--- _id: '6178' abstract: - lang: eng text: Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo. article_processing_charge: No author: - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg C-PJ. UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In: Nelson C, ed. Tissue Morphogenesis. Vol 1189. Methods in Molecular Biology. New York, NY: Springer; 2014:219-235. doi:10.1007/978-1-4939-1164-6_15' apa: 'Smutny, M., Behrndt, M., Campinho, P., Ruprecht, V., & Heisenberg, C.-P. J. (2014). UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In C. Nelson (Ed.), Tissue Morphogenesis (Vol. 1189, pp. 219–235). New York, NY: Springer. https://doi.org/10.1007/978-1-4939-1164-6_15' chicago: 'Smutny, Michael, Martin Behrndt, Pedro Campinho, Verena Ruprecht, and Carl-Philipp J Heisenberg. “UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo in Vivo and Ex Vivo.” In Tissue Morphogenesis, edited by Celeste Nelson, 1189:219–35. Methods in Molecular Biology. New York, NY: Springer, 2014. https://doi.org/10.1007/978-1-4939-1164-6_15.' ieee: 'M. Smutny, M. Behrndt, P. Campinho, V. Ruprecht, and C.-P. J. Heisenberg, “UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo,” in Tissue Morphogenesis, vol. 1189, C. Nelson, Ed. New York, NY: Springer, 2014, pp. 219–235.' ista: 'Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg C-PJ. 2014.UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In: Tissue Morphogenesis. vol. 1189, 219–235.' mla: Smutny, Michael, et al. “UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo in Vivo and Ex Vivo.” Tissue Morphogenesis, edited by Celeste Nelson, vol. 1189, Springer, 2014, pp. 219–35, doi:10.1007/978-1-4939-1164-6_15. short: M. Smutny, M. Behrndt, P. Campinho, V. Ruprecht, C.-P.J. Heisenberg, in:, C. Nelson (Ed.), Tissue Morphogenesis, Springer, New York, NY, 2014, pp. 219–235. date_created: 2019-03-26T08:55:59Z date_published: 2014-08-22T00:00:00Z date_updated: 2023-09-05T14:12:00Z day: '22' department: - _id: CaHe doi: 10.1007/978-1-4939-1164-6_15 editor: - first_name: Celeste full_name: Nelson, Celeste last_name: Nelson external_id: pmid: - '25245697' intvolume: ' 1189' language: - iso: eng month: '08' oa_version: None page: 219-235 place: New York, NY pmid: 1 publication: Tissue Morphogenesis publication_identifier: eissn: - 1940-6029 isbn: - '9781493911639' - '9781493911646' issn: - 1064-3745 publication_status: published publisher: Springer quality_controlled: '1' series_title: Methods in Molecular Biology status: public title: UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 1189 year: '2014' ... --- _id: '1912' abstract: - lang: eng text: Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function. acknowledgement: We are grateful to members of the C.-P.H. lab, M. Concha, D. Siekhaus, and J. Vermot for comments on the manuscript and to M. Furutani-Seiki for sharing reagents. This work was supported by the Institute of Science and Technology Austria and an Alexander von Humboldt Foundation fellowship to J.C. article_processing_charge: No author: - first_name: Julien full_name: Compagnon, Julien id: 2E3E0988-F248-11E8-B48F-1D18A9856A87 last_name: Compagnon - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Srivarsha full_name: Rajshekar, Srivarsha last_name: Rajshekar - first_name: Rita full_name: Kottmeier, Rita last_name: Kottmeier - first_name: Kornelija full_name: Pranjic-Ferscha, Kornelija id: 4362B3C2-F248-11E8-B48F-1D18A9856A87 last_name: Pranjic-Ferscha - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Compagnon J, Barone V, Rajshekar S, et al. The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ. Developmental Cell. 2014;31(6):774-783. doi:10.1016/j.devcel.2014.11.003 apa: Compagnon, J., Barone, V., Rajshekar, S., Kottmeier, R., Pranjic-Ferscha, K., Behrndt, M., & Heisenberg, C.-P. J. (2014). The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2014.11.003 chicago: Compagnon, Julien, Vanessa Barone, Srivarsha Rajshekar, Rita Kottmeier, Kornelija Pranjic-Ferscha, Martin Behrndt, and Carl-Philipp J Heisenberg. “The Notochord Breaks Bilateral Symmetry by Controlling Cell Shapes in the Zebrafish Laterality Organ.” Developmental Cell. Cell Press, 2014. https://doi.org/10.1016/j.devcel.2014.11.003. ieee: J. Compagnon et al., “The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ,” Developmental Cell, vol. 31, no. 6. Cell Press, pp. 774–783, 2014. ista: Compagnon J, Barone V, Rajshekar S, Kottmeier R, Pranjic-Ferscha K, Behrndt M, Heisenberg C-PJ. 2014. The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ. Developmental Cell. 31(6), 774–783. mla: Compagnon, Julien, et al. “The Notochord Breaks Bilateral Symmetry by Controlling Cell Shapes in the Zebrafish Laterality Organ.” Developmental Cell, vol. 31, no. 6, Cell Press, 2014, pp. 774–83, doi:10.1016/j.devcel.2014.11.003. short: J. Compagnon, V. Barone, S. Rajshekar, R. Kottmeier, K. Pranjic-Ferscha, M. Behrndt, C.-P.J. Heisenberg, Developmental Cell 31 (2014) 774–783. date_created: 2018-12-11T11:54:41Z date_published: 2014-12-22T00:00:00Z date_updated: 2023-09-07T12:05:08Z day: '22' department: - _id: CaHe doi: 10.1016/j.devcel.2014.11.003 external_id: pmid: - '25535919' intvolume: ' 31' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/25535919 month: '12' oa: 1 oa_version: Published Version page: 774 - 783 pmid: 1 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '5182' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public scopus_import: '1' status: public title: The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 31 year: '2014' ... --- _id: '1403' abstract: - lang: eng text: A variety of developmental and disease related processes depend on epithelial cell sheet spreading. In order to gain insight into the biophysical mechanism(s) underlying the tissue morphogenesis we studied the spreading of an epithelium during the early development of the zebrafish embryo. In zebrafish epiboly the enveloping cell layer (EVL), a simple squamous epithelium, spreads over the yolk cell to completely engulf it at the end of gastrulation. Previous studies have proposed that an actomyosin ring forming within the yolk syncytial layer (YSL) acts as purse string that through constriction along its circumference pulls on the margin of the EVL. Direct biophysical evidence for this hypothesis has however been missing. The aim of the thesis was to understand how the actomyosin ring may generate pulling forces onto the EVL and what cellular mechanism(s) may facilitate the spreading of the epithelium. Using laser ablation to measure cortical tension within the actomyosin ring we found an anisotropic tension distribution, which was highest along the circumference of the ring. However the low degree of anisotropy was incompatible with the actomyosin ring functioning as a purse string only. Additionally, we observed retrograde cortical flow from vegetal parts of the ring into the EVL margin. Interpreting the experimental data using a theoretical distribution that models the tissues as active viscous gels led us to proposen that the actomyosin ring has a twofold contribution to EVL epiboly. It not only acts as a purse string through constriction along its circumference, but in addition constriction along the width of the ring generates pulling forces through friction-resisted cortical flow. Moreover, when rendering the purse string mechanism unproductive EVL epiboly proceeded normally indicating that the flow-friction mechanism is sufficient to drive the process. Aiming to understand what cellular mechanism(s) may facilitate the spreading of the epithelium we found that tension-oriented EVL cell divisions limit tissue anisotropy by releasing tension along the division axis and promote epithelial spreading. Notably, EVL cells undergo ectopic cell fusion in conditions in which oriented-cell division is impaired or the epithelium is mechanically challenged. Taken together our study of EVL epiboly suggests a novel mechanism of force generation for actomyosin rings through friction-resisted cortical flow and highlights the importance of tension-oriented cell divisions in epithelial morphogenesis. acknowledged_ssus: - _id: SSU alternative_title: - IST Austria Thesis author: - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt citation: ama: Behrndt M. Forces driving epithelial spreading in zebrafish epiboly. 2014. apa: Behrndt, M. (2014). Forces driving epithelial spreading in zebrafish epiboly. IST Austria. chicago: Behrndt, Martin. “Forces Driving Epithelial Spreading in Zebrafish Epiboly.” IST Austria, 2014. ieee: M. Behrndt, “Forces driving epithelial spreading in zebrafish epiboly,” IST Austria, 2014. ista: Behrndt M. 2014. Forces driving epithelial spreading in zebrafish epiboly. IST Austria. mla: Behrndt, Martin. Forces Driving Epithelial Spreading in Zebrafish Epiboly. IST Austria, 2014. short: M. Behrndt, Forces Driving Epithelial Spreading in Zebrafish Epiboly, IST Austria, 2014. date_created: 2018-12-11T11:51:49Z date_published: 2014-08-01T00:00:00Z date_updated: 2023-10-17T12:16:58Z day: '01' department: - _id: CaHe language: - iso: eng month: '08' oa_version: None page: '91' publication_status: published publisher: IST Austria publist_id: '5804' related_material: record: - id: '2282' relation: part_of_dissertation status: public - id: '2950' relation: part_of_dissertation status: public - id: '3373' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Forces driving epithelial spreading in zebrafish epiboly type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '2278' abstract: - lang: eng text: It is firmly established that interactions between neurons and glia are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions that generate neuroblasts. The proneural gene lethal of scute (l9sc) is transiently activated by the epidermal growth factor receptor (EGFR)-Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium, promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR-Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for interactions between glia and neuroepithelial cells during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR-Ras pathway and hence of L9sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling. author: - first_name: Raquel full_name: Pérez Gómez, Raquel last_name: Pérez Gómez - first_name: Jana full_name: Slovakova, Jana id: 30F3F2F0-F248-11E8-B48F-1D18A9856A87 last_name: Slovakova - first_name: Noemí full_name: Rives Quinto, Noemí last_name: Rives Quinto - first_name: Alena full_name: Krejčí, Alena last_name: Krejčí - first_name: Ana full_name: Carmena, Ana last_name: Carmena citation: ama: Pérez Gómez R, Slovakova J, Rives Quinto N, Krejčí A, Carmena A. A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. Journal of Cell Science. 2013;126(21):4873-4884. doi:10.1242/jcs.125617 apa: Pérez Gómez, R., Slovakova, J., Rives Quinto, N., Krejčí, A., & Carmena, A. (2013). A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. Journal of Cell Science. Company of Biologists. https://doi.org/10.1242/jcs.125617 chicago: Pérez Gómez, Raquel, Jana Slovakova, Noemí Rives Quinto, Alena Krejčí, and Ana Carmena. “A Serrate-Notch-Canoe Complex Mediates Essential Interactions between Glia and Neuroepithelial Cells during Drosophila Optic Lobe Development.” Journal of Cell Science. Company of Biologists, 2013. https://doi.org/10.1242/jcs.125617. ieee: R. Pérez Gómez, J. Slovakova, N. Rives Quinto, A. Krejčí, and A. Carmena, “A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development,” Journal of Cell Science, vol. 126, no. 21. Company of Biologists, pp. 4873–4884, 2013. ista: Pérez Gómez R, Slovakova J, Rives Quinto N, Krejčí A, Carmena A. 2013. A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. Journal of Cell Science. 126(21), 4873–4884. mla: Pérez Gómez, Raquel, et al. “A Serrate-Notch-Canoe Complex Mediates Essential Interactions between Glia and Neuroepithelial Cells during Drosophila Optic Lobe Development.” Journal of Cell Science, vol. 126, no. 21, Company of Biologists, 2013, pp. 4873–84, doi:10.1242/jcs.125617. short: R. Pérez Gómez, J. Slovakova, N. Rives Quinto, A. Krejčí, A. Carmena, Journal of Cell Science 126 (2013) 4873–4884. date_created: 2018-12-11T11:56:43Z date_published: 2013-11-01T00:00:00Z date_updated: 2021-01-12T06:56:29Z day: '01' department: - _id: CaHe doi: 10.1242/jcs.125617 intvolume: ' 126' issue: '21' language: - iso: eng month: '11' oa_version: None page: 4873 - 4884 publication: Journal of Cell Science publication_status: published publisher: Company of Biologists publist_id: '4658' quality_controlled: '1' scopus_import: 1 status: public title: A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 126 year: '2013' ... --- _id: '2282' abstract: - lang: eng text: Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly. acknowledged_ssus: - _id: PreCl - _id: Bio acknowledgement: 'This work was supported by the IST Austria and MPI-CBG ' author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Jonas full_name: Ranft, Jonas last_name: Ranft - first_name: Thomas full_name: Risler, Thomas last_name: Risler - first_name: Nicolas full_name: Minc, Nicolas last_name: Minc - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg C-PJ. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. 2013;15:1405-1414. doi:10.1038/ncb2869 apa: Campinho, P., Behrndt, M., Ranft, J., Risler, T., Minc, N., & Heisenberg, C.-P. J. (2013). Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb2869 chicago: Campinho, Pedro, Martin Behrndt, Jonas Ranft, Thomas Risler, Nicolas Minc, and Carl-Philipp J Heisenberg. “Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading during Zebrafish Epiboly.” Nature Cell Biology. Nature Publishing Group, 2013. https://doi.org/10.1038/ncb2869. ieee: P. Campinho, M. Behrndt, J. Ranft, T. Risler, N. Minc, and C.-P. J. Heisenberg, “Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly,” Nature Cell Biology, vol. 15. Nature Publishing Group, pp. 1405–1414, 2013. ista: Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg C-PJ. 2013. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. 15, 1405–1414. mla: Campinho, Pedro, et al. “Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading during Zebrafish Epiboly.” Nature Cell Biology, vol. 15, Nature Publishing Group, 2013, pp. 1405–14, doi:10.1038/ncb2869. short: P. Campinho, M. Behrndt, J. Ranft, T. Risler, N. Minc, C.-P.J. Heisenberg, Nature Cell Biology 15 (2013) 1405–1414. date_created: 2018-12-11T11:56:45Z date_published: 2013-11-10T00:00:00Z date_updated: 2023-02-21T17:02:44Z day: '10' department: - _id: CaHe doi: 10.1038/ncb2869 intvolume: ' 15' language: - iso: eng main_file_link: - open_access: '1' url: http://hal.upmc.fr/hal-00983313/ month: '11' oa: 1 oa_version: Submitted Version page: 1405 - 1414 project: - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '4652' quality_controlled: '1' related_material: record: - id: '1403' relation: dissertation_contains status: public scopus_import: 1 status: public title: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2013' ... --- _id: '2286' abstract: - lang: eng text: The spatiotemporal control of cell divisions is a key factor in epithelial morphogenesis and patterning. Mao et al (2013) now describe how differential rates of proliferation within the Drosophila wing disc epithelium give rise to anisotropic tissue tension in peripheral/proximal regions of the disc. Such global tissue tension anisotropy in turn determines the orientation of cell divisions by controlling epithelial cell elongation. author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Campinho P, Heisenberg C-PJ. The force and effect of cell proliferation. EMBO Journal. 2013;32(21):2783-2784. doi:10.1038/emboj.2013.225 apa: Campinho, P., & Heisenberg, C.-P. J. (2013). The force and effect of cell proliferation. EMBO Journal. Wiley-Blackwell. https://doi.org/10.1038/emboj.2013.225 chicago: Campinho, Pedro, and Carl-Philipp J Heisenberg. “The Force and Effect of Cell Proliferation.” EMBO Journal. Wiley-Blackwell, 2013. https://doi.org/10.1038/emboj.2013.225. ieee: P. Campinho and C.-P. J. Heisenberg, “The force and effect of cell proliferation,” EMBO Journal, vol. 32, no. 21. Wiley-Blackwell, pp. 2783–2784, 2013. ista: Campinho P, Heisenberg C-PJ. 2013. The force and effect of cell proliferation. EMBO Journal. 32(21), 2783–2784. mla: Campinho, Pedro, and Carl-Philipp J. Heisenberg. “The Force and Effect of Cell Proliferation.” EMBO Journal, vol. 32, no. 21, Wiley-Blackwell, 2013, pp. 2783–84, doi:10.1038/emboj.2013.225. short: P. Campinho, C.-P.J. Heisenberg, EMBO Journal 32 (2013) 2783–2784. date_created: 2018-12-11T11:56:46Z date_published: 2013-10-04T00:00:00Z date_updated: 2021-01-12T06:56:32Z day: '04' department: - _id: CaHe doi: 10.1038/emboj.2013.225 external_id: pmid: - '24097062' intvolume: ' 32' issue: '21' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817470/ month: '10' oa: 1 oa_version: Submitted Version page: 2783 - 2784 pmid: 1 publication: EMBO Journal publication_status: published publisher: Wiley-Blackwell publist_id: '4645' quality_controlled: '1' scopus_import: 1 status: public title: The force and effect of cell proliferation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2013' ... --- _id: '2469' abstract: - lang: eng text: Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major unctions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial ension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact. author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Heisenberg C-PJ. Three functions of cadherins in cell adhesion. Current Biology. 2013;23(14):R626-R633. doi:10.1016/j.cub.2013.06.019 apa: Maître, J.-L., & Heisenberg, C.-P. J. (2013). Three functions of cadherins in cell adhesion. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2013.06.019 chicago: Maître, Jean-Léon, and Carl-Philipp J Heisenberg. “Three Functions of Cadherins in Cell Adhesion.” Current Biology. Cell Press, 2013. https://doi.org/10.1016/j.cub.2013.06.019. ieee: J.-L. Maître and C.-P. J. Heisenberg, “Three functions of cadherins in cell adhesion,” Current Biology, vol. 23, no. 14. Cell Press, pp. R626–R633, 2013. ista: Maître J-L, Heisenberg C-PJ. 2013. Three functions of cadherins in cell adhesion. Current Biology. 23(14), R626–R633. mla: Maître, Jean-Léon, and Carl-Philipp J. Heisenberg. “Three Functions of Cadherins in Cell Adhesion.” Current Biology, vol. 23, no. 14, Cell Press, 2013, pp. R626–33, doi:10.1016/j.cub.2013.06.019. short: J.-L. Maître, C.-P.J. Heisenberg, Current Biology 23 (2013) R626–R633. date_created: 2018-12-11T11:57:51Z date_published: 2013-07-22T00:00:00Z date_updated: 2021-01-12T06:57:40Z day: '22' ddc: - '570' department: - _id: CaHe doi: 10.1016/j.cub.2013.06.019 external_id: pmid: - '23885883' file: - access_level: open_access checksum: 6a424b2f007b41d4955a9135793b2162 content_type: application/pdf creator: dernst date_created: 2019-01-24T15:40:22Z date_updated: 2020-07-14T12:45:41Z file_id: '5881' file_name: 2013_CurrentBiology_Maitre.pdf file_size: 247320 relation: main_file file_date_updated: 2020-07-14T12:45:41Z has_accepted_license: '1' intvolume: ' 23' issue: '14' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: R626 - R633 pmid: 1 publication: Current Biology publication_status: published publisher: Cell Press publist_id: '4433' quality_controlled: '1' scopus_import: 1 status: public title: Three functions of cadherins in cell adhesion tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '2833' abstract: - lang: eng text: During development, mechanical forces cause changes in size, shape, number, position, and gene expression of cells. They are therefore integral to any morphogenetic processes. Force generation by actin-myosin networks and force transmission through adhesive complexes are two self-organizing phenomena driving tissue morphogenesis. Coordination and integration of forces by long-range force transmission and mechanosensing of cells within tissues produce large-scale tissue shape changes. Extrinsic mechanical forces also control tissue patterning by modulating cell fate specification and differentiation. Thus, the interplay between tissue mechanics and biochemical signaling orchestrates tissue morphogenesis and patterning in development. acknowledgement: C.-P.H. is supported by the Institute of Science and Technology Austria and grants from the Deutsche Forschungsgemeinschaft (DFG) and Fonds zur Förderung der wissenschaftlichen Forschung (FWF). author: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Yohanns full_name: Bellaïche, Yohanns last_name: Bellaïche citation: ama: Heisenberg C-PJ, Bellaïche Y. Forces in tissue morphogenesis and patterning. Cell. 2013;153(5):948-962. doi:10.1016/j.cell.2013.05.008 apa: Heisenberg, C.-P. J., & Bellaïche, Y. (2013). Forces in tissue morphogenesis and patterning. Cell. Cell Press. https://doi.org/10.1016/j.cell.2013.05.008 chicago: Heisenberg, Carl-Philipp J, and Yohanns Bellaïche. “Forces in Tissue Morphogenesis and Patterning.” Cell. Cell Press, 2013. https://doi.org/10.1016/j.cell.2013.05.008. ieee: C.-P. J. Heisenberg and Y. Bellaïche, “Forces in tissue morphogenesis and patterning,” Cell, vol. 153, no. 5. Cell Press, pp. 948–962, 2013. ista: Heisenberg C-PJ, Bellaïche Y. 2013. Forces in tissue morphogenesis and patterning. Cell. 153(5), 948–962. mla: Heisenberg, Carl-Philipp J., and Yohanns Bellaïche. “Forces in Tissue Morphogenesis and Patterning.” Cell, vol. 153, no. 5, Cell Press, 2013, pp. 948–62, doi:10.1016/j.cell.2013.05.008. short: C.-P.J. Heisenberg, Y. Bellaïche, Cell 153 (2013) 948–962. date_created: 2018-12-11T11:59:50Z date_published: 2013-05-23T00:00:00Z date_updated: 2021-01-12T07:00:04Z day: '23' department: - _id: CaHe doi: 10.1016/j.cell.2013.05.008 intvolume: ' 153' issue: '5' language: - iso: eng month: '05' oa_version: None page: 948 - 962 publication: Cell publication_status: published publisher: Cell Press publist_id: '3966' quality_controlled: '1' scopus_import: 1 status: public title: Forces in tissue morphogenesis and patterning type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 153 year: '2013' ... --- _id: '2841' abstract: - lang: eng text: In zebrafish early development, blastoderm cells undergo extensive radial intercalations, triggering the spreading of the blastoderm over the yolk cell and thereby initiating embryonic body axis formation. Now reporting in Developmental Cell, Song et al. (2013) demonstrate a critical function for EGF-dependent E-cadherin endocytosis in promoting blastoderm cell intercalations. author: - first_name: Hitoshi full_name: Morita, Hitoshi id: 4C6E54C6-F248-11E8-B48F-1D18A9856A87 last_name: Morita - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Morita H, Heisenberg C-PJ. Holding on and letting go: Cadherin turnover in cell intercalation. Developmental Cell. 2013;24(6):567-569. doi:10.1016/j.devcel.2013.03.007' apa: 'Morita, H., & Heisenberg, C.-P. J. (2013). Holding on and letting go: Cadherin turnover in cell intercalation. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2013.03.007' chicago: 'Morita, Hitoshi, and Carl-Philipp J Heisenberg. “Holding on and Letting Go: Cadherin Turnover in Cell Intercalation.” Developmental Cell. Cell Press, 2013. https://doi.org/10.1016/j.devcel.2013.03.007.' ieee: 'H. Morita and C.-P. J. Heisenberg, “Holding on and letting go: Cadherin turnover in cell intercalation,” Developmental Cell, vol. 24, no. 6. Cell Press, pp. 567–569, 2013.' ista: 'Morita H, Heisenberg C-PJ. 2013. Holding on and letting go: Cadherin turnover in cell intercalation. Developmental Cell. 24(6), 567–569.' mla: 'Morita, Hitoshi, and Carl-Philipp J. Heisenberg. “Holding on and Letting Go: Cadherin Turnover in Cell Intercalation.” Developmental Cell, vol. 24, no. 6, Cell Press, 2013, pp. 567–69, doi:10.1016/j.devcel.2013.03.007.' short: H. Morita, C.-P.J. Heisenberg, Developmental Cell 24 (2013) 567–569. date_created: 2018-12-11T11:59:52Z date_published: 2013-05-25T00:00:00Z date_updated: 2021-01-12T07:00:09Z day: '25' department: - _id: CaHe doi: 10.1016/j.devcel.2013.03.007 intvolume: ' 24' issue: '6' language: - iso: eng month: '05' oa_version: None page: 567 - 569 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '3956' quality_controlled: '1' scopus_import: 1 status: public title: 'Holding on and letting go: Cadherin turnover in cell intercalation' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2013' ... --- _id: '2862' abstract: - lang: eng text: Motile cilia perform crucial functions during embryonic development and throughout adult life. Development of organs containing motile cilia involves regulation of cilia formation (ciliogenesis) and formation of a luminal space (lumenogenesis) in which cilia generate fluid flows. Control of ciliogenesis and lumenogenesis is not yet fully understood, and it remains unclear whether these processes are coupled. In the zebrafish embryo, lethal giant larvae 2 (lgl2) is expressed prominently in ciliated organs. Lgl proteins are involved in establishing cell polarity and have been implicated in vesicle trafficking. Here, we identified a role for Lgl2 in development of ciliated epithelia in Kupffer's vesicle, which directs left-right asymmetry of the embryo; the otic vesicles, which give rise to the inner ear; and the pronephric ducts of the kidney. Using Kupffer's vesicle as a model ciliated organ, we found that depletion of Lgl2 disrupted lumen formation and reduced cilia number and length. Immunofluorescence and time-lapse imaging of Kupffer's vesicle morphogenesis in Lgl2-deficient embryos suggested cell adhesion defects and revealed loss of the adherens junction component E-cadherin at lateral membranes. Genetic interaction experiments indicate that Lgl2 interacts with Rab11a to regulate E-cadherin and mediate lumen formation that is uncoupled from cilia formation. These results uncover new roles and interactions for Lgl2 that are crucial for both lumenogenesis and ciliogenesis and indicate that these processes are genetically separable in zebrafish. acknowledgement: Deposited in PMC for release after 12 months. We thank members of the Amack lab for helpful discussions and Mahendra Sonawane for donating reagents. author: - first_name: Hwee full_name: Tay, Hwee last_name: Tay - first_name: Sabrina full_name: Schulze, Sabrina last_name: Schulze - first_name: Julien full_name: Compagnon, Julien id: 2E3E0988-F248-11E8-B48F-1D18A9856A87 last_name: Compagnon - first_name: Fiona full_name: Foley, Fiona last_name: Foley - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: H Joseph full_name: Yost, H Joseph last_name: Yost - first_name: Salim full_name: Abdelilah Seyfried, Salim last_name: Abdelilah Seyfried - first_name: Jeffrey full_name: Amack, Jeffrey last_name: Amack citation: ama: Tay H, Schulze S, Compagnon J, et al. Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. 2013;140(7):1550-1559. doi:10.1242/dev.087130 apa: Tay, H., Schulze, S., Compagnon, J., Foley, F., Heisenberg, C.-P. J., Yost, H. J., … Amack, J. (2013). Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. Company of Biologists. https://doi.org/10.1242/dev.087130 chicago: Tay, Hwee, Sabrina Schulze, Julien Compagnon, Fiona Foley, Carl-Philipp J Heisenberg, H Joseph Yost, Salim Abdelilah Seyfried, and Jeffrey Amack. “Lethal Giant Larvae 2 Regulates Development of the Ciliated Organ Kupffer’s Vesicle.” Development. Company of Biologists, 2013. https://doi.org/10.1242/dev.087130. ieee: H. Tay et al., “Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle,” Development, vol. 140, no. 7. Company of Biologists, pp. 1550–1559, 2013. ista: Tay H, Schulze S, Compagnon J, Foley F, Heisenberg C-PJ, Yost HJ, Abdelilah Seyfried S, Amack J. 2013. Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. 140(7), 1550–1559. mla: Tay, Hwee, et al. “Lethal Giant Larvae 2 Regulates Development of the Ciliated Organ Kupffer’s Vesicle.” Development, vol. 140, no. 7, Company of Biologists, 2013, pp. 1550–59, doi:10.1242/dev.087130. short: H. Tay, S. Schulze, J. Compagnon, F. Foley, C.-P.J. Heisenberg, H.J. Yost, S. Abdelilah Seyfried, J. Amack, Development 140 (2013) 1550–1559. date_created: 2018-12-11T11:59:59Z date_published: 2013-04-01T00:00:00Z date_updated: 2021-01-12T07:00:20Z day: '01' department: - _id: CaHe doi: 10.1242/dev.087130 external_id: pmid: - '23482490' intvolume: ' 140' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596994/ month: '04' oa: 1 oa_version: Submitted Version page: 1550 - 1559 pmid: 1 publication: Development publication_status: published publisher: Company of Biologists publist_id: '3927' quality_controlled: '1' scopus_import: 1 status: public title: Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 140 year: '2013' ...