--- _id: '5793' abstract: - lang: eng text: The transcription coactivator, Yes-associated protein (YAP), which is a nuclear effector of the Hippo signaling pathway, has been shown to be a mechano-transducer. By using mutant fish and human 3D spheroids, we have recently demonstrated that YAP is also a mechano-effector. YAP functions in three-dimensional (3D) morphogenesis of organ and global body shape by controlling actomyosin-mediated tissue tension. In this chapter, we present a platform that links the findings in fish embryos with human cells. The protocols for analyzing tissue tension-mediated global body shape/organ morphogenesis in vivo and ex vivo using medaka fish embryos and in vitro using human cell spheroids represent useful tools for unraveling the molecular mechanisms by which YAP functions in regulating global body/organ morphogenesis. alternative_title: - MIMB author: - first_name: Yoichi full_name: Asaoka, Yoichi last_name: Asaoka - first_name: Hitoshi full_name: Morita, Hitoshi last_name: Morita - first_name: Hiroko full_name: Furumoto, Hiroko last_name: Furumoto - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Makoto full_name: Furutani-Seiki, Makoto last_name: Furutani-Seiki citation: ama: 'Asaoka Y, Morita H, Furumoto H, Heisenberg C-PJ, Furutani-Seiki M. Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids. In: Hergovich A, ed. The Hippo Pathway. Vol 1893. Methods in Molecular Biology. Springer; 2019:167-181. doi:10.1007/978-1-4939-8910-2_14' apa: Asaoka, Y., Morita, H., Furumoto, H., Heisenberg, C.-P. J., & Furutani-Seiki, M. (2019). Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids. In A. Hergovich (Ed.), The hippo pathway (Vol. 1893, pp. 167–181). Springer. https://doi.org/10.1007/978-1-4939-8910-2_14 chicago: Asaoka, Yoichi, Hitoshi Morita, Hiroko Furumoto, Carl-Philipp J Heisenberg, and Makoto Furutani-Seiki. “Studying YAP-Mediated 3D Morphogenesis Using Fish Embryos and Human Spheroids.” In The Hippo Pathway, edited by Alexander Hergovich, 1893:167–81. Methods in Molecular Biology. Springer, 2019. https://doi.org/10.1007/978-1-4939-8910-2_14. ieee: Y. Asaoka, H. Morita, H. Furumoto, C.-P. J. Heisenberg, and M. Furutani-Seiki, “Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids,” in The hippo pathway, vol. 1893, A. Hergovich, Ed. Springer, 2019, pp. 167–181. ista: 'Asaoka Y, Morita H, Furumoto H, Heisenberg C-PJ, Furutani-Seiki M. 2019.Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids. In: The hippo pathway. MIMB, vol. 1893, 167–181.' mla: Asaoka, Yoichi, et al. “Studying YAP-Mediated 3D Morphogenesis Using Fish Embryos and Human Spheroids.” The Hippo Pathway, edited by Alexander Hergovich, vol. 1893, Springer, 2019, pp. 167–81, doi:10.1007/978-1-4939-8910-2_14. short: Y. Asaoka, H. Morita, H. Furumoto, C.-P.J. Heisenberg, M. Furutani-Seiki, in:, A. Hergovich (Ed.), The Hippo Pathway, Springer, 2019, pp. 167–181. date_created: 2019-01-06T22:59:11Z date_published: 2019-01-01T00:00:00Z date_updated: 2021-01-12T08:03:30Z day: '01' department: - _id: CaHe doi: 10.1007/978-1-4939-8910-2_14 editor: - first_name: Alexander full_name: Hergovich, Alexander last_name: Hergovich intvolume: ' 1893' language: - iso: eng month: '01' oa_version: None page: 167-181 publication: The hippo pathway publication_identifier: isbn: - 978-1-4939-8909-6 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: 1 series_title: Methods in Molecular Biology status: public title: Studying YAP-mediated 3D morphogenesis using fish embryos and human spheroids type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1893 year: '2019' ... --- _id: '6025' abstract: - lang: eng text: Non-canonical Wnt signaling plays a central role for coordinated cell polarization and directed migration in metazoan development. While spatiotemporally restricted activation of non-canonical Wnt-signaling drives cell polarization in epithelial tissues, it remains unclear whether such instructive activity is also critical for directed mesenchymal cell migration. Here, we developed a light-activated version of the non-canonical Wnt receptor Frizzled 7 (Fz7) to analyze how restricted activation of non-canonical Wnt signaling affects directed anterior axial mesendoderm (prechordal plate, ppl) cell migration within the zebrafish gastrula. We found that Fz7 signaling is required for ppl cell protrusion formation and migration and that spatiotemporally restricted ectopic activation is capable of redirecting their migration. Finally, we show that uniform activation of Fz7 signaling in ppl cells fully rescues defective directed cell migration in fz7 mutant embryos. Together, our findings reveal that in contrast to the situation in epithelial cells, non-canonical Wnt signaling functions permissively rather than instructively in directed mesenchymal cell migration during gastrulation. acknowledged_ssus: - _id: Bio - _id: LifeSc article_number: e42093 article_processing_charge: No author: - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Alexandra Madelaine full_name: Tichy, Alexandra Madelaine last_name: Tichy - first_name: Maurizio full_name: Morri, Maurizio id: 4863116E-F248-11E8-B48F-1D18A9856A87 last_name: Morri - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Capek D, Smutny M, Tichy AM, Morri M, Janovjak HL, Heisenberg C-PJ. Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration. eLife. 2019;8. doi:10.7554/eLife.42093 apa: Capek, D., Smutny, M., Tichy, A. M., Morri, M., Janovjak, H. L., & Heisenberg, C.-P. J. (2019). Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.42093 chicago: Capek, Daniel, Michael Smutny, Alexandra Madelaine Tichy, Maurizio Morri, Harald L Janovjak, and Carl-Philipp J Heisenberg. “Light-Activated Frizzled7 Reveals a Permissive Role of Non-Canonical Wnt Signaling in Mesendoderm Cell Migration.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/eLife.42093. ieee: D. Capek, M. Smutny, A. M. Tichy, M. Morri, H. L. Janovjak, and C.-P. J. Heisenberg, “Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Capek D, Smutny M, Tichy AM, Morri M, Janovjak HL, Heisenberg C-PJ. 2019. Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration. eLife. 8, e42093. mla: Capek, Daniel, et al. “Light-Activated Frizzled7 Reveals a Permissive Role of Non-Canonical Wnt Signaling in Mesendoderm Cell Migration.” ELife, vol. 8, e42093, eLife Sciences Publications, 2019, doi:10.7554/eLife.42093. short: D. Capek, M. Smutny, A.M. Tichy, M. Morri, H.L. Janovjak, C.-P.J. Heisenberg, ELife 8 (2019). date_created: 2019-02-17T22:59:22Z date_published: 2019-02-06T00:00:00Z date_updated: 2023-08-24T14:46:01Z day: '06' ddc: - '570' department: - _id: CaHe - _id: HaJa doi: 10.7554/eLife.42093 ec_funded: 1 external_id: isi: - '000458025300001' file: - access_level: open_access checksum: 6cb4ca6d4aa96f6f187a5983aa3e660a content_type: application/pdf creator: dernst date_created: 2019-02-18T15:17:21Z date_updated: 2020-07-14T12:47:17Z file_id: '6041' file_name: 2019_elife_Capek.pdf file_size: 5500707 relation: main_file file_date_updated: 2020-07-14T12:47:17Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '02' oa: 1 oa_version: Published Version project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: eLife publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2019' ... --- _id: '6087' abstract: - lang: eng text: Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz−/− follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity. acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: LifeSc acknowledgement: We thank Roland Dosch, Makoto Furutani-Seiki, Brian Link, Mary Mullins, and Masazumi Tada for providing transgenic and/or mutant zebrafish lines; Alexandra Schauer, Shayan Shami-Pour, and the rest of the Heisenberg lab for technical assistance and feedback on the manuscript; and the Bioimaging, Electron Microscopy, and Zebrafish facilities of IST Austria for continuous support. This work was supported by an ERC advanced grant ( MECSPEC to C.-P.H.). article_processing_charge: No article_type: original author: - first_name: Peng full_name: Xia, Peng id: 4AB6C7D0-F248-11E8-B48F-1D18A9856A87 last_name: Xia orcid: 0000-0002-5419-7756 - first_name: Daniel J full_name: Gütl, Daniel J id: 381929CE-F248-11E8-B48F-1D18A9856A87 last_name: Gütl - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Xia P, Gütl DJ, Zheden V, Heisenberg C-PJ. Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity. Cell. 2019;176(6):1379-1392.e14. doi:10.1016/j.cell.2019.01.019 apa: Xia, P., Gütl, D. J., Zheden, V., & Heisenberg, C.-P. J. (2019). Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.01.019 chicago: Xia, Peng, Daniel J Gütl, Vanessa Zheden, and Carl-Philipp J Heisenberg. “Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.01.019. ieee: P. Xia, D. J. Gütl, V. Zheden, and C.-P. J. Heisenberg, “Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity,” Cell, vol. 176, no. 6. Elsevier, p. 1379–1392.e14, 2019. ista: Xia P, Gütl DJ, Zheden V, Heisenberg C-PJ. 2019. Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity. Cell. 176(6), 1379–1392.e14. mla: Xia, Peng, et al. “Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity.” Cell, vol. 176, no. 6, Elsevier, 2019, p. 1379–1392.e14, doi:10.1016/j.cell.2019.01.019. short: P. Xia, D.J. Gütl, V. Zheden, C.-P.J. Heisenberg, Cell 176 (2019) 1379–1392.e14. date_created: 2019-03-10T22:59:19Z date_published: 2019-03-07T00:00:00Z date_updated: 2023-08-25T08:02:23Z day: '07' department: - _id: CaHe - _id: EM-Fac doi: 10.1016/j.cell.2019.01.019 ec_funded: 1 external_id: isi: - '000460509600013' pmid: - '30773315' intvolume: ' 176' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cell.2019.01.019 month: '03' oa: 1 oa_version: Published Version page: 1379-1392.e14 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Cell publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/in-zebrafish-eggs-most-rapidly-growing-cell-inhibits-its-neighbours-through-mechanical-signals/ scopus_import: '1' status: public title: Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 176 year: '2019' ... --- _id: '6601' abstract: - lang: eng text: There is increasing evidence that both mechanical and biochemical signals play important roles in development and disease. The development of complex organisms, in particular, has been proposed to rely on the feedback between mechanical and biochemical patterning events. This feedback occurs at the molecular level via mechanosensation but can also arise as an emergent property of the system at the cellular and tissue level. In recent years, dynamic changes in tissue geometry, flow, rheology, and cell fate specification have emerged as key platforms of mechanochemical feedback loops in multiple processes. Here, we review recent experimental and theoretical advances in understanding how these feedbacks function in development and disease. article_processing_charge: No article_type: review author: - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Hannezo EB, Heisenberg C-PJ. Mechanochemical feedback loops in development and disease. Cell. 2019;178(1):12-25. doi:10.1016/j.cell.2019.05.052 apa: Hannezo, E. B., & Heisenberg, C.-P. J. (2019). Mechanochemical feedback loops in development and disease. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.05.052 chicago: Hannezo, Edouard B, and Carl-Philipp J Heisenberg. “Mechanochemical Feedback Loops in Development and Disease.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.05.052. ieee: E. B. Hannezo and C.-P. J. Heisenberg, “Mechanochemical feedback loops in development and disease,” Cell, vol. 178, no. 1. Elsevier, pp. 12–25, 2019. ista: Hannezo EB, Heisenberg C-PJ. 2019. Mechanochemical feedback loops in development and disease. Cell. 178(1), 12–25. mla: Hannezo, Edouard B., and Carl-Philipp J. Heisenberg. “Mechanochemical Feedback Loops in Development and Disease.” Cell, vol. 178, no. 1, Elsevier, 2019, pp. 12–25, doi:10.1016/j.cell.2019.05.052. short: E.B. Hannezo, C.-P.J. Heisenberg, Cell 178 (2019) 12–25. date_created: 2019-06-30T21:59:11Z date_published: 2019-07-27T00:00:00Z date_updated: 2023-08-28T12:25:21Z day: '27' department: - _id: CaHe - _id: EdHa doi: 10.1016/j.cell.2019.05.052 ec_funded: 1 external_id: isi: - '000473002700005' pmid: - '31251912' intvolume: ' 178' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cell.2019.05.052 month: '07' oa: 1 oa_version: Published Version page: 12-25 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Cell publication_identifier: issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Mechanochemical feedback loops in development and disease type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 178 year: '2019' ... --- _id: '6631' abstract: - lang: eng text: The spatiotemporal organization of cell divisions constitutes an integral part in the development of multicellular organisms, and mis-regulation of cell divisions can lead to severe developmental defects. Cell divisions have an important morphogenetic function in development by regulating growth and shape acquisition of developing tissues, and, conversely, tissue morphogenesis is known to affect both the rate and orientation of cell divisions. Moreover, cell divisions are associated with an extensive reorganization of the cytoskeleton and adhesion apparatus in the dividing cells that in turn can affect large-scale tissue rheological properties. Thus, the interplay between cell divisions and tissue morphogenesis plays a key role in embryo and tissue morphogenesis. article_processing_charge: No author: - first_name: Benoit G full_name: Godard, Benoit G id: 33280250-F248-11E8-B48F-1D18A9856A87 last_name: Godard - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Godard BG, Heisenberg C-PJ. Cell division and tissue mechanics. Current Opinion in Cell Biology. 2019;60:114-120. doi:10.1016/j.ceb.2019.05.007 apa: Godard, B. G., & Heisenberg, C.-P. J. (2019). Cell division and tissue mechanics. Current Opinion in Cell Biology. Elsevier. https://doi.org/10.1016/j.ceb.2019.05.007 chicago: Godard, Benoit G, and Carl-Philipp J Heisenberg. “Cell Division and Tissue Mechanics.” Current Opinion in Cell Biology. Elsevier, 2019. https://doi.org/10.1016/j.ceb.2019.05.007. ieee: B. G. Godard and C.-P. J. Heisenberg, “Cell division and tissue mechanics,” Current Opinion in Cell Biology, vol. 60. Elsevier, pp. 114–120, 2019. ista: Godard BG, Heisenberg C-PJ. 2019. Cell division and tissue mechanics. Current Opinion in Cell Biology. 60, 114–120. mla: Godard, Benoit G., and Carl-Philipp J. Heisenberg. “Cell Division and Tissue Mechanics.” Current Opinion in Cell Biology, vol. 60, Elsevier, 2019, pp. 114–20, doi:10.1016/j.ceb.2019.05.007. short: B.G. Godard, C.-P.J. Heisenberg, Current Opinion in Cell Biology 60 (2019) 114–120. date_created: 2019-07-14T21:59:17Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-29T06:33:14Z day: '01' department: - _id: CaHe doi: 10.1016/j.ceb.2019.05.007 external_id: isi: - '000486545800016' intvolume: ' 60' isi: 1 language: - iso: eng month: '10' oa_version: None page: 114-120 publication: Current Opinion in Cell Biology publication_identifier: issn: - 0955-0674 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Cell division and tissue mechanics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 60 year: '2019' ... --- _id: '6837' abstract: - lang: eng text: Migrasomes are a recently discovered type of extracellular vesicles that are characteristically generated along retraction fibers in migrating cells. Two studies now show how migrasomes are formed and how they function in the physiologically relevant context of the developing zebrafish embryo. article_processing_charge: No author: - first_name: Ste full_name: Tavano, Ste id: 2F162F0C-F248-11E8-B48F-1D18A9856A87 last_name: Tavano orcid: 0000-0001-9970-7804 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Tavano S, Heisenberg C-PJ. Migrasomes take center stage. Nature Cell Biology. 2019;21(8):918-920. doi:10.1038/s41556-019-0369-3 apa: Tavano, S., & Heisenberg, C.-P. J. (2019). Migrasomes take center stage. Nature Cell Biology. Springer Nature. https://doi.org/10.1038/s41556-019-0369-3 chicago: Tavano, Ste, and Carl-Philipp J Heisenberg. “Migrasomes Take Center Stage.” Nature Cell Biology. Springer Nature, 2019. https://doi.org/10.1038/s41556-019-0369-3. ieee: S. Tavano and C.-P. J. Heisenberg, “Migrasomes take center stage,” Nature Cell Biology, vol. 21, no. 8. Springer Nature, pp. 918–920, 2019. ista: Tavano S, Heisenberg C-PJ. 2019. Migrasomes take center stage. Nature Cell Biology. 21(8), 918–920. mla: Tavano, Ste, and Carl-Philipp J. Heisenberg. “Migrasomes Take Center Stage.” Nature Cell Biology, vol. 21, no. 8, Springer Nature, 2019, pp. 918–20, doi:10.1038/s41556-019-0369-3. short: S. Tavano, C.-P.J. Heisenberg, Nature Cell Biology 21 (2019) 918–920. date_created: 2019-09-01T22:00:57Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-08-29T07:42:20Z day: '01' department: - _id: CaHe doi: 10.1038/s41556-019-0369-3 external_id: isi: - '000478029000003' pmid: - '31371826' intvolume: ' 21' isi: 1 issue: '8' language: - iso: eng month: '08' oa_version: None page: 918-920 pmid: 1 publication: Nature Cell Biology publication_identifier: eissn: - 1476-4679 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Migrasomes take center stage type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2019' ... --- _id: '6899' abstract: - lang: eng text: Intra-organ communication guides morphogenetic processes that are essential for an organ to carry out complex physiological functions. In the heart, the growth of the myocardium is tightly coupled to that of the endocardium, a specialized endothelial tissue that lines its interior. Several molecular pathways have been implicated in the communication between these tissues including secreted factors, components of the extracellular matrix, or proteins involved in cell-cell communication. Yet, it is unknown how the growth of the endocardium is coordinated with that of the myocardium. Here, we show that an increased expansion of the myocardial atrial chamber volume generates higher junctional forces within endocardial cells. This leads to biomechanical signaling involving VE-cadherin, triggering nuclear localization of the Hippo pathway transcriptional regulator Yap1 and endocardial proliferation. Our work suggests that the growth of the endocardium results from myocardial chamber volume expansion and ends when the tension on the tissue is relaxed. article_processing_charge: No author: - first_name: Dorothee full_name: Bornhorst, Dorothee last_name: Bornhorst - first_name: Peng full_name: Xia, Peng id: 4AB6C7D0-F248-11E8-B48F-1D18A9856A87 last_name: Xia orcid: 0000-0002-5419-7756 - first_name: Hiroyuki full_name: Nakajima, Hiroyuki last_name: Nakajima - first_name: Chaitanya full_name: Dingare, Chaitanya last_name: Dingare - first_name: Wiebke full_name: Herzog, Wiebke last_name: Herzog - first_name: Virginie full_name: Lecaudey, Virginie last_name: Lecaudey - first_name: Naoki full_name: Mochizuki, Naoki last_name: Mochizuki - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Deborah full_name: Yelon, Deborah last_name: Yelon - first_name: Salim full_name: Abdelilah-Seyfried, Salim last_name: Abdelilah-Seyfried citation: ama: Bornhorst D, Xia P, Nakajima H, et al. Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature communications. 2019;10(1):4113. doi:10.1038/s41467-019-12068-x apa: Bornhorst, D., Xia, P., Nakajima, H., Dingare, C., Herzog, W., Lecaudey, V., … Abdelilah-Seyfried, S. (2019). Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/s41467-019-12068-x chicago: Bornhorst, Dorothee, Peng Xia, Hiroyuki Nakajima, Chaitanya Dingare, Wiebke Herzog, Virginie Lecaudey, Naoki Mochizuki, Carl-Philipp J Heisenberg, Deborah Yelon, and Salim Abdelilah-Seyfried. “Biomechanical Signaling within the Developing Zebrafish Heart Attunes Endocardial Growth to Myocardial Chamber Dimensions.” Nature Communications. Nature Publishing Group, 2019. https://doi.org/10.1038/s41467-019-12068-x. ieee: D. Bornhorst et al., “Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions,” Nature communications, vol. 10, no. 1. Nature Publishing Group, p. 4113, 2019. ista: Bornhorst D, Xia P, Nakajima H, Dingare C, Herzog W, Lecaudey V, Mochizuki N, Heisenberg C-PJ, Yelon D, Abdelilah-Seyfried S. 2019. Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature communications. 10(1), 4113. mla: Bornhorst, Dorothee, et al. “Biomechanical Signaling within the Developing Zebrafish Heart Attunes Endocardial Growth to Myocardial Chamber Dimensions.” Nature Communications, vol. 10, no. 1, Nature Publishing Group, 2019, p. 4113, doi:10.1038/s41467-019-12068-x. short: D. Bornhorst, P. Xia, H. Nakajima, C. Dingare, W. Herzog, V. Lecaudey, N. Mochizuki, C.-P.J. Heisenberg, D. Yelon, S. Abdelilah-Seyfried, Nature Communications 10 (2019) 4113. date_created: 2019-09-22T22:00:37Z date_published: 2019-09-11T00:00:00Z date_updated: 2023-08-30T06:21:23Z day: '11' ddc: - '570' department: - _id: CaHe doi: 10.1038/s41467-019-12068-x external_id: isi: - '000485216800009' pmid: - '31511517' file: - access_level: open_access checksum: 62c2512712e16d27c1797d318d14ba9f content_type: application/pdf creator: kschuh date_created: 2019-10-01T11:18:50Z date_updated: 2020-07-14T12:47:44Z file_id: '6926' file_name: 2019_Nature_Bornhorst.pdf file_size: 3905793 relation: main_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '4113' pmid: 1 publication: Nature communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Nature Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2019' ... --- _id: '6980' abstract: - lang: eng text: Tissue morphogenesis in multicellular organisms is brought about by spatiotemporal coordination of mechanical and chemical signals. Extensive work on how mechanical forces together with the well‐established morphogen signalling pathways can actively shape living tissues has revealed evolutionary conserved mechanochemical features of embryonic development. More recently, attention has been drawn to the description of tissue material properties and how they can influence certain morphogenetic processes. Interestingly, besides the role of tissue material properties in determining how much tissues deform in response to force application, there is increasing theoretical and experimental evidence, suggesting that tissue material properties can abruptly and drastically change in development. These changes resemble phase transitions, pointing at the intriguing possibility that important morphogenetic processes in development, such as symmetry breaking and self‐organization, might be mediated by tissue phase transitions. In this review, we summarize recent findings on the regulation and role of tissue material properties in the context of the developing embryo. We posit that abrupt changes of tissue rheological properties may have important implications in maintaining the balance between robustness and adaptability during embryonic development. article_number: e102497 article_processing_charge: Yes (via OA deal) article_type: review author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Petridou N, Heisenberg C-PJ. Tissue rheology in embryonic organization. The EMBO Journal. 2019;38(20). doi:10.15252/embj.2019102497 apa: Petridou, N., & Heisenberg, C.-P. J. (2019). Tissue rheology in embryonic organization. The EMBO Journal. EMBO. https://doi.org/10.15252/embj.2019102497 chicago: Petridou, Nicoletta, and Carl-Philipp J Heisenberg. “Tissue Rheology in Embryonic Organization.” The EMBO Journal. EMBO, 2019. https://doi.org/10.15252/embj.2019102497. ieee: N. Petridou and C.-P. J. Heisenberg, “Tissue rheology in embryonic organization,” The EMBO Journal, vol. 38, no. 20. EMBO, 2019. ista: Petridou N, Heisenberg C-PJ. 2019. Tissue rheology in embryonic organization. The EMBO Journal. 38(20), e102497. mla: Petridou, Nicoletta, and Carl-Philipp J. Heisenberg. “Tissue Rheology in Embryonic Organization.” The EMBO Journal, vol. 38, no. 20, e102497, EMBO, 2019, doi:10.15252/embj.2019102497. short: N. Petridou, C.-P.J. Heisenberg, The EMBO Journal 38 (2019). date_created: 2019-11-04T15:24:29Z date_published: 2019-10-15T00:00:00Z date_updated: 2023-09-05T13:04:13Z day: '15' ddc: - '570' department: - _id: CaHe doi: 10.15252/embj.2019102497 ec_funded: 1 external_id: isi: - '000485561900001' pmid: - '31512749' file: - access_level: open_access checksum: 76f7f4e79ab6d850c30017a69726fd85 content_type: application/pdf creator: dernst date_created: 2019-11-04T15:30:08Z date_updated: 2020-07-14T12:47:46Z file_id: '6981' file_name: 2019_Embo_Petridou.pdf file_size: 847356 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '20' language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 2693FD8C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00736 name: Tissue material properties in embryonic development publication: The EMBO Journal publication_identifier: eissn: - 1460-2075 issn: - 0261-4189 publication_status: published publisher: EMBO quality_controlled: '1' scopus_import: '1' status: public title: Tissue rheology in embryonic organization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 38 year: '2019' ... --- _id: '6987' abstract: - lang: eng text: Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern. alternative_title: - RESULTS article_processing_charge: No author: - first_name: Alex full_name: McDougall, Alex last_name: McDougall - first_name: Janet full_name: Chenevert, Janet last_name: Chenevert - first_name: Benoit G full_name: Godard, Benoit G id: 33280250-F248-11E8-B48F-1D18A9856A87 last_name: Godard - first_name: Remi full_name: Dumollard, Remi last_name: Dumollard citation: ama: 'McDougall A, Chenevert J, Godard BG, Dumollard R. Emergence of embryo shape during cleavage divisions. In: Tworzydlo W, Bilinski SM, eds. Evo-Devo: Non-Model Species in Cell and Developmental Biology. Vol 68. Springer Nature; 2019:127-154. doi:10.1007/978-3-030-23459-1_6' apa: 'McDougall, A., Chenevert, J., Godard, B. G., & Dumollard, R. (2019). Emergence of embryo shape during cleavage divisions. In W. Tworzydlo & S. M. Bilinski (Eds.), Evo-Devo: Non-model species in cell and developmental biology (Vol. 68, pp. 127–154). Springer Nature. https://doi.org/10.1007/978-3-030-23459-1_6' chicago: 'McDougall, Alex, Janet Chenevert, Benoit G Godard, and Remi Dumollard. “Emergence of Embryo Shape during Cleavage Divisions.” In Evo-Devo: Non-Model Species in Cell and Developmental Biology, edited by Waclaw Tworzydlo and Szczepan M. Bilinski, 68:127–54. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-23459-1_6.' ieee: 'A. McDougall, J. Chenevert, B. G. Godard, and R. Dumollard, “Emergence of embryo shape during cleavage divisions,” in Evo-Devo: Non-model species in cell and developmental biology, vol. 68, W. Tworzydlo and S. M. Bilinski, Eds. Springer Nature, 2019, pp. 127–154.' ista: 'McDougall A, Chenevert J, Godard BG, Dumollard R. 2019.Emergence of embryo shape during cleavage divisions. In: Evo-Devo: Non-model species in cell and developmental biology. RESULTS, vol. 68, 127–154.' mla: 'McDougall, Alex, et al. “Emergence of Embryo Shape during Cleavage Divisions.” Evo-Devo: Non-Model Species in Cell and Developmental Biology, edited by Waclaw Tworzydlo and Szczepan M. Bilinski, vol. 68, Springer Nature, 2019, pp. 127–54, doi:10.1007/978-3-030-23459-1_6.' short: 'A. McDougall, J. Chenevert, B.G. Godard, R. Dumollard, in:, W. Tworzydlo, S.M. Bilinski (Eds.), Evo-Devo: Non-Model Species in Cell and Developmental Biology, Springer Nature, 2019, pp. 127–154.' date_created: 2019-11-04T16:20:19Z date_published: 2019-10-10T00:00:00Z date_updated: 2023-09-05T15:01:12Z day: '10' ddc: - '570' department: - _id: CaHe doi: 10.1007/978-3-030-23459-1_6 editor: - first_name: Waclaw full_name: Tworzydlo, Waclaw last_name: Tworzydlo - first_name: Szczepan M. full_name: Bilinski, Szczepan M. last_name: Bilinski external_id: pmid: - '31598855' file: - access_level: open_access checksum: 7f43e1e3706d15061475c5c57efc2786 content_type: application/pdf creator: dernst date_created: 2020-05-14T10:09:30Z date_updated: 2020-07-14T12:47:46Z file_id: '7829' file_name: 2019_RESULTS_McDougall.pdf file_size: 19317348 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 68' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 127-154 pmid: 1 publication: 'Evo-Devo: Non-model species in cell and developmental biology' publication_identifier: eissn: - 1861-0412 isbn: - '9783030234584' - '9783030234591' issn: - 0080-1844 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Emergence of embryo shape during cleavage divisions type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 68 year: '2019' ... --- _id: '7186' abstract: - lang: eng text: "Tissue morphogenesis in developmental or physiological processes is regulated by molecular\r\nand mechanical signals. While the molecular signaling cascades are increasingly well\r\ndescribed, the mechanical signals affecting tissue shape changes have only recently been\r\nstudied in greater detail. To gain more insight into the mechanochemical and biophysical\r\nbasis of an epithelial spreading process (epiboly) in early zebrafish development, we studied\r\ncell-cell junction formation and actomyosin network dynamics at the boundary between\r\nsurface layer epithelial cells (EVL) and the yolk syncytial layer (YSL). During zebrafish epiboly,\r\nthe cell mass sitting on top of the yolk cell spreads to engulf the yolk cell by the end of\r\ngastrulation. It has been previously shown that an actomyosin ring residing within the YSL\r\npulls on the EVL tissue through a cable-constriction and a flow-friction motor, thereby\r\ndragging the tissue vegetal wards. Pulling forces are likely transmitted from the YSL\r\nactomyosin ring to EVL cells; however, the nature and formation of the junctional structure\r\nmediating this process has not been well described so far. Therefore, our main aim was to\r\ndetermine the nature, dynamics and potential function of the EVL-YSL junction during this\r\nepithelial tissue spreading. Specifically, we show that the EVL-YSL junction is a\r\nmechanosensitive structure, predominantly made of tight junction (TJ) proteins. The process\r\nof TJ mechanosensation depends on the retrograde flow of non-junctional, phase-separated\r\nZonula Occludens-1 (ZO-1) protein clusters towards the EVL-YSL boundary. Interestingly, we\r\ncould demonstrate that ZO-1 is present in a non-junctional pool on the surface of the yolk\r\ncell, and ZO-1 undergoes a phase separation process that likely renders the protein\r\nresponsive to flows. These flows are directed towards the junction and mediate proper\r\ntension-dependent recruitment of ZO-1. Upon reaching the EVL-YSL junction ZO-1 gets\r\nincorporated into the junctional pool mediated through its direct actin-binding domain.\r\nWhen the non-junctional pool and/or ZO-1 direct actin binding is absent, TJs fail in their\r\nproper mechanosensitive responses resulting in slower tissue spreading. We could further\r\ndemonstrate that depletion of ZO proteins within the YSL results in diminished actomyosin\r\nring formation. This suggests that a mechanochemical feedback loop is at work during\r\nzebrafish epiboly: ZO proteins help in proper actomyosin ring formation and actomyosin\r\ncontractility and flows positively influence ZO-1 junctional recruitment. Finally, such a\r\nmesoscale polarization process mediated through the flow of phase-separated protein\r\nclusters might have implications for other processes such as immunological synapse\r\nformation, C. elegans zygote polarization and wound healing." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: EM-Fac - _id: SSU alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 citation: ama: Schwayer C. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. 2019. doi:10.15479/AT:ISTA:7186 apa: Schwayer, C. (2019). Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7186 chicago: Schwayer, Cornelia. “Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:7186. ieee: C. Schwayer, “Mechanosensation of tight junctions depends on ZO-1 phase separation and flow,” Institute of Science and Technology Austria, 2019. ista: Schwayer C. 2019. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Institute of Science and Technology Austria. mla: Schwayer, Cornelia. Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:7186. short: C. Schwayer, Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow, Institute of Science and Technology Austria, 2019. date_created: 2019-12-16T14:26:14Z date_published: 2019-12-16T00:00:00Z date_updated: 2023-09-07T12:56:42Z day: '16' ddc: - '570' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:7186 file: - access_level: closed checksum: 585583c1c875c5d9525703a539668a7c content_type: application/zip creator: cschwayer date_created: 2019-12-19T15:18:11Z date_updated: 2020-07-14T12:47:52Z file_id: '7194' file_name: DocumentSourceFiles.zip file_size: 19431292 relation: source_file - access_level: open_access checksum: 9b9b24351514948d27cec659e632e2cd content_type: application/pdf creator: cschwayer date_created: 2019-12-19T15:19:21Z date_updated: 2020-07-14T12:47:52Z file_id: '7195' file_name: Thesis_CS_final.pdf file_size: 19226428 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '107' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1096' relation: dissertation_contains status: public - id: '7001' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Mechanosensation of tight junctions depends on ZO-1 phase separation and flow type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ...