021, pp. P213-226, doi:10.1016/j.devcel.2020.12.002. short: S. Shamipour, S. Caballero Mancebo, C.-P.J. Heisenberg, Developmental Cell 56 (2021) P213-226. date_created: 2021-01-17T23:01:10Z date_published: 2021-01-25T00:00:00Z date_updated: 2024-03-27T23:30:18Z day: '25' department: - _id: CaHe doi: 10.1016/j.devcel.2020.12.002 external_id: isi: - '000613273900009' pmid: - '33321104' intvolume: ' 56' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.devcel.2020.12.002 month: '01' oa: 1 oa_version: Published Version page: P213-226 pmid: 1 publication: Developmental Cell publication_identifier: eissn: - '18781551' issn: - '15345807' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '9623' relation: dissertation_contains status: public scopus_import: '1' status: public title: Cytoplasm's got moves type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 56 year: '2021' ... --- _id: '9397' abstract: - lang: eng text: Accumulation of interstitial fluid (IF) between embryonic cells is a common phenomenon in vertebrate embryogenesis. Unlike other model systems, where these accumulations coalesce into a large central cavity – the blastocoel, in zebrafish, IF is more uniformly distributed between the deep cells (DC) before the onset of gastrulation. This is likely due to the presence of a large extraembryonic structure – the yolk cell (YC) at the position where the blastocoel typically forms in other model organisms. IF has long been speculated to play a role in tissue morphogenesis during embryogenesis, but direct evidence supporting such function is still sparse. Here we show that the relocalization of IF to the interface between the YC and DC/epiblast is critical for axial mesendoderm (ME) cell protrusion formation and migration along this interface, a key process in embryonic axis formation. We further demonstrate that axial ME cell migration and IF relocalization engage in a positive feedback loop, where axial ME migration triggers IF accumulation ahead of the advancing axial ME tissue by mechanically compressing the overlying epiblast cell layer. Upon compression, locally induced flow relocalizes the IF through the porous epiblast tissue resulting in an IF accumulation ahead of the leading axial ME. This IF accumulation, in turn, promotes cell protrusion formation and migration of the leading axial ME cells, thereby facilitating axial ME extension. Our findings reveal a central role of dynamic IF relocalization in orchestrating germ layer morphogenesis during gastrulation. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Karla full_name: Huljev, Karla id: 44C6F6A6-F248-11E8-B48F-1D18A9856A87 last_name: Huljev citation: ama: Huljev K. Coordinated spatiotemporal reorganization of interstitial fluid is required for axial mesendoderm migration in zebrafish gastrulation. 2021. doi:10.15479/at:ista:9397 apa: Huljev, K. (2021). Coordinated spatiotemporal reorganization of interstitial fluid is required for axial mesendoderm migration in zebrafish gastrulation. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:9397 chicago: Huljev, Karla. “Coordinated Spatiotemporal Reorganization of Interstitial Fluid Is Required for Axial Mesendoderm Migration in Zebrafish Gastrulation.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:9397. ieee: K. Huljev, “Coordinated spatiotemporal reorganization of interstitial fluid is required for axial mesendoderm migration in zebrafish gastrulation,” Institute of Science and Technology Austria, 2021. ista: Huljev K. 2021. Coordinated spatiotemporal reorganization of interstitial fluid is required for axial mesendoderm migration in zebrafish gastrulation. Institute of Science and Technology Austria. mla: Huljev, Karla. Coordinated Spatiotemporal Reorganization of Interstitial Fluid Is Required for Axial Mesendoderm Migration in Zebrafish Gastrulation. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:9397. short: K. Huljev, Coordinated Spatiotemporal Reorganization of Interstitial Fluid Is Required for Axial Mesendoderm Migration in Zebrafish Gastrulation, Institute of Science and Technology Austria, 2021. date_created: 2021-05-17T12:31:30Z date_published: 2021-05-18T00:00:00Z date_updated: 2023-09-07T13:32:32Z day: '18' ddc: - '571' degree_awarded: PhD department: - _id: CaHe - _id: GradSch doi: 10.15479/at:ista:9397 file: - access_level: closed checksum: 7f98532f5324a0b2f3fa8de2967baa19 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: khuljev date_created: 2021-05-17T12:29:12Z date_updated: 2022-05-21T22:30:04Z embargo_to: open_access file_id: '9398' file_name: KHuljev_Thesis_corrections.docx file_size: 47799741 relation: source_file - access_level: open_access checksum: bf512f8a1e572a543778fc4b227c01ba content_type: application/pdf creator: khuljev date_created: 2021-05-18T14:50:28Z date_updated: 2022-05-21T22:30:04Z embargo: 2022-05-20 file_id: '9401' file_name: new_KHuljev_Thesis_corrections.pdf file_size: 16542131 relation: main_file file_date_updated: 2022-05-21T22:30:04Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '101' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Coordinated spatiotemporal reorganization of interstitial fluid is required for axial mesendoderm migration in zebrafish gastrulation type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '7888' abstract: - lang: eng text: Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order. article_number: e55190 article_processing_charge: No article_type: original author: - first_name: Alexandra full_name: Schauer, Alexandra id: 30A536BA-F248-11E8-B48F-1D18A9856A87 last_name: Schauer orcid: 0000-0001-7659-9142 - first_name: Diana C full_name: Nunes Pinheiro, Diana C id: 2E839F16-F248-11E8-B48F-1D18A9856A87 last_name: Nunes Pinheiro orcid: 0000-0003-4333-7503 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Schauer A, Nunes Pinheiro DC, Hauschild R, Heisenberg C-PJ. Zebrafish embryonic explants undergo genetically encoded self-assembly. eLife. 2020;9. doi:10.7554/elife.55190 apa: Schauer, A., Nunes Pinheiro, D. C., Hauschild, R., & Heisenberg, C.-P. J. (2020). Zebrafish embryonic explants undergo genetically encoded self-assembly. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.55190 chicago: Schauer, Alexandra, Diana C Nunes Pinheiro, Robert Hauschild, and Carl-Philipp J Heisenberg. “Zebrafish Embryonic Explants Undergo Genetically Encoded Self-Assembly.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/elife.55190. ieee: A. Schauer, D. C. Nunes Pinheiro, R. Hauschild, and C.-P. J. Heisenberg, “Zebrafish embryonic explants undergo genetically encoded self-assembly,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Schauer A, Nunes Pinheiro DC, Hauschild R, Heisenberg C-PJ. 2020. Zebrafish embryonic explants undergo genetically encoded self-assembly. eLife. 9, e55190. mla: Schauer, Alexandra, et al. “Zebrafish Embryonic Explants Undergo Genetically Encoded Self-Assembly.” ELife, vol. 9, e55190, eLife Sciences Publications, 2020, doi:10.7554/elife.55190. short: A. Schauer, D.C. Nunes Pinheiro, R. Hauschild, C.-P.J. Heisenberg, ELife 9 (2020). date_created: 2020-05-25T15:01:40Z date_published: 2020-04-06T00:00:00Z date_updated: 2023-08-21T06:25:49Z day: '06' ddc: - '570' department: - _id: CaHe - _id: Bio doi: 10.7554/elife.55190 ec_funded: 1 external_id: isi: - '000531544400001' pmid: - '32250246' file: - access_level: open_access checksum: f6aad884cf706846ae9357fcd728f8b5 content_type: application/pdf creator: dernst date_created: 2020-05-25T15:15:43Z date_updated: 2020-07-14T12:48:04Z file_id: '7890' file_name: 2020_eLife_Schauer.pdf file_size: 7744848 relation: main_file file_date_updated: 2020-07-14T12:48:04Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 26B1E39C-B435-11E9-9278-68D0E5697425 grant_number: '25239' name: 'Mesendoderm specification in zebrafish: The role of extraembryonic tissues' - _id: 26520D1E-B435-11E9-9278-68D0E5697425 grant_number: ALTF 850-2017 name: Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation - _id: 266BC5CE-B435-11E9-9278-68D0E5697425 grant_number: LT000429 name: Coordination of mesendoderm fate specification and internalization during zebrafish gastrulation publication: eLife publication_identifier: issn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: record: - id: '12891' relation: dissertation_contains status: public scopus_import: '1' status: public title: Zebrafish embryonic explants undergo genetically encoded self-assembly tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '8680' abstract: - lang: eng text: Animal development entails the organization of specific cell types in space and time, and spatial patterns must form in a robust manner. In the zebrafish spinal cord, neural progenitors form stereotypic patterns despite noisy morphogen signaling and large-scale cellular rearrangements during morphogenesis and growth. By directly measuring adhesion forces and preferences for three types of endogenous neural progenitors, we provide evidence for the differential adhesion model in which differences in intercellular adhesion mediate cell sorting. Cell type–specific combinatorial expression of different classes of cadherins (N-cadherin, cadherin 11, and protocadherin 19) results in homotypic preference ex vivo and patterning robustness in vivo. Furthermore, the differential adhesion code is regulated by the sonic hedgehog morphogen gradient. We propose that robust patterning during tissue morphogenesis results from interplay between adhesion-based self-organization and morphogen-directed patterning. acknowledgement: "We thank the members of the Megason and Heisenberg labs for critical discussions of and technical assistance during the work and B. Appel, S. Holley, J. Jontes, and D. Gilmour for transgenic fish. This work is supported by the Damon Runyon Cancer Foundation, a NICHD K99 fellowship (1K99HD092623), a Travelling Fellowship of the Company of Biologists, a Collaborative Research grant from the Burroughs Wellcome Foundation (T.Y.-C.T.), NIH grant 01GM107733 (T.Y.-C.T. and S.G.M.), NIH grant R01NS102322 (T.C.-C. and H.K.), and an ERC advanced grant\r\n(MECSPEC) (C.-P.H.)." article_processing_charge: No article_type: original author: - first_name: Tony Y.-C. full_name: Tsai, Tony Y.-C. last_name: Tsai - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Peng full_name: Xia, Peng id: 4AB6C7D0-F248-11E8-B48F-1D18A9856A87 last_name: Xia orcid: 0000-0002-5419-7756 - first_name: Tugba full_name: Colak-Champollion, Tugba last_name: Colak-Champollion - first_name: Holger full_name: Knaut, Holger last_name: Knaut - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Sean G. full_name: Megason, Sean G. last_name: Megason citation: ama: Tsai TY-C, Sikora MK, Xia P, et al. An adhesion code ensures robust pattern formation during tissue morphogenesis. Science. 2020;370(6512):113-116. doi:10.1126/science.aba6637 apa: Tsai, T. Y.-C., Sikora, M. K., Xia, P., Colak-Champollion, T., Knaut, H., Heisenberg, C.-P. J., & Megason, S. G. (2020). An adhesion code ensures robust pattern formation during tissue morphogenesis. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aba6637 chicago: Tsai, Tony Y.-C., Mateusz K Sikora, Peng Xia, Tugba Colak-Champollion, Holger Knaut, Carl-Philipp J Heisenberg, and Sean G. Megason. “An Adhesion Code Ensures Robust Pattern Formation during Tissue Morphogenesis.” Science. American Association for the Advancement of Science, 2020. https://doi.org/10.1126/science.aba6637. ieee: T. Y.-C. Tsai et al., “An adhesion code ensures robust pattern formation during tissue morphogenesis,” Science, vol. 370, no. 6512. American Association for the Advancement of Science, pp. 113–116, 2020. ista: Tsai TY-C, Sikora MK, Xia P, Colak-Champollion T, Knaut H, Heisenberg C-PJ, Megason SG. 2020. An adhesion code ensures robust pattern formation during tissue morphogenesis. Science. 370(6512), 113–116. mla: Tsai, Tony Y. C., et al. “An Adhesion Code Ensures Robust Pattern Formation during Tissue Morphogenesis.” Science, vol. 370, no. 6512, American Association for the Advancement of Science, 2020, pp. 113–16, doi:10.1126/science.aba6637. short: T.Y.-C. Tsai, M.K. Sikora, P. Xia, T. Colak-Champollion, H. Knaut, C.-P.J. Heisenberg, S.G. Megason, Science 370 (2020) 113–116. date_created: 2020-10-19T14:09:38Z date_published: 2020-10-02T00:00:00Z date_updated: 2023-08-22T10:36:35Z day: '02' department: - _id: CaHe doi: 10.1126/science.aba6637 ec_funded: 1 external_id: isi: - '000579169000053' intvolume: ' 370' isi: 1 issue: '6512' keyword: - Multidisciplinary language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/803635v1 month: '10' oa: 1 oa_version: Preprint page: 113-116 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/sticking-together/ scopus_import: '1' status: public title: An adhesion code ensures robust pattern formation during tissue morphogenesis type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 370 year: '2020' ... --- _id: '8957' abstract: - lang: eng text: Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation. acknowledged_ssus: - _id: Bio - _id: NanoFab acknowledgement: 'We thank members of the Heisenberg and McDougall groups for technical advice and discussion, Hitoyoshi Yasuo for sharing lab equipment, Lucas Leclère and Hitoyoshi Yasuo for their comments on a preliminary version of the manuscript, and Philippe Dru for the Rose plots. We are grateful to the Bioimaging and Nanofabrication facilities of IST Austria and the Imaging Platform (PIM) and animal facility (CRB) of Institut de la Mer de Villefranche (IMEV), which is supported by EMBRC-France, whose French state funds are managed by the ANR within the Investments of the Future program under reference ANR-10-INBS-0, for continuous support. This work was supported by a grant from the French Government funding agency Agence National de la Recherche (ANR “MorCell”: ANR-17-CE 13-002 8).' article_processing_charge: No article_type: original author: - first_name: Benoit G full_name: Godard, Benoit G id: 33280250-F248-11E8-B48F-1D18A9856A87 last_name: Godard - first_name: Rémi full_name: Dumollard, Rémi last_name: Dumollard - first_name: Edwin full_name: Munro, Edwin last_name: Munro - first_name: Janet full_name: Chenevert, Janet last_name: Chenevert - first_name: Céline full_name: Hebras, Céline last_name: Hebras - first_name: Alex full_name: Mcdougall, Alex last_name: Mcdougall - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Godard BG, Dumollard R, Munro E, et al. Apical relaxation during mitotic rounding promotes tension-oriented cell division. Developmental Cell. 2020;55(6):695-706. doi:10.1016/j.devcel.2020.10.016 apa: Godard, B. G., Dumollard, R., Munro, E., Chenevert, J., Hebras, C., Mcdougall, A., & Heisenberg, C.-P. J. (2020). Apical relaxation during mitotic rounding promotes tension-oriented cell division. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2020.10.016 chicago: Godard, Benoit G, Rémi Dumollard, Edwin Munro, Janet Chenevert, Céline Hebras, Alex Mcdougall, and Carl-Philipp J Heisenberg. “Apical Relaxation during Mitotic Rounding Promotes Tension-Oriented Cell Division.” Developmental Cell. Elsevier, 2020. https://doi.org/10.1016/j.devcel.2020.10.016. ieee: B. G. Godard et al., “Apical relaxation during mitotic rounding promotes tension-oriented cell division,” Developmental Cell, vol. 55, no. 6. Elsevier, pp. 695–706, 2020. ista: Godard BG, Dumollard R, Munro E, Chenevert J, Hebras C, Mcdougall A, Heisenberg C-PJ. 2020. Apical relaxation during mitotic rounding promotes tension-oriented cell division. Developmental Cell. 55(6), 695–706. mla: Godard, Benoit G., et al. “Apical Relaxation during Mitotic Rounding Promotes Tension-Oriented Cell Division.” Developmental Cell, vol. 55, no. 6, Elsevier, 2020, pp. 695–706, doi:10.1016/j.devcel.2020.10.016. short: B.G. Godard, R. Dumollard, E. Munro, J. Chenevert, C. Hebras, A. Mcdougall, C.-P.J. Heisenberg, Developmental Cell 55 (2020) 695–706. date_created: 2020-12-20T23:01:19Z date_published: 2020-12-21T00:00:00Z date_updated: 2023-08-24T11:01:22Z day: '21' department: - _id: CaHe doi: 10.1016/j.devcel.2020.10.016 external_id: isi: - '000600665700008' pmid: - '33207225' intvolume: ' 55' isi: 1 issue: '6' language: - iso: eng month: '12' oa_version: None page: 695-706 pmid: 1 publication: Developmental Cell publication_identifier: eissn: - '18781551' issn: - '15345807' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/relaxing-cell-divisions/ scopus_import: '1' status: public title: Apical relaxation during mitotic rounding promotes tension-oriented cell division type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 55 year: '2020' ... --- _id: '7227' abstract: - lang: eng text: Gastrulation entails specification and formation of three embryonic germ layers—ectoderm, mesoderm and endoderm—thereby establishing the basis for the future body plan. In zebrafish embryos, germ layer specification occurs during blastula and early gastrula stages (Ho & Kimmel, 1993), a period when the main morphogenetic movements underlying gastrulation are initiated. Hence, the signals driving progenitor cell fate specification, such as Nodal ligands from the TGF-β family, also play key roles in regulating germ layer progenitor cell segregation (Carmany-Rampey & Schier, 2001; David & Rosa, 2001; Feldman et al., 2000; Gritsman et al., 1999; Keller et al., 2008). In this review, we summarize and discuss the main signaling pathways involved in germ layer progenitor cell fate specification and segregation, specifically focusing on recent advances in understanding the interplay between mesoderm and endoderm specification and the internalization movements at the onset of zebrafish gastrulation. acknowledgement: We thank Alexandra Schauer, Nicoletta Petridou and Feyza Nur Arslan for comments on the manuscript. Research in the Heisenberg laboratory is supported by an ERC Advanced Grant (MECSPEC 742573), ANR/FWF (I03601) and FWF/DFG (I03196) International Cooperation Grants. D. Pinheiro acknowledges a fellowship from EMBO ALTF (850-2017) and is currently supported by HFSP LTF (LT000429/2018-L2). alternative_title: - Current Topics in Developmental Biology article_processing_charge: No author: - first_name: Diana C full_name: Nunes Pinheiro, Diana C id: 2E839F16-F248-11E8-B48F-1D18A9856A87 last_name: Nunes Pinheiro orcid: 0000-0003-4333-7503 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Nunes Pinheiro DC, Heisenberg C-PJ. Zebrafish gastrulation: Putting fate in motion. In: Gastrulation: From Embryonic Pattern to Form. Vol 136. Elsevier; 2020:343-375. doi:10.1016/bs.ctdb.2019.10.009' apa: 'Nunes Pinheiro, D. C., & Heisenberg, C.-P. J. (2020). Zebrafish gastrulation: Putting fate in motion. In Gastrulation: From Embryonic Pattern to Form (Vol. 136, pp. 343–375). Elsevier. https://doi.org/10.1016/bs.ctdb.2019.10.009' chicago: 'Nunes Pinheiro, Diana C, and Carl-Philipp J Heisenberg. “Zebrafish Gastrulation: Putting Fate in Motion.” In Gastrulation: From Embryonic Pattern to Form, 136:343–75. Elsevier, 2020. https://doi.org/10.1016/bs.ctdb.2019.10.009.' ieee: 'D. C. Nunes Pinheiro and C.-P. J. Heisenberg, “Zebrafish gastrulation: Putting fate in motion,” in Gastrulation: From Embryonic Pattern to Form, vol. 136, Elsevier, 2020, pp. 343–375.' ista: 'Nunes Pinheiro DC, Heisenberg C-PJ. 2020.Zebrafish gastrulation: Putting fate in motion. In: Gastrulation: From Embryonic Pattern to Form. Current Topics in Developmental Biology, vol. 136, 343–375.' mla: 'Nunes Pinheiro, Diana C., and Carl-Philipp J. Heisenberg. “Zebrafish Gastrulation: Putting Fate in Motion.” Gastrulation: From Embryonic Pattern to Form, vol. 136, Elsevier, 2020, pp. 343–75, doi:10.1016/bs.ctdb.2019.10.009.' short: 'D.C. Nunes Pinheiro, C.-P.J. Heisenberg, in:, Gastrulation: From Embryonic Pattern to Form, Elsevier, 2020, pp. 343–375.' date_created: 2020-01-05T23:00:46Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-09-06T14:54:36Z day: '01' department: - _id: CaHe doi: 10.1016/bs.ctdb.2019.10.009 ec_funded: 1 external_id: isi: - '000611830600013' pmid: - '31959295' intvolume: ' 136' isi: 1 language: - iso: eng month: '06' oa_version: None page: 343-375 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 2646861A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03601 name: Control of embryonic cleavage pattern - _id: 2608FC64-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03196 name: Control of epithelial cell layer spreading in zebrafish - _id: 266BC5CE-B435-11E9-9278-68D0E5697425 grant_number: LT000429 name: Coordination of mesendoderm fate specification and internalization during zebrafish gastrulation - _id: 26520D1E-B435-11E9-9278-68D0E5697425 grant_number: ALTF 850-2017 name: Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation publication: 'Gastrulation: From Embryonic Pattern to Form' publication_identifier: issn: - '00702153' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Zebrafish gastrulation: Putting fate in motion' type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 136 year: '2020' ... --- _id: '7410' abstract: - lang: eng text: 'Epiboly is a conserved gastrulation movement describing the thinning and spreading of a sheet or multi-layer of cells. The zebrafish embryo has emerged as a vital model system to address the cellular and molecular mechanisms that drive epiboly. In the zebrafish embryo, the blastoderm, consisting of a simple squamous epithelium (the enveloping layer) and an underlying mass of deep cells, as well as a yolk nuclear syncytium (the yolk syncytial layer) undergo epiboly to internalize the yolk cell during gastrulation. The major events during zebrafish epiboly are: expansion of the enveloping layer and the internal yolk syncytial layer, reduction and removal of the yolk membrane ahead of the advancing blastoderm margin and deep cell rearrangements between the enveloping layer and yolk syncytial layer to thin the blastoderm. Here, work addressing the cellular and molecular mechanisms as well as the sources of the mechanical forces that underlie these events is reviewed. The contribution of recent findings to the current model of epiboly as well as open questions and future prospects are also discussed.' article_processing_charge: No author: - first_name: Ashley E.E. full_name: Bruce, Ashley E.E. last_name: Bruce - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Bruce AEE, Heisenberg C-PJ. Mechanisms of zebrafish epiboly: A current view. In: Solnica-Krezel L, ed. Gastrulation: From Embryonic Pattern to Form. Vol 136. Current Topics in Developmental Biology. Elsevier; 2020:319-341. doi:10.1016/bs.ctdb.2019.07.001' apa: 'Bruce, A. E. E., & Heisenberg, C.-P. J. (2020). Mechanisms of zebrafish epiboly: A current view. In L. Solnica-Krezel (Ed.), Gastrulation: From Embryonic Pattern to Form (Vol. 136, pp. 319–341). Elsevier. https://doi.org/10.1016/bs.ctdb.2019.07.001' chicago: 'Bruce, Ashley E.E., and Carl-Philipp J Heisenberg. “Mechanisms of Zebrafish Epiboly: A Current View.” In Gastrulation: From Embryonic Pattern to Form, edited by Lilianna Solnica-Krezel, 136:319–41. Current Topics in Developmental Biology. Elsevier, 2020. https://doi.org/10.1016/bs.ctdb.2019.07.001.' ieee: 'A. E. E. Bruce and C.-P. J. Heisenberg, “Mechanisms of zebrafish epiboly: A current view,” in Gastrulation: From Embryonic Pattern to Form, vol. 136, L. Solnica-Krezel, Ed. Elsevier, 2020, pp. 319–341.' ista: 'Bruce AEE, Heisenberg C-PJ. 2020.Mechanisms of zebrafish epiboly: A current view. In: Gastrulation: From Embryonic Pattern to Form. vol. 136, 319–341.' mla: 'Bruce, Ashley E. E., and Carl-Philipp J. Heisenberg. “Mechanisms of Zebrafish Epiboly: A Current View.” Gastrulation: From Embryonic Pattern to Form, edited by Lilianna Solnica-Krezel, vol. 136, Elsevier, 2020, pp. 319–41, doi:10.1016/bs.ctdb.2019.07.001.' short: 'A.E.E. Bruce, C.-P.J. Heisenberg, in:, L. Solnica-Krezel (Ed.), Gastrulation: From Embryonic Pattern to Form, Elsevier, 2020, pp. 319–341.' date_created: 2020-01-30T09:24:06Z date_published: 2020-01-01T00:00:00Z date_updated: 2024-02-22T13:23:09Z day: '01' department: - _id: CaHe doi: 10.1016/bs.ctdb.2019.07.001 editor: - first_name: 'Lilianna ' full_name: 'Solnica-Krezel, Lilianna ' last_name: Solnica-Krezel external_id: isi: - '000611830600012' intvolume: ' 136' isi: 1 language: - iso: eng month: '01' oa_version: None page: 319-341 publication: 'Gastrulation: From Embryonic Pattern to Form' publication_identifier: isbn: - '9780128127988' issn: - 0070-2153 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' series_title: Current Topics in Developmental Biology status: public title: 'Mechanisms of zebrafish epiboly: A current view' type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 136 year: '2020' ... --- _id: '9750' abstract: - lang: eng text: Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow1,2. Here we show in zebrafish primary germ layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase, and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. Once tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension stabilizing E-cadherin-actin complexes at the contact. acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: SSU acknowledgement: We would like to thank Edouard Hannezo for discussions, Shayan Shami Pour and Daniel Capek for help with data analysis, Vanessa Barone and other members of the Heisenberg laboratory for thoughtful discussions and comments on the manuscript. We also thank Jack Merrin for preparing the microwells, and the Scientific Service Units at IST Austria, specifically Bioimaging and Electron Microscopy, and the Zebrafish Facility for continuous support. We acknowledge Hitoshi Morita for the kind gift of VinculinB-GFP plasmid. This research was supported by an ERC Advanced Grant (MECSPEC) to C.-P.H, EMBO Long Term grant (ALTF 187-2013) to M.S and IST Fellow Marie-Curie COFUND No. P_IST_EU01 to J.S. article_processing_charge: No author: - first_name: Jana full_name: Slovakova, Jana id: 30F3F2F0-F248-11E8-B48F-1D18A9856A87 last_name: Slovakova - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Silvia full_name: Caballero Mancebo, Silvia id: 2F1E1758-F248-11E8-B48F-1D18A9856A87 last_name: Caballero Mancebo orcid: 0000-0002-5223-3346 - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Karla full_name: Huljev, Karla id: 44C6F6A6-F248-11E8-B48F-1D18A9856A87 last_name: Huljev - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Slovakova J, Sikora MK, Caballero Mancebo S, et al. Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion. bioRxiv. 2020. doi:10.1101/2020.11.20.391284 apa: Slovakova, J., Sikora, M. K., Caballero Mancebo, S., Krens, G., Kaufmann, W., Huljev, K., & Heisenberg, C.-P. J. (2020). Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.11.20.391284 chicago: Slovakova, Jana, Mateusz K Sikora, Silvia Caballero Mancebo, Gabriel Krens, Walter Kaufmann, Karla Huljev, and Carl-Philipp J Heisenberg. “Tension-Dependent Stabilization of E-Cadherin Limits Cell-Cell Contact Expansion.” BioRxiv. Cold Spring Harbor Laboratory, 2020. https://doi.org/10.1101/2020.11.20.391284. ieee: J. Slovakova et al., “Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion,” bioRxiv. Cold Spring Harbor Laboratory, 2020. ista: Slovakova J, Sikora MK, Caballero Mancebo S, Krens G, Kaufmann W, Huljev K, Heisenberg C-PJ. 2020. Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion. bioRxiv, 10.1101/2020.11.20.391284. mla: Slovakova, Jana, et al. “Tension-Dependent Stabilization of E-Cadherin Limits Cell-Cell Contact Expansion.” BioRxiv, Cold Spring Harbor Laboratory, 2020, doi:10.1101/2020.11.20.391284. short: J. Slovakova, M.K. Sikora, S. Caballero Mancebo, G. Krens, W. Kaufmann, K. Huljev, C.-P.J. Heisenberg, BioRxiv (2020). date_created: 2021-07-29T11:29:50Z date_published: 2020-11-20T00:00:00Z date_updated: 2024-03-27T23:30:18Z day: '20' department: - _id: CaHe - _id: EM-Fac - _id: Bio doi: 10.1101/2020.11.20.391284 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.11.20.391284 month: '11' oa: 1 oa_version: Preprint page: '41' project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 2521E28E-B435-11E9-9278-68D0E5697425 grant_number: 187-2013 name: Modulation of adhesion function in cell-cell contact formation by cortical tension publication: bioRxiv publication_status: published publisher: Cold Spring Harbor Laboratory related_material: record: - id: '10766' relation: later_version status: public - id: '9623' relation: dissertation_contains status: public status: public title: Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '8350' abstract: - lang: eng text: "Cytoplasm is a gel-like crowded environment composed of tens of thousands of macromolecules, organelles, cytoskeletal networks and cytosol. The structure of the cytoplasm is thought to be highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules is very restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the jammed nature of the cytoplasm at the microscopic scale, large-scale reorganization of cytoplasm is essential for important cellular functions, such as nuclear positioning and cell division. How such mesoscale reorganization of the cytoplasm is achieved, especially for very large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, has only begun to be understood.\r\nIn this thesis, I focus on the recent advances in elucidating the molecular, cellular and biophysical principles underlying cytoplasmic organization across different scales, structures and species. First, I outline which of these principles have been identified by reductionist approaches, such as in vitro reconstitution assays, where boundary conditions and components can be modulated at ease. I then describe how the theoretical and experimental framework established in these reduced systems have been applied to their more complex in vivo counterparts, in particular oocytes and embryonic syncytial structures, and discuss how such complex biological systems can initiate symmetry breaking and establish patterning.\r\nSpecifically, I examine an example of large-scale reorganizations taking place in zebrafish embryos, where extensive cytoplasmic streaming leads to the segregation of cytoplasm from yolk granules along the animal-vegetal axis of the embryo. Using biophysical experimentation and theory, I investigate the forces underlying this process, to show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the embryo. This wave functions in segregation by both pulling cytoplasm animally and pushing yolk granules vegetally. Cytoplasm pulling is mediated by bulk actin network flows exerting friction forces on the cytoplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. This study defines a novel role of bulk actin polymerization waves in embryo polarization via cytoplasmic segregation. Lastly, I describe the cytoplasmic reorganizations taking place during zebrafish oocyte maturation, where the initial segregation of the cytoplasm and yolk granules occurs. Here, I demonstrate a previously uncharacterized wave of microtubule aster formation, traveling the oocyte along the animal-vegetal axis. Further research is required to determine the role of such microtubule structures in cytoplasmic reorganizations therein.\r\nCollectively, these studies provide further evidence for the coupling between cell cytoskeleton and cell cycle machinery, which can underlie a core self-organizing mechanism for orchestrating large-scale reorganizations in a cell-cycle-tunable manner, where the modulations of the force-generating machinery and cytoplasmic mechanics can be harbored to fulfill cellular functions." acknowledged_ssus: - _id: PreCl - _id: Bio - _id: EM-Fac acknowledgement: "I would have had no fish and hence no results without our wonderful fish facility crew, Verena Mayer, Eva Schlegl, Andreas Mlak and Matthias Nowak. Special thanks to Verena for being always happy to help and dealing with our chaotic schedules in the lab. Danke auch, Verena, für deine Geduld, mit mir auf Deutsch zu sprechen. Das hat mir sehr geholfen.\r\nSpecial thanks to the Bioimaging and EM facilities at IST Austria for supporting us every day. Very special thanks would go to Robert Hauschild for his continuous support on data analysis and also to Jack Merrin for designing and building microfabricated chambers for the project and for the various discussions on making zebrafish extracts." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour citation: ama: Shamipour S. Bulk actin dynamics drive phase segregation in zebrafish oocytes . 2020. doi:10.15479/AT:ISTA:8350 apa: Shamipour, S. (2020). Bulk actin dynamics drive phase segregation in zebrafish oocytes . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8350 chicago: Shamipour, Shayan. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes .” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8350. ieee: S. Shamipour, “Bulk actin dynamics drive phase segregation in zebrafish oocytes ,” Institute of Science and Technology Austria, 2020. ista: Shamipour S. 2020. Bulk actin dynamics drive phase segregation in zebrafish oocytes . Institute of Science and Technology Austria. mla: Shamipour, Shayan. Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes . Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8350. short: S. Shamipour, Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes , Institute of Science and Technology Austria, 2020. date_created: 2020-09-09T11:12:10Z date_published: 2020-09-09T00:00:00Z date_updated: 2023-09-27T14:16:45Z day: '09' ddc: - '570' degree_awarded: PhD department: - _id: BjHo - _id: CaHe doi: 10.15479/AT:ISTA:8350 file: - access_level: closed checksum: 6e47871c74f85008b9876112eb3fcfa1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: sshamip date_created: 2020-09-09T11:06:27Z date_updated: 2021-09-11T22:30:05Z embargo_to: open_access file_id: '8351' file_name: Shayan-Thesis-Final.docx file_size: 65194814 relation: source_file - access_level: open_access checksum: 1b44c57f04d7e8a6fe41b1c9c55a52a3 content_type: application/pdf creator: sshamip date_created: 2020-09-09T11:06:13Z date_updated: 2021-09-11T22:30:05Z embargo: 2021-09-10 file_id: '8352' file_name: Shayan-Thesis-Final.pdf file_size: 23729605 relation: main_file file_date_updated: 2021-09-11T22:30:05Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: None page: '107' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '661' relation: part_of_dissertation status: public - id: '6508' relation: part_of_dissertation status: public - id: '7001' relation: part_of_dissertation status: public - id: '735' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: 'Bulk actin dynamics drive phase segregation in zebrafish oocytes ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '5793' abstract: - lang: eng text: The transcription coactivator, Yes-associated protein (YAP), which is a nuclear effector of the Hippo signaling pathway, has been shown to be a mechano-transducer. By using mutant fish and human 3D spheroids, we have recently demonstrated that YAP is also a mechano-effector. YAP functions in three-dimensional (3D) morphogenesis of organ and global body shape by controlling actomyosin-mediated tissue tension. In this chapter, we present a platform that links the findings in fish embryos with human cells. The protocols for analyzing tissue tension-mediated global body shape/organ morphogenesis in vivo and ex vivo using medaka fish embryos and in vitro using human cell spheroids represent useful tools for unraveling the molecular mechanisms by which YAP functions in regulating global body/organ morphogenesis. alternative_title: - MIMB author: - first_name: Yoichi full_name: Asaoka, Yoichi last_name: Asaoka - first_name: Hitoshi full_name: Morita, Hitoshi last_name: Morita - first_name: Hiroko full_name: Furumoto, Hiroko last_name: Furumoto - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Makoto full_name: Furutani-Seiki, Makoto last_name: Furutani-Seiki citation: ama: 'Asaoka Y, Morita H, Furumoto H, Heisenberg C-PJ, Furutani-Seiki M. Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids. In: Hergovich A, ed. The Hippo Pathway. Vol 1893. Methods in Molecular Biology. Springer; 2019:167-181. doi:10.1007/978-1-4939-8910-2_14' apa: Asaoka, Y., Morita, H., Furumoto, H., Heisenberg, C.-P. J., & Furutani-Seiki, M. (2019). Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids. In A. Hergovich (Ed.), The hippo pathway (Vol. 1893, pp. 167–181). Springer. https://doi.org/10.1007/978-1-4939-8910-2_14 chicago: Asaoka, Yoichi, Hitoshi Morita, Hiroko Furumoto, Carl-Philipp J Heisenberg, and Makoto Furutani-Seiki. “Studying YAP-Mediated 3D Morphogenesis Using Fish Embryos and Human Spheroids.” In The Hippo Pathway, edited by Alexander Hergovich, 1893:167–81. Methods in Molecular Biology. Springer, 2019. https://doi.org/10.1007/978-1-4939-8910-2_14. ieee: Y. Asaoka, H. Morita, H. Furumoto, C.-P. J. Heisenberg, and M. Furutani-Seiki, “Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids,” in The hippo pathway, vol. 1893, A. Hergovich, Ed. Springer, 2019, pp. 167–181. ista: 'Asaoka Y, Morita H, Furumoto H, Heisenberg C-PJ, Furutani-Seiki M. 2019.Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids. In: The hippo pathway. MIMB, vol. 1893, 167–181.' mla: Asaoka, Yoichi, et al. “Studying YAP-Mediated 3D Morphogenesis Using Fish Embryos and Human Spheroids.” The Hippo Pathway, edited by Alexander Hergovich, vol. 1893, Springer, 2019, pp. 167–81, doi:10.1007/978-1-4939-8910-2_14. short: Y. Asaoka, H. Morita, H. Furumoto, C.-P.J. Heisenberg, M. Furutani-Seiki, in:, A. Hergovich (Ed.), The Hippo Pathway, Springer, 2019, pp. 167–181. date_created: 2019-01-06T22:59:11Z date_published: 2019-01-01T00:00:00Z date_updated: 2021-01-12T08:03:30Z day: '01' department: - _id: CaHe doi: 10.1007/978-1-4939-8910-2_14 editor: - first_name: Alexander full_name: Hergovich, Alexander last_name: Hergovich intvolume: ' 1893' language: - iso: eng month: '01' oa_version: None page: 167-181 publication: The hippo pathway publication_identifier: isbn: - 978-1-4939-8909-6 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: 1 series_title: Methods in Molecular Biology status: public title: Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1893 year: '2019' ... --- _id: '6025' abstract: - lang: eng text: Non-canonical Wnt signaling plays a central role for coordinated cell polarization and directed migration in metazoan development. While spatiotemporally restricted activation of non-canonical Wnt-signaling drives cell polarization in epithelial tissues, it remains unclear whether such instructive activity is also critical for directed mesenchymal cell migration. Here, we developed a light-activated version of the non-canonical Wnt receptor Frizzled 7 (Fz7) to analyze how restricted activation of non-canonical Wnt signaling affects directed anterior axial mesendoderm (prechordal plate, ppl) cell migration within the zebrafish gastrula. We found that Fz7 signaling is required for ppl cell protrusion formation and migration and that spatiotemporally restricted ectopic activation is capable of redirecting their migration. Finally, we show that uniform activation of Fz7 signaling in ppl cells fully rescues defective directed cell migration in fz7 mutant embryos. Together, our findings reveal that in contrast to the situation in epithelial cells, non-canonical Wnt signaling functions permissively rather than instructively in directed mesenchymal cell migration during gastrulation. acknowledged_ssus: - _id: Bio - _id: LifeSc article_number: e42093 article_processing_charge: No author: - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Alexandra Madelaine full_name: Tichy, Alexandra Madelaine last_name: Tichy - first_name: Maurizio full_name: Morri, Maurizio id: 4863116E-F248-11E8-B48F-1D18A9856A87 last_name: Morri - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Capek D, Smutny M, Tichy AM, Morri M, Janovjak HL, Heisenberg C-PJ. Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration. eLife. 2019;8. doi:10.7554/eLife.42093 apa: Capek, D., Smutny, M., Tichy, A. M., Morri, M., Janovjak, H. L., & Heisenberg, C.-P. J. (2019). Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.42093 chicago: Capek, Daniel, Michael Smutny, Alexandra Madelaine Tichy, Maurizio Morri, Harald L Janovjak, and Carl-Philipp J Heisenberg. “Light-Activated Frizzled7 Reveals a Permissive Role of Non-Canonical Wnt Signaling in Mesendoderm Cell Migration.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/eLife.42093. ieee: D. Capek, M. Smutny, A. M. Tichy, M. Morri, H. L. Janovjak, and C.-P. J. Heisenberg, “Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Capek D, Smutny M, Tichy AM, Morri M, Janovjak HL, Heisenberg C-PJ. 2019. Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration. eLife. 8, e42093. mla: Capek, Daniel, et al. “Light-Activated Frizzled7 Reveals a Permissive Role of Non-Canonical Wnt Signaling in Mesendoderm Cell Migration.” ELife, vol. 8, e42093, eLife Sciences Publications, 2019, doi:10.7554/eLife.42093. short: D. Capek, M. Smutny, A.M. Tichy, M. Morri, H.L. Janovjak, C.-P.J. Heisenberg, ELife 8 (2019). date_created: 2019-02-17T22:59:22Z date_published: 2019-02-06T00:00:00Z date_updated: 2023-08-24T14:46:01Z day: '06' ddc: - '570' department: - _id: CaHe - _id: HaJa doi: 10.7554/eLife.42093 ec_funded: 1 external_id: isi: - '000458025300001' file: - access_level: open_access checksum: 6cb4ca6d4aa96f6f187a5983aa3e660a content_type: application/pdf creator: dernst date_created: 2019-02-18T15:17:21Z date_updated: 2020-07-14T12:47:17Z file_id: '6041' file_name: 2019_elife_Capek.pdf file_size: 5500707 relation: main_file file_date_updated: 2020-07-14T12:47:17Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: eLife publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2019' ... --- _id: '6087' abstract: - lang: eng text: Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz−/− follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity. acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: LifeSc acknowledgement: We thank Roland Dosch, Makoto Furutani-Seiki, Brian Link, Mary Mullins, and Masazumi Tada for providing transgenic and/or mutant zebrafish lines; Alexandra Schauer, Shayan Shami-Pour, and the rest of the Heisenberg lab for technical assistance and feedback on the manuscript; and the Bioimaging, Electron Microscopy, and Zebrafish facilities of IST Austria for continuous support. This work was supported by an ERC advanced grant ( MECSPEC to C.-P.H.). article_processing_charge: No article_type: original author: - first_name: Peng full_name: Xia, Peng id: 4AB6C7D0-F248-11E8-B48F-1D18A9856A87 last_name: Xia orcid: 0000-0002-5419-7756 - first_name: Daniel J full_name: Gütl, Daniel J id: 381929CE-F248-11E8-B48F-1D18A9856A87 last_name: Gütl - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Xia P, Gütl DJ, Zheden V, Heisenberg C-PJ. Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity. Cell. 2019;176(6):1379-1392.e14. doi:10.1016/j.cell.2019.01.019 apa: Xia, P., Gütl, D. J., Zheden, V., & Heisenberg, C.-P. J. (2019). Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.01.019 chicago: Xia, Peng, Daniel J Gütl, Vanessa Zheden, and Carl-Philipp J Heisenberg. “Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.01.019. ieee: P. Xia, D. J. Gütl, V. Zheden, and C.-P. J. Heisenberg, “Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity,” Cell, vol. 176, no. 6. Elsevier, p. 1379–1392.e14, 2019. ista: Xia P, Gütl DJ, Zheden V, Heisenberg C-PJ. 2019. Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity. Cell. 176(6), 1379–1392.e14. mla: Xia, Peng, et al. “Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity.” Cell, vol. 176, no. 6, Elsevier, 2019, p. 1379–1392.e14, doi:10.1016/j.cell.2019.01.019. short: P. Xia, D.J. Gütl, V. Zheden, C.-P.J. Heisenberg, Cell 176 (2019) 1379–1392.e14. date_created: 2019-03-10T22:59:19Z date_published: 2019-03-07T00:00:00Z date_updated: 2023-08-25T08:02:23Z day: '07' department: - _id: CaHe - _id: EM-Fac doi: 10.1016/j.cell.2019.01.019 ec_funded: 1 external_id: isi: - '000460509600013' pmid: - '30773315' intvolume: ' 176' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cell.2019.01.019 month: '03' oa: 1 oa_version: Published Version page: 1379-1392.e14 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Cell publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/in-zebrafish-eggs-most-rapidly-growing-cell-inhibits-its-neighbours-through-mechanical-signals/ scopus_import: '1' status: public title: Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 176 year: '2019' ... --- _id: '6601' abstract: - lang: eng text: There is increasing evidence that both mechanical and biochemical signals play important roles in development and disease. The development of complex organisms, in particular, has been proposed to rely on the feedback between mechanical and biochemical patterning events. This feedback occurs at the molecular level via mechanosensation but can also arise as an emergent property of the system at the cellular and tissue level. In recent years, dynamic changes in tissue geometry, flow, rheology, and cell fate specification have emerged as key platforms of mechanochemical feedback loops in multiple processes. Here, we review recent experimental and theoretical advances in understanding how these feedbacks function in development and disease. article_processing_charge: No article_type: review author: - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Hannezo EB, Heisenberg C-PJ. Mechanochemical feedback loops in development and disease. Cell. 2019;178(1):12-25. doi:10.1016/j.cell.2019.05.052 apa: Hannezo, E. B., & Heisenberg, C.-P. J. (2019). Mechanochemical feedback loops in development and disease. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.05.052 chicago: Hannezo, Edouard B, and Carl-Philipp J Heisenberg. “Mechanochemical Feedback Loops in Development and Disease.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.05.052. ieee: E. B. Hannezo and C.-P. J. Heisenberg, “Mechanochemical feedback loops in development and disease,” Cell, vol. 178, no. 1. Elsevier, pp. 12–25, 2019. ista: Hannezo EB, Heisenberg C-PJ. 2019. Mechanochemical feedback loops in development and disease. Cell. 178(1), 12–25. mla: Hannezo, Edouard B., and Carl-Philipp J. Heisenberg. “Mechanochemical Feedback Loops in Development and Disease.” Cell, vol. 178, no. 1, Elsevier, 2019, pp. 12–25, doi:10.1016/j.cell.2019.05.052. short: E.B. Hannezo, C.-P.J. Heisenberg, Cell 178 (2019) 12–25. date_created: 2019-06-30T21:59:11Z date_published: 2019-07-27T00:00:00Z date_updated: 2023-08-28T12:25:21Z day: '27' department: - _id: CaHe - _id: EdHa doi: 10.1016/j.cell.2019.05.052 ec_funded: 1 external_id: isi: - '000473002700005' pmid: - '31251912' intvolume: ' 178' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cell.2019.05.052 month: '07' oa: 1 oa_version: Published Version page: 12-25 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Cell publication_identifier: issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Mechanochemical feedback loops in development and disease type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 178 year: '2019' ... --- _id: '6631' abstract: - lang: eng text: The spatiotemporal organization of cell divisions constitutes an integral part in the development of multicellular organisms, and mis-regulation of cell divisions can lead to severe developmental defects. Cell divisions have an important morphogenetic function in development by regulating growth and shape acquisition of developing tissues, and, conversely, tissue morphogenesis is known to affect both the rate and orientation of cell divisions. Moreover, cell divisions are associated with an extensive reorganization of the cytoskeleton and adhesion apparatus in the dividing cells that in turn can affect large-scale tissue rheological properties. Thus, the interplay between cell divisions and tissue morphogenesis plays a key role in embryo and tissue morphogenesis. article_processing_charge: No author: - first_name: Benoit G full_name: Godard, Benoit G id: 33280250-F248-11E8-B48F-1D18A9856A87 last_name: Godard - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Godard BG, Heisenberg C-PJ. Cell division and tissue mechanics. Current Opinion in Cell Biology. 2019;60:114-120. doi:10.1016/j.ceb.2019.05.007 apa: Godard, B. G., & Heisenberg, C.-P. J. (2019). Cell division and tissue mechanics. Current Opinion in Cell Biology. Elsevier. https://doi.org/10.1016/j.ceb.2019.05.007 chicago: Godard, Benoit G, and Carl-Philipp J Heisenberg. “Cell Division and Tissue Mechanics.” Current Opinion in Cell Biology. Elsevier, 2019. https://doi.org/10.1016/j.ceb.2019.05.007. ieee: B. G. Godard and C.-P. J. Heisenberg, “Cell division and tissue mechanics,” Current Opinion in Cell Biology, vol. 60. Elsevier, pp. 114–120, 2019. ista: Godard BG, Heisenberg C-PJ. 2019. Cell division and tissue mechanics. Current Opinion in Cell Biology. 60, 114–120. mla: Godard, Benoit G., and Carl-Philipp J. Heisenberg. “Cell Division and Tissue Mechanics.” Current Opinion in Cell Biology, vol. 60, Elsevier, 2019, pp. 114–20, doi:10.1016/j.ceb.2019.05.007. short: B.G. Godard, C.-P.J. Heisenberg, Current Opinion in Cell Biology 60 (2019) 114–120. date_created: 2019-07-14T21:59:17Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-29T06:33:14Z day: '01' department: - _id: CaHe doi: 10.1016/j.ceb.2019.05.007 external_id: isi: - '000486545800016' intvolume: ' 60' isi: 1 language: - iso: eng month: '10' oa_version: None page: 114-120 publication: Current Opinion in Cell Biology publication_identifier: issn: - 0955-0674 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Cell division and tissue mechanics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 60 year: '2019' ... --- _id: '6837' abstract: - lang: eng text: Migrasomes are a recently discovered type of extracellular vesicles that are characteristically generated along retraction fibers in migrating cells. Two studies now show how migrasomes are formed and how they function in the physiologically relevant context of the developing zebrafish embryo. article_processing_charge: No author: - first_name: Ste full_name: Tavano, Ste id: 2F162F0C-F248-11E8-B48F-1D18A9856A87 last_name: Tavano orcid: 0000-0001-9970-7804 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Tavano S, Heisenberg C-PJ. Migrasomes take center stage. Nature Cell Biology. 2019;21(8):918-920. doi:10.1038/s41556-019-0369-3 apa: Tavano, S., & Heisenberg, C.-P. J. (2019). Migrasomes take center stage. Nature Cell Biology. Springer Nature. https://doi.org/10.1038/s41556-019-0369-3 chicago: Tavano, Ste, and Carl-Philipp J Heisenberg. “Migrasomes Take Center Stage.” Nature Cell Biology. Springer Nature, 2019. https://doi.org/10.1038/s41556-019-0369-3. ieee: S. Tavano and C.-P. J. Heisenberg, “Migrasomes take center stage,” Nature Cell Biology, vol. 21, no. 8. Springer Nature, pp. 918–920, 2019. ista: Tavano S, Heisenberg C-PJ. 2019. Migrasomes take center stage. Nature Cell Biology. 21(8), 918–920. mla: Tavano, Ste, and Carl-Philipp J. Heisenberg. “Migrasomes Take Center Stage.” Nature Cell Biology, vol. 21, no. 8, Springer Nature, 2019, pp. 918–20, doi:10.1038/s41556-019-0369-3. short: S. Tavano, C.-P.J. Heisenberg, Nature Cell Biology 21 (2019) 918–920. date_created: 2019-09-01T22:00:57Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-08-29T07:42:20Z day: '01' department: - _id: CaHe doi: 10.1038/s41556-019-0369-3 external_id: isi: - '000478029000003' pmid: - '31371826' intvolume: ' 21' isi: 1 issue: '8' language: - iso: eng month: '08' oa_version: None page: 918-920 pmid: 1 publication: Nature Cell Biology publication_identifier: eissn: - 1476-4679 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Migrasomes take center stage type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2019' ... --- _id: '6899' abstract: - lang: eng text: Intra-organ communication guides morphogenetic processes that are essential for an organ to carry out complex physiological functions. In the heart, the growth of the myocardium is tightly coupled to that of the endocardium, a specialized endothelial tissue that lines its interior. Several molecular pathways have been implicated in the communication between these tissues including secreted factors, components of the extracellular matrix, or proteins involved in cell-cell communication. Yet, it is unknown how the growth of the endocardium is coordinated with that of the myocardium. Here, we show that an increased expansion of the myocardial atrial chamber volume generates higher junctional forces within endocardial cells. This leads to biomechanical signaling involving VE-cadherin, triggering nuclear localization of the Hippo pathway transcriptional regulator Yap1 and endocardial proliferation. Our work suggests that the growth of the endocardium results from myocardial chamber volume expansion and ends when the tension on the tissue is relaxed. article_processing_charge: No author: - first_name: Dorothee full_name: Bornhorst, Dorothee last_name: Bornhorst - first_name: Peng full_name: Xia, Peng id: 4AB6C7D0-F248-11E8-B48F-1D18A9856A87 last_name: Xia orcid: 0000-0002-5419-7756 - first_name: Hiroyuki full_name: Nakajima, Hiroyuki last_name: Nakajima - first_name: Chaitanya full_name: Dingare, Chaitanya last_name: Dingare - first_name: Wiebke full_name: Herzog, Wiebke last_name: Herzog - first_name: Virginie full_name: Lecaudey, Virginie last_name: Lecaudey - first_name: Naoki full_name: Mochizuki, Naoki last_name: Mochizuki - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Deborah full_name: Yelon, Deborah last_name: Yelon - first_name: Salim full_name: Abdelilah-Seyfried, Salim last_name: Abdelilah-Seyfried citation: ama: Bornhorst D, Xia P, Nakajima H, et al. Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature communications. 2019;10(1):4113. doi:10.1038/s41467-019-12068-x apa: Bornhorst, D., Xia, P., Nakajima, H., Dingare, C., Herzog, W., Lecaudey, V., … Abdelilah-Seyfried, S. (2019). Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/s41467-019-12068-x chicago: Bornhorst, Dorothee, Peng Xia, Hiroyuki Nakajima, Chaitanya Dingare, Wiebke Herzog, Virginie Lecaudey, Naoki Mochizuki, Carl-Philipp J Heisenberg, Deborah Yelon, and Salim Abdelilah-Seyfried. “Biomechanical Signaling within the Developing Zebrafish Heart Attunes Endocardial Growth to Myocardial Chamber Dimensions.” Nature Communications. Nature Publishing Group, 2019. https://doi.org/10.1038/s41467-019-12068-x. ieee: D. Bornhorst et al., “Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions,” Nature communications, vol. 10, no. 1. Nature Publishing Group, p. 4113, 2019. ista: Bornhorst D, Xia P, Nakajima H, Dingare C, Herzog W, Lecaudey V, Mochizuki N, Heisenberg C-PJ, Yelon D, Abdelilah-Seyfried S. 2019. Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature communications. 10(1), 4113. mla: Bornhorst, Dorothee, et al. “Biomechanical Signaling within the Developing Zebrafish Heart Attunes Endocardial Growth to Myocardial Chamber Dimensions.” Nature Communications, vol. 10, no. 1, Nature Publishing Group, 2019, p. 4113, doi:10.1038/s41467-019-12068-x. short: D. Bornhorst, P. Xia, H. Nakajima, C. Dingare, W. Herzog, V. Lecaudey, N. Mochizuki, C.-P.J. Heisenberg, D. Yelon, S. Abdelilah-Seyfried, Nature Communications 10 (2019) 4113. date_created: 2019-09-22T22:00:37Z date_published: 2019-09-11T00:00:00Z date_updated: 2023-08-30T06:21:23Z day: '11' ddc: - '570' department: - _id: CaHe doi: 10.1038/s41467-019-12068-x external_id: isi: - '000485216800009' pmid: - '31511517' file: - access_level: open_access checksum: 62c2512712e16d27c1797d318d14ba9f content_type: application/pdf creator: kschuh date_created: 2019-10-01T11:18:50Z date_updated: 2020-07-14T12:47:44Z file_id: '6926' file_name: 2019_Nature_Bornhorst.pdf file_size: 3905793 relation: main_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '4113' pmid: 1 publication: Nature communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Nature Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2019' ... --- _id: '6980' abstract: - lang: eng text: Tissue morphogenesis in multicellular organisms is brought about by spatiotemporal coordination of mechanical and chemical signals. Extensive work on how mechanical forces together with the well‐established morphogen signalling pathways can actively shape living tissues has revealed evolutionary conserved mechanochemical features of embryonic development. More recently, attention has been drawn to the description of tissue material properties and how they can influence certain morphogenetic processes. Interestingly, besides the role of tissue material properties in determining how much tissues deform in response to force application, there is increasing theoretical and experimental evidence, suggesting that tissue material properties can abruptly and drastically change in development. These changes resemble phase transitions, pointing at the intriguing possibility that important morphogenetic processes in development, such as symmetry breaking and self‐organization, might be mediated by tissue phase transitions. In this review, we summarize recent findings on the regulation and role of tissue material properties in the context of the developing embryo. We posit that abrupt changes of tissue rheological properties may have important implications in maintaining the balance between robustness and adaptability during embryonic development. article_number: e102497 article_processing_charge: Yes (via OA deal) article_type: review author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Petridou N, Heisenberg C-PJ. Tissue rheology in embryonic organization. The EMBO Journal. 2019;38(20). doi:10.15252/embj.2019102497 apa: Petridou, N., & Heisenberg, C.-P. J. (2019). Tissue rheology in embryonic organization. The EMBO Journal. EMBO. https://doi.org/10.15252/embj.2019102497 chicago: Petridou, Nicoletta, and Carl-Philipp J Heisenberg. “Tissue Rheology in Embryonic Organization.” The EMBO Journal. EMBO, 2019. https://doi.org/10.15252/embj.2019102497. ieee: N. Petridou and C.-P. J. Heisenberg, “Tissue rheology in embryonic organization,” The EMBO Journal, vol. 38, no. 20. EMBO, 2019. ista: Petridou N, Heisenberg C-PJ. 2019. Tissue rheology in embryonic organization. The EMBO Journal. 38(20), e102497. mla: Petridou, Nicoletta, and Carl-Philipp J. Heisenberg. “Tissue Rheology in Embryonic Organization.” The EMBO Journal, vol. 38, no. 20, e102497, EMBO, 2019, doi:10.15252/embj.2019102497. short: N. Petridou, C.-P.J. Heisenberg, The EMBO Journal 38 (2019). date_created: 2019-11-04T15:24:29Z date_published: 2019-10-15T00:00:00Z date_updated: 2023-09-05T13:04:13Z day: '15' ddc: - '570' department: - _id: CaHe doi: 10.15252/embj.2019102497 ec_funded: 1 external_id: isi: - '000485561900001' pmid: - '31512749' file: - access_level: open_access checksum: 76f7f4e79ab6d850c30017a69726fd85 content_type: application/pdf creator: dernst date_created: 2019-11-04T15:30:08Z date_updated: 2020-07-14T12:47:46Z file_id: '6981' file_name: 2019_Embo_Petridou.pdf file_size: 847356 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '20' language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 2693FD8C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00736 name: Tissue material properties in embryonic development publication: The EMBO Journal publication_identifier: eissn: - 1460-2075 issn: - 0261-4189 publication_status: published publisher: EMBO quality_controlled: '1' scopus_import: '1' status: public title: Tissue rheology in embryonic organization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 38 year: '2019' ... --- _id: '6987' abstract: - lang: eng text: Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern. alternative_title: - RESULTS article_processing_charge: No author: - first_name: Alex full_name: McDougall, Alex last_name: McDougall - first_name: Janet full_name: Chenevert, Janet last_name: Chenevert - first_name: Benoit G full_name: Godard, Benoit G id: 33280250-F248-11E8-B48F-1D18A9856A87 last_name: Godard - first_name: Remi full_name: Dumollard, Remi last_name: Dumollard citation: ama: 'McDougall A, Chenevert J, Godard BG, Dumollard R. Emergence of embryo shape during cleavage divisions. In: Tworzydlo W, Bilinski SM, eds. Evo-Devo: Non-Model Species in Cell and Developmental Biology. Vol 68. Springer Nature; 2019:127-154. doi:10.1007/978-3-030-23459-1_6' apa: 'McDougall, A., Chenevert, J., Godard, B. G., & Dumollard, R. (2019). Emergence of embryo shape during cleavage divisions. In W. Tworzydlo & S. M. Bilinski (Eds.), Evo-Devo: Non-model species in cell and developmental biology (Vol. 68, pp. 127–154). Springer Nature. https://doi.org/10.1007/978-3-030-23459-1_6' chicago: 'McDougall, Alex, Janet Chenevert, Benoit G Godard, and Remi Dumollard. “Emergence of Embryo Shape during Cleavage Divisions.” In Evo-Devo: Non-Model Species in Cell and Developmental Biology, edited by Waclaw Tworzydlo and Szczepan M. Bilinski, 68:127–54. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-23459-1_6.' ieee: 'A. McDougall, J. Chenevert, B. G. Godard, and R. Dumollard, “Emergence of embryo shape during cleavage divisions,” in Evo-Devo: Non-model species in cell and developmental biology, vol. 68, W. Tworzydlo and S. M. Bilinski, Eds. Springer Nature, 2019, pp. 127–154.' ista: 'McDougall A, Chenevert J, Godard BG, Dumollard R. 2019.Emergence of embryo shape during cleavage divisions. In: Evo-Devo: Non-model species in cell and developmental biology. RESULTS, vol. 68, 127–154.' mla: 'McDougall, Alex, et al. “Emergence of Embryo Shape during Cleavage Divisions.” Evo-Devo: Non-Model Species in Cell and Developmental Biology, edited by Waclaw Tworzydlo and Szczepan M. Bilinski, vol. 68, Springer Nature, 2019, pp. 127–54, doi:10.1007/978-3-030-23459-1_6.' short: 'A. McDougall, J. Chenevert, B.G. Godard, R. Dumollard, in:, W. Tworzydlo, S.M. Bilinski (Eds.), Evo-Devo: Non-Model Species in Cell and Developmental Biology, Springer Nature, 2019, pp. 127–154.' date_created: 2019-11-04T16:20:19Z date_published: 2019-10-10T00:00:00Z date_updated: 2023-09-05T15:01:12Z day: '10' ddc: - '570' department: - _id: CaHe doi: 10.1007/978-3-030-23459-1_6 editor: - first_name: Waclaw full_name: Tworzydlo, Waclaw last_name: Tworzydlo - first_name: Szczepan M. full_name: Bilinski, Szczepan M. last_name: Bilinski external_id: pmid: - '31598855' file: - access_level: open_access checksum: 7f43e1e3706d15061475c5c57efc2786 content_type: application/pdf creator: dernst date_created: 2020-05-14T10:09:30Z date_updated: 2020-07-14T12:47:46Z file_id: '7829' file_name: 2019_RESULTS_McDougall.pdf file_size: 19317348 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 68' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 127-154 pmid: 1 publication: 'Evo-Devo: Non-model species in cell and developmental biology' publication_identifier: eissn: - 1861-0412 isbn: - '9783030234584' - '9783030234591' issn: - 0080-1844 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Emergence of embryo shape during cleavage divisions type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 68 year: '2019' ... --- _id: '7186' abstract: - lang: eng text: "Tissue morphogenesis in developmental or physiological processes is regulated by molecular\r\nand mechanical signals. While the molecular signaling cascades are increasingly well\r\ndescribed, the mechanical signals affecting tissue shape changes have only recently been\r\nstudied in greater detail. To gain more insight into the mechanochemical and biophysical\r\nbasis of an epithelial spreading process (epiboly) in early zebrafish development, we studied\r\ncell-cell junction formation and actomyosin network dynamics at the boundary between\r\nsurface layer epithelial cells (EVL) and the yolk syncytial layer (YSL). During zebrafish epiboly,\r\nthe cell mass sitting on top of the yolk cell spreads to engulf the yolk cell by the end of\r\ngastrulation. It has been previously shown that an actomyosin ring residing within the YSL\r\npulls on the EVL tissue through a cable-constriction and a flow-friction motor, thereby\r\ndragging the tissue vegetal wards. Pulling forces are likely transmitted from the YSL\r\nactomyosin ring to EVL cells; however, the nature and formation of the junctional structure\r\nmediating this process has not been well described so far. Therefore, our main aim was to\r\ndetermine the nature, dynamics and potential function of the EVL-YSL junction during this\r\nepithelial tissue spreading. Specifically, we show that the EVL-YSL junction is a\r\nmechanosensitive structure, predominantly made of tight junction (TJ) proteins. The process\r\nof TJ mechanosensation depends on the retrograde flow of non-junctional, phase-separated\r\nZonula Occludens-1 (ZO-1) protein clusters towards the EVL-YSL boundary. Interestingly, we\r\ncould demonstrate that ZO-1 is present in a non-junctional pool on the surface of the yolk\r\ncell, and ZO-1 undergoes a phase separation process that likely renders the protein\r\nresponsive to flows. These flows are directed towards the junction and mediate proper\r\ntension-dependent recruitment of ZO-1. Upon reaching the EVL-YSL junction ZO-1 gets\r\nincorporated into the junctional pool mediated through its direct actin-binding domain.\r\nWhen the non-junctional pool and/or ZO-1 direct actin binding is absent, TJs fail in their\r\nproper mechanosensitive responses resulting in slower tissue spreading. We could further\r\ndemonstrate that depletion of ZO proteins within the YSL results in diminished actomyosin\r\nring formation. This suggests that a mechanochemical feedback loop is at work during\r\nzebrafish epiboly: ZO proteins help in proper actomyosin ring formation and actomyosin\r\ncontractility and flows positively influence ZO-1 junctional recruitment. Finally, such a\r\nmesoscale polarization process mediated through the flow of phase-separated protein\r\nclusters might have implications for other processes such as immunological synapse\r\nformation, C. elegans zygote polarization and wound healing." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: EM-Fac - _id: SSU alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 citation: ama: Schwayer C. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. 2019. doi:10.15479/AT:ISTA:7186 apa: Schwayer, C. (2019). Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7186 chicago: Schwayer, Cornelia. “Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:7186. ieee: C. Schwayer, “Mechanosensation of tight junctions depends on ZO-1 phase separation and flow,” Institute of Science and Technology Austria, 2019. ista: Schwayer C. 2019. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Institute of Science and Technology Austria. mla: Schwayer, Cornelia. Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:7186. short: C. Schwayer, Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow, Institute of Science and Technology Austria, 2019. date_created: 2019-12-16T14:26:14Z date_published: 2019-12-16T00:00:00Z date_updated: 2023-09-07T12:56:42Z day: '16' ddc: - '570' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:7186 file: - access_level: closed checksum: 585583c1c875c5d9525703a539668a7c content_type: application/zip creator: cschwayer date_created: 2019-12-19T15:18:11Z date_updated: 2020-07-14T12:47:52Z file_id: '7194' file_name: DocumentSourceFiles.zip file_size: 19431292 relation: source_file - access_level: open_access checksum: 9b9b24351514948d27cec659e632e2cd content_type: application/pdf creator: cschwayer date_created: 2019-12-19T15:19:21Z date_updated: 2020-07-14T12:47:52Z file_id: '7195' file_name: Thesis_CS_final.pdf file_size: 19226428 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '107' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1096' relation: dissertation_contains status: public - id: '7001' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Mechanosensation of tight junctions depends on ZO-1 phase separation and flow type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '5789' abstract: - lang: eng text: Tissue morphogenesis is driven by mechanical forces that elicit changes in cell size, shape and motion. The extent by which forces deform tissues critically depends on the rheological properties of the recipient tissue. Yet, whether and how dynamic changes in tissue rheology affect tissue morphogenesis and how they are regulated within the developing organism remain unclear. Here, we show that blastoderm spreading at the onset of zebrafish morphogenesis relies on a rapid, pronounced and spatially patterned tissue fluidization. Blastoderm fluidization is temporally controlled by mitotic cell rounding-dependent cell–cell contact disassembly during the last rounds of cell cleavages. Moreover, fluidization is spatially restricted to the central blastoderm by local activation of non-canonical Wnt signalling within the blastoderm margin, increasing cell cohesion and thereby counteracting the effect of mitotic rounding on contact disassembly. Overall, our results identify a fluidity transition mediated by loss of cell cohesion as a critical regulator of embryo morphogenesis. acknowledged_ssus: - _id: Bio article_processing_charge: No article_type: original author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Silvia full_name: Grigolon, Silvia last_name: Grigolon - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Petridou N, Grigolon S, Salbreux G, Hannezo EB, Heisenberg C-PJ. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nature Cell Biology. 2019;21:169–178. doi:10.1038/s41556-018-0247-4 apa: Petridou, N., Grigolon, S., Salbreux, G., Hannezo, E. B., & Heisenberg, C.-P. J. (2019). Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/s41556-018-0247-4 chicago: Petridou, Nicoletta, Silvia Grigolon, Guillaume Salbreux, Edouard B Hannezo, and Carl-Philipp J Heisenberg. “Fluidization-Mediated Tissue Spreading by Mitotic Cell Rounding and Non-Canonical Wnt Signalling.” Nature Cell Biology. Nature Publishing Group, 2019. https://doi.org/10.1038/s41556-018-0247-4. ieee: N. Petridou, S. Grigolon, G. Salbreux, E. B. Hannezo, and C.-P. J. Heisenberg, “Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling,” Nature Cell Biology, vol. 21. Nature Publishing Group, pp. 169–178, 2019. ista: Petridou N, Grigolon S, Salbreux G, Hannezo EB, Heisenberg C-PJ. 2019. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nature Cell Biology. 21, 169–178. mla: Petridou, Nicoletta, et al. “Fluidization-Mediated Tissue Spreading by Mitotic Cell Rounding and Non-Canonical Wnt Signalling.” Nature Cell Biology, vol. 21, Nature Publishing Group, 2019, pp. 169–178, doi:10.1038/s41556-018-0247-4. short: N. Petridou, S. Grigolon, G. Salbreux, E.B. Hannezo, C.-P.J. Heisenberg, Nature Cell Biology 21 (2019) 169–178. date_created: 2018-12-30T22:59:15Z date_published: 2019-02-01T00:00:00Z date_updated: 2023-09-11T14:03:28Z day: '01' ddc: - '570' department: - _id: CaHe - _id: EdHa doi: 10.1038/s41556-018-0247-4 ec_funded: 1 external_id: isi: - '000457468300011' pmid: - '30559456' file: - access_level: open_access checksum: e38523787b3bc84006f2793de99ad70f content_type: application/pdf creator: dernst date_created: 2020-10-21T07:18:35Z date_updated: 2020-10-21T07:18:35Z file_id: '8685' file_name: 2018_NatureCellBio_Petridou_accepted.pdf file_size: 71590590 relation: main_file success: 1 file_date_updated: 2020-10-21T07:18:35Z has_accepted_license: '1' intvolume: ' 21' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Submitted Version page: 169–178 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 253E54C8-B435-11E9-9278-68D0E5697425 grant_number: ALTF710-2016 name: Molecular mechanism of auxindriven formative divisions delineating lateral root organogenesis in plants (EMBO fellowship) publication: Nature Cell Biology publication_identifier: issn: - '14657392' publication_status: published publisher: Nature Publishing Group quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/when-a-fish-becomes-fluid/ scopus_import: '1' status: public title: Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 21 year: '2019' ... --- _id: '6508' abstract: - lang: eng text: Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We would like to thank Pierre Recho, Guillaume Salbreux, and Silvia Grigolon for advice on the theory, Lila Solnica-Krezel for kindly providing us with zebrafish dachsous mutants, members of the Heisenberg and Hannezo groups for fruitful discussions, and the Bioimaging and zebrafish facilities at IST Austria for their continuous support. This project has received funding from the European Union (European Research Council Advanced Grant 742573 to C.P.H.) and from the Austrian Science Fund (FWF) (P 31639 to E.H.). article_processing_charge: No article_type: original author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Shi-lei full_name: Xue, Shi-lei id: 31D2C804-F248-11E8-B48F-1D18A9856A87 last_name: Xue - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Shamipour S, Kardos R, Xue S, Hof B, Hannezo EB, Heisenberg C-PJ. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. 2019;177(6):1463-1479.e18. doi:10.1016/j.cell.2019.04.030 apa: Shamipour, S., Kardos, R., Xue, S., Hof, B., Hannezo, E. B., & Heisenberg, C.-P. J. (2019). Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.04.030 chicago: Shamipour, Shayan, Roland Kardos, Shi-lei Xue, Björn Hof, Edouard B Hannezo, and Carl-Philipp J Heisenberg. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.04.030. ieee: S. Shamipour, R. Kardos, S. Xue, B. Hof, E. B. Hannezo, and C.-P. J. Heisenberg, “Bulk actin dynamics drive phase segregation in zebrafish oocytes,” Cell, vol. 177, no. 6. Elsevier, p. 1463–1479.e18, 2019. ista: Shamipour S, Kardos R, Xue S, Hof B, Hannezo EB, Heisenberg C-PJ. 2019. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. 177(6), 1463–1479.e18. mla: Shamipour, Shayan, et al. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes.” Cell, vol. 177, no. 6, Elsevier, 2019, p. 1463–1479.e18, doi:10.1016/j.cell.2019.04.030. short: S. Shamipour, R. Kardos, S. Xue, B. Hof, E.B. Hannezo, C.-P.J. Heisenberg, Cell 177 (2019) 1463–1479.e18. date_created: 2019-06-02T21:59:12Z date_published: 2019-05-30T00:00:00Z date_updated: 2024-03-27T23:30:38Z day: '30' ddc: - '570' department: - _id: CaHe - _id: EdHa - _id: BjHo doi: 10.1016/j.cell.2019.04.030 ec_funded: 1 external_id: isi: - '000469415100013' pmid: - '31080065' file: - access_level: open_access checksum: aea43726d80e35ce3885073a5f05c3e3 content_type: application/pdf creator: dernst date_created: 2020-10-21T07:22:34Z date_updated: 2020-10-21T07:22:34Z file_id: '8686' file_name: 2019_Cell_Shamipour_accepted.pdf file_size: 3356292 relation: main_file success: 1 file_date_updated: 2020-10-21T07:22:34Z has_accepted_license: '1' intvolume: ' 177' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cell.2019.04.030 month: '05' oa: 1 oa_version: Published Version page: 1463-1479.e18 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-the-cytoplasm-separates-from-the-yolk/ record: - id: '8350' relation: dissertation_contains status: public scopus_import: '1' status: public title: Bulk actin dynamics drive phase segregation in zebrafish oocytes type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 177 year: '2019' ... --- _id: '7001' acknowledged_ssus: - _id: PreCl - _id: Bio article_processing_charge: No article_type: original author: - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Kornelija full_name: Pranjic-Ferscha, Kornelija id: 4362B3C2-F248-11E8-B48F-1D18A9856A87 last_name: Pranjic-Ferscha - first_name: Alexandra full_name: Schauer, Alexandra id: 30A536BA-F248-11E8-B48F-1D18A9856A87 last_name: Schauer orcid: 0000-0001-7659-9142 - first_name: M full_name: Balda, M last_name: Balda - first_name: M full_name: Tada, M last_name: Tada - first_name: K full_name: Matter, K last_name: Matter - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Schwayer C, Shamipour S, Pranjic-Ferscha K, et al. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell. 2019;179(4):937-952.e18. doi:10.1016/j.cell.2019.10.006 apa: Schwayer, C., Shamipour, S., Pranjic-Ferscha, K., Schauer, A., Balda, M., Tada, M., … Heisenberg, C.-P. J. (2019). Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell. Cell Press. https://doi.org/10.1016/j.cell.2019.10.006 chicago: Schwayer, Cornelia, Shayan Shamipour, Kornelija Pranjic-Ferscha, Alexandra Schauer, M Balda, M Tada, K Matter, and Carl-Philipp J Heisenberg. “Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow.” Cell. Cell Press, 2019. https://doi.org/10.1016/j.cell.2019.10.006. ieee: C. Schwayer et al., “Mechanosensation of tight junctions depends on ZO-1 phase separation and flow,” Cell, vol. 179, no. 4. Cell Press, p. 937–952.e18, 2019. ista: Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg C-PJ. 2019. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell. 179(4), 937–952.e18. mla: Schwayer, Cornelia, et al. “Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow.” Cell, vol. 179, no. 4, Cell Press, 2019, p. 937–952.e18, doi:10.1016/j.cell.2019.10.006. short: C. Schwayer, S. Shamipour, K. Pranjic-Ferscha, A. Schauer, M. Balda, M. Tada, K. Matter, C.-P.J. Heisenberg, Cell 179 (2019) 937–952.e18. date_created: 2019-11-12T12:51:06Z date_published: 2019-10-31T00:00:00Z date_updated: 2024-03-27T23:30:38Z day: '31' ddc: - '570' department: - _id: CaHe - _id: BjHo doi: 10.1016/j.cell.2019.10.006 ec_funded: 1 external_id: isi: - '000493898000012' pmid: - '31675500' file: - access_level: open_access checksum: 33dac4bb77ee630e2666e936b4d57980 content_type: application/pdf creator: dernst date_created: 2020-10-21T07:09:45Z date_updated: 2020-10-21T07:09:45Z file_id: '8684' file_name: 2019_Cell_Schwayer_accepted.pdf file_size: 8805878 relation: main_file success: 1 file_date_updated: 2020-10-21T07:09:45Z has_accepted_license: '1' intvolume: ' 179' isi: 1 issue: '4' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 937-952.e18 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Cell publication_identifier: eissn: - 1097-4172 issn: - 0092-8674 publication_status: published publisher: Cell Press quality_controlled: '1' related_material: link: - description: News auf IST Website relation: press_release url: https://ist.ac.at/en/news/biochemistry-meets-mechanics-the-sensitive-nature-of-cell-cell-contact-formation-in-embryo-development/ record: - id: '7186' relation: dissertation_contains status: public - id: '8350' relation: dissertation_contains status: public scopus_import: '1' status: public title: Mechanosensation of tight junctions depends on ZO-1 phase separation and flow type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 179 year: '2019' ... --- _id: '308' abstract: - lang: eng text: Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. acknowledged_ssus: - _id: SSU article_processing_charge: No article_type: original author: - first_name: Aparna full_name: Ratheesh, Aparna id: 2F064CFE-F248-11E8-B48F-1D18A9856A87 last_name: Ratheesh orcid: 0000-0001-7190-0776 - first_name: Julia full_name: Biebl, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Biebl - first_name: Michael full_name: Smutny, Michael last_name: Smutny - first_name: Jana full_name: Veselá, Jana id: 433253EE-F248-11E8-B48F-1D18A9856A87 last_name: Veselá - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Alessandra M full_name: Casano, Alessandra M id: 3DBA3F4E-F248-11E8-B48F-1D18A9856A87 last_name: Casano orcid: 0000-0002-6009-6804 - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Ratheesh A, Bicher J, Smutny M, et al. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 2018;45(3):331-346. doi:10.1016/j.devcel.2018.04.002 apa: Ratheesh, A., Bicher, J., Smutny, M., Veselá, J., Papusheva, E., Krens, G., … Siekhaus, D. E. (2018). Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2018.04.002 chicago: Ratheesh, Aparna, Julia Bicher, Michael Smutny, Jana Veselá, Ekaterina Papusheva, Gabriel Krens, Walter Kaufmann, Attila György, Alessandra M Casano, and Daria E Siekhaus. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell. Elsevier, 2018. https://doi.org/10.1016/j.devcel.2018.04.002. ieee: A. Ratheesh et al., “Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration,” Developmental Cell, vol. 45, no. 3. Elsevier, pp. 331–346, 2018. ista: Ratheesh A, Bicher J, Smutny M, Veselá J, Papusheva E, Krens G, Kaufmann W, György A, Casano AM, Siekhaus DE. 2018. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 45(3), 331–346. mla: Ratheesh, Aparna, et al. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell, vol. 45, no. 3, Elsevier, 2018, pp. 331–46, doi:10.1016/j.devcel.2018.04.002. short: A. Ratheesh, J. Bicher, M. Smutny, J. Veselá, E. Papusheva, G. Krens, W. Kaufmann, A. György, A.M. Casano, D.E. Siekhaus, Developmental Cell 45 (2018) 331–346. date_created: 2018-12-11T11:45:44Z date_published: 2018-05-07T00:00:00Z date_updated: 2023-09-11T13:22:13Z day: '07' department: - _id: DaSi - _id: CaHe - _id: Bio - _id: EM-Fac - _id: MiSi doi: 10.1016/j.devcel.2018.04.002 ec_funded: 1 external_id: isi: - '000432461400009' pmid: - '29738712' intvolume: ' 45' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.devcel.2018.04.002 month: '05' oa: 1 oa_version: Published Version page: 331 - 346 pmid: 1 project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions publication: Developmental Cell publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/cells-change-tension-to-make-tissue-barriers-easier-to-get-through/ scopus_import: '1' status: public title: Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 45 year: '2018' ... --- _id: '54' abstract: - lang: eng text: During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs’ composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics. acknowledgement: Research in the Bellaïche laboratory is supported by the European Research Council (ERC Advanced, TiMoprh, 340784), the Fondation ARC pour la Recherche sur le Cancer (SL220130607097), the Agence Nationale de la Recherche (ANR lLabex DEEP; 11-LBX-0044, ANR-10-IDEX-0001-02), the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, and Institut Curie and PSL Research University funding or grants. article_processing_charge: No article_type: review author: - first_name: Diana C full_name: Nunes Pinheiro, Diana C id: 2E839F16-F248-11E8-B48F-1D18A9856A87 last_name: Nunes Pinheiro orcid: 0000-0003-4333-7503 - first_name: Yohanns full_name: Bellaïche, Yohanns last_name: Bellaïche citation: ama: Nunes Pinheiro DC, Bellaïche Y. Mechanical force-driven adherents junction remodeling and epithelial dynamics. Developmental Cell. 2018;47(1):3-19. doi:10.1016/j.devcel.2018.09.014 apa: Nunes Pinheiro, D. C., & Bellaïche, Y. (2018). Mechanical force-driven adherents junction remodeling and epithelial dynamics. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2018.09.014 chicago: Nunes Pinheiro, Diana C, and Yohanns Bellaïche. “Mechanical Force-Driven Adherents Junction Remodeling and Epithelial Dynamics.” Developmental Cell. Cell Press, 2018. https://doi.org/10.1016/j.devcel.2018.09.014. ieee: D. C. Nunes Pinheiro and Y. Bellaïche, “Mechanical force-driven adherents junction remodeling and epithelial dynamics,” Developmental Cell, vol. 47, no. 1. Cell Press, pp. 3–19, 2018. ista: Nunes Pinheiro DC, Bellaïche Y. 2018. Mechanical force-driven adherents junction remodeling and epithelial dynamics. Developmental Cell. 47(1), 3–19. mla: Nunes Pinheiro, Diana C., and Yohanns Bellaïche. “Mechanical Force-Driven Adherents Junction Remodeling and Epithelial Dynamics.” Developmental Cell, vol. 47, no. 1, Cell Press, 2018, pp. 3–19, doi:10.1016/j.devcel.2018.09.014. short: D.C. Nunes Pinheiro, Y. Bellaïche, Developmental Cell 47 (2018) 3–19. date_created: 2018-12-11T11:44:23Z date_published: 2018-10-08T00:00:00Z date_updated: 2023-09-13T08:54:38Z day: '08' department: - _id: CaHe doi: 10.1016/j.devcel.2018.09.014 external_id: isi: - '000446579900002' intvolume: ' 47' isi: 1 issue: '1' language: - iso: eng main_file_link: - url: https://doi.org/10.1016/j.devcel.2018.09.014 month: '10' oa_version: Published Version page: 3 - 19 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '8000' quality_controlled: '1' scopus_import: '1' status: public title: Mechanical force-driven adherents junction remodeling and epithelial dynamics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 47 year: '2018' ... --- _id: '5676' abstract: - lang: eng text: 'In epithelial tissues, cells tightly connect to each other through cell–cell junctions, but they also present the remarkable capacity of reorganizing themselves without compromising tissue integrity. Upon injury, simple epithelia efficiently resolve small lesions through the action of actin cytoskeleton contractile structures at the wound edge and cellular rearrangements. However, the underlying mechanisms and how they cooperate are still poorly understood. In this study, we combine live imaging and theoretical modeling to reveal a novel and indispensable role for occluding junctions (OJs) in this process. We demonstrate that OJ loss of function leads to defects in wound-closure dynamics: instead of contracting, wounds dramatically increase their area. OJ mutants exhibit phenotypes in cell shape, cellular rearrangements, and mechanical properties as well as in actin cytoskeleton dynamics at the wound edge. We propose that OJs are essential for wound closure by impacting on epithelial mechanics at the tissue level, which in turn is crucial for correct regulation of the cellular events occurring at the wound edge.' article_processing_charge: No author: - first_name: Lara full_name: Carvalho, Lara last_name: Carvalho - first_name: Pedro full_name: Patricio, Pedro last_name: Patricio - first_name: Susana full_name: Ponte, Susana last_name: Ponte - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Luis full_name: Almeida, Luis last_name: Almeida - first_name: André S. full_name: Nunes, André S. last_name: Nunes - first_name: Nuno A.M. full_name: Araújo, Nuno A.M. last_name: Araújo - first_name: Antonio full_name: Jacinto, Antonio last_name: Jacinto citation: ama: Carvalho L, Patricio P, Ponte S, et al. Occluding junctions as novel regulators of tissue mechanics during wound repair. Journal of Cell Biology. 2018;217(12):4267-4283. doi:10.1083/jcb.201804048 apa: Carvalho, L., Patricio, P., Ponte, S., Heisenberg, C.-P. J., Almeida, L., Nunes, A. S., … Jacinto, A. (2018). Occluding junctions as novel regulators of tissue mechanics during wound repair. Journal of Cell Biology. Rockefeller University Press. https://doi.org/10.1083/jcb.201804048 chicago: Carvalho, Lara, Pedro Patricio, Susana Ponte, Carl-Philipp J Heisenberg, Luis Almeida, André S. Nunes, Nuno A.M. Araújo, and Antonio Jacinto. “Occluding Junctions as Novel Regulators of Tissue Mechanics during Wound Repair.” Journal of Cell Biology. Rockefeller University Press, 2018. https://doi.org/10.1083/jcb.201804048. ieee: L. Carvalho et al., “Occluding junctions as novel regulators of tissue mechanics during wound repair,” Journal of Cell Biology, vol. 217, no. 12. Rockefeller University Press, pp. 4267–4283, 2018. ista: Carvalho L, Patricio P, Ponte S, Heisenberg C-PJ, Almeida L, Nunes AS, Araújo NAM, Jacinto A. 2018. Occluding junctions as novel regulators of tissue mechanics during wound repair. Journal of Cell Biology. 217(12), 4267–4283. mla: Carvalho, Lara, et al. “Occluding Junctions as Novel Regulators of Tissue Mechanics during Wound Repair.” Journal of Cell Biology, vol. 217, no. 12, Rockefeller University Press, 2018, pp. 4267–83, doi:10.1083/jcb.201804048. short: L. Carvalho, P. Patricio, S. Ponte, C.-P.J. Heisenberg, L. Almeida, A.S. Nunes, N.A.M. Araújo, A. Jacinto, Journal of Cell Biology 217 (2018) 4267–4283. date_created: 2018-12-16T22:59:19Z date_published: 2018-12-01T00:00:00Z date_updated: 2023-09-13T09:11:17Z day: '01' department: - _id: CaHe doi: 10.1083/jcb.201804048 ec_funded: 1 external_id: isi: - '000451960800018' pmid: - '30228162 ' intvolume: ' 217' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30228162 month: '12' oa: 1 oa_version: Submitted Version page: 4267-4283 pmid: 1 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Journal of Cell Biology publication_identifier: issn: - '00219525' publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: Occluding junctions as novel regulators of tissue mechanics during wound repair type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 217 year: '2018' ... --- _id: '10880' abstract: - lang: eng text: Acquisition of evolutionary novelties is a fundamental process for adapting to the external environment and invading new niches and results in the diversification of life, which we can see in the world today. How such novel phenotypic traits are acquired in the course of evolution and are built up in developing embryos has been a central question in biology. Whole-genome duplication (WGD) is a process of genome doubling that supplies raw genetic materials and increases genome complexity. Recently, it has been gradually revealed that WGD and subsequent fate changes of duplicated genes can facilitate phenotypic evolution. Here, we review the current understanding of the relationship between WGD and the acquisition of evolutionary novelties. We show some examples of this link and discuss how WGD and subsequent duplicated genes can facilitate phenotypic evolution as well as when such genomic doubling can be advantageous for adaptation. acknowledgement: This work was supported by JSPS overseas research fellowships (Y.M.) and SENSHIN Medical Research Foundation (K.K.T.). article_processing_charge: No article_type: original author: - first_name: Moriyama full_name: Yuuta, Moriyama id: 4968E7C8-F248-11E8-B48F-1D18A9856A87 last_name: Yuuta orcid: 0000-0002-2853-8051 - first_name: Kazuko full_name: Koshiba-Takeuchi, Kazuko last_name: Koshiba-Takeuchi citation: ama: Yuuta M, Koshiba-Takeuchi K. Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics. 2018;17(5):329-338. doi:10.1093/bfgp/ely007 apa: Yuuta, M., & Koshiba-Takeuchi, K. (2018). Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics. Oxford University Press. https://doi.org/10.1093/bfgp/ely007 chicago: Yuuta, Moriyama, and Kazuko Koshiba-Takeuchi. “Significance of Whole-Genome Duplications on the Emergence of Evolutionary Novelties.” Briefings in Functional Genomics. Oxford University Press, 2018. https://doi.org/10.1093/bfgp/ely007. ieee: M. Yuuta and K. Koshiba-Takeuchi, “Significance of whole-genome duplications on the emergence of evolutionary novelties,” Briefings in Functional Genomics, vol. 17, no. 5. Oxford University Press, pp. 329–338, 2018. ista: Yuuta M, Koshiba-Takeuchi K. 2018. Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics. 17(5), 329–338. mla: Yuuta, Moriyama, and Kazuko Koshiba-Takeuchi. “Significance of Whole-Genome Duplications on the Emergence of Evolutionary Novelties.” Briefings in Functional Genomics, vol. 17, no. 5, Oxford University Press, 2018, pp. 329–38, doi:10.1093/bfgp/ely007. short: M. Yuuta, K. Koshiba-Takeuchi, Briefings in Functional Genomics 17 (2018) 329–338. date_created: 2022-03-18T12:40:35Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-19T15:11:22Z day: '01' department: - _id: CaHe doi: 10.1093/bfgp/ely007 external_id: isi: - '000456054400004' pmid: - '29579140' intvolume: ' 17' isi: 1 issue: '5' keyword: - Genetics - Molecular Biology - Biochemistry - General Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/bfgp/ely007 month: '09' oa: 1 oa_version: Published Version page: 329-338 pmid: 1 publication: Briefings in Functional Genomics publication_identifier: eissn: - 2041-2657 issn: - 2041-2649 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Significance of whole-genome duplications on the emergence of evolutionary novelties type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 17 year: '2018' ... --- _id: '50' abstract: - lang: eng text: The Wnt/planar cell polarity (Wnt/PCP) pathway determines planar polarity of epithelial cells in both vertebrates and invertebrates. The role that Wnt/PCP signaling plays in mesenchymal contexts, however, is only poorly understood. While previous studies have demonstrated the capacity of Wnt/PCP signaling to polarize and guide directed migration of mesenchymal cells, it remains unclear whether endogenous Wnt/PCP signaling performs these functions instructively, as it does in epithelial cells. Here we developed a light-switchable version of the Wnt/PCP receptor Frizzled 7 (Fz7) to unambiguously distinguish between an instructive and a permissive role of Wnt/PCP signaling for the directional collective migration of mesendoderm progenitor cells during zebrafish gastrulation. We show that prechordal plate (ppl) cell migration is defective in maternal-zygotic fz7a and fz7b (MZ fz7a,b) double mutant embryos, and that Fz7 functions cell-autonomously in this process by promoting ppl cell protrusion formation and directed migration. We further show that local activation of Fz7 can direct ppl cell migration both in vitro and in vivo. Surprisingly, however, uniform Fz7 activation is sufficient to fully rescue the ppl cell migration defect in MZ fz7a,b mutant embryos, indicating that Wnt/PCP signaling functions permissively rather than instructively in directed mesendoderm cell migration during zebrafish gastrulation. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 citation: ama: Capek D. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. 2018. doi:10.15479/AT:ISTA:TH_1031 apa: Capek, D. (2018). Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1031 chicago: Capek, Daniel. “Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1031. ieee: D. Capek, “Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration,” Institute of Science and Technology Austria, 2018. ista: Capek D. 2018. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. mla: Capek, Daniel. Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1031. short: D. Capek, Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-06-22T00:00:00Z date_updated: 2023-09-07T12:48:16Z day: '22' ddc: - '570' - '591' - '596' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:TH_1031 file: - access_level: open_access checksum: d3eca3dcacb67bffdde6e6609c31cdd0 content_type: application/pdf creator: dernst date_created: 2019-04-08T13:42:26Z date_updated: 2021-02-11T11:17:17Z embargo: 2019-06-25 file_id: '6238' file_name: 2018_Thesis_Capek.pdf file_size: 31576521 relation: main_file - access_level: closed checksum: 876deb14067e638aba65d209668bd821 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T13:42:27Z date_updated: 2021-02-11T23:30:21Z embargo_to: open_access file_id: '6239' file_name: 2018_Thesis_Capek_source.docx file_size: 38992956 relation: source_file file_date_updated: 2021-02-11T23:30:21Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '95' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8004' pubrep_id: '1031' related_material: record: - id: '1100' relation: part_of_dissertation status: public - id: '661' relation: part_of_dissertation status: public - id: '676' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '678' abstract: - lang: eng text: The seminal observation that mechanical signals can elicit changes in biochemical signalling within cells, a process commonly termed mechanosensation and mechanotransduction, has revolutionized our understanding of the role of cell mechanics in various fundamental biological processes, such as cell motility, adhesion, proliferation and differentiation. In this Review, we will discuss how the interplay and feedback between mechanical and biochemical signals control tissue morphogenesis and cell fate specification in embryonic development. author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Zoltan P full_name: Spiro, Zoltan P id: 426AD026-F248-11E8-B48F-1D18A9856A87 last_name: Spiro - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Petridou N, Spiro ZP, Heisenberg C-PJ. Multiscale force sensing in development. Nature Cell Biology. 2017;19(6):581-588. doi:10.1038/ncb3524 apa: Petridou, N., Spiro, Z. P., & Heisenberg, C.-P. J. (2017). Multiscale force sensing in development. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb3524 chicago: Petridou, Nicoletta, Zoltan P Spiro, and Carl-Philipp J Heisenberg. “Multiscale Force Sensing in Development.” Nature Cell Biology. Nature Publishing Group, 2017. https://doi.org/10.1038/ncb3524. ieee: N. Petridou, Z. P. Spiro, and C.-P. J. Heisenberg, “Multiscale force sensing in development,” Nature Cell Biology, vol. 19, no. 6. Nature Publishing Group, pp. 581–588, 2017. ista: Petridou N, Spiro ZP, Heisenberg C-PJ. 2017. Multiscale force sensing in development. Nature Cell Biology. 19(6), 581–588. mla: Petridou, Nicoletta, et al. “Multiscale Force Sensing in Development.” Nature Cell Biology, vol. 19, no. 6, Nature Publishing Group, 2017, pp. 581–88, doi:10.1038/ncb3524. short: N. Petridou, Z.P. Spiro, C.-P.J. Heisenberg, Nature Cell Biology 19 (2017) 581–588. date_created: 2018-12-11T11:47:53Z date_published: 2017-05-31T00:00:00Z date_updated: 2021-01-12T08:08:59Z day: '31' department: - _id: CaHe doi: 10.1038/ncb3524 intvolume: ' 19' issue: '6' language: - iso: eng month: '05' oa_version: None page: 581 - 588 project: - _id: 25236028-B435-11E9-9278-68D0E5697425 grant_number: ALTF534-2016 name: The generation and function of anisotropic tissue tension in zebrafish epiboly (EMBO Fellowship) publication: Nature Cell Biology publication_identifier: issn: - '14657392' publication_status: published publisher: Nature Publishing Group publist_id: '7040' quality_controlled: '1' scopus_import: 1 status: public title: Multiscale force sensing in development type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2017' ... --- _id: '686' abstract: - lang: eng text: Tissues are thought to behave like fluids with a given surface tension. Differences in tissue surface tension (TST) have been proposed to trigger cell sorting and tissue envelopment. D'Arcy Thompson in his seminal book ‘On Growth and Form’ has introduced this concept of differential TST as a key physical mechanism dictating tissue formation and organization within the developing organism. Over the past century, many studies have picked up the concept of differential TST and analyzed the role and cell biological basis of TST in development, underlining the importance and influence of this concept in developmental biology. author: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Heisenberg C-PJ. D’Arcy Thompson’s ‘on growth and form’: From soap bubbles to tissue self organization. Mechanisms of Development. 2017;145:32-37. doi:10.1016/j.mod.2017.03.006' apa: 'Heisenberg, C.-P. J. (2017). D’Arcy Thompson’s ‘on growth and form’: From soap bubbles to tissue self organization. Mechanisms of Development. Elsevier. https://doi.org/10.1016/j.mod.2017.03.006' chicago: 'Heisenberg, Carl-Philipp J. “D’Arcy Thompson’s ‘on Growth and Form’: From Soap Bubbles to Tissue Self Organization.” Mechanisms of Development. Elsevier, 2017. https://doi.org/10.1016/j.mod.2017.03.006.' ieee: 'C.-P. J. Heisenberg, “D’Arcy Thompson’s ‘on growth and form’: From soap bubbles to tissue self organization,” Mechanisms of Development, vol. 145. Elsevier, pp. 32–37, 2017.' ista: 'Heisenberg C-PJ. 2017. D’Arcy Thompson’s ‘on growth and form’: From soap bubbles to tissue self organization. Mechanisms of Development. 145, 32–37.' mla: 'Heisenberg, Carl-Philipp J. “D’Arcy Thompson’s ‘on Growth and Form’: From Soap Bubbles to Tissue Self Organization.” Mechanisms of Development, vol. 145, Elsevier, 2017, pp. 32–37, doi:10.1016/j.mod.2017.03.006.' short: C.-P.J. Heisenberg, Mechanisms of Development 145 (2017) 32–37. date_created: 2018-12-11T11:47:55Z date_published: 2017-06-01T00:00:00Z date_updated: 2021-01-12T08:09:23Z day: '01' department: - _id: CaHe doi: 10.1016/j.mod.2017.03.006 intvolume: ' 145' language: - iso: eng month: '06' oa_version: None page: 32 - 37 publication: Mechanisms of Development publication_identifier: issn: - '09254773' publication_status: published publisher: Elsevier publist_id: '7024' quality_controlled: '1' scopus_import: 1 status: public title: 'D''Arcy Thompson''s ‘on growth and form’: From soap bubbles to tissue self organization' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 145 year: '2017' ... --- _id: '1067' abstract: - lang: eng text: Embryo morphogenesis relies on highly coordinated movements of different tissues. However, remarkably little is known about how tissues coordinate their movements to shape the embryo. In zebrafish embryogenesis, coordinated tissue movements first become apparent during “doming,” when the blastoderm begins to spread over the yolk sac, a process involving coordinated epithelial surface cell layer expansion and mesenchymal deep cell intercalations. Here, we find that active surface cell expansion represents the key process coordinating tissue movements during doming. By using a combination of theory and experiments, we show that epithelial surface cells not only trigger blastoderm expansion by reducing tissue surface tension, but also drive blastoderm thinning by inducing tissue contraction through radial deep cell intercalations. Thus, coordinated tissue expansion and thinning during doming relies on surface cells simultaneously controlling tissue surface tension and radial tissue contraction. acknowledged_ssus: - _id: PreCl article_processing_charge: No author: - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Silvia full_name: Grigolon, Silvia last_name: Grigolon - first_name: Martin full_name: Bock, Martin last_name: Bock - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Morita H, Grigolon S, Bock M, Krens G, Salbreux G, Heisenberg C-PJ. The physical basis of coordinated tissue spreading in zebrafish gastrulation. Developmental Cell. 2017;40(4):354-366. doi:10.1016/j.devcel.2017.01.010 apa: Morita, H., Grigolon, S., Bock, M., Krens, G., Salbreux, G., & Heisenberg, C.-P. J. (2017). The physical basis of coordinated tissue spreading in zebrafish gastrulation. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2017.01.010 chicago: Morita, Hitoshi, Silvia Grigolon, Martin Bock, Gabriel Krens, Guillaume Salbreux, and Carl-Philipp J Heisenberg. “The Physical Basis of Coordinated Tissue Spreading in Zebrafish Gastrulation.” Developmental Cell. Cell Press, 2017. https://doi.org/10.1016/j.devcel.2017.01.010. ieee: H. Morita, S. Grigolon, M. Bock, G. Krens, G. Salbreux, and C.-P. J. Heisenberg, “The physical basis of coordinated tissue spreading in zebrafish gastrulation,” Developmental Cell, vol. 40, no. 4. Cell Press, pp. 354–366, 2017. ista: Morita H, Grigolon S, Bock M, Krens G, Salbreux G, Heisenberg C-PJ. 2017. The physical basis of coordinated tissue spreading in zebrafish gastrulation. Developmental Cell. 40(4), 354–366. mla: Morita, Hitoshi, et al. “The Physical Basis of Coordinated Tissue Spreading in Zebrafish Gastrulation.” Developmental Cell, vol. 40, no. 4, Cell Press, 2017, pp. 354–66, doi:10.1016/j.devcel.2017.01.010. short: H. Morita, S. Grigolon, M. Bock, G. Krens, G. Salbreux, C.-P.J. Heisenberg, Developmental Cell 40 (2017) 354–366. date_created: 2018-12-11T11:49:58Z date_published: 2017-02-27T00:00:00Z date_updated: 2023-09-20T12:06:27Z day: '27' ddc: - '572' - '597' department: - _id: CaHe doi: 10.1016/j.devcel.2017.01.010 ec_funded: 1 external_id: isi: - '000395368300007' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:10:57Z date_updated: 2018-12-12T10:10:57Z file_id: '4849' file_name: IST-2017-869-v1+1_1-s2.0-S1534580717300370-main.pdf file_size: 6866187 relation: main_file file_date_updated: 2018-12-12T10:10:57Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '4' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 354 - 366 project: - _id: 2524F500-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '201439' name: Developing High-Throughput Bioassays for Human Cancers in Zebrafish publication: Developmental Cell publication_identifier: issn: - '15345807' publication_status: published publisher: Cell Press publist_id: '6320' pubrep_id: '869' quality_controlled: '1' scopus_import: '1' status: public title: The physical basis of coordinated tissue spreading in zebrafish gastrulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 40 year: '2017' ... --- _id: '1025' abstract: - lang: eng text: Many organ surfaces are covered by a protective epithelial-cell layer. It emerges that such layers are maintained by cell stretching that triggers cell division mediated by the force-sensitive ion-channel protein Piezo1. See Letter p.118 article_processing_charge: No author: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Heisenberg C-PJ. Cell biology: Stretched divisions. Nature. 2017;543(7643):43-44. doi:10.1038/nature21502' apa: 'Heisenberg, C.-P. J. (2017). Cell biology: Stretched divisions. Nature. Nature Publishing Group. https://doi.org/10.1038/nature21502' chicago: 'Heisenberg, Carl-Philipp J. “Cell Biology: Stretched Divisions.” Nature. Nature Publishing Group, 2017. https://doi.org/10.1038/nature21502.' ieee: 'C.-P. J. Heisenberg, “Cell biology: Stretched divisions,” Nature, vol. 543, no. 7643. Nature Publishing Group, pp. 43–44, 2017.' ista: 'Heisenberg C-PJ. 2017. Cell biology: Stretched divisions. Nature. 543(7643), 43–44.' mla: 'Heisenberg, Carl-Philipp J. “Cell Biology: Stretched Divisions.” Nature, vol. 543, no. 7643, Nature Publishing Group, 2017, pp. 43–44, doi:10.1038/nature21502.' short: C.-P.J. Heisenberg, Nature 543 (2017) 43–44. date_created: 2018-12-11T11:49:45Z date_published: 2017-03-02T00:00:00Z date_updated: 2023-09-22T09:26:59Z day: '02' department: - _id: CaHe doi: 10.1038/nature21502 external_id: isi: - '000395671500025' intvolume: ' 543' isi: 1 issue: '7643' language: - iso: eng month: '03' oa_version: None page: 43 - 44 publication: Nature publication_identifier: issn: - '00280836' publication_status: published publisher: Nature Publishing Group publist_id: '6367' quality_controlled: '1' scopus_import: '1' status: public title: 'Cell biology: Stretched divisions' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 543 year: '2017' ... --- _id: '803' abstract: - lang: eng text: Eukaryotic cells store their chromosomes in a single nucleus. This is important to maintain genomic integrity, as chromosomes packaged into separate nuclei (micronuclei) are prone to massive DNA damage. During mitosis, higher eukaryotes disassemble their nucleus and release individualized chromosomes for segregation. How numerous chromosomes subsequently reform a single nucleus has remained unclear. Using image-based screening of human cells, we identified barrier-to-autointegration factor (BAF) as a key factor guiding membranes to form a single nucleus. Unexpectedly, nuclear assembly does not require BAF?s association with inner nuclear membrane proteins but instead relies on BAF?s ability to bridge distant DNA sites. Live-cell imaging and in vitro reconstitution showed that BAF enriches around the mitotic chromosome ensemble to induce a densely cross-bridged chromatin layer that is mechanically stiff and limits membranes to the surface. Our study reveals that BAF-mediated changes in chromosome mechanics underlie nuclear assembly with broad implications for proper genome function. acknowledged_ssus: - _id: Bio article_processing_charge: No author: - first_name: Matthias full_name: Samwer, Matthias last_name: Samwer - first_name: Maximilian full_name: Schneider, Maximilian last_name: Schneider - first_name: Rudolf full_name: Hoefler, Rudolf last_name: Hoefler - first_name: Philipp S full_name: Schmalhorst, Philipp S id: 309D50DA-F248-11E8-B48F-1D18A9856A87 last_name: Schmalhorst orcid: 0000-0002-5795-0133 - first_name: Julian full_name: Jude, Julian last_name: Jude - first_name: Johannes full_name: Zuber, Johannes last_name: Zuber - first_name: Daniel full_name: Gerlic, Daniel last_name: Gerlic citation: ama: Samwer M, Schneider M, Hoefler R, et al. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell. 2017;170(5):956-972. doi:10.1016/j.cell.2017.07.038 apa: Samwer, M., Schneider, M., Hoefler, R., Schmalhorst, P. S., Jude, J., Zuber, J., & Gerlic, D. (2017). DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell. Cell Press. https://doi.org/10.1016/j.cell.2017.07.038 chicago: Samwer, Matthias, Maximilian Schneider, Rudolf Hoefler, Philipp S Schmalhorst, Julian Jude, Johannes Zuber, and Daniel Gerlic. “DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes.” Cell. Cell Press, 2017. https://doi.org/10.1016/j.cell.2017.07.038. ieee: M. Samwer et al., “DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes,” Cell, vol. 170, no. 5. Cell Press, pp. 956–972, 2017. ista: Samwer M, Schneider M, Hoefler R, Schmalhorst PS, Jude J, Zuber J, Gerlic D. 2017. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell. 170(5), 956–972. mla: Samwer, Matthias, et al. “DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes.” Cell, vol. 170, no. 5, Cell Press, 2017, pp. 956–72, doi:10.1016/j.cell.2017.07.038. short: M. Samwer, M. Schneider, R. Hoefler, P.S. Schmalhorst, J. Jude, J. Zuber, D. Gerlic, Cell 170 (2017) 956–972. date_created: 2018-12-11T11:48:35Z date_published: 2017-08-24T00:00:00Z date_updated: 2023-09-27T10:59:14Z day: '24' ddc: - '570' department: - _id: CaHe doi: 10.1016/j.cell.2017.07.038 external_id: isi: - '000408372400014' file: - access_level: open_access checksum: 64897b0c5373f22273f598e4672c60ff content_type: application/pdf creator: dernst date_created: 2019-01-18T13:45:40Z date_updated: 2020-07-14T12:48:08Z file_id: '5852' file_name: 2017_Cell_Samwer.pdf file_size: 17666637 relation: main_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' intvolume: ' 170' isi: 1 issue: '5' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 956 - 972 publication: Cell publication_identifier: issn: - '00928674' publication_status: published publisher: Cell Press publist_id: '6848' quality_controlled: '1' scopus_import: '1' status: public title: DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 170 year: '2017' ... --- _id: '804' abstract: - lang: eng text: Polysaccharides (carbohydrates) are key regulators of a large number of cell biological processes. However, precise biochemical or genetic manipulation of these often complex structures is laborious and hampers experimental structure–function studies. Molecular Dynamics (MD) simulations provide a valuable alternative tool to generate and test hypotheses on saccharide function. Yet, currently used MD force fields often overestimate the aggregation propensity of polysaccharides, affecting the usability of those simulations. Here we tested MARTINI, a popular coarse-grained (CG) force field for biological macromolecules, for its ability to accurately represent molecular forces between saccharides. To this end, we calculated a thermodynamic solution property, the second virial coefficient of the osmotic pressure (B22). Comparison with light scattering experiments revealed a nonphysical aggregation of a prototypical polysaccharide in MARTINI, pointing at an imbalance of the nonbonded solute–solute, solute–water, and water–water interactions. This finding also applies to smaller oligosaccharides which were all found to aggregate in simulations even at moderate concentrations, well below their solubility limit. Finally, we explored the influence of the Lennard-Jones (LJ) interaction between saccharide molecules and propose a simple scaling of the LJ interaction strength that makes MARTINI more reliable for the simulation of saccharides. acknowledged_ssus: - _id: ScienComp acknowledgement: P.S.S. was supported by research fellowship 2811/1-1 from the German Research Foundation (DFG), and M.S. was supported by EMBO Long Term Fellowship ALTF 187-2013 and Grant GC65-32 from the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, Poland. The authors thank Antje Potthast, Marek Cieplak, Tomasz Włodarski, and Damien Thompson for fruitful discussions and the IST Austria Scientific Computing Facility for support. article_processing_charge: No author: - first_name: Philipp S full_name: Schmalhorst, Philipp S id: 309D50DA-F248-11E8-B48F-1D18A9856A87 last_name: Schmalhorst orcid: 0000-0002-5795-0133 - first_name: Felix full_name: Deluweit, Felix last_name: Deluweit - first_name: Roger full_name: Scherrers, Roger last_name: Scherrers - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora citation: ama: Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg C-PJ, Sikora MK. Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. Journal of Chemical Theory and Computation. 2017;13(10):5039-5053. doi:10.1021/acs.jctc.7b00374 apa: Schmalhorst, P. S., Deluweit, F., Scherrers, R., Heisenberg, C.-P. J., & Sikora, M. K. (2017). Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. Journal of Chemical Theory and Computation. American Chemical Society. https://doi.org/10.1021/acs.jctc.7b00374 chicago: Schmalhorst, Philipp S, Felix Deluweit, Roger Scherrers, Carl-Philipp J Heisenberg, and Mateusz K Sikora. “Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides.” Journal of Chemical Theory and Computation. American Chemical Society, 2017. https://doi.org/10.1021/acs.jctc.7b00374. ieee: P. S. Schmalhorst, F. Deluweit, R. Scherrers, C.-P. J. Heisenberg, and M. K. Sikora, “Overcoming the limitations of the MARTINI force field in simulations of polysaccharides,” Journal of Chemical Theory and Computation, vol. 13, no. 10. American Chemical Society, pp. 5039–5053, 2017. ista: Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg C-PJ, Sikora MK. 2017. Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. Journal of Chemical Theory and Computation. 13(10), 5039–5053. mla: Schmalhorst, Philipp S., et al. “Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides.” Journal of Chemical Theory and Computation, vol. 13, no. 10, American Chemical Society, 2017, pp. 5039–53, doi:10.1021/acs.jctc.7b00374. short: P.S. Schmalhorst, F. Deluweit, R. Scherrers, C.-P.J. Heisenberg, M.K. Sikora, Journal of Chemical Theory and Computation 13 (2017) 5039–5053. date_created: 2018-12-11T11:48:35Z date_published: 2017-10-10T00:00:00Z date_updated: 2023-09-27T10:58:45Z day: '10' department: - _id: CaHe doi: 10.1021/acs.jctc.7b00374 external_id: isi: - '000412965700036' intvolume: ' 13' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1704.03773 month: '10' oa: 1 oa_version: Submitted Version page: 5039 - 5053 publication: Journal of Chemical Theory and Computation publication_identifier: issn: - '15499618' publication_status: published publisher: American Chemical Society publist_id: '6847' quality_controlled: '1' scopus_import: '1' status: public title: Overcoming the limitations of the MARTINI force field in simulations of polysaccharides type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13 year: '2017' ... --- _id: '961' abstract: - lang: eng text: Cell-cell contact formation constitutes the first step in the emergence of multicellularity in evolution, thereby allowing the differentiation of specialized cell types. In metazoan development, cell-cell contact formation is thought to influence cell fate specification, and cell fate specification has been implicated in cell-cell contact formation. However, remarkably little is yet known about whether and how the interaction and feedback between cell-cell contact formation and cell fate specification affect development. Here we identify a positive feedback loop between cell-cell contact duration, morphogen signaling and mesendoderm cell fate specification during zebrafish gastrulation. We show that long lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for proper ppl cell fate specification. We further show that Nodal signalling romotes ppl cell-cell contact duration, thereby generating an effective positive feedback loop between ppl cell-cell contact duration and cell fate specification. Finally, by using a combination of theoretical modeling and experimentation, we show that this feedback loop determines whether anterior axial mesendoderm cells become ppl progenitors or, instead, turn into endoderm progenitors. Our findings reveal that the gene regulatory networks leading to cell fate diversification within the developing embryo are controlled by the interdependent activities of cell-cell signaling and contact formation. acknowledgement: "Many people accompanied me during this trip: I would not have reached my destination nor \r\nenjoyed the travelling without them. First of all, thanks to CP. Thanks for making me part of \r\nyour team, always full of diverse, interesting and incredibly competent people and thanks for \r\nall the good science I witnessed \ and participated in. It has been a \r\nblast, an incredibly \r\nexciting \ one! Thanks to JLo, for teaching me how to master my pipettes and \ showing me \r\nthat science is a lot of fun. Many, many thanks to Gabby for teaching me basically everything \r\nabout zebrafish and being always there to advice, \ sugge\r\nst, support...and play fussball! \r\nThank you to Julien, for the critical eye on things, Pedro, for all the invaluable feedback and \r\nthe amazing kicker matches, and Keisuke, for showing me the light, and to the three of them \r\ntogether for all the good laughs we\r\nhad. My start in Vienna would \ have been a lot more \r\ndifficult without you guys. Also it would not \ have been possible without Elena and Inês: \r\nthanks for helping setting \ up this lab and for the dinners in Gugging. Thanks to Martin, for \r\nhelping me understand \r\nthe physics behind biology. Thanks to Philipp, \ for the interest and \r\nadvice, and to Michael, for the Viennise take on things. Thanks to Julia, for putting up with \r\nbeing our technician and becoming a friend in the process. And now to the newest members \r\nof th\r\ne lab. Thanks to Daniel for the enthusiasm and the neverending energy and for all your \r\nhelp over the years: thank you! To Jana, for showing me that one doesn’t give up, no matter \r\nwhat. \ To Shayan, for being such a motivated student. To Matt, for helping \ out\r\nwith coding \r\nand for finding punk solutions to data analysis problems. Thanks to all the members of the \r\nlab, Verena, Hitoshi, Silvia, Conny, Karla, Nicoletta, Zoltan, Peng, Benoit, Roland, Yuuta and \r\nFeyza, for the wonderful \ atmosphere in the lab. Many than\r\nks to Koni and Deborah: doing \r\nexperiments would have been much more difficult without your help. Special thanks to Katjia \r\nfor setting up an amazing imaging facility and for building the best \ team, Robert, Nasser, \r\nAnna and Doreen: thank you for putting up w\r\nith all the late sortings and for helping with all \r\nthe technical problems. Thanks to Eva, Verena and Matthias for keeping the fish happy. Big \r\nthanks to Harald Janovjak for being a present and helpful committee member over the years \r\nand \ to Patrick Lemaire f\r\nor the helpful insight and extremely interesting \ discussion we had \r\nabout the project. Also, this journey would not \ have been the same without all the friends \r\nthat I met in Dresden and then in Vienna: Daniele, Claire, Kuba, Steffi, Harold, Dejan, Irene, \r\nFab\r\nienne, Hande, Tiago, Marianne, Jon, Srdjan, Branca, Uli, Murat, Alex, Conny, Christoph, \r\nCaro, Simone, Barbara, Felipe, Dama, Jose, Hubert and many others that filled my days with \r\nfun and support. A special thank to my family, always close even if they are \r\nkilometers away. \r\nGrazie ai miei fratelli, Nunzio e William, \ e alla mia mamma, per essermi sempre vicini pur \r\nvivendo a chilometri di distanza. And, last but not least, thanks to Moritz, for putting up with \r\nthe crazy life of a scientist, the living apart for\r\nso long, never knowing when things are going \r\nto happen. Thanks for being a great partner and my number one fan!" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 citation: ama: 'Barone V. Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. 2017. doi:10.15479/AT:ISTA:th_825' apa: 'Barone, V. (2017). Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_825' chicago: 'Barone, Vanessa. “Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_825.' ieee: 'V. Barone, “Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation,” Institute of Science and Technology Austria, 2017.' ista: 'Barone V. 2017. Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. Institute of Science and Technology Austria.' mla: 'Barone, Vanessa. Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_825.' short: 'V. Barone, Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation, Institute of Science and Technology Austria, 2017.' date_created: 2018-12-11T11:49:25Z date_published: 2017-03-01T00:00:00Z date_updated: 2023-09-27T14:16:45Z day: '01' ddc: - '570' - '590' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:th_825 file: - access_level: closed checksum: 242f88c87f2cf267bf05049fa26a687b content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T08:36:52Z date_updated: 2020-07-14T12:48:16Z file_id: '6205' file_name: 2017_Barone_thesis_final.docx file_size: 14497822 relation: source_file - access_level: open_access checksum: ba5b0613ed8bade73a409acdd880fb8a content_type: application/pdf creator: dernst date_created: 2019-04-05T08:36:52Z date_updated: 2020-07-14T12:48:16Z file_id: '6206' file_name: 2017_Barone_thesis_.pdf file_size: 14995941 relation: main_file file_date_updated: 2020-07-14T12:48:16Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '109' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6444' pubrep_id: '825' related_material: record: - id: '1100' relation: part_of_dissertation status: public - id: '1537' relation: part_of_dissertation status: public - id: '1912' relation: part_of_dissertation status: public - id: '2926' relation: part_of_dissertation status: public - id: '3246' relation: part_of_dissertation status: public - id: '676' relation: part_of_dissertation status: public - id: '735' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: 'Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '728' abstract: - lang: eng text: During animal development, cell-fate-specific changes in gene expression can modify the material properties of a tissue and drive tissue morphogenesis. While mechanistic insights into the genetic control of tissue-shaping events are beginning to emerge, how tissue morphogenesis and mechanics can reciprocally impact cell-fate specification remains relatively unexplored. Here we review recent findings reporting how multicellular morphogenetic events and their underlying mechanical forces can feed back into gene regulatory pathways to specify cell fate. We further discuss emerging techniques that allow for the direct measurement and manipulation of mechanical signals in vivo, offering unprecedented access to study mechanotransduction during development. Examination of the mechanical control of cell fate during tissue morphogenesis will pave the way to an integrated understanding of the design principles that underlie robust tissue patterning in embryonic development. article_processing_charge: No author: - first_name: Chii full_name: Chan, Chii last_name: Chan - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Takashi full_name: Hiiragi, Takashi last_name: Hiiragi citation: ama: Chan C, Heisenberg C-PJ, Hiiragi T. Coordination of morphogenesis and cell fate specification in development. Current Biology. 2017;27(18):R1024-R1035. doi:10.1016/j.cub.2017.07.010 apa: Chan, C., Heisenberg, C.-P. J., & Hiiragi, T. (2017). Coordination of morphogenesis and cell fate specification in development. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2017.07.010 chicago: Chan, Chii, Carl-Philipp J Heisenberg, and Takashi Hiiragi. “Coordination of Morphogenesis and Cell Fate Specification in Development.” Current Biology. Cell Press, 2017. https://doi.org/10.1016/j.cub.2017.07.010. ieee: C. Chan, C.-P. J. Heisenberg, and T. Hiiragi, “Coordination of morphogenesis and cell fate specification in development,” Current Biology, vol. 27, no. 18. Cell Press, pp. R1024–R1035, 2017. ista: Chan C, Heisenberg C-PJ, Hiiragi T. 2017. Coordination of morphogenesis and cell fate specification in development. Current Biology. 27(18), R1024–R1035. mla: Chan, Chii, et al. “Coordination of Morphogenesis and Cell Fate Specification in Development.” Current Biology, vol. 27, no. 18, Cell Press, 2017, pp. R1024–35, doi:10.1016/j.cub.2017.07.010. short: C. Chan, C.-P.J. Heisenberg, T. Hiiragi, Current Biology 27 (2017) R1024–R1035. date_created: 2018-12-11T11:48:11Z date_published: 2017-09-18T00:00:00Z date_updated: 2023-09-28T11:33:21Z day: '18' department: - _id: CaHe doi: 10.1016/j.cub.2017.07.010 external_id: isi: - '000411581800019' intvolume: ' 27' isi: 1 issue: '18' language: - iso: eng month: '09' oa_version: None page: R1024 - R1035 publication: Current Biology publication_identifier: issn: - '09609822' publication_status: published publisher: Cell Press publist_id: '6949' quality_controlled: '1' scopus_import: '1' status: public title: Coordination of morphogenesis and cell fate specification in development type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 27 year: '2017' ... --- _id: '729' abstract: - lang: eng text: The cellular mechanisms allowing tissues to efficiently regenerate are not fully understood. In this issue of Developmental Cell, Cao et al. (2017)) discover that during zebrafish heart regeneration, epicardial cells at the leading edge of regenerating tissue undergo endoreplication, possibly due to increased tissue tension, thereby boosting their regenerative capacity. article_processing_charge: No author: - first_name: Zoltan P full_name: Spiro, Zoltan P id: 426AD026-F248-11E8-B48F-1D18A9856A87 last_name: Spiro - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Spiro ZP, Heisenberg C-PJ. Regeneration tensed up polyploidy takes the lead. Developmental Cell. 2017;42(6):559-560. doi:10.1016/j.devcel.2017.09.008 apa: Spiro, Z. P., & Heisenberg, C.-P. J. (2017). Regeneration tensed up polyploidy takes the lead. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2017.09.008 chicago: Spiro, Zoltan P, and Carl-Philipp J Heisenberg. “Regeneration Tensed up Polyploidy Takes the Lead.” Developmental Cell. Cell Press, 2017. https://doi.org/10.1016/j.devcel.2017.09.008. ieee: Z. P. Spiro and C.-P. J. Heisenberg, “Regeneration tensed up polyploidy takes the lead,” Developmental Cell, vol. 42, no. 6. Cell Press, pp. 559–560, 2017. ista: Spiro ZP, Heisenberg C-PJ. 2017. Regeneration tensed up polyploidy takes the lead. Developmental Cell. 42(6), 559–560. mla: Spiro, Zoltan P., and Carl-Philipp J. Heisenberg. “Regeneration Tensed up Polyploidy Takes the Lead.” Developmental Cell, vol. 42, no. 6, Cell Press, 2017, pp. 559–60, doi:10.1016/j.devcel.2017.09.008. short: Z.P. Spiro, C.-P.J. Heisenberg, Developmental Cell 42 (2017) 559–560. date_created: 2018-12-11T11:48:11Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-28T11:32:49Z day: '01' department: - _id: CaHe doi: 10.1016/j.devcel.2017.09.008 external_id: isi: - '000411582800003' intvolume: ' 42' isi: 1 issue: '6' language: - iso: eng month: '01' oa_version: None page: 559 - 560 publication: Developmental Cell publication_identifier: issn: - '15345807' publication_status: published publisher: Cell Press publist_id: '6948' quality_controlled: '1' scopus_import: '1' status: public title: Regeneration tensed up polyploidy takes the lead type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 42 year: '2017' ... --- _id: '946' abstract: - lang: eng text: Roots navigate through soil integrating environmental signals to orient their growth. The Arabidopsis root is a widely used model for developmental, physiological and cell biological studies. Live imaging greatly aids these efforts, but the horizontal sample position and continuous root tip displacement present significant difficulties. Here, we develop a confocal microscope setup for vertical sample mounting and integrated directional illumination. We present TipTracker – a custom software for automatic tracking of diverse moving objects usable on various microscope setups. Combined, this enables observation of root tips growing along the natural gravity vector over prolonged periods of time, as well as the ability to induce rapid gravity or light stimulation. We also track migrating cells in the developing zebrafish embryo, demonstrating the utility of this system in the acquisition of high-resolution data sets of dynamic samples. We provide detailed descriptions of the tools enabling the easy implementation on other microscopes. acknowledged_ssus: - _id: M-Shop - _id: Bio acknowledgement: "Funding: Marie Curie Actions (FP7/2007-2013 no 291734) to Daniel von Wangenheim; Austrian Science Fund (M 2128-B21) to Matyáš Fendrych; Austrian Science Fund (FWF01_I1774S) to Eva Benková; European Research Council (FP7/2007-2013 no 282300) to Jiří Friml. \r\nThe authors are grateful to the Miba Machine Shop at IST Austria for their contribution to the microscope setup and to Yvonne Kemper for reading, understanding and correcting the manuscript.\r\n#BioimagingFacility" article_number: e26792 article_processing_charge: Yes author: - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife. 2017;6. doi:10.7554/eLife.26792 apa: von Wangenheim, D., Hauschild, R., Fendrych, M., Barone, V., Benková, E., & Friml, J. (2017). Live tracking of moving samples in confocal microscopy for vertically grown roots. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.26792 chicago: Wangenheim, Daniel von, Robert Hauschild, Matyas Fendrych, Vanessa Barone, Eva Benková, and Jiří Friml. “Live Tracking of Moving Samples in Confocal Microscopy for Vertically Grown Roots.” ELife. eLife Sciences Publications, 2017. https://doi.org/10.7554/eLife.26792. ieee: D. von Wangenheim, R. Hauschild, M. Fendrych, V. Barone, E. Benková, and J. Friml, “Live tracking of moving samples in confocal microscopy for vertically grown roots,” eLife, vol. 6. eLife Sciences Publications, 2017. ista: von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J. 2017. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife. 6, e26792. mla: von Wangenheim, Daniel, et al. “Live Tracking of Moving Samples in Confocal Microscopy for Vertically Grown Roots.” ELife, vol. 6, e26792, eLife Sciences Publications, 2017, doi:10.7554/eLife.26792. short: D. von Wangenheim, R. Hauschild, M. Fendrych, V. Barone, E. Benková, J. Friml, ELife 6 (2017). date_created: 2018-12-11T11:49:21Z date_published: 2017-06-19T00:00:00Z date_updated: 2024-02-21T13:49:34Z day: '19' ddc: - '570' department: - _id: JiFr - _id: Bio - _id: CaHe - _id: EvBe doi: 10.7554/eLife.26792 ec_funded: 1 external_id: isi: - '000404728300001' file: - access_level: open_access checksum: 9af3398cb0d81f99d79016a616df22e9 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:57Z date_updated: 2020-07-14T12:48:15Z file_id: '5315' file_name: IST-2017-847-v1+1_elife-26792-v2.pdf file_size: 19581847 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 6' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2572ED28-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02128 name: Molecular basis of root growth inhibition by auxin - _id: 2542D156-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 1774-B16 name: Hormone cross-talk drives nutrient dependent plant development - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '6471' pubrep_id: '847' quality_controlled: '1' related_material: record: - id: '5566' relation: popular_science status: public scopus_import: '1' status: public title: Live tracking of moving samples in confocal microscopy for vertically grown roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 6 year: '2017' ... --- _id: '676' abstract: - lang: eng text: The segregation of different cell types into distinct tissues is a fundamental process in metazoan development. Differences in cell adhesion and cortex tension are commonly thought to drive cell sorting by regulating tissue surface tension (TST). However, the role that differential TST plays in cell segregation within the developing embryo is as yet unclear. Here, we have analyzed the role of differential TST for germ layer progenitor cell segregation during zebrafish gastrulation. Contrary to previous observations that differential TST drives germ layer progenitor cell segregation in vitro, we show that germ layers display indistinguishable TST within the gastrulating embryo, arguing against differential TST driving germ layer progenitor cell segregation in vivo. We further show that the osmolarity of the interstitial fluid (IF) is an important factor that influences germ layer TST in vivo, and that lower osmolarity of the IF compared with standard cell culture medium can explain why germ layers display differential TST in culture but not in vivo. Finally, we show that directed migration of mesendoderm progenitors is required for germ layer progenitor cell segregation and germ layer formation. article_processing_charge: No article_type: original author: - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Jim full_name: Veldhuis, Jim last_name: Veldhuis - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Wayne full_name: Brodland, Wayne last_name: Brodland - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Krens G, Veldhuis J, Barone V, et al. Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development. 2017;144(10):1798-1806. doi:10.1242/dev.144964 apa: Krens, G., Veldhuis, J., Barone, V., Capek, D., Maître, J.-L., Brodland, W., & Heisenberg, C.-P. J. (2017). Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development. Company of Biologists. https://doi.org/10.1242/dev.144964 chicago: Krens, Gabriel, Jim Veldhuis, Vanessa Barone, Daniel Capek, Jean-Léon Maître, Wayne Brodland, and Carl-Philipp J Heisenberg. “Interstitial Fluid Osmolarity Modulates the Action of Differential Tissue Surface Tension in Progenitor Cell Segregation during Gastrulation.” Development. Company of Biologists, 2017. https://doi.org/10.1242/dev.144964. ieee: G. Krens et al., “Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation,” Development, vol. 144, no. 10. Company of Biologists, pp. 1798–1806, 2017. ista: Krens G, Veldhuis J, Barone V, Capek D, Maître J-L, Brodland W, Heisenberg C-PJ. 2017. Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development. 144(10), 1798–1806. mla: Krens, Gabriel, et al. “Interstitial Fluid Osmolarity Modulates the Action of Differential Tissue Surface Tension in Progenitor Cell Segregation during Gastrulation.” Development, vol. 144, no. 10, Company of Biologists, 2017, pp. 1798–806, doi:10.1242/dev.144964. short: G. Krens, J. Veldhuis, V. Barone, D. Capek, J.-L. Maître, W. Brodland, C.-P.J. Heisenberg, Development 144 (2017) 1798–1806. date_created: 2018-12-11T11:47:52Z date_published: 2017-05-15T00:00:00Z date_updated: 2024-03-27T23:30:25Z day: '15' ddc: - '570' department: - _id: Bio - _id: CaHe doi: 10.1242/dev.144964 external_id: pmid: - '28512197' file: - access_level: open_access checksum: bc25125fb664706cdf180e061429f91d content_type: application/pdf creator: dernst date_created: 2019-09-24T06:56:22Z date_updated: 2020-07-14T12:47:39Z file_id: '6905' file_name: 2017_Development_Krens.pdf file_size: 8194516 relation: main_file file_date_updated: 2020-07-14T12:47:39Z has_accepted_license: '1' intvolume: ' 144' issue: '10' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1798 - 1806 pmid: 1 publication: Development publication_identifier: issn: - '09501991' publication_status: published publisher: Company of Biologists publist_id: '7047' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public - id: '50' relation: dissertation_contains status: public scopus_import: 1 status: public title: Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 144 year: '2017' ... --- _id: '661' abstract: - lang: eng text: During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo. acknowledged_ssus: - _id: SSU author: - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Zsuzsa full_name: Ákos, Zsuzsa last_name: Ákos - first_name: Silvia full_name: Grigolon, Silvia last_name: Grigolon - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Verena full_name: Ruprecht, Verena last_name: Ruprecht - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Masazumi full_name: Tada, Masazumi last_name: Tada - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Tamás full_name: Vicsek, Tamás last_name: Vicsek - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Smutny M, Ákos Z, Grigolon S, et al. Friction forces position the neural anlage. Nature Cell Biology. 2017;19:306-317. doi:10.1038/ncb3492 apa: Smutny, M., Ákos, Z., Grigolon, S., Shamipour, S., Ruprecht, V., Capek, D., … Heisenberg, C.-P. J. (2017). Friction forces position the neural anlage. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb3492 chicago: Smutny, Michael, Zsuzsa Ákos, Silvia Grigolon, Shayan Shamipour, Verena Ruprecht, Daniel Capek, Martin Behrndt, et al. “Friction Forces Position the Neural Anlage.” Nature Cell Biology. Nature Publishing Group, 2017. https://doi.org/10.1038/ncb3492. ieee: M. Smutny et al., “Friction forces position the neural anlage,” Nature Cell Biology, vol. 19. Nature Publishing Group, pp. 306–317, 2017. ista: Smutny M, Ákos Z, Grigolon S, Shamipour S, Ruprecht V, Capek D, Behrndt M, Papusheva E, Tada M, Hof B, Vicsek T, Salbreux G, Heisenberg C-PJ. 2017. Friction forces position the neural anlage. Nature Cell Biology. 19, 306–317. mla: Smutny, Michael, et al. “Friction Forces Position the Neural Anlage.” Nature Cell Biology, vol. 19, Nature Publishing Group, 2017, pp. 306–17, doi:10.1038/ncb3492. short: M. Smutny, Z. Ákos, S. Grigolon, S. Shamipour, V. Ruprecht, D. Capek, M. Behrndt, E. Papusheva, M. Tada, B. Hof, T. Vicsek, G. Salbreux, C.-P.J. Heisenberg, Nature Cell Biology 19 (2017) 306–317. date_created: 2018-12-11T11:47:46Z date_published: 2017-03-27T00:00:00Z date_updated: 2024-03-27T23:30:38Z day: '27' department: - _id: CaHe - _id: BjHo - _id: Bio doi: 10.1038/ncb3492 ec_funded: 1 external_id: pmid: - '28346437' intvolume: ' 19' language: - iso: eng main_file_link: - open_access: '1' url: https://europepmc.org/articles/pmc5635970 month: '03' oa: 1 oa_version: Submitted Version page: 306 - 317 pmid: 1 project: - _id: 25152F3A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '306589' name: Decoding the complexity of turbulence at its origin - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Nature Cell Biology publication_identifier: issn: - '14657392' publication_status: published publisher: Nature Publishing Group publist_id: '7074' quality_controlled: '1' related_material: record: - id: '50' relation: dissertation_contains status: public - id: '8350' relation: dissertation_contains status: public scopus_import: 1 status: public title: Friction forces position the neural anlage type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2017' ... --- _id: '735' abstract: - lang: eng text: Cell-cell contact formation constitutes an essential step in evolution, leading to the differentiation of specialized cell types. However, remarkably little is known about whether and how the interplay between contact formation and fate specification affects development. Here, we identify a positive feedback loop between cell-cell contact duration, morphogen signaling, and mesendoderm cell-fate specification during zebrafish gastrulation. We show that long-lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for ppl cell-fate specification. We further show that Nodal signaling promotes ppl cell-cell contact duration, generating a positive feedback loop between ppl cell-cell contact duration and cell-fate specification. Finally, by combining mathematical modeling and experimentation, we show that this feedback determines whether anterior axial mesendoderm cells become ppl or, instead, turn into endoderm. Thus, the interdependent activities of cell-cell signaling and contact formation control fate diversification within the developing embryo. article_processing_charge: No author: - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Moritz full_name: Lang, Moritz id: 29E0800A-F248-11E8-B48F-1D18A9856A87 last_name: Lang - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Saurabh full_name: Pradhan, Saurabh last_name: Pradhan - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Keisuke full_name: Sako, Keisuke id: 3BED66BE-F248-11E8-B48F-1D18A9856A87 last_name: Sako orcid: 0000-0002-6453-8075 - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Barone V, Lang M, Krens G, et al. An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate. Developmental Cell. 2017;43(2):198-211. doi:10.1016/j.devcel.2017.09.014 apa: Barone, V., Lang, M., Krens, G., Pradhan, S., Shamipour, S., Sako, K., … Heisenberg, C.-P. J. (2017). An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2017.09.014 chicago: Barone, Vanessa, Moritz Lang, Gabriel Krens, Saurabh Pradhan, Shayan Shamipour, Keisuke Sako, Mateusz K Sikora, Calin C Guet, and Carl-Philipp J Heisenberg. “An Effective Feedback Loop between Cell-Cell Contact Duration and Morphogen Signaling Determines Cell Fate.” Developmental Cell. Cell Press, 2017. https://doi.org/10.1016/j.devcel.2017.09.014. ieee: V. Barone et al., “An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate,” Developmental Cell, vol. 43, no. 2. Cell Press, pp. 198–211, 2017. ista: Barone V, Lang M, Krens G, Pradhan S, Shamipour S, Sako K, Sikora MK, Guet CC, Heisenberg C-PJ. 2017. An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate. Developmental Cell. 43(2), 198–211. mla: Barone, Vanessa, et al. “An Effective Feedback Loop between Cell-Cell Contact Duration and Morphogen Signaling Determines Cell Fate.” Developmental Cell, vol. 43, no. 2, Cell Press, 2017, pp. 198–211, doi:10.1016/j.devcel.2017.09.014. short: V. Barone, M. Lang, G. Krens, S. Pradhan, S. Shamipour, K. Sako, M.K. Sikora, C.C. Guet, C.-P.J. Heisenberg, Developmental Cell 43 (2017) 198–211. date_created: 2018-12-11T11:48:13Z date_published: 2017-10-23T00:00:00Z date_updated: 2024-03-27T23:30:38Z day: '23' department: - _id: CaHe - _id: CaGu - _id: GaTk doi: 10.1016/j.devcel.2017.09.014 ec_funded: 1 external_id: isi: - '000413443700011' intvolume: ' 43' isi: 1 issue: '2' language: - iso: eng month: '10' oa_version: None page: 198 - 211 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 252DD2A6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I2058 name: 'Cell segregation in gastrulation: the role of cell fate specification' publication: Developmental Cell publication_identifier: issn: - '15345807' publication_status: published publisher: Cell Press publist_id: '6934' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public - id: '8350' relation: dissertation_contains status: public scopus_import: '1' status: public title: An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 43 year: '2017' ... --- _id: '1239' abstract: - lang: eng text: Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment. acknowledgement: 'V. R. acknowledges support by the Austrian Science Fund (FWF): (Grant No. T560-B17).' article_number: '028102' author: - first_name: Andrew full_name: Callan Jones, Andrew last_name: Callan Jones - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez citation: ama: Callan Jones A, Ruprecht V, Wieser S, Heisenberg C-PJ, Voituriez R. Cortical flow-driven shapes of nonadherent cells. Physical Review Letters. 2016;116(2). doi:10.1103/PhysRevLett.116.028102 apa: Callan Jones, A., Ruprecht, V., Wieser, S., Heisenberg, C.-P. J., & Voituriez, R. (2016). Cortical flow-driven shapes of nonadherent cells. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.116.028102 chicago: Callan Jones, Andrew, Verena Ruprecht, Stefan Wieser, Carl-Philipp J Heisenberg, and Raphaël Voituriez. “Cortical Flow-Driven Shapes of Nonadherent Cells.” Physical Review Letters. American Physical Society, 2016. https://doi.org/10.1103/PhysRevLett.116.028102. ieee: A. Callan Jones, V. Ruprecht, S. Wieser, C.-P. J. Heisenberg, and R. Voituriez, “Cortical flow-driven shapes of nonadherent cells,” Physical Review Letters, vol. 116, no. 2. American Physical Society, 2016. ista: Callan Jones A, Ruprecht V, Wieser S, Heisenberg C-PJ, Voituriez R. 2016. Cortical flow-driven shapes of nonadherent cells. Physical Review Letters. 116(2), 028102. mla: Callan Jones, Andrew, et al. “Cortical Flow-Driven Shapes of Nonadherent Cells.” Physical Review Letters, vol. 116, no. 2, 028102, American Physical Society, 2016, doi:10.1103/PhysRevLett.116.028102. short: A. Callan Jones, V. Ruprecht, S. Wieser, C.-P.J. Heisenberg, R. Voituriez, Physical Review Letters 116 (2016). date_created: 2018-12-11T11:50:53Z date_published: 2016-01-15T00:00:00Z date_updated: 2021-01-12T06:49:19Z day: '15' department: - _id: CaHe doi: 10.1103/PhysRevLett.116.028102 intvolume: ' 116' issue: '2' language: - iso: eng month: '01' oa_version: None project: - _id: 2529486C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T 560-B17 name: Cell- and Tissue Mechanics in Zebrafish Germ Layer Formation publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '6095' quality_controlled: '1' scopus_import: 1 status: public title: Cortical flow-driven shapes of nonadherent cells type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 116 year: '2016' ... --- _id: '1249' abstract: - lang: eng text: 'Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell- and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example, the characteristic time of stress relaxation (the Maxwell time τM) in the actomyosin sets the timescale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length λ) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer in vivo directly from laser ablation experiments. For this we investigate the cortical response to laser ablation in the one-cell-stage Caenorhabditis elegans embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse-grained physical description of the cortex in terms of a two-dimensional thin film of an active viscoelastic gel. To determine the Maxwell time τM, the hydrodynamic length λ, the ratio of active stress ζΔμ, and per-area friction γ, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best-fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. Our method provides an accurate and robust means for measuring physical parameters of the actomyosin cortical layer. It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights into the active mechanics processes that govern tissue-scale morphogenesis.' acknowledgement: S.W.G. acknowledges support by grant no. 281903 from the European Research Council and by grant No. GR-7271/2-1 from the Deutsche Forschungsgemeinschaft. S.W.G. and C.-P.H. acknowledge support through a grant from the Fonds zur Förderung der Wissenschaftlichen Forschung and the Deutsche Forschungsgemeinschaft (No. I930-B20). We are grateful to Daniel Dickinson for providing the LP133 C. elegans strain. We thank G. Salbreux, V. K. Krishnamurthy, and J. S. Bois for fruitful discussions. author: - first_name: Arnab full_name: Saha, Arnab last_name: Saha - first_name: Masatoshi full_name: Nishikawa, Masatoshi last_name: Nishikawa - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Stephan full_name: Grill, Stephan last_name: Grill citation: ama: Saha A, Nishikawa M, Behrndt M, Heisenberg C-PJ, Julicher F, Grill S. Determining physical properties of the cell cortex. Biophysical Journal. 2016;110(6):1421-1429. doi:10.1016/j.bpj.2016.02.013 apa: Saha, A., Nishikawa, M., Behrndt, M., Heisenberg, C.-P. J., Julicher, F., & Grill, S. (2016). Determining physical properties of the cell cortex. Biophysical Journal. Biophysical Society. https://doi.org/10.1016/j.bpj.2016.02.013 chicago: Saha, Arnab, Masatoshi Nishikawa, Martin Behrndt, Carl-Philipp J Heisenberg, Frank Julicher, and Stephan Grill. “Determining Physical Properties of the Cell Cortex.” Biophysical Journal. Biophysical Society, 2016. https://doi.org/10.1016/j.bpj.2016.02.013. ieee: A. Saha, M. Nishikawa, M. Behrndt, C.-P. J. Heisenberg, F. Julicher, and S. Grill, “Determining physical properties of the cell cortex,” Biophysical Journal, vol. 110, no. 6. Biophysical Society, pp. 1421–1429, 2016. ista: Saha A, Nishikawa M, Behrndt M, Heisenberg C-PJ, Julicher F, Grill S. 2016. Determining physical properties of the cell cortex. Biophysical Journal. 110(6), 1421–1429. mla: Saha, Arnab, et al. “Determining Physical Properties of the Cell Cortex.” Biophysical Journal, vol. 110, no. 6, Biophysical Society, 2016, pp. 1421–29, doi:10.1016/j.bpj.2016.02.013. short: A. Saha, M. Nishikawa, M. Behrndt, C.-P.J. Heisenberg, F. Julicher, S. Grill, Biophysical Journal 110 (2016) 1421–1429. date_created: 2018-12-11T11:50:56Z date_published: 2016-03-29T00:00:00Z date_updated: 2021-01-12T06:49:23Z day: '29' ddc: - '572' - '576' department: - _id: CaHe doi: 10.1016/j.bpj.2016.02.013 file: - access_level: open_access checksum: c408cf2e25a25c8d711cffea524bda55 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:54Z date_updated: 2020-07-14T12:44:41Z file_id: '4845' file_name: IST-2016-706-v1+1_1-s2.0-S0006349516001582-main.pdf file_size: 1965645 relation: main_file file_date_updated: 2020-07-14T12:44:41Z has_accepted_license: '1' intvolume: ' 110' issue: '6' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 1421 - 1429 project: - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Biophysical Journal publication_status: published publisher: Biophysical Society publist_id: '6079' pubrep_id: '706' quality_controlled: '1' scopus_import: 1 status: public title: Determining physical properties of the cell cortex tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 110 year: '2016' ... --- _id: '1271' abstract: - lang: eng text: 'Background: High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Results: Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Conclusions: Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.' acknowledged_ssus: - _id: LifeSc acknowledgement: "We thank K. Lee, C. Norden, A. Webb, and the members of the Paluch lab for\r\ncomments on the manuscript. We are grateful to P. Rørth and Peter Dieterich\r\nfor discussions, S. Ares, Y. Arboleda-Estudillo and S. Schneider for technical help,\r\nM. Biro for help with programming, and the BIOTEC/MPI-CBG and IST zebrafish\r\nand imaging facilities for help and advice at various stages of this project. This work was supported by the Max Planck Society, the Medical Research Council UK (core funding to the MRC LMCB), and by grants from the Polish Ministry of Science and Higher Education (454/N-MPG/2009/0) to EKP, the Deutsche Forschungsgemeinschaft (HE 3231/6-1 and PA 1590/1-1) to CPH and EKP, a A*Star JCO career development award (12302FG010) to WY and a Damon Runyon fellowship award to ADM (DRG 2157-12). This work was also supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001317), the UK Medical Research Council (FC001317), and the Wellcome Trust (FC001317) to GS." article_number: '74' author: - first_name: Alba full_name: Diz Muñoz, Alba last_name: Diz Muñoz - first_name: Pawel full_name: Romanczuk, Pawel last_name: Romanczuk - first_name: Weimiao full_name: Yu, Weimiao last_name: Yu - first_name: Martin full_name: Bergert, Martin last_name: Bergert - first_name: Kenzo full_name: Ivanovitch, Kenzo last_name: Ivanovitch - first_name: Guillame full_name: Salbreux, Guillame last_name: Salbreux - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch citation: ama: Diz Muñoz A, Romanczuk P, Yu W, et al. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biology. 2016;14(1). doi:10.1186/s12915-016-0294-x apa: Diz Muñoz, A., Romanczuk, P., Yu, W., Bergert, M., Ivanovitch, K., Salbreux, G., … Paluch, E. (2016). Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biology. BioMed Central. https://doi.org/10.1186/s12915-016-0294-x chicago: Diz Muñoz, Alba, Pawel Romanczuk, Weimiao Yu, Martin Bergert, Kenzo Ivanovitch, Guillame Salbreux, Carl-Philipp J Heisenberg, and Ewa Paluch. “Steering Cell Migration by Alternating Blebs and Actin-Rich Protrusions.” BMC Biology. BioMed Central, 2016. https://doi.org/10.1186/s12915-016-0294-x. ieee: A. Diz Muñoz et al., “Steering cell migration by alternating blebs and actin-rich protrusions,” BMC Biology, vol. 14, no. 1. BioMed Central, 2016. ista: Diz Muñoz A, Romanczuk P, Yu W, Bergert M, Ivanovitch K, Salbreux G, Heisenberg C-PJ, Paluch E. 2016. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biology. 14(1), 74. mla: Diz Muñoz, Alba, et al. “Steering Cell Migration by Alternating Blebs and Actin-Rich Protrusions.” BMC Biology, vol. 14, no. 1, 74, BioMed Central, 2016, doi:10.1186/s12915-016-0294-x. short: A. Diz Muñoz, P. Romanczuk, W. Yu, M. Bergert, K. Ivanovitch, G. Salbreux, C.-P.J. Heisenberg, E. Paluch, BMC Biology 14 (2016). date_created: 2018-12-11T11:51:04Z date_published: 2016-09-02T00:00:00Z date_updated: 2021-01-12T06:49:32Z day: '02' ddc: - '572' - '576' department: - _id: CaHe doi: 10.1186/s12915-016-0294-x file: - access_level: open_access checksum: 0bfa484ac69a0a560fb9a4589aeda7f6 content_type: application/pdf creator: system date_created: 2018-12-12T10:13:20Z date_updated: 2020-07-14T12:44:42Z file_id: '5002' file_name: IST-2016-695-v1+1_s12915-016-0294-x.pdf file_size: 1875695 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 14' issue: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 252064B8-B435-11E9-9278-68D0E5697425 grant_number: HE_3231/6-1 name: Analysis of the Formation and Function of Different Cell Protusion Types During Cell Migration in Vivo publication: BMC Biology publication_status: published publisher: BioMed Central publist_id: '6049' pubrep_id: '695' quality_controlled: '1' scopus_import: 1 status: public title: Steering cell migration by alternating blebs and actin-rich protrusions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2016' ... --- _id: '1275' article_number: '139802' author: - first_name: Andrew full_name: Callan Jones, Andrew last_name: Callan Jones - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez citation: ama: Callan Jones A, Ruprecht V, Wieser S, Heisenberg C-PJ, Voituriez R. Callan-Jones et al. Reply. Physical Review Letters. 2016;117(13). doi:10.1103/PhysRevLett.117.139802 apa: Callan Jones, A., Ruprecht, V., Wieser, S., Heisenberg, C.-P. J., & Voituriez, R. (2016). Callan-Jones et al. Reply. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.117.139802 chicago: Callan Jones, Andrew, Verena Ruprecht, Stefan Wieser, Carl-Philipp J Heisenberg, and Raphaël Voituriez. “Callan-Jones et Al. Reply.” Physical Review Letters. American Physical Society, 2016. https://doi.org/10.1103/PhysRevLett.117.139802. ieee: A. Callan Jones, V. Ruprecht, S. Wieser, C.-P. J. Heisenberg, and R. Voituriez, “Callan-Jones et al. Reply,” Physical Review Letters, vol. 117, no. 13. American Physical Society, 2016. ista: Callan Jones A, Ruprecht V, Wieser S, Heisenberg C-PJ, Voituriez R. 2016. Callan-Jones et al. Reply. Physical Review Letters. 117(13), 139802. mla: Callan Jones, Andrew, et al. “Callan-Jones et Al. Reply.” Physical Review Letters, vol. 117, no. 13, 139802, American Physical Society, 2016, doi:10.1103/PhysRevLett.117.139802. short: A. Callan Jones, V. Ruprecht, S. Wieser, C.-P.J. Heisenberg, R. Voituriez, Physical Review Letters 117 (2016). date_created: 2018-12-11T11:51:05Z date_published: 2016-09-22T00:00:00Z date_updated: 2021-01-12T06:49:33Z day: '22' department: - _id: CaHe doi: 10.1103/PhysRevLett.117.139802 intvolume: ' 117' issue: '13' language: - iso: eng month: '09' oa_version: None publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '6041' quality_controlled: '1' scopus_import: 1 status: public title: Callan-Jones et al. Reply type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 117 year: '2016' ... --- _id: '1096' author: - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Jana full_name: Slovakova, Jana id: 30F3F2F0-F248-11E8-B48F-1D18A9856A87 last_name: Slovakova - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Schwayer C, Sikora MK, Slovakova J, Kardos R, Heisenberg C-PJ. Actin rings of power. Developmental Cell. 2016;37(6):493-506. doi:10.1016/j.devcel.2016.05.024 apa: Schwayer, C., Sikora, M. K., Slovakova, J., Kardos, R., & Heisenberg, C.-P. J. (2016). Actin rings of power. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2016.05.024 chicago: Schwayer, Cornelia, Mateusz K Sikora, Jana Slovakova, Roland Kardos, and Carl-Philipp J Heisenberg. “Actin Rings of Power.” Developmental Cell. Cell Press, 2016. https://doi.org/10.1016/j.devcel.2016.05.024. ieee: C. Schwayer, M. K. Sikora, J. Slovakova, R. Kardos, and C.-P. J. Heisenberg, “Actin rings of power,” Developmental Cell, vol. 37, no. 6. Cell Press, pp. 493–506, 2016. ista: Schwayer C, Sikora MK, Slovakova J, Kardos R, Heisenberg C-PJ. 2016. Actin rings of power. Developmental Cell. 37(6), 493–506. mla: Schwayer, Cornelia, et al. “Actin Rings of Power.” Developmental Cell, vol. 37, no. 6, Cell Press, 2016, pp. 493–506, doi:10.1016/j.devcel.2016.05.024. short: C. Schwayer, M.K. Sikora, J. Slovakova, R. Kardos, C.-P.J. Heisenberg, Developmental Cell 37 (2016) 493–506. date_created: 2018-12-11T11:50:07Z date_published: 2016-06-20T00:00:00Z date_updated: 2023-09-07T12:56:41Z day: '20' department: - _id: CaHe doi: 10.1016/j.devcel.2016.05.024 intvolume: ' 37' issue: '6' language: - iso: eng month: '06' oa_version: None page: 493 - 506 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '6279' quality_controlled: '1' related_material: record: - id: '7186' relation: part_of_dissertation status: public scopus_import: 1 status: public title: Actin rings of power type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2016' ... --- _id: '1100' abstract: - lang: eng text: During metazoan development, the temporal pattern of morphogen signaling is critical for organizing cell fates in space and time. Yet, tools for temporally controlling morphogen signaling within the embryo are still scarce. Here, we developed a photoactivatable Nodal receptor to determine how the temporal pattern of Nodal signaling affects cell fate specification during zebrafish gastrulation. By using this receptor to manipulate the duration of Nodal signaling in vivo by light, we show that extended Nodal signaling within the organizer promotes prechordal plate specification and suppresses endoderm differentiation. Endoderm differentiation is suppressed by extended Nodal signaling inducing expression of the transcriptional repressor goosecoid (gsc) in prechordal plate progenitors, which in turn restrains Nodal signaling from upregulating the endoderm differentiation gene sox17 within these cells. Thus, optogenetic manipulation of Nodal signaling identifies a critical role of Nodal signaling duration for organizer cell fate specification during gastrulation. acknowledged_ssus: - _id: SSU acknowledgement: 'We are grateful to members of the C.-P.H. and H.J. labs for discussions, R. Hauschild and the different Scientific Service Units at IST Austria for technical help, M. Dravecka for performing initial experiments, A. Schier for reading an earlier version of the manuscript, K.W. Rogers for technical help, and C. Hill, A. Bruce, and L. Solnica-Krezel for sending plasmids. This work was supported by grants from the Austrian Science Foundation (FWF): (T560-B17) and (I 812-B12) to V.R. and C.-P.H., and from the European Union (EU FP7): (6275) to H.J. A.I.-P. is supported by a Ramon Areces fellowship.' author: - first_name: Keisuke full_name: Sako, Keisuke id: 3BED66BE-F248-11E8-B48F-1D18A9856A87 last_name: Sako orcid: 0000-0002-6453-8075 - first_name: Saurabh full_name: Pradhan, Saurabh last_name: Pradhan - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Álvaro full_name: Inglés Prieto, Álvaro id: 2A9DB292-F248-11E8-B48F-1D18A9856A87 last_name: Inglés Prieto orcid: 0000-0002-5409-8571 - first_name: Patrick full_name: Mueller, Patrick last_name: Mueller - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Sanjeev full_name: Galande, Sanjeev last_name: Galande - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Sako K, Pradhan S, Barone V, et al. Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation. Cell Reports. 2016;16(3):866-877. doi:10.1016/j.celrep.2016.06.036 apa: Sako, K., Pradhan, S., Barone, V., Inglés Prieto, Á., Mueller, P., Ruprecht, V., … Heisenberg, C.-P. J. (2016). Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation. Cell Reports. Cell Press. https://doi.org/10.1016/j.celrep.2016.06.036 chicago: Sako, Keisuke, Saurabh Pradhan, Vanessa Barone, Álvaro Inglés Prieto, Patrick Mueller, Verena Ruprecht, Daniel Capek, Sanjeev Galande, Harald L Janovjak, and Carl-Philipp J Heisenberg. “Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation.” Cell Reports. Cell Press, 2016. https://doi.org/10.1016/j.celrep.2016.06.036. ieee: K. Sako et al., “Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation,” Cell Reports, vol. 16, no. 3. Cell Press, pp. 866–877, 2016. ista: Sako K, Pradhan S, Barone V, Inglés Prieto Á, Mueller P, Ruprecht V, Capek D, Galande S, Janovjak HL, Heisenberg C-PJ. 2016. Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation. Cell Reports. 16(3), 866–877. mla: Sako, Keisuke, et al. “Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation.” Cell Reports, vol. 16, no. 3, Cell Press, 2016, pp. 866–77, doi:10.1016/j.celrep.2016.06.036. short: K. Sako, S. Pradhan, V. Barone, Á. Inglés Prieto, P. Mueller, V. Ruprecht, D. Capek, S. Galande, H.L. Janovjak, C.-P.J. Heisenberg, Cell Reports 16 (2016) 866–877. date_created: 2018-12-11T11:50:08Z date_published: 2016-07-19T00:00:00Z date_updated: 2024-03-27T23:30:25Z day: '19' ddc: - '570' - '576' department: - _id: CaHe - _id: HaJa doi: 10.1016/j.celrep.2016.06.036 ec_funded: 1 file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:11:04Z date_updated: 2018-12-12T10:11:04Z file_id: '4857' file_name: IST-2017-754-v1+1_1-s2.0-S2211124716307768-main.pdf file_size: 3921947 relation: main_file file_date_updated: 2018-12-12T10:11:04Z has_accepted_license: '1' intvolume: ' 16' issue: '3' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 866 - 877 project: - _id: 2529486C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T 560-B17 name: Cell- and Tissue Mechanics in Zebrafish Germ Layer Formation - _id: 2527D5CC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 812-B12 name: Cell Cortex and Germ Layer Formation in Zebrafish Gastrulation - _id: 25548C20-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '303564' name: Microbial Ion Channels for Synthetic Neurobiology publication: Cell Reports publication_status: published publisher: Cell Press publist_id: '6275' pubrep_id: '754' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public - id: '50' relation: dissertation_contains status: public scopus_import: 1 status: public title: Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2016' ... --- _id: '1553' abstract: - lang: eng text: Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns. author: - first_name: Paolo full_name: Maiuri, Paolo last_name: Maiuri - first_name: Jean full_name: Rupprecht, Jean last_name: Rupprecht - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Olivier full_name: Bénichou, Olivier last_name: Bénichou - first_name: Nicolas full_name: Carpi, Nicolas last_name: Carpi - first_name: Mathieu full_name: Coppey, Mathieu last_name: Coppey - first_name: Simon full_name: De Beco, Simon last_name: De Beco - first_name: Nir full_name: Gov, Nir last_name: Gov - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Carolina full_name: Lage Crespo, Carolina last_name: Lage Crespo - first_name: Franziska full_name: Lautenschlaeger, Franziska last_name: Lautenschlaeger - first_name: Maël full_name: Le Berre, Maël last_name: Le Berre - first_name: Ana full_name: Lennon Duménil, Ana last_name: Lennon Duménil - first_name: Matthew full_name: Raab, Matthew last_name: Raab - first_name: Hawa full_name: Thiam, Hawa last_name: Thiam - first_name: Matthieu full_name: Piel, Matthieu last_name: Piel - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez citation: ama: Maiuri P, Rupprecht J, Wieser S, et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. 2015;161(2):374-386. doi:10.1016/j.cell.2015.01.056 apa: Maiuri, P., Rupprecht, J., Wieser, S., Ruprecht, V., Bénichou, O., Carpi, N., … Voituriez, R. (2015). Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. Cell Press. https://doi.org/10.1016/j.cell.2015.01.056 chicago: Maiuri, Paolo, Jean Rupprecht, Stefan Wieser, Verena Ruprecht, Olivier Bénichou, Nicolas Carpi, Mathieu Coppey, et al. “Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence.” Cell. Cell Press, 2015. https://doi.org/10.1016/j.cell.2015.01.056. ieee: P. Maiuri et al., “Actin flows mediate a universal coupling between cell speed and cell persistence,” Cell, vol. 161, no. 2. Cell Press, pp. 374–386, 2015. ista: Maiuri P, Rupprecht J, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, De Beco S, Gov N, Heisenberg C-PJ, Lage Crespo C, Lautenschlaeger F, Le Berre M, Lennon Duménil A, Raab M, Thiam H, Piel M, Sixt MK, Voituriez R. 2015. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. 161(2), 374–386. mla: Maiuri, Paolo, et al. “Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence.” Cell, vol. 161, no. 2, Cell Press, 2015, pp. 374–86, doi:10.1016/j.cell.2015.01.056. short: P. Maiuri, J. Rupprecht, S. Wieser, V. Ruprecht, O. Bénichou, N. Carpi, M. Coppey, S. De Beco, N. Gov, C.-P.J. Heisenberg, C. Lage Crespo, F. Lautenschlaeger, M. Le Berre, A. Lennon Duménil, M. Raab, H. Thiam, M. Piel, M.K. Sixt, R. Voituriez, Cell 161 (2015) 374–386. date_created: 2018-12-11T11:52:41Z date_published: 2015-04-09T00:00:00Z date_updated: 2021-01-12T06:51:33Z day: '09' department: - _id: MiSi - _id: CaHe doi: 10.1016/j.cell.2015.01.056 ec_funded: 1 intvolume: ' 161' issue: '2' language: - iso: eng month: '04' oa_version: None page: 374 - 386 project: - _id: 2529486C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T 560-B17 name: Cell- and Tissue Mechanics in Zebrafish Germ Layer Formation - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes (EU) - _id: 25ABD200-B435-11E9-9278-68D0E5697425 grant_number: RGP0058/2011 name: 'Cell migration in complex environments: from in vivo experiments to theoretical models' publication: Cell publication_status: published publisher: Cell Press publist_id: '5618' quality_controlled: '1' scopus_import: 1 status: public title: Actin flows mediate a universal coupling between cell speed and cell persistence type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 161 year: '2015' ... --- _id: '1581' abstract: - lang: eng text: In animal embryos, morphogen gradients determine tissue patterning and morphogenesis. Shyer et al. provide evidence that, during vertebrate gut formation, tissue folding generates graded activity of signals required for subsequent steps of gut growth and differentiation, thereby revealing an intriguing link between tissue morphogenesis and morphogen gradient formation. article_processing_charge: No author: - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Bollenbach MT, Heisenberg C-PJ. Gradients are shaping up. Cell. 2015;161(3):431-432. doi:10.1016/j.cell.2015.04.009 apa: Bollenbach, M. T., & Heisenberg, C.-P. J. (2015). Gradients are shaping up. Cell. Cell Press. https://doi.org/10.1016/j.cell.2015.04.009 chicago: Bollenbach, Mark Tobias, and Carl-Philipp J Heisenberg. “Gradients Are Shaping Up.” Cell. Cell Press, 2015. https://doi.org/10.1016/j.cell.2015.04.009. ieee: M. T. Bollenbach and C.-P. J. Heisenberg, “Gradients are shaping up,” Cell, vol. 161, no. 3. Cell Press, pp. 431–432, 2015. ista: Bollenbach MT, Heisenberg C-PJ. 2015. Gradients are shaping up. Cell. 161(3), 431–432. mla: Bollenbach, Mark Tobias, and Carl-Philipp J. Heisenberg. “Gradients Are Shaping Up.” Cell, vol. 161, no. 3, Cell Press, 2015, pp. 431–32, doi:10.1016/j.cell.2015.04.009. short: M.T. Bollenbach, C.-P.J. Heisenberg, Cell 161 (2015) 431–432. date_created: 2018-12-11T11:52:50Z date_published: 2015-04-23T00:00:00Z date_updated: 2022-08-25T13:56:10Z day: '23' department: - _id: ToBo - _id: CaHe doi: 10.1016/j.cell.2015.04.009 intvolume: ' 161' issue: '3' language: - iso: eng month: '04' oa_version: None page: 431 - 432 publication: Cell publication_status: published publisher: Cell Press publist_id: '5590' quality_controlled: '1' scopus_import: '1' status: public title: Gradients are shaping up type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 161 year: '2015' ... --- _id: '1817' abstract: - lang: eng text: 'Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D''Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues. ' author: - first_name: Sean full_name: Porazinski, Sean last_name: Porazinski - first_name: Huijia full_name: Wang, Huijia last_name: Wang - first_name: Yoichi full_name: Asaoka, Yoichi last_name: Asaoka - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Tatsuo full_name: Miyamoto, Tatsuo last_name: Miyamoto - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Shoji full_name: Hata, Shoji last_name: Hata - first_name: Takashi full_name: Sasaki, Takashi last_name: Sasaki - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Yumi full_name: Osada, Yumi last_name: Osada - first_name: Satoshi full_name: Asaka, Satoshi last_name: Asaka - first_name: Akihiro full_name: Momoi, Akihiro last_name: Momoi - first_name: Sarah full_name: Linton, Sarah last_name: Linton - first_name: Joel full_name: Miesfeld, Joel last_name: Miesfeld - first_name: Brian full_name: Link, Brian last_name: Link - first_name: Takeshi full_name: Senga, Takeshi last_name: Senga - first_name: Atahualpa full_name: Castillo Morales, Atahualpa last_name: Castillo Morales - first_name: Araxi full_name: Urrutia, Araxi last_name: Urrutia - first_name: Nobuyoshi full_name: Shimizu, Nobuyoshi last_name: Shimizu - first_name: Hideaki full_name: Nagase, Hideaki last_name: Nagase - first_name: Shinya full_name: Matsuura, Shinya last_name: Matsuura - first_name: Stefan full_name: Bagby, Stefan last_name: Bagby - first_name: Hisato full_name: Kondoh, Hisato last_name: Kondoh - first_name: Hiroshi full_name: Nishina, Hiroshi last_name: Nishina - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Makoto full_name: Furutani Seiki, Makoto last_name: Furutani Seiki citation: ama: Porazinski S, Wang H, Asaoka Y, et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature. 2015;521(7551):217-221. doi:10.1038/nature14215 apa: Porazinski, S., Wang, H., Asaoka, Y., Behrndt, M., Miyamoto, T., Morita, H., … Furutani Seiki, M. (2015). YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature. Nature Publishing Group. https://doi.org/10.1038/nature14215 chicago: Porazinski, Sean, Huijia Wang, Yoichi Asaoka, Martin Behrndt, Tatsuo Miyamoto, Hitoshi Morita, Shoji Hata, et al. “YAP Is Essential for Tissue Tension to Ensure Vertebrate 3D Body Shape.” Nature. Nature Publishing Group, 2015. https://doi.org/10.1038/nature14215. ieee: S. Porazinski et al., “YAP is essential for tissue tension to ensure vertebrate 3D body shape,” Nature, vol. 521, no. 7551. Nature Publishing Group, pp. 217–221, 2015. ista: Porazinski S, Wang H, Asaoka Y, Behrndt M, Miyamoto T, Morita H, Hata S, Sasaki T, Krens G, Osada Y, Asaka S, Momoi A, Linton S, Miesfeld J, Link B, Senga T, Castillo Morales A, Urrutia A, Shimizu N, Nagase H, Matsuura S, Bagby S, Kondoh H, Nishina H, Heisenberg C-PJ, Furutani Seiki M. 2015. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature. 521(7551), 217–221. mla: Porazinski, Sean, et al. “YAP Is Essential for Tissue Tension to Ensure Vertebrate 3D Body Shape.” Nature, vol. 521, no. 7551, Nature Publishing Group, 2015, pp. 217–21, doi:10.1038/nature14215. short: S. Porazinski, H. Wang, Y. Asaoka, M. Behrndt, T. Miyamoto, H. Morita, S. Hata, T. Sasaki, G. Krens, Y. Osada, S. Asaka, A. Momoi, S. Linton, J. Miesfeld, B. Link, T. Senga, A. Castillo Morales, A. Urrutia, N. Shimizu, H. Nagase, S. Matsuura, S. Bagby, H. Kondoh, H. Nishina, C.-P.J. Heisenberg, M. Furutani Seiki, Nature 521 (2015) 217–221. date_created: 2018-12-11T11:54:10Z date_published: 2015-03-16T00:00:00Z date_updated: 2021-01-12T06:53:23Z day: '16' department: - _id: CaHe doi: 10.1038/nature14215 external_id: pmid: - '25778702' intvolume: ' 521' issue: '7551' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720436/ month: '03' oa: 1 oa_version: Submitted Version page: 217 - 221 pmid: 1 publication: Nature publication_status: published publisher: Nature Publishing Group publist_id: '5289' quality_controlled: '1' scopus_import: 1 status: public title: YAP is essential for tissue tension to ensure vertebrate 3D body shape type: journal_article user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 volume: 521 year: '2015' ... --- _id: '802' abstract: - lang: eng text: Glycoinositolphosphoceramides (GIPCs) are complex sphingolipids present at the plasma membrane of various eukaryotes with the important exception of mammals. In fungi, these glycosphingolipids commonly contain an alpha-mannose residue (Man) linked at position 2 of the inositol. However, several pathogenic fungi additionally synthesize zwitterionic GIPCs carrying an alpha-glucosamine residue (GlcN) at this position. In the human pathogen Aspergillus fumigatus, the GlcNalpha1,2IPC core (where IPC is inositolphosphoceramide) is elongated to Manalpha1,3Manalpha1,6GlcNalpha1,2IPC, which is the most abundant GIPC synthesized by this fungus. In this study, we identified an A. fumigatus N-acetylglucosaminyltransferase, named GntA, and demonstrate its involvement in the initiation of zwitterionic GIPC biosynthesis. Targeted deletion of the gene encoding GntA in A. fumigatus resulted in complete absence of zwitterionic GIPC; a phenotype that could be reverted by episomal expression of GntA in the mutant. The N-acetylhexosaminyltransferase activity of GntA was substantiated by production of N-acetylhexosamine-IPC in the yeast Saccharomyces cerevisiae upon GntA expression. Using an in vitro assay, GntA was furthermore shown to use UDP-N-acetylglucosamine as donor substrate to generate a glycolipid product resistant to saponification and to digestion by phosphatidylinositol-phospholipase C as expected for GlcNAcalpha1,2IPC. Finally, as the enzymes involved in mannosylation of IPC, GntA was localized to the Golgi apparatus, the site of IPC synthesis. author: - first_name: Jakob full_name: Engel, Jakob last_name: Engel - first_name: Philipp S full_name: Schmalhorst, Philipp S id: 309D50DA-F248-11E8-B48F-1D18A9856A87 last_name: Schmalhorst orcid: 0000-0002-5795-0133 - first_name: Anke full_name: Kruger, Anke last_name: Kruger - first_name: Christina full_name: Muller, Christina last_name: Muller - first_name: Falk full_name: Buettner, Falk last_name: Buettner - first_name: Françoise full_name: Routier, Françoise last_name: Routier citation: ama: Engel J, Schmalhorst PS, Kruger A, Muller C, Buettner F, Routier F. Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis. Glycobiology. 2015;25(12):1423-1430. doi:10.1093/glycob/cwv059 apa: Engel, J., Schmalhorst, P. S., Kruger, A., Muller, C., Buettner, F., & Routier, F. (2015). Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis. Glycobiology. Oxford University Press. https://doi.org/10.1093/glycob/cwv059 chicago: Engel, Jakob, Philipp S Schmalhorst, Anke Kruger, Christina Muller, Falk Buettner, and Françoise Routier. “Characterization of an N-Acetylglucosaminyltransferase Involved in Aspergillus Fumigatus Zwitterionic Glycoinositolphosphoceramide Biosynthesis.” Glycobiology. Oxford University Press, 2015. https://doi.org/10.1093/glycob/cwv059. ieee: J. Engel, P. S. Schmalhorst, A. Kruger, C. Muller, F. Buettner, and F. Routier, “Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis,” Glycobiology, vol. 25, no. 12. Oxford University Press, pp. 1423–1430, 2015. ista: Engel J, Schmalhorst PS, Kruger A, Muller C, Buettner F, Routier F. 2015. Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis. Glycobiology. 25(12), 1423–1430. mla: Engel, Jakob, et al. “Characterization of an N-Acetylglucosaminyltransferase Involved in Aspergillus Fumigatus Zwitterionic Glycoinositolphosphoceramide Biosynthesis.” Glycobiology, vol. 25, no. 12, Oxford University Press, 2015, pp. 1423–30, doi:10.1093/glycob/cwv059. short: J. Engel, P.S. Schmalhorst, A. Kruger, C. Muller, F. Buettner, F. Routier, Glycobiology 25 (2015) 1423–1430. date_created: 2018-12-11T11:48:35Z date_published: 2015-12-01T00:00:00Z date_updated: 2021-01-12T08:16:33Z day: '01' department: - _id: CaHe doi: 10.1093/glycob/cwv059 external_id: pmid: - '26306635' intvolume: ' 25' issue: '12' language: - iso: eng month: '12' oa_version: None page: 1423 - 1430 pmid: 1 publication: Glycobiology publication_status: published publisher: Oxford University Press publist_id: '6851' quality_controlled: '1' scopus_import: 1 status: public title: Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2015' ... --- _id: '1566' abstract: - lang: eng text: Deposits of misfolded proteins in the human brain are associated with the development of many neurodegenerative diseases. Recent studies show that these proteins have common traits even at the monomer level. Among them, a polyglutamine region that is present in huntingtin is known to exhibit a correlation between the length of the chain and the severity as well as the earliness of the onset of Huntington disease. Here, we apply bias exchange molecular dynamics to generate structures of polyglutamine expansions of several lengths and characterize the resulting independent conformations. We compare the properties of these conformations to those of the standard proteins, as well as to other homopolymeric tracts. We find that, similar to the previously studied polyvaline chains, the set of possible transient folds is much broader than the set of known-to-date folds, although the conformations have different structures. We show that the mechanical stability is not related to any simple geometrical characteristics of the structures. We demonstrate that long polyglutamine expansions result in higher mechanical stability than the shorter ones. They also have a longer life span and are substantially more prone to form knotted structures. The knotted region has an average length of 35 residues, similar to the typical threshold for most polyglutamine-related diseases. Similarly, changes in shape and mechanical stability appear once the total length of the peptide exceeds this threshold of 35 glutamine residues. We suggest that knotted conformers may also harm the cellular machinery and thus lead to disease. acknowledgement: 'We acknowledge the support by the EU Joint Programme in Neurodegenerative Diseases (JPND AC14/00037) project. The project is supported through the following funding organisations under the aegis of JPND—www.jpnd.eu: Ireland, HRB; Poland, National Science Centre; and Spain, ISCIII. ' article_number: e1004541 author: - first_name: Àngel full_name: Gómez Sicilia, Àngel last_name: Gómez Sicilia - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Marek full_name: Cieplak, Marek last_name: Cieplak - first_name: Mariano full_name: Carrión Vázquez, Mariano last_name: Carrión Vázquez citation: ama: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. An exploration of the universe of polyglutamine structures. PLoS Computational Biology. 2015;11(10). doi:10.1371/journal.pcbi.1004541 apa: Gómez Sicilia, À., Sikora, M. K., Cieplak, M., & Carrión Vázquez, M. (2015). An exploration of the universe of polyglutamine structures. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1004541 chicago: Gómez Sicilia, Àngel, Mateusz K Sikora, Marek Cieplak, and Mariano Carrión Vázquez. “An Exploration of the Universe of Polyglutamine Structures.” PLoS Computational Biology. Public Library of Science, 2015. https://doi.org/10.1371/journal.pcbi.1004541. ieee: À. Gómez Sicilia, M. K. Sikora, M. Cieplak, and M. Carrión Vázquez, “An exploration of the universe of polyglutamine structures,” PLoS Computational Biology, vol. 11, no. 10. Public Library of Science, 2015. ista: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. 2015. An exploration of the universe of polyglutamine structures. PLoS Computational Biology. 11(10), e1004541. mla: Gómez Sicilia, Àngel, et al. “An Exploration of the Universe of Polyglutamine Structures.” PLoS Computational Biology, vol. 11, no. 10, e1004541, Public Library of Science, 2015, doi:10.1371/journal.pcbi.1004541. short: À. Gómez Sicilia, M.K. Sikora, M. Cieplak, M. Carrión Vázquez, PLoS Computational Biology 11 (2015). date_created: 2018-12-11T11:52:45Z date_published: 2015-10-23T00:00:00Z date_updated: 2023-02-23T14:05:55Z day: '23' ddc: - '570' department: - _id: CaHe doi: 10.1371/journal.pcbi.1004541 file: - access_level: open_access checksum: 8b67d729be663bfc9af04bfd94459655 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:21Z date_updated: 2020-07-14T12:45:02Z file_id: '5207' file_name: IST-2016-478-v1+1_journal.pcbi.1004541.pdf file_size: 1412511 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 11' issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: PLoS Computational Biology publication_status: published publisher: Public Library of Science publist_id: '5605' pubrep_id: '478' quality_controlled: '1' related_material: record: - id: '9714' relation: research_data status: public scopus_import: 1 status: public title: An exploration of the universe of polyglutamine structures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2015' ... --- _id: '9714' article_processing_charge: No author: - first_name: Àngel full_name: Gómez Sicilia, Àngel last_name: Gómez Sicilia - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Marek full_name: Cieplak, Marek last_name: Cieplak - first_name: Mariano full_name: Carrión Vázquez, Mariano last_name: Carrión Vázquez citation: ama: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. An exploration of the universe of polyglutamine structures - submission to PLOS journals. 2015. doi:10.1371/journal.pcbi.1004541.s001 apa: Gómez Sicilia, À., Sikora, M. K., Cieplak, M., & Carrión Vázquez, M. (2015). An exploration of the universe of polyglutamine structures - submission to PLOS journals. Public Library of Science . https://doi.org/10.1371/journal.pcbi.1004541.s001 chicago: Gómez Sicilia, Àngel, Mateusz K Sikora, Marek Cieplak, and Mariano Carrión Vázquez. “An Exploration of the Universe of Polyglutamine Structures - Submission to PLOS Journals.” Public Library of Science , 2015. https://doi.org/10.1371/journal.pcbi.1004541.s001. ieee: À. Gómez Sicilia, M. K. Sikora, M. Cieplak, and M. Carrión Vázquez, “An exploration of the universe of polyglutamine structures - submission to PLOS journals.” Public Library of Science , 2015. ista: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. 2015. An exploration of the universe of polyglutamine structures - submission to PLOS journals, Public Library of Science , 10.1371/journal.pcbi.1004541.s001. mla: Gómez Sicilia, Àngel, et al. An Exploration of the Universe of Polyglutamine Structures - Submission to PLOS Journals. Public Library of Science , 2015, doi:10.1371/journal.pcbi.1004541.s001. short: À. Gómez Sicilia, M.K. Sikora, M. Cieplak, M. Carrión Vázquez, (2015). date_created: 2021-07-23T12:05:28Z date_published: 2015-10-23T00:00:00Z date_updated: 2023-02-23T10:04:35Z day: '23' department: - _id: CaHe doi: 10.1371/journal.pcbi.1004541.s001 month: '10' oa_version: Published Version publisher: 'Public Library of Science ' related_material: record: - id: '1566' relation: used_in_publication status: public status: public title: An exploration of the universe of polyglutamine structures - submission to PLOS journals type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '1537' abstract: - lang: eng text: 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype. acknowledged_ssus: - _id: SSU acknowledgement: 'We would like to thank R. Hausschild and E. Papusheva for technical assistance and the service facilities at the IST Austria for continuous support. The caRhoA plasmid was a kind gift of T. Kudoh and A. Takesono. We thank M. Piel and E. Paluch for exchanging unpublished data. ' author: - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Andrew full_name: Callan Jones, Andrew last_name: Callan Jones - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Keisuke full_name: Sako, Keisuke id: 3BED66BE-F248-11E8-B48F-1D18A9856A87 last_name: Sako orcid: 0000-0002-6453-8075 - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Monika full_name: Ritsch Marte, Monika last_name: Ritsch Marte - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Ruprecht V, Wieser S, Callan Jones A, et al. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell. 2015;160(4):673-685. doi:10.1016/j.cell.2015.01.008 apa: Ruprecht, V., Wieser, S., Callan Jones, A., Smutny, M., Morita, H., Sako, K., … Heisenberg, C.-P. J. (2015). Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell. Cell Press. https://doi.org/10.1016/j.cell.2015.01.008 chicago: Ruprecht, Verena, Stefan Wieser, Andrew Callan Jones, Michael Smutny, Hitoshi Morita, Keisuke Sako, Vanessa Barone, et al. “Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility.” Cell. Cell Press, 2015. https://doi.org/10.1016/j.cell.2015.01.008. ieee: V. Ruprecht et al., “Cortical contractility triggers a stochastic switch to fast amoeboid cell motility,” Cell, vol. 160, no. 4. Cell Press, pp. 673–685, 2015. ista: Ruprecht V, Wieser S, Callan Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch Marte M, Sixt MK, Voituriez R, Heisenberg C-PJ. 2015. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell. 160(4), 673–685. mla: Ruprecht, Verena, et al. “Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility.” Cell, vol. 160, no. 4, Cell Press, 2015, pp. 673–85, doi:10.1016/j.cell.2015.01.008. short: V. Ruprecht, S. Wieser, A. Callan Jones, M. Smutny, H. Morita, K. Sako, V. Barone, M. Ritsch Marte, M.K. Sixt, R. Voituriez, C.-P.J. Heisenberg, Cell 160 (2015) 673–685. date_created: 2018-12-11T11:52:35Z date_published: 2015-02-12T00:00:00Z date_updated: 2023-09-07T12:05:08Z day: '12' ddc: - '570' department: - _id: CaHe - _id: MiSi doi: 10.1016/j.cell.2015.01.008 file: - access_level: open_access checksum: 228d3edf40627d897b3875088a0ac51f content_type: application/pdf creator: system date_created: 2018-12-12T10:13:21Z date_updated: 2020-07-14T12:45:01Z file_id: '5003' file_name: IST-2016-484-v1+1_1-s2.0-S0092867415000094-main.pdf file_size: 4362653 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 160' issue: '4' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 673 - 685 project: - _id: 2529486C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T 560-B17 name: Cell- and Tissue Mechanics in Zebrafish Germ Layer Formation - _id: 2527D5CC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 812-B12 name: Cell Cortex and Germ Layer Formation in Zebrafish Gastrulation publication: Cell publication_status: published publisher: Cell Press publist_id: '5634' pubrep_id: '484' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public scopus_import: 1 status: public title: Cortical contractility triggers a stochastic switch to fast amoeboid cell motility tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 160 year: '2015' ... --- _id: '10815' abstract: - lang: eng text: In the last several decades, developmental biology has clarified the molecular mechanisms of embryogenesis and organogenesis. In particular, it has demonstrated that the “tool-kit genes” essential for regulating developmental processes are not only highly conserved among species, but are also used as systems at various times and places in an organism to control distinct developmental events. Therefore, mutations in many of these tool-kit genes may cause congenital diseases involving morphological abnormalities. This link between genes and abnormal morphological phenotypes underscores the importance of understanding how cells behave and contribute to morphogenesis as a result of gene function. Recent improvements in live imaging and in quantitative analyses of cellular dynamics will advance our understanding of the cellular pathogenesis of congenital diseases associated with aberrant morphologies. In these studies, it is critical to select an appropriate model organism for the particular phenomenon of interest. acknowledgement: The authors thank all the members of the Division of Morphogenesis, National Institute for Basic Biology, for their contributions to the research, their encouragement, and helpful discussions, particularly Dr M. Suzuki for his critical reading of the manuscript. We also thank the Model Animal Research and Spectrography and Bioimaging Facilities, NIBB Core Research Facilities, for technical support. M.H. was supported by a research fellowship from the Japan Society for the Promotion of Science (JSPS). Our work introduced in this review was supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, to N.U. article_processing_charge: No article_type: original author: - first_name: Masakazu full_name: Hashimoto, Masakazu last_name: Hashimoto - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Naoto full_name: Ueno, Naoto last_name: Ueno citation: ama: Hashimoto M, Morita H, Ueno N. Molecular and cellular mechanisms of development underlying congenital diseases. Congenital Anomalies. 2014;54(1):1-7. doi:10.1111/cga.12039 apa: Hashimoto, M., Morita, H., & Ueno, N. (2014). Molecular and cellular mechanisms of development underlying congenital diseases. Congenital Anomalies. Wiley. https://doi.org/10.1111/cga.12039 chicago: Hashimoto, Masakazu, Hitoshi Morita, and Naoto Ueno. “Molecular and Cellular Mechanisms of Development Underlying Congenital Diseases.” Congenital Anomalies. Wiley, 2014. https://doi.org/10.1111/cga.12039. ieee: M. Hashimoto, H. Morita, and N. Ueno, “Molecular and cellular mechanisms of development underlying congenital diseases,” Congenital Anomalies, vol. 54, no. 1. Wiley, pp. 1–7, 2014. ista: Hashimoto M, Morita H, Ueno N. 2014. Molecular and cellular mechanisms of development underlying congenital diseases. Congenital Anomalies. 54(1), 1–7. mla: Hashimoto, Masakazu, et al. “Molecular and Cellular Mechanisms of Development Underlying Congenital Diseases.” Congenital Anomalies, vol. 54, no. 1, Wiley, 2014, pp. 1–7, doi:10.1111/cga.12039. short: M. Hashimoto, H. Morita, N. Ueno, Congenital Anomalies 54 (2014) 1–7. date_created: 2022-03-04T08:17:25Z date_published: 2014-02-01T00:00:00Z date_updated: 2022-03-04T08:26:05Z day: '01' department: - _id: CaHe doi: 10.1111/cga.12039 external_id: pmid: - '24666178' intvolume: ' 54' issue: '1' keyword: - Developmental Biology - Embryology - General Medicine - Pediatrics - Perinatology - and Child Health language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/cga.12039 month: '02' oa: 1 oa_version: None page: 1-7 pmid: 1 publication: Congenital Anomalies publication_identifier: issn: - 0914-3505 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Molecular and cellular mechanisms of development underlying congenital diseases type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 54 year: '2014' ... --- _id: '1891' abstract: - lang: eng text: We provide theoretical tests of a novel experimental technique to determine mechanostability of proteins based on stretching a mechanically protected protein by single-molecule force spectroscopy. This technique involves stretching a homogeneous or heterogeneous chain of reference proteins (single-molecule markers) in which one of them acts as host to the guest protein under study. The guest protein is grafted into the host through genetic engineering. It is expected that unraveling of the host precedes the unraveling of the guest removing ambiguities in the reading of the force-extension patterns of the guest protein. We study examples of such systems within a coarse-grained structure-based model. We consider systems with various ratios of mechanostability for the host and guest molecules and compare them to experimental results involving cohesin I as the guest molecule. For a comparison, we also study the force-displacement patterns in proteins that are linked in a serial fashion. We find that the mechanostability of the guest is similar to that of the isolated or serially linked protein. We also demonstrate that the ideal configuration of this strategy would be one in which the host is much more mechanostable than the single-molecule markers. We finally show that it is troublesome to use the highly stable cystine knot proteins as a host to graft a guest in stretching studies because this would involve a cleaving procedure. acknowledgement: Grant Nr. 2011/01/N/ST3/02475 author: - first_name: Mateusz full_name: Chwastyk, Mateusz last_name: Chwastyk - first_name: Albert full_name: Galera Prat, Albert last_name: Galera Prat - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Àngel full_name: Gómez Sicilia, Àngel last_name: Gómez Sicilia - first_name: Mariano full_name: Carrión Vázquez, Mariano last_name: Carrión Vázquez - first_name: Marek full_name: Cieplak, Marek last_name: Cieplak citation: ama: 'Chwastyk M, Galera Prat A, Sikora MK, Gómez Sicilia À, Carrión Vázquez M, Cieplak M. Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins: Structure, Function and Bioinformatics. 2014;82(5):717-726. doi:10.1002/prot.24436' apa: 'Chwastyk, M., Galera Prat, A., Sikora, M. K., Gómez Sicilia, À., Carrión Vázquez, M., & Cieplak, M. (2014). Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins: Structure, Function and Bioinformatics. Wiley-Blackwell. https://doi.org/10.1002/prot.24436' chicago: 'Chwastyk, Mateusz, Albert Galera Prat, Mateusz K Sikora, Àngel Gómez Sicilia, Mariano Carrión Vázquez, and Marek Cieplak. “Theoretical Tests of the Mechanical Protection Strategy in Protein Nanomechanics.” Proteins: Structure, Function and Bioinformatics. Wiley-Blackwell, 2014. https://doi.org/10.1002/prot.24436.' ieee: 'M. Chwastyk, A. Galera Prat, M. K. Sikora, À. Gómez Sicilia, M. Carrión Vázquez, and M. Cieplak, “Theoretical tests of the mechanical protection strategy in protein nanomechanics,” Proteins: Structure, Function and Bioinformatics, vol. 82, no. 5. Wiley-Blackwell, pp. 717–726, 2014.' ista: 'Chwastyk M, Galera Prat A, Sikora MK, Gómez Sicilia À, Carrión Vázquez M, Cieplak M. 2014. Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins: Structure, Function and Bioinformatics. 82(5), 717–726.' mla: 'Chwastyk, Mateusz, et al. “Theoretical Tests of the Mechanical Protection Strategy in Protein Nanomechanics.” Proteins: Structure, Function and Bioinformatics, vol. 82, no. 5, Wiley-Blackwell, 2014, pp. 717–26, doi:10.1002/prot.24436.' short: 'M. Chwastyk, A. Galera Prat, M.K. Sikora, À. Gómez Sicilia, M. Carrión Vázquez, M. Cieplak, Proteins: Structure, Function and Bioinformatics 82 (2014) 717–726.' date_created: 2018-12-11T11:54:34Z date_published: 2014-05-01T00:00:00Z date_updated: 2021-01-12T06:53:52Z day: '01' department: - _id: CaHe doi: 10.1002/prot.24436 intvolume: ' 82' issue: '5' language: - iso: eng month: '05' oa_version: None page: 717 - 726 publication: 'Proteins: Structure, Function and Bioinformatics' publication_status: published publisher: Wiley-Blackwell publist_id: '5204' scopus_import: 1 status: public title: Theoretical tests of the mechanical protection strategy in protein nanomechanics type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 82 year: '2014' ... --- _id: '1900' abstract: - lang: eng text: Epithelial cell layers need to be tightly regulated to maintain their integrity and correct function. Cell integration into epithelial sheets is now shown to depend on the N-WASP-regulated stabilization of cortical F-actin, which generates distinct patterns of apical-lateral contractility at E-cadherin-based cell-cell junctions. author: - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Behrndt M, Heisenberg C-PJ. Lateral junction dynamics lead the way out. Nature Cell Biology. 2014;16(2):127-129. doi:10.1038/ncb2913 apa: Behrndt, M., & Heisenberg, C.-P. J. (2014). Lateral junction dynamics lead the way out. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb2913 chicago: Behrndt, Martin, and Carl-Philipp J Heisenberg. “Lateral Junction Dynamics Lead the Way Out.” Nature Cell Biology. Nature Publishing Group, 2014. https://doi.org/10.1038/ncb2913. ieee: M. Behrndt and C.-P. J. Heisenberg, “Lateral junction dynamics lead the way out,” Nature Cell Biology, vol. 16, no. 2. Nature Publishing Group, pp. 127–129, 2014. ista: Behrndt M, Heisenberg C-PJ. 2014. Lateral junction dynamics lead the way out. Nature Cell Biology. 16(2), 127–129. mla: Behrndt, Martin, and Carl-Philipp J. Heisenberg. “Lateral Junction Dynamics Lead the Way Out.” Nature Cell Biology, vol. 16, no. 2, Nature Publishing Group, 2014, pp. 127–29, doi:10.1038/ncb2913. short: M. Behrndt, C.-P.J. Heisenberg, Nature Cell Biology 16 (2014) 127–129. date_created: 2018-12-11T11:54:37Z date_published: 2014-01-31T00:00:00Z date_updated: 2021-01-12T06:53:56Z day: '31' department: - _id: CaHe doi: 10.1038/ncb2913 intvolume: ' 16' issue: '2' language: - iso: eng month: '01' oa_version: None page: 127 - 129 publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '5195' quality_controlled: '1' scopus_import: 1 status: public title: Lateral junction dynamics lead the way out type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2014' ... --- _id: '1925' abstract: - lang: eng text: In the past decade carbon nanotubes (CNTs) have been widely studied as a potential drug-delivery system, especially with functionality for cellular targeting. Yet, little is known about the actual process of docking to cell receptors and transport dynamics after internalization. Here we performed single-particle studies of folic acid (FA) mediated CNT binding to human carcinoma cells and their transport inside the cytosol. In particular, we employed molecular recognition force spectroscopy, an atomic force microscopy based method, to visualize and quantify docking of FA functionalized CNTs to FA binding receptors in terms of binding probability and binding force. We then traced individual fluorescently labeled, FA functionalized CNTs after specific uptake, and created a dynamic 'roadmap' that clearly showed trajectories of directed diffusion and areas of nanotube confinement in the cytosol. Our results demonstrate the potential of a single-molecule approach for investigation of drug-delivery vehicles and their targeting capacity. acknowledgement: "This work was supported by EC grant Marie Curie RTN-CT-2006-035616, CARBIO 'Carbon nanotubes for biomedical applications' and Austrian FFG grant mnt-era.net 823980, 'IntelliTip'.\r\n" article_number: '125704' article_processing_charge: No article_type: original author: - first_name: Constanze full_name: Lamprecht, Constanze last_name: Lamprecht - first_name: Birgit full_name: Plochberger, Birgit last_name: Plochberger - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Stefan full_name: Wieser, Stefan id: 355AA5A0-F248-11E8-B48F-1D18A9856A87 last_name: Wieser orcid: 0000-0002-2670-2217 - first_name: Christian full_name: Rankl, Christian last_name: Rankl - first_name: Elena full_name: Heister, Elena last_name: Heister - first_name: Barbara full_name: Unterauer, Barbara last_name: Unterauer - first_name: Mario full_name: Brameshuber, Mario last_name: Brameshuber - first_name: Jürgen full_name: Danzberger, Jürgen last_name: Danzberger - first_name: Petar full_name: Lukanov, Petar last_name: Lukanov - first_name: Emmanuel full_name: Flahaut, Emmanuel last_name: Flahaut - first_name: Gerhard full_name: Schütz, Gerhard last_name: Schütz - first_name: Peter full_name: Hinterdorfer, Peter last_name: Hinterdorfer - first_name: Andreas full_name: Ebner, Andreas last_name: Ebner citation: ama: Lamprecht C, Plochberger B, Ruprecht V, et al. A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. 2014;25(12). doi:10.1088/0957-4484/25/12/125704 apa: Lamprecht, C., Plochberger, B., Ruprecht, V., Wieser, S., Rankl, C., Heister, E., … Ebner, A. (2014). A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. IOP Publishing. https://doi.org/10.1088/0957-4484/25/12/125704 chicago: Lamprecht, Constanze, Birgit Plochberger, Verena Ruprecht, Stefan Wieser, Christian Rankl, Elena Heister, Barbara Unterauer, et al. “A Single-Molecule Approach to Explore Binding Uptake and Transport of Cancer Cell Targeting Nanotubes.” Nanotechnology. IOP Publishing, 2014. https://doi.org/10.1088/0957-4484/25/12/125704. ieee: C. Lamprecht et al., “A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes,” Nanotechnology, vol. 25, no. 12. IOP Publishing, 2014. ista: Lamprecht C, Plochberger B, Ruprecht V, Wieser S, Rankl C, Heister E, Unterauer B, Brameshuber M, Danzberger J, Lukanov P, Flahaut E, Schütz G, Hinterdorfer P, Ebner A. 2014. A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. 25(12), 125704. mla: Lamprecht, Constanze, et al. “A Single-Molecule Approach to Explore Binding Uptake and Transport of Cancer Cell Targeting Nanotubes.” Nanotechnology, vol. 25, no. 12, 125704, IOP Publishing, 2014, doi:10.1088/0957-4484/25/12/125704. short: C. Lamprecht, B. Plochberger, V. Ruprecht, S. Wieser, C. Rankl, E. Heister, B. Unterauer, M. Brameshuber, J. Danzberger, P. Lukanov, E. Flahaut, G. Schütz, P. Hinterdorfer, A. Ebner, Nanotechnology 25 (2014). date_created: 2018-12-11T11:54:45Z date_published: 2014-03-28T00:00:00Z date_updated: 2021-01-12T06:54:07Z day: '28' ddc: - '570' department: - _id: CaHe - _id: MiSi doi: 10.1088/0957-4484/25/12/125704 file: - access_level: open_access checksum: df4e03d225a19179e7790f6d87a12332 content_type: application/pdf creator: dernst date_created: 2020-05-15T09:21:19Z date_updated: 2020-07-14T12:45:21Z file_id: '7856' file_name: 2014_Nanotechnology_Lamprecht.pdf file_size: 3804152 relation: main_file file_date_updated: 2020-07-14T12:45:21Z has_accepted_license: '1' intvolume: ' 25' issue: '12' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version publication: Nanotechnology publication_status: published publisher: IOP Publishing publist_id: '5169' scopus_import: 1 status: public title: A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2014' ... --- _id: '1923' abstract: - lang: eng text: We derive the equations for a thin, axisymmetric elastic shell subjected to an internal active stress giving rise to active tension and moments within the shell. We discuss the stability of a cylindrical elastic shell and its response to a localized change in internal active stress. This description is relevant to describe the cellular actomyosin cortex, a thin shell at the cell surface behaving elastically at a short timescale and subjected to active internal forces arising from myosin molecular motor activity. We show that the recent observations of cell deformation following detachment of adherent cells (Maître J-L et al 2012 Science 338 253-6) are well accounted for by this mechanical description. The actin cortex elastic and bending moduli can be obtained from a quantitative analysis of cell shapes observed in these experiments. Our approach thus provides a non-invasive, imaging-based method for the extraction of cellular physical parameters. article_number: '065005' author: - first_name: Hélène full_name: Berthoumieux, Hélène last_name: Berthoumieux - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux citation: ama: Berthoumieux H, Maître J-L, Heisenberg C-PJ, Paluch E, Julicher F, Salbreux G. Active elastic thin shell theory for cellular deformations. New Journal of Physics. 2014;16. doi:10.1088/1367-2630/16/6/065005 apa: Berthoumieux, H., Maître, J.-L., Heisenberg, C.-P. J., Paluch, E., Julicher, F., & Salbreux, G. (2014). Active elastic thin shell theory for cellular deformations. New Journal of Physics. IOP Publishing Ltd. https://doi.org/10.1088/1367-2630/16/6/065005 chicago: Berthoumieux, Hélène, Jean-Léon Maître, Carl-Philipp J Heisenberg, Ewa Paluch, Frank Julicher, and Guillaume Salbreux. “Active Elastic Thin Shell Theory for Cellular Deformations.” New Journal of Physics. IOP Publishing Ltd., 2014. https://doi.org/10.1088/1367-2630/16/6/065005. ieee: H. Berthoumieux, J.-L. Maître, C.-P. J. Heisenberg, E. Paluch, F. Julicher, and G. Salbreux, “Active elastic thin shell theory for cellular deformations,” New Journal of Physics, vol. 16. IOP Publishing Ltd., 2014. ista: Berthoumieux H, Maître J-L, Heisenberg C-PJ, Paluch E, Julicher F, Salbreux G. 2014. Active elastic thin shell theory for cellular deformations. New Journal of Physics. 16, 065005. mla: Berthoumieux, Hélène, et al. “Active Elastic Thin Shell Theory for Cellular Deformations.” New Journal of Physics, vol. 16, 065005, IOP Publishing Ltd., 2014, doi:10.1088/1367-2630/16/6/065005. short: H. Berthoumieux, J.-L. Maître, C.-P.J. Heisenberg, E. Paluch, F. Julicher, G. Salbreux, New Journal of Physics 16 (2014). date_created: 2018-12-11T11:54:44Z date_published: 2014-06-01T00:00:00Z date_updated: 2021-01-12T06:54:06Z day: '01' ddc: - '570' department: - _id: CaHe doi: 10.1088/1367-2630/16/6/065005 file: - access_level: open_access checksum: 8dbe81ec656bf1264d8889bda9b2b985 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:16Z date_updated: 2020-07-14T12:45:21Z file_id: '5202' file_name: IST-2016-429-v1+1_document.pdf file_size: 941387 relation: main_file file_date_updated: 2020-07-14T12:45:21Z has_accepted_license: '1' intvolume: ' 16' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: New Journal of Physics publication_status: published publisher: IOP Publishing Ltd. publist_id: '5171' pubrep_id: '429' quality_controlled: '1' scopus_import: 1 status: public title: Active elastic thin shell theory for cellular deformations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2014' ... --- _id: '2248' abstract: - lang: eng text: 'Avian forelimb digit homology remains one of the standard themes in comparative biology and EvoDevo research. In order to resolve the apparent contradictions between embryological and paleontological evidence a variety of hypotheses have been presented in recent years. The proposals range from excluding birds from the dinosaur clade, to assignments of homology by different criteria, or even assuming a hexadactyl tetrapod limb ground state. At present two approaches prevail: the frame shift hypothesis and the pyramid reduction hypothesis. While the former postulates a homeotic shift of digit identities, the latter argues for a gradual bilateral reduction of phalanges and digits. Here we present a new model that integrates elements from both hypotheses with the existing experimental and fossil evidence. We start from the main feature common to both earlier concepts, the initiating ontogenetic event: reduction and loss of the anterior-most digit. It is proposed that a concerted mechanism of molecular regulation and developmental mechanics is capable of shifting the boundaries of hoxD expression in embryonic forelimb buds as well as changing the digit phenotypes. Based on a distinction between positional (topological) and compositional (phenotypic) homology criteria, we argue that the identity of the avian digits is II, III, IV, despite a partially altered phenotype. Finally, we introduce an alternative digit reduction scheme that reconciles the current fossil evidence with the presented molecular-morphogenetic model. Our approach identifies specific experiments that allow to test whether gene expression can be shifted and digit phenotypes can be altered by induced digit loss or digit gain.' author: - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Brian full_name: Metscher, Brian last_name: Metscher - first_name: Gerd full_name: Müller, Gerd last_name: Müller citation: ama: 'Capek D, Metscher B, Müller G. Thumbs down: A molecular-morphogenetic approach to avian digit homology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2014;322(1):1-12. doi:10.1002/jez.b.22545' apa: 'Capek, D., Metscher, B., & Müller, G. (2014). Thumbs down: A molecular-morphogenetic approach to avian digit homology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. Wiley-Blackwell. https://doi.org/10.1002/jez.b.22545' chicago: 'Capek, Daniel, Brian Metscher, and Gerd Müller. “Thumbs down: A Molecular-Morphogenetic Approach to Avian Digit Homology.” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. Wiley-Blackwell, 2014. https://doi.org/10.1002/jez.b.22545.' ieee: 'D. Capek, B. Metscher, and G. Müller, “Thumbs down: A molecular-morphogenetic approach to avian digit homology,” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 322, no. 1. Wiley-Blackwell, pp. 1–12, 2014.' ista: 'Capek D, Metscher B, Müller G. 2014. Thumbs down: A molecular-morphogenetic approach to avian digit homology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 322(1), 1–12.' mla: 'Capek, Daniel, et al. “Thumbs down: A Molecular-Morphogenetic Approach to Avian Digit Homology.” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 322, no. 1, Wiley-Blackwell, 2014, pp. 1–12, doi:10.1002/jez.b.22545.' short: 'D. Capek, B. Metscher, G. Müller, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 322 (2014) 1–12.' date_created: 2018-12-11T11:56:33Z date_published: 2014-01-01T00:00:00Z date_updated: 2021-01-12T06:56:16Z day: '01' department: - _id: CaHe doi: 10.1002/jez.b.22545 intvolume: ' 322' issue: '1' language: - iso: eng month: '01' oa_version: None page: 1 - 12 publication: 'Journal of Experimental Zoology Part B: Molecular and Developmental Evolution' publication_identifier: issn: - '15525007' publication_status: published publisher: Wiley-Blackwell publist_id: '4701' quality_controlled: '1' scopus_import: 1 status: public title: 'Thumbs down: A molecular-morphogenetic approach to avian digit homology' type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 322 year: '2014' ... --- _id: '6178' abstract: - lang: eng text: Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo. article_processing_charge: No author: - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg C-PJ. UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In: Nelson C, ed. Tissue Morphogenesis. Vol 1189. Methods in Molecular Biology. New York, NY: Springer; 2014:219-235. doi:10.1007/978-1-4939-1164-6_15' apa: 'Smutny, M., Behrndt, M., Campinho, P., Ruprecht, V., & Heisenberg, C.-P. J. (2014). UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In C. Nelson (Ed.), Tissue Morphogenesis (Vol. 1189, pp. 219–235). New York, NY: Springer. https://doi.org/10.1007/978-1-4939-1164-6_15' chicago: 'Smutny, Michael, Martin Behrndt, Pedro Campinho, Verena Ruprecht, and Carl-Philipp J Heisenberg. “UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo in Vivo and Ex Vivo.” In Tissue Morphogenesis, edited by Celeste Nelson, 1189:219–35. Methods in Molecular Biology. New York, NY: Springer, 2014. https://doi.org/10.1007/978-1-4939-1164-6_15.' ieee: 'M. Smutny, M. Behrndt, P. Campinho, V. Ruprecht, and C.-P. J. Heisenberg, “UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo,” in Tissue Morphogenesis, vol. 1189, C. Nelson, Ed. New York, NY: Springer, 2014, pp. 219–235.' ista: 'Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg C-PJ. 2014.UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In: Tissue Morphogenesis. vol. 1189, 219–235.' mla: Smutny, Michael, et al. “UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo in Vivo and Ex Vivo.” Tissue Morphogenesis, edited by Celeste Nelson, vol. 1189, Springer, 2014, pp. 219–35, doi:10.1007/978-1-4939-1164-6_15. short: M. Smutny, M. Behrndt, P. Campinho, V. Ruprecht, C.-P.J. Heisenberg, in:, C. Nelson (Ed.), Tissue Morphogenesis, Springer, New York, NY, 2014, pp. 219–235. date_created: 2019-03-26T08:55:59Z date_published: 2014-08-22T00:00:00Z date_updated: 2023-09-05T14:12:00Z day: '22' department: - _id: CaHe doi: 10.1007/978-1-4939-1164-6_15 editor: - first_name: Celeste full_name: Nelson, Celeste last_name: Nelson external_id: pmid: - '25245697' intvolume: ' 1189' language: - iso: eng month: '08' oa_version: None page: 219-235 place: New York, NY pmid: 1 publication: Tissue Morphogenesis publication_identifier: eissn: - 1940-6029 isbn: - '9781493911639' - '9781493911646' issn: - 1064-3745 publication_status: published publisher: Springer quality_controlled: '1' series_title: Methods in Molecular Biology status: public title: UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 1189 year: '2014' ... --- _id: '1912' abstract: - lang: eng text: Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function. acknowledgement: We are grateful to members of the C.-P.H. lab, M. Concha, D. Siekhaus, and J. Vermot for comments on the manuscript and to M. Furutani-Seiki for sharing reagents. This work was supported by the Institute of Science and Technology Austria and an Alexander von Humboldt Foundation fellowship to J.C. article_processing_charge: No author: - first_name: Julien full_name: Compagnon, Julien id: 2E3E0988-F248-11E8-B48F-1D18A9856A87 last_name: Compagnon - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Srivarsha full_name: Rajshekar, Srivarsha last_name: Rajshekar - first_name: Rita full_name: Kottmeier, Rita last_name: Kottmeier - first_name: Kornelija full_name: Pranjic-Ferscha, Kornelija id: 4362B3C2-F248-11E8-B48F-1D18A9856A87 last_name: Pranjic-Ferscha - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Compagnon J, Barone V, Rajshekar S, et al. The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ. Developmental Cell. 2014;31(6):774-783. doi:10.1016/j.devcel.2014.11.003 apa: Compagnon, J., Barone, V., Rajshekar, S., Kottmeier, R., Pranjic-Ferscha, K., Behrndt, M., & Heisenberg, C.-P. J. (2014). The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2014.11.003 chicago: Compagnon, Julien, Vanessa Barone, Srivarsha Rajshekar, Rita Kottmeier, Kornelija Pranjic-Ferscha, Martin Behrndt, and Carl-Philipp J Heisenberg. “The Notochord Breaks Bilateral Symmetry by Controlling Cell Shapes in the Zebrafish Laterality Organ.” Developmental Cell. Cell Press, 2014. https://doi.org/10.1016/j.devcel.2014.11.003. ieee: J. Compagnon et al., “The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ,” Developmental Cell, vol. 31, no. 6. Cell Press, pp. 774–783, 2014. ista: Compagnon J, Barone V, Rajshekar S, Kottmeier R, Pranjic-Ferscha K, Behrndt M, Heisenberg C-PJ. 2014. The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ. Developmental Cell. 31(6), 774–783. mla: Compagnon, Julien, et al. “The Notochord Breaks Bilateral Symmetry by Controlling Cell Shapes in the Zebrafish Laterality Organ.” Developmental Cell, vol. 31, no. 6, Cell Press, 2014, pp. 774–83, doi:10.1016/j.devcel.2014.11.003. short: J. Compagnon, V. Barone, S. Rajshekar, R. Kottmeier, K. Pranjic-Ferscha, M. Behrndt, C.-P.J. Heisenberg, Developmental Cell 31 (2014) 774–783. date_created: 2018-12-11T11:54:41Z date_published: 2014-12-22T00:00:00Z date_updated: 2023-09-07T12:05:08Z day: '22' department: - _id: CaHe doi: 10.1016/j.devcel.2014.11.003 external_id: pmid: - '25535919' intvolume: ' 31' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/25535919 month: '12' oa: 1 oa_version: Published Version page: 774 - 783 pmid: 1 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '5182' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public scopus_import: '1' status: public title: The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 31 year: '2014' ... --- _id: '1403' abstract: - lang: eng text: A variety of developmental and disease related processes depend on epithelial cell sheet spreading. In order to gain insight into the biophysical mechanism(s) underlying the tissue morphogenesis we studied the spreading of an epithelium during the early development of the zebrafish embryo. In zebrafish epiboly the enveloping cell layer (EVL), a simple squamous epithelium, spreads over the yolk cell to completely engulf it at the end of gastrulation. Previous studies have proposed that an actomyosin ring forming within the yolk syncytial layer (YSL) acts as purse string that through constriction along its circumference pulls on the margin of the EVL. Direct biophysical evidence for this hypothesis has however been missing. The aim of the thesis was to understand how the actomyosin ring may generate pulling forces onto the EVL and what cellular mechanism(s) may facilitate the spreading of the epithelium. Using laser ablation to measure cortical tension within the actomyosin ring we found an anisotropic tension distribution, which was highest along the circumference of the ring. However the low degree of anisotropy was incompatible with the actomyosin ring functioning as a purse string only. Additionally, we observed retrograde cortical flow from vegetal parts of the ring into the EVL margin. Interpreting the experimental data using a theoretical distribution that models the tissues as active viscous gels led us to proposen that the actomyosin ring has a twofold contribution to EVL epiboly. It not only acts as a purse string through constriction along its circumference, but in addition constriction along the width of the ring generates pulling forces through friction-resisted cortical flow. Moreover, when rendering the purse string mechanism unproductive EVL epiboly proceeded normally indicating that the flow-friction mechanism is sufficient to drive the process. Aiming to understand what cellular mechanism(s) may facilitate the spreading of the epithelium we found that tension-oriented EVL cell divisions limit tissue anisotropy by releasing tension along the division axis and promote epithelial spreading. Notably, EVL cells undergo ectopic cell fusion in conditions in which oriented-cell division is impaired or the epithelium is mechanically challenged. Taken together our study of EVL epiboly suggests a novel mechanism of force generation for actomyosin rings through friction-resisted cortical flow and highlights the importance of tension-oriented cell divisions in epithelial morphogenesis. acknowledged_ssus: - _id: SSU alternative_title: - IST Austria Thesis author: - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt citation: ama: Behrndt M. Forces driving epithelial spreading in zebrafish epiboly. 2014. apa: Behrndt, M. (2014). Forces driving epithelial spreading in zebrafish epiboly. IST Austria. chicago: Behrndt, Martin. “Forces Driving Epithelial Spreading in Zebrafish Epiboly.” IST Austria, 2014. ieee: M. Behrndt, “Forces driving epithelial spreading in zebrafish epiboly,” IST Austria, 2014. ista: Behrndt M. 2014. Forces driving epithelial spreading in zebrafish epiboly. IST Austria. mla: Behrndt, Martin. Forces Driving Epithelial Spreading in Zebrafish Epiboly. IST Austria, 2014. short: M. Behrndt, Forces Driving Epithelial Spreading in Zebrafish Epiboly, IST Austria, 2014. date_created: 2018-12-11T11:51:49Z date_published: 2014-08-01T00:00:00Z date_updated: 2023-10-17T12:16:58Z day: '01' department: - _id: CaHe language: - iso: eng month: '08' oa_version: None page: '91' publication_status: published publisher: IST Austria publist_id: '5804' related_material: record: - id: '2282' relation: part_of_dissertation status: public - id: '2950' relation: part_of_dissertation status: public - id: '3373' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Forces driving epithelial spreading in zebrafish epiboly type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '2278' abstract: - lang: eng text: It is firmly established that interactions between neurons and glia are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions that generate neuroblasts. The proneural gene lethal of scute (l9sc) is transiently activated by the epidermal growth factor receptor (EGFR)-Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium, promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR-Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for interactions between glia and neuroepithelial cells during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR-Ras pathway and hence of L9sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling. author: - first_name: Raquel full_name: Pérez Gómez, Raquel last_name: Pérez Gómez - first_name: Jana full_name: Slovakova, Jana id: 30F3F2F0-F248-11E8-B48F-1D18A9856A87 last_name: Slovakova - first_name: Noemí full_name: Rives Quinto, Noemí last_name: Rives Quinto - first_name: Alena full_name: Krejčí, Alena last_name: Krejčí - first_name: Ana full_name: Carmena, Ana last_name: Carmena citation: ama: Pérez Gómez R, Slovakova J, Rives Quinto N, Krejčí A, Carmena A. A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. Journal of Cell Science. 2013;126(21):4873-4884. doi:10.1242/jcs.125617 apa: Pérez Gómez, R., Slovakova, J., Rives Quinto, N., Krejčí, A., & Carmena, A. (2013). A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. Journal of Cell Science. Company of Biologists. https://doi.org/10.1242/jcs.125617 chicago: Pérez Gómez, Raquel, Jana Slovakova, Noemí Rives Quinto, Alena Krejčí, and Ana Carmena. “A Serrate-Notch-Canoe Complex Mediates Essential Interactions between Glia and Neuroepithelial Cells during Drosophila Optic Lobe Development.” Journal of Cell Science. Company of Biologists, 2013. https://doi.org/10.1242/jcs.125617. ieee: R. Pérez Gómez, J. Slovakova, N. Rives Quinto, A. Krejčí, and A. Carmena, “A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development,” Journal of Cell Science, vol. 126, no. 21. Company of Biologists, pp. 4873–4884, 2013. ista: Pérez Gómez R, Slovakova J, Rives Quinto N, Krejčí A, Carmena A. 2013. A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. Journal of Cell Science. 126(21), 4873–4884. mla: Pérez Gómez, Raquel, et al. “A Serrate-Notch-Canoe Complex Mediates Essential Interactions between Glia and Neuroepithelial Cells during Drosophila Optic Lobe Development.” Journal of Cell Science, vol. 126, no. 21, Company of Biologists, 2013, pp. 4873–84, doi:10.1242/jcs.125617. short: R. Pérez Gómez, J. Slovakova, N. Rives Quinto, A. Krejčí, A. Carmena, Journal of Cell Science 126 (2013) 4873–4884. date_created: 2018-12-11T11:56:43Z date_published: 2013-11-01T00:00:00Z date_updated: 2021-01-12T06:56:29Z day: '01' department: - _id: CaHe doi: 10.1242/jcs.125617 intvolume: ' 126' issue: '21' language: - iso: eng month: '11' oa_version: None page: 4873 - 4884 publication: Journal of Cell Science publication_status: published publisher: Company of Biologists publist_id: '4658' quality_controlled: '1' scopus_import: 1 status: public title: A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 126 year: '2013' ... --- _id: '2282' abstract: - lang: eng text: Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly. acknowledged_ssus: - _id: PreCl - _id: Bio acknowledgement: 'This work was supported by the IST Austria and MPI-CBG ' author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Jonas full_name: Ranft, Jonas last_name: Ranft - first_name: Thomas full_name: Risler, Thomas last_name: Risler - first_name: Nicolas full_name: Minc, Nicolas last_name: Minc - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg C-PJ. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. 2013;15:1405-1414. doi:10.1038/ncb2869 apa: Campinho, P., Behrndt, M., Ranft, J., Risler, T., Minc, N., & Heisenberg, C.-P. J. (2013). Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb2869 chicago: Campinho, Pedro, Martin Behrndt, Jonas Ranft, Thomas Risler, Nicolas Minc, and Carl-Philipp J Heisenberg. “Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading during Zebrafish Epiboly.” Nature Cell Biology. Nature Publishing Group, 2013. https://doi.org/10.1038/ncb2869. ieee: P. Campinho, M. Behrndt, J. Ranft, T. Risler, N. Minc, and C.-P. J. Heisenberg, “Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly,” Nature Cell Biology, vol. 15. Nature Publishing Group, pp. 1405–1414, 2013. ista: Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg C-PJ. 2013. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. 15, 1405–1414. mla: Campinho, Pedro, et al. “Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading during Zebrafish Epiboly.” Nature Cell Biology, vol. 15, Nature Publishing Group, 2013, pp. 1405–14, doi:10.1038/ncb2869. short: P. Campinho, M. Behrndt, J. Ranft, T. Risler, N. Minc, C.-P.J. Heisenberg, Nature Cell Biology 15 (2013) 1405–1414. date_created: 2018-12-11T11:56:45Z date_published: 2013-11-10T00:00:00Z date_updated: 2023-02-21T17:02:44Z day: '10' department: - _id: CaHe doi: 10.1038/ncb2869 intvolume: ' 15' language: - iso: eng main_file_link: - open_access: '1' url: http://hal.upmc.fr/hal-00983313/ month: '11' oa: 1 oa_version: Submitted Version page: 1405 - 1414 project: - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '4652' quality_controlled: '1' related_material: record: - id: '1403' relation: dissertation_contains status: public scopus_import: 1 status: public title: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2013' ... --- _id: '2286' abstract: - lang: eng text: The spatiotemporal control of cell divisions is a key factor in epithelial morphogenesis and patterning. Mao et al (2013) now describe how differential rates of proliferation within the Drosophila wing disc epithelium give rise to anisotropic tissue tension in peripheral/proximal regions of the disc. Such global tissue tension anisotropy in turn determines the orientation of cell divisions by controlling epithelial cell elongation. author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Campinho P, Heisenberg C-PJ. The force and effect of cell proliferation. EMBO Journal. 2013;32(21):2783-2784. doi:10.1038/emboj.2013.225 apa: Campinho, P., & Heisenberg, C.-P. J. (2013). The force and effect of cell proliferation. EMBO Journal. Wiley-Blackwell. https://doi.org/10.1038/emboj.2013.225 chicago: Campinho, Pedro, and Carl-Philipp J Heisenberg. “The Force and Effect of Cell Proliferation.” EMBO Journal. Wiley-Blackwell, 2013. https://doi.org/10.1038/emboj.2013.225. ieee: P. Campinho and C.-P. J. Heisenberg, “The force and effect of cell proliferation,” EMBO Journal, vol. 32, no. 21. Wiley-Blackwell, pp. 2783–2784, 2013. ista: Campinho P, Heisenberg C-PJ. 2013. The force and effect of cell proliferation. EMBO Journal. 32(21), 2783–2784. mla: Campinho, Pedro, and Carl-Philipp J. Heisenberg. “The Force and Effect of Cell Proliferation.” EMBO Journal, vol. 32, no. 21, Wiley-Blackwell, 2013, pp. 2783–84, doi:10.1038/emboj.2013.225. short: P. Campinho, C.-P.J. Heisenberg, EMBO Journal 32 (2013) 2783–2784. date_created: 2018-12-11T11:56:46Z date_published: 2013-10-04T00:00:00Z date_updated: 2021-01-12T06:56:32Z day: '04' department: - _id: CaHe doi: 10.1038/emboj.2013.225 external_id: pmid: - '24097062' intvolume: ' 32' issue: '21' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817470/ month: '10' oa: 1 oa_version: Submitted Version page: 2783 - 2784 pmid: 1 publication: EMBO Journal publication_status: published publisher: Wiley-Blackwell publist_id: '4645' quality_controlled: '1' scopus_import: 1 status: public title: The force and effect of cell proliferation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2013' ... --- _id: '2469' abstract: - lang: eng text: Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major unctions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial ension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact. author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Heisenberg C-PJ. Three functions of cadherins in cell adhesion. Current Biology. 2013;23(14):R626-R633. doi:10.1016/j.cub.2013.06.019 apa: Maître, J.-L., & Heisenberg, C.-P. J. (2013). Three functions of cadherins in cell adhesion. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2013.06.019 chicago: Maître, Jean-Léon, and Carl-Philipp J Heisenberg. “Three Functions of Cadherins in Cell Adhesion.” Current Biology. Cell Press, 2013. https://doi.org/10.1016/j.cub.2013.06.019. ieee: J.-L. Maître and C.-P. J. Heisenberg, “Three functions of cadherins in cell adhesion,” Current Biology, vol. 23, no. 14. Cell Press, pp. R626–R633, 2013. ista: Maître J-L, Heisenberg C-PJ. 2013. Three functions of cadherins in cell adhesion. Current Biology. 23(14), R626–R633. mla: Maître, Jean-Léon, and Carl-Philipp J. Heisenberg. “Three Functions of Cadherins in Cell Adhesion.” Current Biology, vol. 23, no. 14, Cell Press, 2013, pp. R626–33, doi:10.1016/j.cub.2013.06.019. short: J.-L. Maître, C.-P.J. Heisenberg, Current Biology 23 (2013) R626–R633. date_created: 2018-12-11T11:57:51Z date_published: 2013-07-22T00:00:00Z date_updated: 2021-01-12T06:57:40Z day: '22' ddc: - '570' department: - _id: CaHe doi: 10.1016/j.cub.2013.06.019 external_id: pmid: - '23885883' file: - access_level: open_access checksum: 6a424b2f007b41d4955a9135793b2162 content_type: application/pdf creator: dernst date_created: 2019-01-24T15:40:22Z date_updated: 2020-07-14T12:45:41Z file_id: '5881' file_name: 2013_CurrentBiology_Maitre.pdf file_size: 247320 relation: main_file file_date_updated: 2020-07-14T12:45:41Z has_accepted_license: '1' intvolume: ' 23' issue: '14' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: R626 - R633 pmid: 1 publication: Current Biology publication_status: published publisher: Cell Press publist_id: '4433' quality_controlled: '1' scopus_import: 1 status: public title: Three functions of cadherins in cell adhesion tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '2833' abstract: - lang: eng text: During development, mechanical forces cause changes in size, shape, number, position, and gene expression of cells. They are therefore integral to any morphogenetic processes. Force generation by actin-myosin networks and force transmission through adhesive complexes are two self-organizing phenomena driving tissue morphogenesis. Coordination and integration of forces by long-range force transmission and mechanosensing of cells within tissues produce large-scale tissue shape changes. Extrinsic mechanical forces also control tissue patterning by modulating cell fate specification and differentiation. Thus, the interplay between tissue mechanics and biochemical signaling orchestrates tissue morphogenesis and patterning in development. acknowledgement: C.-P.H. is supported by the Institute of Science and Technology Austria and grants from the Deutsche Forschungsgemeinschaft (DFG) and Fonds zur Förderung der wissenschaftlichen Forschung (FWF). author: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Yohanns full_name: Bellaïche, Yohanns last_name: Bellaïche citation: ama: Heisenberg C-PJ, Bellaïche Y. Forces in tissue morphogenesis and patterning. Cell. 2013;153(5):948-962. doi:10.1016/j.cell.2013.05.008 apa: Heisenberg, C.-P. J., & Bellaïche, Y. (2013). Forces in tissue morphogenesis and patterning. Cell. Cell Press. https://doi.org/10.1016/j.cell.2013.05.008 chicago: Heisenberg, Carl-Philipp J, and Yohanns Bellaïche. “Forces in Tissue Morphogenesis and Patterning.” Cell. Cell Press, 2013. https://doi.org/10.1016/j.cell.2013.05.008. ieee: C.-P. J. Heisenberg and Y. Bellaïche, “Forces in tissue morphogenesis and patterning,” Cell, vol. 153, no. 5. Cell Press, pp. 948–962, 2013. ista: Heisenberg C-PJ, Bellaïche Y. 2013. Forces in tissue morphogenesis and patterning. Cell. 153(5), 948–962. mla: Heisenberg, Carl-Philipp J., and Yohanns Bellaïche. “Forces in Tissue Morphogenesis and Patterning.” Cell, vol. 153, no. 5, Cell Press, 2013, pp. 948–62, doi:10.1016/j.cell.2013.05.008. short: C.-P.J. Heisenberg, Y. Bellaïche, Cell 153 (2013) 948–962. date_created: 2018-12-11T11:59:50Z date_published: 2013-05-23T00:00:00Z date_updated: 2021-01-12T07:00:04Z day: '23' department: - _id: CaHe doi: 10.1016/j.cell.2013.05.008 intvolume: ' 153' issue: '5' language: - iso: eng month: '05' oa_version: None page: 948 - 962 publication: Cell publication_status: published publisher: Cell Press publist_id: '3966' quality_controlled: '1' scopus_import: 1 status: public title: Forces in tissue morphogenesis and patterning type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 153 year: '2013' ... --- _id: '2841' abstract: - lang: eng text: In zebrafish early development, blastoderm cells undergo extensive radial intercalations, triggering the spreading of the blastoderm over the yolk cell and thereby initiating embryonic body axis formation. Now reporting in Developmental Cell, Song et al. (2013) demonstrate a critical function for EGF-dependent E-cadherin endocytosis in promoting blastoderm cell intercalations. author: - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Morita H, Heisenberg C-PJ. Holding on and letting go: Cadherin turnover in cell intercalation. Developmental Cell. 2013;24(6):567-569. doi:10.1016/j.devcel.2013.03.007' apa: 'Morita, H., & Heisenberg, C.-P. J. (2013). Holding on and letting go: Cadherin turnover in cell intercalation. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2013.03.007' chicago: 'Morita, Hitoshi, and Carl-Philipp J Heisenberg. “Holding on and Letting Go: Cadherin Turnover in Cell Intercalation.” Developmental Cell. Cell Press, 2013. https://doi.org/10.1016/j.devcel.2013.03.007.' ieee: 'H. Morita and C.-P. J. Heisenberg, “Holding on and letting go: Cadherin turnover in cell intercalation,” Developmental Cell, vol. 24, no. 6. Cell Press, pp. 567–569, 2013.' ista: 'Morita H, Heisenberg C-PJ. 2013. Holding on and letting go: Cadherin turnover in cell intercalation. Developmental Cell. 24(6), 567–569.' mla: 'Morita, Hitoshi, and Carl-Philipp J. Heisenberg. “Holding on and Letting Go: Cadherin Turnover in Cell Intercalation.” Developmental Cell, vol. 24, no. 6, Cell Press, 2013, pp. 567–69, doi:10.1016/j.devcel.2013.03.007.' short: H. Morita, C.-P.J. Heisenberg, Developmental Cell 24 (2013) 567–569. date_created: 2018-12-11T11:59:52Z date_published: 2013-05-25T00:00:00Z date_updated: 2021-01-12T07:00:09Z day: '25' department: - _id: CaHe doi: 10.1016/j.devcel.2013.03.007 intvolume: ' 24' issue: '6' language: - iso: eng month: '05' oa_version: None page: 567 - 569 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '3956' quality_controlled: '1' scopus_import: 1 status: public title: 'Holding on and letting go: Cadherin turnover in cell intercalation' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2013' ... --- _id: '2862' abstract: - lang: eng text: Motile cilia perform crucial functions during embryonic development and throughout adult life. Development of organs containing motile cilia involves regulation of cilia formation (ciliogenesis) and formation of a luminal space (lumenogenesis) in which cilia generate fluid flows. Control of ciliogenesis and lumenogenesis is not yet fully understood, and it remains unclear whether these processes are coupled. In the zebrafish embryo, lethal giant larvae 2 (lgl2) is expressed prominently in ciliated organs. Lgl proteins are involved in establishing cell polarity and have been implicated in vesicle trafficking. Here, we identified a role for Lgl2 in development of ciliated epithelia in Kupffer's vesicle, which directs left-right asymmetry of the embryo; the otic vesicles, which give rise to the inner ear; and the pronephric ducts of the kidney. Using Kupffer's vesicle as a model ciliated organ, we found that depletion of Lgl2 disrupted lumen formation and reduced cilia number and length. Immunofluorescence and time-lapse imaging of Kupffer's vesicle morphogenesis in Lgl2-deficient embryos suggested cell adhesion defects and revealed loss of the adherens junction component E-cadherin at lateral membranes. Genetic interaction experiments indicate that Lgl2 interacts with Rab11a to regulate E-cadherin and mediate lumen formation that is uncoupled from cilia formation. These results uncover new roles and interactions for Lgl2 that are crucial for both lumenogenesis and ciliogenesis and indicate that these processes are genetically separable in zebrafish. acknowledgement: Deposited in PMC for release after 12 months. We thank members of the Amack lab for helpful discussions and Mahendra Sonawane for donating reagents. author: - first_name: Hwee full_name: Tay, Hwee last_name: Tay - first_name: Sabrina full_name: Schulze, Sabrina last_name: Schulze - first_name: Julien full_name: Compagnon, Julien id: 2E3E0988-F248-11E8-B48F-1D18A9856A87 last_name: Compagnon - first_name: Fiona full_name: Foley, Fiona last_name: Foley - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: H Joseph full_name: Yost, H Joseph last_name: Yost - first_name: Salim full_name: Abdelilah Seyfried, Salim last_name: Abdelilah Seyfried - first_name: Jeffrey full_name: Amack, Jeffrey last_name: Amack citation: ama: Tay H, Schulze S, Compagnon J, et al. Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. 2013;140(7):1550-1559. doi:10.1242/dev.087130 apa: Tay, H., Schulze, S., Compagnon, J., Foley, F., Heisenberg, C.-P. J., Yost, H. J., … Amack, J. (2013). Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. Company of Biologists. https://doi.org/10.1242/dev.087130 chicago: Tay, Hwee, Sabrina Schulze, Julien Compagnon, Fiona Foley, Carl-Philipp J Heisenberg, H Joseph Yost, Salim Abdelilah Seyfried, and Jeffrey Amack. “Lethal Giant Larvae 2 Regulates Development of the Ciliated Organ Kupffer’s Vesicle.” Development. Company of Biologists, 2013. https://doi.org/10.1242/dev.087130. ieee: H. Tay et al., “Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle,” Development, vol. 140, no. 7. Company of Biologists, pp. 1550–1559, 2013. ista: Tay H, Schulze S, Compagnon J, Foley F, Heisenberg C-PJ, Yost HJ, Abdelilah Seyfried S, Amack J. 2013. Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. 140(7), 1550–1559. mla: Tay, Hwee, et al. “Lethal Giant Larvae 2 Regulates Development of the Ciliated Organ Kupffer’s Vesicle.” Development, vol. 140, no. 7, Company of Biologists, 2013, pp. 1550–59, doi:10.1242/dev.087130. short: H. Tay, S. Schulze, J. Compagnon, F. Foley, C.-P.J. Heisenberg, H.J. Yost, S. Abdelilah Seyfried, J. Amack, Development 140 (2013) 1550–1559. date_created: 2018-12-11T11:59:59Z date_published: 2013-04-01T00:00:00Z date_updated: 2021-01-12T07:00:20Z day: '01' department: - _id: CaHe doi: 10.1242/dev.087130 external_id: pmid: - '23482490' intvolume: ' 140' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596994/ month: '04' oa: 1 oa_version: Submitted Version page: 1550 - 1559 pmid: 1 publication: Development publication_status: published publisher: Company of Biologists publist_id: '3927' quality_controlled: '1' scopus_import: 1 status: public title: Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 140 year: '2013' ...