TY - JOUR AB - Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion. AU - Assen, Frank P AU - Abe, Jun AU - Hons, Miroslav AU - Hauschild, Robert AU - Shamipour, Shayan AU - Kaufmann, Walter AU - Costanzo, Tommaso AU - Krens, Gabriel AU - Brown, Markus AU - Ludewig, Burkhard AU - Hippenmeyer, Simon AU - Heisenberg, Carl-Philipp J AU - Weninger, Wolfgang AU - Hannezo, Edouard B AU - Luther, Sanjiv A. AU - Stein, Jens V. AU - Sixt, Michael K ID - 9794 JF - Nature Immunology SN - 1529-2908 TI - Multitier mechanics control stromal adaptations in swelling lymph nodes VL - 23 ER - TY - JOUR AB - Although rigidity and jamming transitions have been widely studied in physics and material science, their importance in a number of biological processes, including embryo development, tissue homeostasis, wound healing, and disease progression, has only begun to be recognized in the past few years. The hypothesis that biological systems can undergo rigidity/jamming transitions is attractive, as it would allow these systems to change their material properties rapidly and strongly. However, whether such transitions indeed occur in biological systems, how they are being regulated, and what their physiological relevance might be, is still being debated. Here, we review theoretical and experimental advances from the past few years, focusing on the regulation and role of potential tissue rigidity transitions in different biological processes. AU - Hannezo, Edouard B AU - Heisenberg, Carl-Philipp J ID - 10705 IS - 5 JF - Trends in Cell Biology SN - 0962-8924 TI - Rigidity transitions in development and disease VL - 32 ER - TY - JOUR AB - Tension of the actomyosin cell cortex plays a key role in determining cell–cell contact growth and size. The level of cortical tension outside of the cell–cell contact, when pulling at the contact edge, scales with the total size to which a cell–cell contact can grow [J.-L. Maître et al., Science 338, 253–256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell–cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell–cell contact size is limited by tension-stabilizing E-cadherin–actin complexes at the contact. AU - Slovakova, Jana AU - Sikora, Mateusz K AU - Arslan, Feyza N AU - Caballero Mancebo, Silvia AU - Krens, Gabriel AU - Kaufmann, Walter AU - Merrin, Jack AU - Heisenberg, Carl-Philipp J ID - 10766 IS - 8 JF - Proceedings of the National Academy of Sciences of the United States of America TI - Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells VL - 119 ER - TY - JOUR AB - Embryo development requires biochemical signalling to generate patterns of cell fates and active mechanical forces to drive tissue shape changes. However, how these processes are coordinated, and how tissue patterning is preserved despite the cellular flows occurring during morphogenesis, remains poorly understood. Gastrulation is a crucial embryonic stage that involves both patterning and internalization of the mesendoderm germ layer tissue. Here we show that, in zebrafish embryos, a gradient in Nodal signalling orchestrates pattern-preserving internalization movements by triggering a motility-driven unjamming transition. In addition to its role as a morphogen determining embryo patterning, graded Nodal signalling mechanically subdivides the mesendoderm into a small fraction of highly protrusive leader cells, able to autonomously internalize via local unjamming, and less protrusive followers, which need to be pulled inwards by the leaders. The Nodal gradient further enforces a code of preferential adhesion coupling leaders to their immediate followers, resulting in a collective and ordered mode of internalization that preserves mesendoderm patterning. Integrating this dual mechanical role of Nodal signalling into minimal active particle simulations quantitatively predicts both physiological and experimentally perturbed internalization movements. This provides a quantitative framework for how a morphogen-encoded unjamming transition can bidirectionally couple tissue mechanics with patterning during complex three-dimensional morphogenesis. AU - Nunes Pinheiro, Diana C AU - Kardos, Roland AU - Hannezo, Edouard B AU - Heisenberg, Carl-Philipp J ID - 12209 IS - 12 JF - Nature Physics KW - General Physics and Astronomy SN - 1745-2473 TI - Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming VL - 18 ER - TY - JOUR AB - Ventral tail bending, which is transient but pronounced, is found in many chordate embryos and constitutes an interesting model of how tissue interactions control embryo shape. Here, we identify one key upstream regulator of ventral tail bending in embryos of the ascidian Ciona. We show that during the early tailbud stages, ventral epidermal cells exhibit a boat-shaped morphology (boat cell) with a narrow apical surface where phosphorylated myosin light chain (pMLC) accumulates. We further show that interfering with the function of the BMP ligand Admp led to pMLC localizing to the basal instead of the apical side of ventral epidermal cells and a reduced number of boat cells. Finally, we show that cutting ventral epidermal midline cells at their apex using an ultraviolet laser relaxed ventral tail bending. Based on these results, we propose a previously unreported function for Admp in localizing pMLC to the apical side of ventral epidermal cells, which causes the tail to bend ventrally by resisting antero-posterior notochord extension at the ventral side of the tail. AU - Kogure, Yuki S. AU - Muraoka, Hiromochi AU - Koizumi, Wataru C. AU - Gelin-alessi, Raphaël AU - Godard, Benoit G AU - Oka, Kotaro AU - Heisenberg, Carl-Philipp J AU - Hotta, Kohji ID - 12231 IS - 21 JF - Development KW - Developmental Biology KW - Molecular Biology SN - 0950-1991 TI - Admp regulates tail bending by controlling ventral epidermal cell polarity via phosphorylated myosin localization in Ciona VL - 149 ER -