@inbook{6178, abstract = {Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo.}, author = {Smutny, Michael and Behrndt, Martin and Campinho, Pedro and Ruprecht, Verena and Heisenberg, Carl-Philipp J}, booktitle = {Tissue Morphogenesis}, editor = {Nelson, Celeste}, isbn = {9781493911639}, issn = {1940-6029}, pages = {219--235}, publisher = {Springer}, title = {{UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo}}, doi = {10.1007/978-1-4939-1164-6_15}, volume = {1189}, year = {2014}, } @article{1912, abstract = {Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function.}, author = {Compagnon, Julien and Barone, Vanessa and Rajshekar, Srivarsha and Kottmeier, Rita and Pranjic-Ferscha, Kornelija and Behrndt, Martin and Heisenberg, Carl-Philipp J}, journal = {Developmental Cell}, number = {6}, pages = {774 -- 783}, publisher = {Cell Press}, title = {{The notochord breaks bilateral symmetry by controlling cell shapes in the Zebrafish laterality organ}}, doi = {10.1016/j.devcel.2014.11.003}, volume = {31}, year = {2014}, } @phdthesis{1403, abstract = {A variety of developmental and disease related processes depend on epithelial cell sheet spreading. In order to gain insight into the biophysical mechanism(s) underlying the tissue morphogenesis we studied the spreading of an epithelium during the early development of the zebrafish embryo. In zebrafish epiboly the enveloping cell layer (EVL), a simple squamous epithelium, spreads over the yolk cell to completely engulf it at the end of gastrulation. Previous studies have proposed that an actomyosin ring forming within the yolk syncytial layer (YSL) acts as purse string that through constriction along its circumference pulls on the margin of the EVL. Direct biophysical evidence for this hypothesis has however been missing. The aim of the thesis was to understand how the actomyosin ring may generate pulling forces onto the EVL and what cellular mechanism(s) may facilitate the spreading of the epithelium. Using laser ablation to measure cortical tension within the actomyosin ring we found an anisotropic tension distribution, which was highest along the circumference of the ring. However the low degree of anisotropy was incompatible with the actomyosin ring functioning as a purse string only. Additionally, we observed retrograde cortical flow from vegetal parts of the ring into the EVL margin. Interpreting the experimental data using a theoretical distribution that models the tissues as active viscous gels led us to proposen that the actomyosin ring has a twofold contribution to EVL epiboly. It not only acts as a purse string through constriction along its circumference, but in addition constriction along the width of the ring generates pulling forces through friction-resisted cortical flow. Moreover, when rendering the purse string mechanism unproductive EVL epiboly proceeded normally indicating that the flow-friction mechanism is sufficient to drive the process. Aiming to understand what cellular mechanism(s) may facilitate the spreading of the epithelium we found that tension-oriented EVL cell divisions limit tissue anisotropy by releasing tension along the division axis and promote epithelial spreading. Notably, EVL cells undergo ectopic cell fusion in conditions in which oriented-cell division is impaired or the epithelium is mechanically challenged. Taken together our study of EVL epiboly suggests a novel mechanism of force generation for actomyosin rings through friction-resisted cortical flow and highlights the importance of tension-oriented cell divisions in epithelial morphogenesis.}, author = {Behrndt, Martin}, pages = {91}, publisher = {IST Austria}, title = {{Forces driving epithelial spreading in zebrafish epiboly}}, year = {2014}, } @article{2278, abstract = {It is firmly established that interactions between neurons and glia are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions that generate neuroblasts. The proneural gene lethal of scute (l9sc) is transiently activated by the epidermal growth factor receptor (EGFR)-Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium, promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR-Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for interactions between glia and neuroepithelial cells during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR-Ras pathway and hence of L9sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling.}, author = {Pérez Gómez, Raquel and Slovakova, Jana and Rives Quinto, Noemí and Krejčí, Alena and Carmena, Ana}, journal = {Journal of Cell Science}, number = {21}, pages = {4873 -- 4884}, publisher = {Company of Biologists}, title = {{A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development}}, doi = {10.1242/jcs.125617}, volume = {126}, year = {2013}, } @article{2282, abstract = {Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly.}, author = {Campinho, Pedro and Behrndt, Martin and Ranft, Jonas and Risler, Thomas and Minc, Nicolas and Heisenberg, Carl-Philipp J}, journal = {Nature Cell Biology}, pages = {1405 -- 1414}, publisher = {Nature Publishing Group}, title = {{Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly}}, doi = {10.1038/ncb2869}, volume = {15}, year = {2013}, } @article{2286, abstract = {The spatiotemporal control of cell divisions is a key factor in epithelial morphogenesis and patterning. Mao et al (2013) now describe how differential rates of proliferation within the Drosophila wing disc epithelium give rise to anisotropic tissue tension in peripheral/proximal regions of the disc. Such global tissue tension anisotropy in turn determines the orientation of cell divisions by controlling epithelial cell elongation.}, author = {Campinho, Pedro and Heisenberg, Carl-Philipp J}, journal = {EMBO Journal}, number = {21}, pages = {2783 -- 2784}, publisher = {Wiley-Blackwell}, title = {{The force and effect of cell proliferation}}, doi = {10.1038/emboj.2013.225}, volume = {32}, year = {2013}, } @article{2469, abstract = {Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major unctions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial ension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact.}, author = {Maître, Jean-Léon and Heisenberg, Carl-Philipp J}, journal = {Current Biology}, number = {14}, pages = {R626 -- R633}, publisher = {Cell Press}, title = {{Three functions of cadherins in cell adhesion}}, doi = {10.1016/j.cub.2013.06.019}, volume = {23}, year = {2013}, } @article{2833, abstract = {During development, mechanical forces cause changes in size, shape, number, position, and gene expression of cells. They are therefore integral to any morphogenetic processes. Force generation by actin-myosin networks and force transmission through adhesive complexes are two self-organizing phenomena driving tissue morphogenesis. Coordination and integration of forces by long-range force transmission and mechanosensing of cells within tissues produce large-scale tissue shape changes. Extrinsic mechanical forces also control tissue patterning by modulating cell fate specification and differentiation. Thus, the interplay between tissue mechanics and biochemical signaling orchestrates tissue morphogenesis and patterning in development.}, author = {Heisenberg, Carl-Philipp J and Bellaïche, Yohanns}, journal = {Cell}, number = {5}, pages = {948 -- 962}, publisher = {Cell Press}, title = {{Forces in tissue morphogenesis and patterning}}, doi = {10.1016/j.cell.2013.05.008}, volume = {153}, year = {2013}, } @article{2841, abstract = {In zebrafish early development, blastoderm cells undergo extensive radial intercalations, triggering the spreading of the blastoderm over the yolk cell and thereby initiating embryonic body axis formation. Now reporting in Developmental Cell, Song et al. (2013) demonstrate a critical function for EGF-dependent E-cadherin endocytosis in promoting blastoderm cell intercalations.}, author = {Morita, Hitoshi and Heisenberg, Carl-Philipp J}, journal = {Developmental Cell}, number = {6}, pages = {567 -- 569}, publisher = {Cell Press}, title = {{Holding on and letting go: Cadherin turnover in cell intercalation}}, doi = {10.1016/j.devcel.2013.03.007}, volume = {24}, year = {2013}, } @article{2862, abstract = {Motile cilia perform crucial functions during embryonic development and throughout adult life. Development of organs containing motile cilia involves regulation of cilia formation (ciliogenesis) and formation of a luminal space (lumenogenesis) in which cilia generate fluid flows. Control of ciliogenesis and lumenogenesis is not yet fully understood, and it remains unclear whether these processes are coupled. In the zebrafish embryo, lethal giant larvae 2 (lgl2) is expressed prominently in ciliated organs. Lgl proteins are involved in establishing cell polarity and have been implicated in vesicle trafficking. Here, we identified a role for Lgl2 in development of ciliated epithelia in Kupffer's vesicle, which directs left-right asymmetry of the embryo; the otic vesicles, which give rise to the inner ear; and the pronephric ducts of the kidney. Using Kupffer's vesicle as a model ciliated organ, we found that depletion of Lgl2 disrupted lumen formation and reduced cilia number and length. Immunofluorescence and time-lapse imaging of Kupffer's vesicle morphogenesis in Lgl2-deficient embryos suggested cell adhesion defects and revealed loss of the adherens junction component E-cadherin at lateral membranes. Genetic interaction experiments indicate that Lgl2 interacts with Rab11a to regulate E-cadherin and mediate lumen formation that is uncoupled from cilia formation. These results uncover new roles and interactions for Lgl2 that are crucial for both lumenogenesis and ciliogenesis and indicate that these processes are genetically separable in zebrafish.}, author = {Tay, Hwee and Schulze, Sabrina and Compagnon, Julien and Foley, Fiona and Heisenberg, Carl-Philipp J and Yost, H Joseph and Abdelilah Seyfried, Salim and Amack, Jeffrey}, journal = {Development}, number = {7}, pages = {1550 -- 1559}, publisher = {Company of Biologists}, title = {{Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle}}, doi = {10.1242/dev.087130}, volume = {140}, year = {2013}, } @article{2884, author = {Maître, Jean-Léon and Berthoumieux, Hélène and Krens, Gabriel and Salbreux, Guillaume and Julicher, Frank and Paluch, Ewa and Heisenberg, Carl-Philipp J}, journal = {Medecine Sciences}, number = {2}, pages = {147 -- 150}, publisher = {Éditions Médicales et Scientifiques}, title = {{Cell adhesion mechanics of zebrafish gastrulation}}, doi = {10.1051/medsci/2013292011}, volume = {29}, year = {2013}, } @article{2918, abstract = {Oriented mitosis is essential during tissue morphogenesis. The Wnt/planar cell polarity (Wnt/PCP) pathway orients mitosis in a number of developmental systems, including dorsal epiblast cell divisions along the animal-vegetal (A-V) axis during zebrafish gastrulation. How Wnt signalling orients the mitotic plane is, however, unknown. Here we show that, in dorsal epiblast cells, anthrax toxin receptor 2a (Antxr2a) accumulates in a polarized cortical cap, which is aligned with the embryonic A-V axis and forecasts the division plane. Filamentous actin (F-actin) also forms an A-V polarized cap, which depends on Wnt/PCP and its effectors RhoA and Rock2. Antxr2a is recruited to the cap by interacting with actin. Antxr2a also interacts with RhoA and together they activate the diaphanous-related formin zDia2. Mechanistically, Antxr2a functions as a Wnt-dependent polarized determinant, which, through the action of RhoA and zDia2, exerts torque on the spindle to align it with the A-V axis. }, author = {Castanon, Irinka and Abrami, Laurence and Holtzer, Laurent and Heisenberg, Carl-Philipp J and Van Der Goot, Françoise and González Gaitán, Marcos}, journal = {Nature Cell Biology}, number = {1}, pages = {28 -- 39}, publisher = {Nature Publishing Group}, title = {{Anthrax toxin receptor 2a controls mitotic spindle positioning}}, doi = {10.1038/ncb2632}, volume = {15}, year = {2013}, } @article{2920, abstract = {Cell polarisation in development is a common and fundamental process underlying embryo patterning and morphogenesis, and has been extensively studied over the past years. Our current knowledge of cell polarisation in development is predominantly based on studies that have analysed polarisation of single cells, such as eggs, or cellular aggregates with a stable polarising interface, such as cultured epithelial cells (St Johnston and Ahringer, 2010). However, in embryonic development, particularly of vertebrates, cell polarisation processes often encompass large numbers of cells that are placed within moving and proliferating tissues, and undergo mesenchymal-to-epithelial transitions with a highly complex spatiotemporal choreography. How such intricate cell polarisation processes in embryonic development are achieved has only started to be analysed. By using live imaging of neurulation in the transparent zebrafish embryo, Buckley et al (2012) now describe a novel polarisation strategy by which cells assemble an apical domain in the part of their cell body that intersects with the midline of the forming neural rod. This mechanism, along with the previously described mirror-symmetric divisions (Tawk et al, 2007), is thought to trigger formation of both neural rod midline and lumen.}, author = {Compagnon, Julien and Heisenberg, Carl-Philipp J}, journal = {EMBO Journal}, number = {1}, pages = {1 -- 3}, publisher = {Wiley-Blackwell}, title = {{Neurulation coordinating cell polarisation and lumen formation}}, doi = {10.1038/emboj.2012.325}, volume = {32}, year = {2013}, } @phdthesis{1406, abstract = {Epithelial spreading is a critical part of various developmental and wound repair processes. Here we use zebrafish epiboly as a model system to study the cellular and molecular mechanisms underlying the spreading of epithelial sheets. During zebrafish epiboly the enveloping cell layer (EVL), a simple squamous epithelium, spreads over the embryo to eventually cover the entire yolk cell by the end of gastrulation. The EVL leading edge is anchored through tight junctions to the yolk syncytial layer (YSL), where directly adjacent to the EVL margin a contractile actomyosin ring is formed that is thought to drive EVL epiboly. The prevalent view in the field was that the contractile ring exerts a pulling force on the EVL margin, which pulls the EVL towards the vegetal pole. However, how this force is generated and how it affects EVL morphology still remains elusive. Moreover, the cellular mechanisms mediating the increase in EVL surface area, while maintaining tissue integrity and function are still unclear. Here we show that the YSL actomyosin ring pulls on the EVL margin by two distinct force-generating mechanisms. One mechanism is based on contraction of the ring around its circumference, as previously proposed. The second mechanism is based on actomyosin retrogade flows, generating force through resistance against the substrate. The latter can function at any epiboly stage even in situations where the contraction-based mechanism is unproductive. Additionally, we demonstrate that during epiboly the EVL is subjected to anisotropic tension, which guides the orientation of EVL cell division along the main axis (animal-vegetal) of tension. The influence of tension in cell division orientation involves cell elongation and requires myosin-2 activity for proper spindle alignment. Strikingly, we reveal that tension-oriented cell divisions release anisotropic tension within the EVL and that in the absence of such divisions, EVL cells undergo ectopic fusions. We conclude that forces applied to the EVL by the action of the YSL actomyosin ring generate a tension anisotropy in the EVL that orients cell divisions, which in turn limit tissue tension increase thereby facilitating tissue spreading.}, author = {Campinho, Pedro}, issn = {2663-337X}, pages = {123}, publisher = {Institute of Science and Technology Austria}, title = {{Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading}}, year = {2013}, } @article{2926, abstract = {To fight infectious diseases, host immune defenses are employed at multiple levels. Sanitary behavior, such as pathogen avoidance and removal, acts as a first line of defense to prevent infection [1] before activation of the physiological immune system. Insect societies have evolved a wide range of collective hygiene measures and intensive health care toward pathogen-exposed group members [2]. One of the most common behaviors is allogrooming, in which nestmates remove infectious particles from the body surfaces of exposed individuals [3]. Here we show that, in invasive garden ants, grooming of fungus-exposed brood is effective beyond the sheer mechanical removal of fungal conidiospores; it also includes chemical disinfection through the application of poison produced by the ants themselves. Formic acid is the main active component of the poison. It inhibits fungal growth of conidiospores remaining on the brood surface after grooming and also those collected in the mouth of the grooming ant. This dual function is achieved by uptake of the poison droplet into the mouth through acidopore self-grooming and subsequent application onto the infectious brood via brood grooming. This extraordinary behavior extends the current understanding of grooming and the establishment of social immunity in insect societies.}, author = {Tragust, Simon and Mitteregger, Barbara and Barone, Vanessa and Konrad, Matthias and Ugelvig, Line V and Cremer, Sylvia}, journal = {Current Biology}, number = {1}, pages = {76 -- 82}, publisher = {Cell Press}, title = {{Ants disinfect fungus-exposed brood by oral uptake and spread of their poison}}, doi = {10.1016/j.cub.2012.11.034}, volume = {23}, year = {2013}, } @article{2950, abstract = {Contractile actomyosin rings drive various fundamental morphogenetic processes ranging from cytokinesis to wound healing. Actomyosin rings are generally thought to function by circumferential contraction. Here, we show that the spreading of the enveloping cell layer (EVL) over the yolk cell during zebrafish gastrulation is driven by a contractile actomyosin ring. In contrast to previous suggestions, we find that this ring functions not only by circumferential contraction but also by a flow-friction mechanism. This generates a pulling force through resistance against retrograde actomyosin flow. EVL spreading proceeds normally in situations where circumferential contraction is unproductive, indicating that the flow-friction mechanism is sufficient. Thus, actomyosin rings can function in epithelial morphogenesis through a combination of cable-constriction and flow-friction mechanisms.}, author = {Behrndt, Martin and Salbreux, Guillaume and Campinho, Pedro and Hauschild, Robert and Oswald, Felix and Roensch, Julia and Grill, Stephan and Heisenberg, Carl-Philipp J}, journal = {Science}, number = {6104}, pages = {257 -- 260}, publisher = {American Association for the Advancement of Science}, title = {{Forces driving epithelial spreading in zebrafish gastrulation}}, doi = {10.1126/science.1224143}, volume = {338}, year = {2012}, } @article{2951, abstract = {Differential cell adhesion and cortex tension are thought to drive cell sorting by controlling cell-cell contact formation. Here, we show that cell adhesion and cortex tension have different mechanical functions in controlling progenitor cell-cell contact formation and sorting during zebrafish gastrulation. Cortex tension controls cell-cell contact expansion by modulating interfacial tension at the contact. By contrast, adhesion has little direct function in contact expansion, but instead is needed to mechanically couple the cortices of adhering cells at their contacts, allowing cortex tension to control contact expansion. The coupling function of adhesion is mediated by E-cadherin and limited by the mechanical anchoring of E-cadherin to the cortex. Thus, cell adhesion provides the mechanical scaffold for cell cortex tension to drive cell sorting during gastrulation.}, author = {Maître, Jean-Léon and Berthoumieux, Hélène and Krens, Gabriel and Salbreux, Guillaume and Julicher, Frank and Paluch, Ewa and Heisenberg, Carl-Philipp J}, journal = {Science}, number = {6104}, pages = {253 -- 256}, publisher = {American Association for the Advancement of Science}, title = {{Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells}}, doi = {10.1126/science.1225399}, volume = {338}, year = {2012}, } @article{2952, abstract = {Body axis elongation represents a common and fundamental morphogenetic process in development. A key mechanism triggering body axis elongation without additional growth is convergent extension (CE), whereby a tissue undergoes simultaneous narrowing and extension. Both collective cell migration and cell intercalation are thought to drive CE and are used to different degrees in various species as they elongate their body axis. Here, we provide an overview of CE as a general strategy for body axis elongation and discuss conserved and divergent mechanisms underlying CE among different species.}, author = {Tada, Masazumi and Heisenberg, Carl-Philipp J}, journal = {Development}, number = {21}, pages = {3897 -- 3904}, publisher = {Company of Biologists}, title = {{Convergent extension Using collective cell migration and cell intercalation to shape embryos}}, doi = {10.1242/dev.073007}, volume = {139}, year = {2012}, } @article{2953, author = {Heisenberg, Carl-Philipp J and Fässler, Reinhard}, journal = {Current Opinion in Cell Biology}, number = {5}, pages = {559 -- 561}, publisher = {Elsevier}, title = {{Cell-cell adhesion and extracellular matrix diversity counts}}, doi = {10.1016/j.ceb.2012.09.002}, volume = {24}, year = {2012}, } @article{3245, abstract = {How cells orchestrate their behavior during collective migration is a long-standing question. Using magnetic tweezers to apply mechanical stimuli to Xenopus mesendoderm cells, Weber etal. (2012) now reveal, in this issue of Developmental Cell, a cadherin-mediated mechanosensitive response that promotes cell polarization and movement persistence during the collective mesendoderm migration in gastrulation.}, author = {Behrndt, Martin and Heisenberg, Carl-Philipp J}, journal = {Developmental Cell}, number = {1}, pages = {3 -- 4}, publisher = {Cell Press}, title = {{Spurred by resistance mechanosensation in collective migration}}, doi = {10.1016/j.devcel.2011.12.018}, volume = {22}, year = {2012}, }