--- _id: '5789' abstract: - lang: eng text: Tissue morphogenesis is driven by mechanical forces that elicit changes in cell size, shape and motion. The extent by which forces deform tissues critically depends on the rheological properties of the recipient tissue. Yet, whether and how dynamic changes in tissue rheology affect tissue morphogenesis and how they are regulated within the developing organism remain unclear. Here, we show that blastoderm spreading at the onset of zebrafish morphogenesis relies on a rapid, pronounced and spatially patterned tissue fluidization. Blastoderm fluidization is temporally controlled by mitotic cell rounding-dependent cell–cell contact disassembly during the last rounds of cell cleavages. Moreover, fluidization is spatially restricted to the central blastoderm by local activation of non-canonical Wnt signalling within the blastoderm margin, increasing cell cohesion and thereby counteracting the effect of mitotic rounding on contact disassembly. Overall, our results identify a fluidity transition mediated by loss of cell cohesion as a critical regulator of embryo morphogenesis. acknowledged_ssus: - _id: Bio article_processing_charge: No article_type: original author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Silvia full_name: Grigolon, Silvia last_name: Grigolon - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Petridou N, Grigolon S, Salbreux G, Hannezo EB, Heisenberg C-PJ. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nature Cell Biology. 2019;21:169–178. doi:10.1038/s41556-018-0247-4 apa: Petridou, N., Grigolon, S., Salbreux, G., Hannezo, E. B., & Heisenberg, C.-P. J. (2019). Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/s41556-018-0247-4 chicago: Petridou, Nicoletta, Silvia Grigolon, Guillaume Salbreux, Edouard B Hannezo, and Carl-Philipp J Heisenberg. “Fluidization-Mediated Tissue Spreading by Mitotic Cell Rounding and Non-Canonical Wnt Signalling.” Nature Cell Biology. Nature Publishing Group, 2019. https://doi.org/10.1038/s41556-018-0247-4. ieee: N. Petridou, S. Grigolon, G. Salbreux, E. B. Hannezo, and C.-P. J. Heisenberg, “Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling,” Nature Cell Biology, vol. 21. Nature Publishing Group, pp. 169–178, 2019. ista: Petridou N, Grigolon S, Salbreux G, Hannezo EB, Heisenberg C-PJ. 2019. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nature Cell Biology. 21, 169–178. mla: Petridou, Nicoletta, et al. “Fluidization-Mediated Tissue Spreading by Mitotic Cell Rounding and Non-Canonical Wnt Signalling.” Nature Cell Biology, vol. 21, Nature Publishing Group, 2019, pp. 169–178, doi:10.1038/s41556-018-0247-4. short: N. Petridou, S. Grigolon, G. Salbreux, E.B. Hannezo, C.-P.J. Heisenberg, Nature Cell Biology 21 (2019) 169–178. date_created: 2018-12-30T22:59:15Z date_published: 2019-02-01T00:00:00Z date_updated: 2023-09-11T14:03:28Z day: '01' ddc: - '570' department: - _id: CaHe - _id: EdHa doi: 10.1038/s41556-018-0247-4 ec_funded: 1 external_id: isi: - '000457468300011' pmid: - '30559456' file: - access_level: open_access checksum: e38523787b3bc84006f2793de99ad70f content_type: application/pdf creator: dernst date_created: 2020-10-21T07:18:35Z date_updated: 2020-10-21T07:18:35Z file_id: '8685' file_name: 2018_NatureCellBio_Petridou_accepted.pdf file_size: 71590590 relation: main_file success: 1 file_date_updated: 2020-10-21T07:18:35Z has_accepted_license: '1' intvolume: ' 21' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Submitted Version page: 169–178 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 253E54C8-B435-11E9-9278-68D0E5697425 grant_number: ALTF710-2016 name: Molecular mechanism of auxindriven formative divisions delineating lateral root organogenesis in plants (EMBO fellowship) publication: Nature Cell Biology publication_identifier: issn: - '14657392' publication_status: published publisher: Nature Publishing Group quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/when-a-fish-becomes-fluid/ scopus_import: '1' status: public title: Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 21 year: '2019' ... --- _id: '6508' abstract: - lang: eng text: Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We would like to thank Pierre Recho, Guillaume Salbreux, and Silvia Grigolon for advice on the theory, Lila Solnica-Krezel for kindly providing us with zebrafish dachsous mutants, members of the Heisenberg and Hannezo groups for fruitful discussions, and the Bioimaging and zebrafish facilities at IST Austria for their continuous support. This project has received funding from the European Union (European Research Council Advanced Grant 742573 to C.P.H.) and from the Austrian Science Fund (FWF) (P 31639 to E.H.). article_processing_charge: No article_type: original author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Shi-lei full_name: Xue, Shi-lei id: 31D2C804-F248-11E8-B48F-1D18A9856A87 last_name: Xue - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Shamipour S, Kardos R, Xue S, Hof B, Hannezo EB, Heisenberg C-PJ. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. 2019;177(6):1463-1479.e18. doi:10.1016/j.cell.2019.04.030 apa: Shamipour, S., Kardos, R., Xue, S., Hof, B., Hannezo, E. B., & Heisenberg, C.-P. J. (2019). Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.04.030 chicago: Shamipour, Shayan, Roland Kardos, Shi-lei Xue, Björn Hof, Edouard B Hannezo, and Carl-Philipp J Heisenberg. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.04.030. ieee: S. Shamipour, R. Kardos, S. Xue, B. Hof, E. B. Hannezo, and C.-P. J. Heisenberg, “Bulk actin dynamics drive phase segregation in zebrafish oocytes,” Cell, vol. 177, no. 6. Elsevier, p. 1463–1479.e18, 2019. ista: Shamipour S, Kardos R, Xue S, Hof B, Hannezo EB, Heisenberg C-PJ. 2019. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. 177(6), 1463–1479.e18. mla: Shamipour, Shayan, et al. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes.” Cell, vol. 177, no. 6, Elsevier, 2019, p. 1463–1479.e18, doi:10.1016/j.cell.2019.04.030. short: S. Shamipour, R. Kardos, S. Xue, B. Hof, E.B. Hannezo, C.-P.J. Heisenberg, Cell 177 (2019) 1463–1479.e18. date_created: 2019-06-02T21:59:12Z date_published: 2019-05-30T00:00:00Z date_updated: 2024-03-27T23:30:38Z day: '30' ddc: - '570' department: - _id: CaHe - _id: EdHa - _id: BjHo doi: 10.1016/j.cell.2019.04.030 ec_funded: 1 external_id: isi: - '000469415100013' pmid: - '31080065' file: - access_level: open_access checksum: aea43726d80e35ce3885073a5f05c3e3 content_type: application/pdf creator: dernst date_created: 2020-10-21T07:22:34Z date_updated: 2020-10-21T07:22:34Z file_id: '8686' file_name: 2019_Cell_Shamipour_accepted.pdf file_size: 3356292 relation: main_file success: 1 file_date_updated: 2020-10-21T07:22:34Z has_accepted_license: '1' intvolume: ' 177' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cell.2019.04.030 month: '05' oa: 1 oa_version: Published Version page: 1463-1479.e18 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-the-cytoplasm-separates-from-the-yolk/ record: - id: '8350' relation: dissertation_contains status: public scopus_import: '1' status: public title: Bulk actin dynamics drive phase segregation in zebrafish oocytes type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 177 year: '2019' ... --- _id: '7001' acknowledged_ssus: - _id: PreCl - _id: Bio article_processing_charge: No article_type: original author: - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Kornelija full_name: Pranjic-Ferscha, Kornelija id: 4362B3C2-F248-11E8-B48F-1D18A9856A87 last_name: Pranjic-Ferscha - first_name: Alexandra full_name: Schauer, Alexandra id: 30A536BA-F248-11E8-B48F-1D18A9856A87 last_name: Schauer orcid: 0000-0001-7659-9142 - first_name: M full_name: Balda, M last_name: Balda - first_name: M full_name: Tada, M last_name: Tada - first_name: K full_name: Matter, K last_name: Matter - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Schwayer C, Shamipour S, Pranjic-Ferscha K, et al. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell. 2019;179(4):937-952.e18. doi:10.1016/j.cell.2019.10.006 apa: Schwayer, C., Shamipour, S., Pranjic-Ferscha, K., Schauer, A., Balda, M., Tada, M., … Heisenberg, C.-P. J. (2019). Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell. Cell Press. https://doi.org/10.1016/j.cell.2019.10.006 chicago: Schwayer, Cornelia, Shayan Shamipour, Kornelija Pranjic-Ferscha, Alexandra Schauer, M Balda, M Tada, K Matter, and Carl-Philipp J Heisenberg. “Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow.” Cell. Cell Press, 2019. https://doi.org/10.1016/j.cell.2019.10.006. ieee: C. Schwayer et al., “Mechanosensation of tight junctions depends on ZO-1 phase separation and flow,” Cell, vol. 179, no. 4. Cell Press, p. 937–952.e18, 2019. ista: Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg C-PJ. 2019. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell. 179(4), 937–952.e18. mla: Schwayer, Cornelia, et al. “Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow.” Cell, vol. 179, no. 4, Cell Press, 2019, p. 937–952.e18, doi:10.1016/j.cell.2019.10.006. short: C. Schwayer, S. Shamipour, K. Pranjic-Ferscha, A. Schauer, M. Balda, M. Tada, K. Matter, C.-P.J. Heisenberg, Cell 179 (2019) 937–952.e18. date_created: 2019-11-12T12:51:06Z date_published: 2019-10-31T00:00:00Z date_updated: 2024-03-27T23:30:38Z day: '31' ddc: - '570' department: - _id: CaHe - _id: BjHo doi: 10.1016/j.cell.2019.10.006 ec_funded: 1 external_id: isi: - '000493898000012' pmid: - '31675500' file: - access_level: open_access checksum: 33dac4bb77ee630e2666e936b4d57980 content_type: application/pdf creator: dernst date_created: 2020-10-21T07:09:45Z date_updated: 2020-10-21T07:09:45Z file_id: '8684' file_name: 2019_Cell_Schwayer_accepted.pdf file_size: 8805878 relation: main_file success: 1 file_date_updated: 2020-10-21T07:09:45Z has_accepted_license: '1' intvolume: ' 179' isi: 1 issue: '4' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 937-952.e18 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Cell publication_identifier: eissn: - 1097-4172 issn: - 0092-8674 publication_status: published publisher: Cell Press quality_controlled: '1' related_material: link: - description: News auf IST Website relation: press_release url: https://ist.ac.at/en/news/biochemistry-meets-mechanics-the-sensitive-nature-of-cell-cell-contact-formation-in-embryo-development/ record: - id: '7186' relation: dissertation_contains status: public - id: '8350' relation: dissertation_contains status: public scopus_import: '1' status: public title: Mechanosensation of tight junctions depends on ZO-1 phase separation and flow type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 179 year: '2019' ... --- _id: '308' abstract: - lang: eng text: Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. acknowledged_ssus: - _id: SSU article_processing_charge: No article_type: original author: - first_name: Aparna full_name: Ratheesh, Aparna id: 2F064CFE-F248-11E8-B48F-1D18A9856A87 last_name: Ratheesh orcid: 0000-0001-7190-0776 - first_name: Julia full_name: Biebl, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Biebl - first_name: Michael full_name: Smutny, Michael last_name: Smutny - first_name: Jana full_name: Veselá, Jana id: 433253EE-F248-11E8-B48F-1D18A9856A87 last_name: Veselá - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Alessandra M full_name: Casano, Alessandra M id: 3DBA3F4E-F248-11E8-B48F-1D18A9856A87 last_name: Casano orcid: 0000-0002-6009-6804 - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Ratheesh A, Bicher J, Smutny M, et al. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 2018;45(3):331-346. doi:10.1016/j.devcel.2018.04.002 apa: Ratheesh, A., Bicher, J., Smutny, M., Veselá, J., Papusheva, E., Krens, G., … Siekhaus, D. E. (2018). Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2018.04.002 chicago: Ratheesh, Aparna, Julia Bicher, Michael Smutny, Jana Veselá, Ekaterina Papusheva, Gabriel Krens, Walter Kaufmann, Attila György, Alessandra M Casano, and Daria E Siekhaus. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell. Elsevier, 2018. https://doi.org/10.1016/j.devcel.2018.04.002. ieee: A. Ratheesh et al., “Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration,” Developmental Cell, vol. 45, no. 3. Elsevier, pp. 331–346, 2018. ista: Ratheesh A, Bicher J, Smutny M, Veselá J, Papusheva E, Krens G, Kaufmann W, György A, Casano AM, Siekhaus DE. 2018. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 45(3), 331–346. mla: Ratheesh, Aparna, et al. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell, vol. 45, no. 3, Elsevier, 2018, pp. 331–46, doi:10.1016/j.devcel.2018.04.002. short: A. Ratheesh, J. Bicher, M. Smutny, J. Veselá, E. Papusheva, G. Krens, W. Kaufmann, A. György, A.M. Casano, D.E. Siekhaus, Developmental Cell 45 (2018) 331–346. date_created: 2018-12-11T11:45:44Z date_published: 2018-05-07T00:00:00Z date_updated: 2023-09-11T13:22:13Z day: '07' department: - _id: DaSi - _id: CaHe - _id: Bio - _id: EM-Fac - _id: MiSi doi: 10.1016/j.devcel.2018.04.002 ec_funded: 1 external_id: isi: - '000432461400009' pmid: - '29738712' intvolume: ' 45' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.devcel.2018.04.002 month: '05' oa: 1 oa_version: Published Version page: 331 - 346 pmid: 1 project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions publication: Developmental Cell publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/cells-change-tension-to-make-tissue-barriers-easier-to-get-through/ scopus_import: '1' status: public title: Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 45 year: '2018' ... --- _id: '54' abstract: - lang: eng text: During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs’ composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics. acknowledgement: Research in the Bellaïche laboratory is supported by the European Research Council (ERC Advanced, TiMoprh, 340784), the Fondation ARC pour la Recherche sur le Cancer (SL220130607097), the Agence Nationale de la Recherche (ANR lLabex DEEP; 11-LBX-0044, ANR-10-IDEX-0001-02), the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, and Institut Curie and PSL Research University funding or grants. article_processing_charge: No article_type: review author: - first_name: Diana C full_name: Nunes Pinheiro, Diana C id: 2E839F16-F248-11E8-B48F-1D18A9856A87 last_name: Nunes Pinheiro orcid: 0000-0003-4333-7503 - first_name: Yohanns full_name: Bellaïche, Yohanns last_name: Bellaïche citation: ama: Nunes Pinheiro DC, Bellaïche Y. Mechanical force-driven adherents junction remodeling and epithelial dynamics. Developmental Cell. 2018;47(1):3-19. doi:10.1016/j.devcel.2018.09.014 apa: Nunes Pinheiro, D. C., & Bellaïche, Y. (2018). Mechanical force-driven adherents junction remodeling and epithelial dynamics. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2018.09.014 chicago: Nunes Pinheiro, Diana C, and Yohanns Bellaïche. “Mechanical Force-Driven Adherents Junction Remodeling and Epithelial Dynamics.” Developmental Cell. Cell Press, 2018. https://doi.org/10.1016/j.devcel.2018.09.014. ieee: D. C. Nunes Pinheiro and Y. Bellaïche, “Mechanical force-driven adherents junction remodeling and epithelial dynamics,” Developmental Cell, vol. 47, no. 1. Cell Press, pp. 3–19, 2018. ista: Nunes Pinheiro DC, Bellaïche Y. 2018. Mechanical force-driven adherents junction remodeling and epithelial dynamics. Developmental Cell. 47(1), 3–19. mla: Nunes Pinheiro, Diana C., and Yohanns Bellaïche. “Mechanical Force-Driven Adherents Junction Remodeling and Epithelial Dynamics.” Developmental Cell, vol. 47, no. 1, Cell Press, 2018, pp. 3–19, doi:10.1016/j.devcel.2018.09.014. short: D.C. Nunes Pinheiro, Y. Bellaïche, Developmental Cell 47 (2018) 3–19. date_created: 2018-12-11T11:44:23Z date_published: 2018-10-08T00:00:00Z date_updated: 2023-09-13T08:54:38Z day: '08' department: - _id: CaHe doi: 10.1016/j.devcel.2018.09.014 external_id: isi: - '000446579900002' intvolume: ' 47' isi: 1 issue: '1' language: - iso: eng main_file_link: - url: https://doi.org/10.1016/j.devcel.2018.09.014 month: '10' oa_version: Published Version page: 3 - 19 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '8000' quality_controlled: '1' scopus_import: '1' status: public title: Mechanical force-driven adherents junction remodeling and epithelial dynamics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 47 year: '2018' ... --- _id: '5676' abstract: - lang: eng text: 'In epithelial tissues, cells tightly connect to each other through cell–cell junctions, but they also present the remarkable capacity of reorganizing themselves without compromising tissue integrity. Upon injury, simple epithelia efficiently resolve small lesions through the action of actin cytoskeleton contractile structures at the wound edge and cellular rearrangements. However, the underlying mechanisms and how they cooperate are still poorly understood. In this study, we combine live imaging and theoretical modeling to reveal a novel and indispensable role for occluding junctions (OJs) in this process. We demonstrate that OJ loss of function leads to defects in wound-closure dynamics: instead of contracting, wounds dramatically increase their area. OJ mutants exhibit phenotypes in cell shape, cellular rearrangements, and mechanical properties as well as in actin cytoskeleton dynamics at the wound edge. We propose that OJs are essential for wound closure by impacting on epithelial mechanics at the tissue level, which in turn is crucial for correct regulation of the cellular events occurring at the wound edge.' article_processing_charge: No author: - first_name: Lara full_name: Carvalho, Lara last_name: Carvalho - first_name: Pedro full_name: Patricio, Pedro last_name: Patricio - first_name: Susana full_name: Ponte, Susana last_name: Ponte - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Luis full_name: Almeida, Luis last_name: Almeida - first_name: André S. full_name: Nunes, André S. last_name: Nunes - first_name: Nuno A.M. full_name: Araújo, Nuno A.M. last_name: Araújo - first_name: Antonio full_name: Jacinto, Antonio last_name: Jacinto citation: ama: Carvalho L, Patricio P, Ponte S, et al. Occluding junctions as novel regulators of tissue mechanics during wound repair. Journal of Cell Biology. 2018;217(12):4267-4283. doi:10.1083/jcb.201804048 apa: Carvalho, L., Patricio, P., Ponte, S., Heisenberg, C.-P. J., Almeida, L., Nunes, A. S., … Jacinto, A. (2018). Occluding junctions as novel regulators of tissue mechanics during wound repair. Journal of Cell Biology. Rockefeller University Press. https://doi.org/10.1083/jcb.201804048 chicago: Carvalho, Lara, Pedro Patricio, Susana Ponte, Carl-Philipp J Heisenberg, Luis Almeida, André S. Nunes, Nuno A.M. Araújo, and Antonio Jacinto. “Occluding Junctions as Novel Regulators of Tissue Mechanics during Wound Repair.” Journal of Cell Biology. Rockefeller University Press, 2018. https://doi.org/10.1083/jcb.201804048. ieee: L. Carvalho et al., “Occluding junctions as novel regulators of tissue mechanics during wound repair,” Journal of Cell Biology, vol. 217, no. 12. Rockefeller University Press, pp. 4267–4283, 2018. ista: Carvalho L, Patricio P, Ponte S, Heisenberg C-PJ, Almeida L, Nunes AS, Araújo NAM, Jacinto A. 2018. Occluding junctions as novel regulators of tissue mechanics during wound repair. Journal of Cell Biology. 217(12), 4267–4283. mla: Carvalho, Lara, et al. “Occluding Junctions as Novel Regulators of Tissue Mechanics during Wound Repair.” Journal of Cell Biology, vol. 217, no. 12, Rockefeller University Press, 2018, pp. 4267–83, doi:10.1083/jcb.201804048. short: L. Carvalho, P. Patricio, S. Ponte, C.-P.J. Heisenberg, L. Almeida, A.S. Nunes, N.A.M. Araújo, A. Jacinto, Journal of Cell Biology 217 (2018) 4267–4283. date_created: 2018-12-16T22:59:19Z date_published: 2018-12-01T00:00:00Z date_updated: 2023-09-13T09:11:17Z day: '01' department: - _id: CaHe doi: 10.1083/jcb.201804048 ec_funded: 1 external_id: isi: - '000451960800018' pmid: - '30228162 ' intvolume: ' 217' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30228162 month: '12' oa: 1 oa_version: Submitted Version page: 4267-4283 pmid: 1 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Journal of Cell Biology publication_identifier: issn: - '00219525' publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: Occluding junctions as novel regulators of tissue mechanics during wound repair type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 217 year: '2018' ... --- _id: '10880' abstract: - lang: eng text: Acquisition of evolutionary novelties is a fundamental process for adapting to the external environment and invading new niches and results in the diversification of life, which we can see in the world today. How such novel phenotypic traits are acquired in the course of evolution and are built up in developing embryos has been a central question in biology. Whole-genome duplication (WGD) is a process of genome doubling that supplies raw genetic materials and increases genome complexity. Recently, it has been gradually revealed that WGD and subsequent fate changes of duplicated genes can facilitate phenotypic evolution. Here, we review the current understanding of the relationship between WGD and the acquisition of evolutionary novelties. We show some examples of this link and discuss how WGD and subsequent duplicated genes can facilitate phenotypic evolution as well as when such genomic doubling can be advantageous for adaptation. acknowledgement: This work was supported by JSPS overseas research fellowships (Y.M.) and SENSHIN Medical Research Foundation (K.K.T.). article_processing_charge: No article_type: original author: - first_name: Moriyama full_name: Yuuta, Moriyama id: 4968E7C8-F248-11E8-B48F-1D18A9856A87 last_name: Yuuta orcid: 0000-0002-2853-8051 - first_name: Kazuko full_name: Koshiba-Takeuchi, Kazuko last_name: Koshiba-Takeuchi citation: ama: Yuuta M, Koshiba-Takeuchi K. Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics. 2018;17(5):329-338. doi:10.1093/bfgp/ely007 apa: Yuuta, M., & Koshiba-Takeuchi, K. (2018). Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics. Oxford University Press. https://doi.org/10.1093/bfgp/ely007 chicago: Yuuta, Moriyama, and Kazuko Koshiba-Takeuchi. “Significance of Whole-Genome Duplications on the Emergence of Evolutionary Novelties.” Briefings in Functional Genomics. Oxford University Press, 2018. https://doi.org/10.1093/bfgp/ely007. ieee: M. Yuuta and K. Koshiba-Takeuchi, “Significance of whole-genome duplications on the emergence of evolutionary novelties,” Briefings in Functional Genomics, vol. 17, no. 5. Oxford University Press, pp. 329–338, 2018. ista: Yuuta M, Koshiba-Takeuchi K. 2018. Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics. 17(5), 329–338. mla: Yuuta, Moriyama, and Kazuko Koshiba-Takeuchi. “Significance of Whole-Genome Duplications on the Emergence of Evolutionary Novelties.” Briefings in Functional Genomics, vol. 17, no. 5, Oxford University Press, 2018, pp. 329–38, doi:10.1093/bfgp/ely007. short: M. Yuuta, K. Koshiba-Takeuchi, Briefings in Functional Genomics 17 (2018) 329–338. date_created: 2022-03-18T12:40:35Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-19T15:11:22Z day: '01' department: - _id: CaHe doi: 10.1093/bfgp/ely007 external_id: isi: - '000456054400004' pmid: - '29579140' intvolume: ' 17' isi: 1 issue: '5' keyword: - Genetics - Molecular Biology - Biochemistry - General Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/bfgp/ely007 month: '09' oa: 1 oa_version: Published Version page: 329-338 pmid: 1 publication: Briefings in Functional Genomics publication_identifier: eissn: - 2041-2657 issn: - 2041-2649 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Significance of whole-genome duplications on the emergence of evolutionary novelties type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 17 year: '2018' ... --- _id: '50' abstract: - lang: eng text: The Wnt/planar cell polarity (Wnt/PCP) pathway determines planar polarity of epithelial cells in both vertebrates and invertebrates. The role that Wnt/PCP signaling plays in mesenchymal contexts, however, is only poorly understood. While previous studies have demonstrated the capacity of Wnt/PCP signaling to polarize and guide directed migration of mesenchymal cells, it remains unclear whether endogenous Wnt/PCP signaling performs these functions instructively, as it does in epithelial cells. Here we developed a light-switchable version of the Wnt/PCP receptor Frizzled 7 (Fz7) to unambiguously distinguish between an instructive and a permissive role of Wnt/PCP signaling for the directional collective migration of mesendoderm progenitor cells during zebrafish gastrulation. We show that prechordal plate (ppl) cell migration is defective in maternal-zygotic fz7a and fz7b (MZ fz7a,b) double mutant embryos, and that Fz7 functions cell-autonomously in this process by promoting ppl cell protrusion formation and directed migration. We further show that local activation of Fz7 can direct ppl cell migration both in vitro and in vivo. Surprisingly, however, uniform Fz7 activation is sufficient to fully rescue the ppl cell migration defect in MZ fz7a,b mutant embryos, indicating that Wnt/PCP signaling functions permissively rather than instructively in directed mesendoderm cell migration during zebrafish gastrulation. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 citation: ama: Capek D. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. 2018. doi:10.15479/AT:ISTA:TH_1031 apa: Capek, D. (2018). Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1031 chicago: Capek, Daniel. “Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1031. ieee: D. Capek, “Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration,” Institute of Science and Technology Austria, 2018. ista: Capek D. 2018. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. mla: Capek, Daniel. Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1031. short: D. Capek, Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-06-22T00:00:00Z date_updated: 2023-09-07T12:48:16Z day: '22' ddc: - '570' - '591' - '596' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:TH_1031 file: - access_level: open_access checksum: d3eca3dcacb67bffdde6e6609c31cdd0 content_type: application/pdf creator: dernst date_created: 2019-04-08T13:42:26Z date_updated: 2021-02-11T11:17:17Z embargo: 2019-06-25 file_id: '6238' file_name: 2018_Thesis_Capek.pdf file_size: 31576521 relation: main_file - access_level: closed checksum: 876deb14067e638aba65d209668bd821 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T13:42:27Z date_updated: 2021-02-11T23:30:21Z embargo_to: open_access file_id: '6239' file_name: 2018_Thesis_Capek_source.docx file_size: 38992956 relation: source_file file_date_updated: 2021-02-11T23:30:21Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '95' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8004' pubrep_id: '1031' related_material: record: - id: '1100' relation: part_of_dissertation status: public - id: '661' relation: part_of_dissertation status: public - id: '676' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '678' abstract: - lang: eng text: The seminal observation that mechanical signals can elicit changes in biochemical signalling within cells, a process commonly termed mechanosensation and mechanotransduction, has revolutionized our understanding of the role of cell mechanics in various fundamental biological processes, such as cell motility, adhesion, proliferation and differentiation. In this Review, we will discuss how the interplay and feedback between mechanical and biochemical signals control tissue morphogenesis and cell fate specification in embryonic development. author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Zoltan P full_name: Spiro, Zoltan P id: 426AD026-F248-11E8-B48F-1D18A9856A87 last_name: Spiro - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Petridou N, Spiro ZP, Heisenberg C-PJ. Multiscale force sensing in development. Nature Cell Biology. 2017;19(6):581-588. doi:10.1038/ncb3524 apa: Petridou, N., Spiro, Z. P., & Heisenberg, C.-P. J. (2017). Multiscale force sensing in development. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb3524 chicago: Petridou, Nicoletta, Zoltan P Spiro, and Carl-Philipp J Heisenberg. “Multiscale Force Sensing in Development.” Nature Cell Biology. Nature Publishing Group, 2017. https://doi.org/10.1038/ncb3524. ieee: N. Petridou, Z. P. Spiro, and C.-P. J. Heisenberg, “Multiscale force sensing in development,” Nature Cell Biology, vol. 19, no. 6. Nature Publishing Group, pp. 581–588, 2017. ista: Petridou N, Spiro ZP, Heisenberg C-PJ. 2017. Multiscale force sensing in development. Nature Cell Biology. 19(6), 581–588. mla: Petridou, Nicoletta, et al. “Multiscale Force Sensing in Development.” Nature Cell Biology, vol. 19, no. 6, Nature Publishing Group, 2017, pp. 581–88, doi:10.1038/ncb3524. short: N. Petridou, Z.P. Spiro, C.-P.J. Heisenberg, Nature Cell Biology 19 (2017) 581–588. date_created: 2018-12-11T11:47:53Z date_published: 2017-05-31T00:00:00Z date_updated: 2021-01-12T08:08:59Z day: '31' department: - _id: CaHe doi: 10.1038/ncb3524 intvolume: ' 19' issue: '6' language: - iso: eng month: '05' oa_version: None page: 581 - 588 project: - _id: 25236028-B435-11E9-9278-68D0E5697425 grant_number: ALTF534-2016 name: The generation and function of anisotropic tissue tension in zebrafish epiboly (EMBO Fellowship) publication: Nature Cell Biology publication_identifier: issn: - '14657392' publication_status: published publisher: Nature Publishing Group publist_id: '7040' quality_controlled: '1' scopus_import: 1 status: public title: Multiscale force sensing in development type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2017' ... --- _id: '686' abstract: - lang: eng text: Tissues are thought to behave like fluids with a given surface tension. Differences in tissue surface tension (TST) have been proposed to trigger cell sorting and tissue envelopment. D'Arcy Thompson in his seminal book ‘On Growth and Form’ has introduced this concept of differential TST as a key physical mechanism dictating tissue formation and organization within the developing organism. Over the past century, many studies have picked up the concept of differential TST and analyzed the role and cell biological basis of TST in development, underlining the importance and influence of this concept in developmental biology. author: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Heisenberg C-PJ. D’Arcy Thompson’s ‘on growth and form’: From soap bubbles to tissue self organization. Mechanisms of Development. 2017;145:32-37. doi:10.1016/j.mod.2017.03.006' apa: 'Heisenberg, C.-P. J. (2017). D’Arcy Thompson’s ‘on growth and form’: From soap bubbles to tissue self organization. Mechanisms of Development. Elsevier. https://doi.org/10.1016/j.mod.2017.03.006' chicago: 'Heisenberg, Carl-Philipp J. “D’Arcy Thompson’s ‘on Growth and Form’: From Soap Bubbles to Tissue Self Organization.” Mechanisms of Development. Elsevier, 2017. https://doi.org/10.1016/j.mod.2017.03.006.' ieee: 'C.-P. J. Heisenberg, “D’Arcy Thompson’s ‘on growth and form’: From soap bubbles to tissue self organization,” Mechanisms of Development, vol. 145. Elsevier, pp. 32–37, 2017.' ista: 'Heisenberg C-PJ. 2017. D’Arcy Thompson’s ‘on growth and form’: From soap bubbles to tissue self organization. Mechanisms of Development. 145, 32–37.' mla: 'Heisenberg, Carl-Philipp J. “D’Arcy Thompson’s ‘on Growth and Form’: From Soap Bubbles to Tissue Self Organization.” Mechanisms of Development, vol. 145, Elsevier, 2017, pp. 32–37, doi:10.1016/j.mod.2017.03.006.' short: C.-P.J. Heisenberg, Mechanisms of Development 145 (2017) 32–37. date_created: 2018-12-11T11:47:55Z date_published: 2017-06-01T00:00:00Z date_updated: 2021-01-12T08:09:23Z day: '01' department: - _id: CaHe doi: 10.1016/j.mod.2017.03.006 intvolume: ' 145' language: - iso: eng month: '06' oa_version: None page: 32 - 37 publication: Mechanisms of Development publication_identifier: issn: - '09254773' publication_status: published publisher: Elsevier publist_id: '7024' quality_controlled: '1' scopus_import: 1 status: public title: 'D''Arcy Thompson''s ‘on growth and form’: From soap bubbles to tissue self organization' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 145 year: '2017' ...