@article{5789, abstract = {Tissue morphogenesis is driven by mechanical forces that elicit changes in cell size, shape and motion. The extent by which forces deform tissues critically depends on the rheological properties of the recipient tissue. Yet, whether and how dynamic changes in tissue rheology affect tissue morphogenesis and how they are regulated within the developing organism remain unclear. Here, we show that blastoderm spreading at the onset of zebrafish morphogenesis relies on a rapid, pronounced and spatially patterned tissue fluidization. Blastoderm fluidization is temporally controlled by mitotic cell rounding-dependent cell–cell contact disassembly during the last rounds of cell cleavages. Moreover, fluidization is spatially restricted to the central blastoderm by local activation of non-canonical Wnt signalling within the blastoderm margin, increasing cell cohesion and thereby counteracting the effect of mitotic rounding on contact disassembly. Overall, our results identify a fluidity transition mediated by loss of cell cohesion as a critical regulator of embryo morphogenesis.}, author = {Petridou, Nicoletta and Grigolon, Silvia and Salbreux, Guillaume and Hannezo, Edouard B and Heisenberg, Carl-Philipp J}, issn = {14657392}, journal = {Nature Cell Biology}, pages = {169–178}, publisher = {Nature Publishing Group}, title = {{Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling}}, doi = {10.1038/s41556-018-0247-4}, volume = {21}, year = {2019}, } @article{6508, abstract = {Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation.}, author = {Shamipour, Shayan and Kardos, Roland and Xue, Shi-lei and Hof, Björn and Hannezo, Edouard B and Heisenberg, Carl-Philipp J}, issn = {10974172}, journal = {Cell}, number = {6}, pages = {1463--1479.e18}, publisher = {Elsevier}, title = {{Bulk actin dynamics drive phase segregation in zebrafish oocytes}}, doi = {10.1016/j.cell.2019.04.030}, volume = {177}, year = {2019}, } @article{7001, author = {Schwayer, Cornelia and Shamipour, Shayan and Pranjic-Ferscha, Kornelija and Schauer, Alexandra and Balda, M and Tada, M and Matter, K and Heisenberg, Carl-Philipp J}, issn = {1097-4172}, journal = {Cell}, number = {4}, pages = {937--952.e18}, publisher = {Cell Press}, title = {{Mechanosensation of tight junctions depends on ZO-1 phase separation and flow}}, doi = {10.1016/j.cell.2019.10.006}, volume = {179}, year = {2019}, } @article{308, abstract = {Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo.}, author = {Ratheesh, Aparna and Biebl, Julia and Smutny, Michael and Veselá, Jana and Papusheva, Ekaterina and Krens, Gabriel and Kaufmann, Walter and György, Attila and Casano, Alessandra M and Siekhaus, Daria E}, journal = {Developmental Cell}, number = {3}, pages = {331 -- 346}, publisher = {Elsevier}, title = {{Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration}}, doi = {10.1016/j.devcel.2018.04.002}, volume = {45}, year = {2018}, } @article{54, abstract = {During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs’ composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.}, author = {Nunes Pinheiro, Diana C and Bellaïche, Yohanns}, journal = {Developmental Cell}, number = {1}, pages = {3 -- 19}, publisher = {Cell Press}, title = {{Mechanical force-driven adherents junction remodeling and epithelial dynamics}}, doi = {10.1016/j.devcel.2018.09.014}, volume = {47}, year = {2018}, } @article{5676, abstract = {In epithelial tissues, cells tightly connect to each other through cell–cell junctions, but they also present the remarkable capacity of reorganizing themselves without compromising tissue integrity. Upon injury, simple epithelia efficiently resolve small lesions through the action of actin cytoskeleton contractile structures at the wound edge and cellular rearrangements. However, the underlying mechanisms and how they cooperate are still poorly understood. In this study, we combine live imaging and theoretical modeling to reveal a novel and indispensable role for occluding junctions (OJs) in this process. We demonstrate that OJ loss of function leads to defects in wound-closure dynamics: instead of contracting, wounds dramatically increase their area. OJ mutants exhibit phenotypes in cell shape, cellular rearrangements, and mechanical properties as well as in actin cytoskeleton dynamics at the wound edge. We propose that OJs are essential for wound closure by impacting on epithelial mechanics at the tissue level, which in turn is crucial for correct regulation of the cellular events occurring at the wound edge.}, author = {Carvalho, Lara and Patricio, Pedro and Ponte, Susana and Heisenberg, Carl-Philipp J and Almeida, Luis and Nunes, André S. and Araújo, Nuno A.M. and Jacinto, Antonio}, issn = {00219525}, journal = {Journal of Cell Biology}, number = {12}, pages = {4267--4283}, publisher = {Rockefeller University Press}, title = {{Occluding junctions as novel regulators of tissue mechanics during wound repair}}, doi = {10.1083/jcb.201804048}, volume = {217}, year = {2018}, } @article{10880, abstract = {Acquisition of evolutionary novelties is a fundamental process for adapting to the external environment and invading new niches and results in the diversification of life, which we can see in the world today. How such novel phenotypic traits are acquired in the course of evolution and are built up in developing embryos has been a central question in biology. Whole-genome duplication (WGD) is a process of genome doubling that supplies raw genetic materials and increases genome complexity. Recently, it has been gradually revealed that WGD and subsequent fate changes of duplicated genes can facilitate phenotypic evolution. Here, we review the current understanding of the relationship between WGD and the acquisition of evolutionary novelties. We show some examples of this link and discuss how WGD and subsequent duplicated genes can facilitate phenotypic evolution as well as when such genomic doubling can be advantageous for adaptation.}, author = {Yuuta, Moriyama and Koshiba-Takeuchi, Kazuko}, issn = {2041-2657}, journal = {Briefings in Functional Genomics}, keywords = {Genetics, Molecular Biology, Biochemistry, General Medicine}, number = {5}, pages = {329--338}, publisher = {Oxford University Press}, title = {{Significance of whole-genome duplications on the emergence of evolutionary novelties}}, doi = {10.1093/bfgp/ely007}, volume = {17}, year = {2018}, } @phdthesis{50, abstract = {The Wnt/planar cell polarity (Wnt/PCP) pathway determines planar polarity of epithelial cells in both vertebrates and invertebrates. The role that Wnt/PCP signaling plays in mesenchymal contexts, however, is only poorly understood. While previous studies have demonstrated the capacity of Wnt/PCP signaling to polarize and guide directed migration of mesenchymal cells, it remains unclear whether endogenous Wnt/PCP signaling performs these functions instructively, as it does in epithelial cells. Here we developed a light-switchable version of the Wnt/PCP receptor Frizzled 7 (Fz7) to unambiguously distinguish between an instructive and a permissive role of Wnt/PCP signaling for the directional collective migration of mesendoderm progenitor cells during zebrafish gastrulation. We show that prechordal plate (ppl) cell migration is defective in maternal-zygotic fz7a and fz7b (MZ fz7a,b) double mutant embryos, and that Fz7 functions cell-autonomously in this process by promoting ppl cell protrusion formation and directed migration. We further show that local activation of Fz7 can direct ppl cell migration both in vitro and in vivo. Surprisingly, however, uniform Fz7 activation is sufficient to fully rescue the ppl cell migration defect in MZ fz7a,b mutant embryos, indicating that Wnt/PCP signaling functions permissively rather than instructively in directed mesendoderm cell migration during zebrafish gastrulation.}, author = {Capek, Daniel}, issn = {2663-337X}, pages = {95}, publisher = {Institute of Science and Technology Austria}, title = {{Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration}}, doi = {10.15479/AT:ISTA:TH_1031}, year = {2018}, } @article{678, abstract = {The seminal observation that mechanical signals can elicit changes in biochemical signalling within cells, a process commonly termed mechanosensation and mechanotransduction, has revolutionized our understanding of the role of cell mechanics in various fundamental biological processes, such as cell motility, adhesion, proliferation and differentiation. In this Review, we will discuss how the interplay and feedback between mechanical and biochemical signals control tissue morphogenesis and cell fate specification in embryonic development.}, author = {Petridou, Nicoletta and Spiro, Zoltan P and Heisenberg, Carl-Philipp J}, issn = {14657392}, journal = {Nature Cell Biology}, number = {6}, pages = {581 -- 588}, publisher = {Nature Publishing Group}, title = {{Multiscale force sensing in development}}, doi = {10.1038/ncb3524}, volume = {19}, year = {2017}, } @article{686, abstract = {Tissues are thought to behave like fluids with a given surface tension. Differences in tissue surface tension (TST) have been proposed to trigger cell sorting and tissue envelopment. D'Arcy Thompson in his seminal book ‘On Growth and Form’ has introduced this concept of differential TST as a key physical mechanism dictating tissue formation and organization within the developing organism. Over the past century, many studies have picked up the concept of differential TST and analyzed the role and cell biological basis of TST in development, underlining the importance and influence of this concept in developmental biology.}, author = {Heisenberg, Carl-Philipp J}, issn = {09254773}, journal = {Mechanisms of Development}, pages = {32 -- 37}, publisher = {Elsevier}, title = {{D'Arcy Thompson's ‘on growth and form’: From soap bubbles to tissue self organization}}, doi = {10.1016/j.mod.2017.03.006}, volume = {145}, year = {2017}, } @article{1067, abstract = {Embryo morphogenesis relies on highly coordinated movements of different tissues. However, remarkably little is known about how tissues coordinate their movements to shape the embryo. In zebrafish embryogenesis, coordinated tissue movements first become apparent during “doming,” when the blastoderm begins to spread over the yolk sac, a process involving coordinated epithelial surface cell layer expansion and mesenchymal deep cell intercalations. Here, we find that active surface cell expansion represents the key process coordinating tissue movements during doming. By using a combination of theory and experiments, we show that epithelial surface cells not only trigger blastoderm expansion by reducing tissue surface tension, but also drive blastoderm thinning by inducing tissue contraction through radial deep cell intercalations. Thus, coordinated tissue expansion and thinning during doming relies on surface cells simultaneously controlling tissue surface tension and radial tissue contraction.}, author = {Morita, Hitoshi and Grigolon, Silvia and Bock, Martin and Krens, Gabriel and Salbreux, Guillaume and Heisenberg, Carl-Philipp J}, issn = {15345807}, journal = {Developmental Cell}, number = {4}, pages = {354 -- 366}, publisher = {Cell Press}, title = {{The physical basis of coordinated tissue spreading in zebrafish gastrulation}}, doi = {10.1016/j.devcel.2017.01.010}, volume = {40}, year = {2017}, } @article{1025, abstract = {Many organ surfaces are covered by a protective epithelial-cell layer. It emerges that such layers are maintained by cell stretching that triggers cell division mediated by the force-sensitive ion-channel protein Piezo1. See Letter p.118}, author = {Heisenberg, Carl-Philipp J}, issn = {00280836}, journal = {Nature}, number = {7643}, pages = {43 -- 44}, publisher = {Nature Publishing Group}, title = {{Cell biology: Stretched divisions}}, doi = {10.1038/nature21502}, volume = {543}, year = {2017}, } @article{803, abstract = {Eukaryotic cells store their chromosomes in a single nucleus. This is important to maintain genomic integrity, as chromosomes packaged into separate nuclei (micronuclei) are prone to massive DNA damage. During mitosis, higher eukaryotes disassemble their nucleus and release individualized chromosomes for segregation. How numerous chromosomes subsequently reform a single nucleus has remained unclear. Using image-based screening of human cells, we identified barrier-to-autointegration factor (BAF) as a key factor guiding membranes to form a single nucleus. Unexpectedly, nuclear assembly does not require BAF?s association with inner nuclear membrane proteins but instead relies on BAF?s ability to bridge distant DNA sites. Live-cell imaging and in vitro reconstitution showed that BAF enriches around the mitotic chromosome ensemble to induce a densely cross-bridged chromatin layer that is mechanically stiff and limits membranes to the surface. Our study reveals that BAF-mediated changes in chromosome mechanics underlie nuclear assembly with broad implications for proper genome function.}, author = {Samwer, Matthias and Schneider, Maximilian and Hoefler, Rudolf and Schmalhorst, Philipp S and Jude, Julian and Zuber, Johannes and Gerlic, Daniel}, issn = {00928674}, journal = {Cell}, number = {5}, pages = {956 -- 972}, publisher = {Cell Press}, title = {{DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes}}, doi = {10.1016/j.cell.2017.07.038}, volume = {170}, year = {2017}, } @article{804, abstract = {Polysaccharides (carbohydrates) are key regulators of a large number of cell biological processes. However, precise biochemical or genetic manipulation of these often complex structures is laborious and hampers experimental structure–function studies. Molecular Dynamics (MD) simulations provide a valuable alternative tool to generate and test hypotheses on saccharide function. Yet, currently used MD force fields often overestimate the aggregation propensity of polysaccharides, affecting the usability of those simulations. Here we tested MARTINI, a popular coarse-grained (CG) force field for biological macromolecules, for its ability to accurately represent molecular forces between saccharides. To this end, we calculated a thermodynamic solution property, the second virial coefficient of the osmotic pressure (B22). Comparison with light scattering experiments revealed a nonphysical aggregation of a prototypical polysaccharide in MARTINI, pointing at an imbalance of the nonbonded solute–solute, solute–water, and water–water interactions. This finding also applies to smaller oligosaccharides which were all found to aggregate in simulations even at moderate concentrations, well below their solubility limit. Finally, we explored the influence of the Lennard-Jones (LJ) interaction between saccharide molecules and propose a simple scaling of the LJ interaction strength that makes MARTINI more reliable for the simulation of saccharides.}, author = {Schmalhorst, Philipp S and Deluweit, Felix and Scherrers, Roger and Heisenberg, Carl-Philipp J and Sikora, Mateusz K}, issn = {15499618}, journal = {Journal of Chemical Theory and Computation}, number = {10}, pages = {5039 -- 5053}, publisher = {American Chemical Society}, title = {{Overcoming the limitations of the MARTINI force field in simulations of polysaccharides}}, doi = {10.1021/acs.jctc.7b00374}, volume = {13}, year = {2017}, } @phdthesis{961, abstract = {Cell-cell contact formation constitutes the first step in the emergence of multicellularity in evolution, thereby allowing the differentiation of specialized cell types. In metazoan development, cell-cell contact formation is thought to influence cell fate specification, and cell fate specification has been implicated in cell-cell contact formation. However, remarkably little is yet known about whether and how the interaction and feedback between cell-cell contact formation and cell fate specification affect development. Here we identify a positive feedback loop between cell-cell contact duration, morphogen signaling and mesendoderm cell fate specification during zebrafish gastrulation. We show that long lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for proper ppl cell fate specification. We further show that Nodal signalling romotes ppl cell-cell contact duration, thereby generating an effective positive feedback loop between ppl cell-cell contact duration and cell fate specification. Finally, by using a combination of theoretical modeling and experimentation, we show that this feedback loop determines whether anterior axial mesendoderm cells become ppl progenitors or, instead, turn into endoderm progenitors. Our findings reveal that the gene regulatory networks leading to cell fate diversification within the developing embryo are controlled by the interdependent activities of cell-cell signaling and contact formation.}, author = {Barone, Vanessa}, issn = {2663-337X}, pages = {109}, publisher = {Institute of Science and Technology Austria}, title = {{Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation}}, doi = {10.15479/AT:ISTA:th_825}, year = {2017}, } @article{728, abstract = {During animal development, cell-fate-specific changes in gene expression can modify the material properties of a tissue and drive tissue morphogenesis. While mechanistic insights into the genetic control of tissue-shaping events are beginning to emerge, how tissue morphogenesis and mechanics can reciprocally impact cell-fate specification remains relatively unexplored. Here we review recent findings reporting how multicellular morphogenetic events and their underlying mechanical forces can feed back into gene regulatory pathways to specify cell fate. We further discuss emerging techniques that allow for the direct measurement and manipulation of mechanical signals in vivo, offering unprecedented access to study mechanotransduction during development. Examination of the mechanical control of cell fate during tissue morphogenesis will pave the way to an integrated understanding of the design principles that underlie robust tissue patterning in embryonic development.}, author = {Chan, Chii and Heisenberg, Carl-Philipp J and Hiiragi, Takashi}, issn = {09609822}, journal = {Current Biology}, number = {18}, pages = {R1024 -- R1035}, publisher = {Cell Press}, title = {{Coordination of morphogenesis and cell fate specification in development}}, doi = {10.1016/j.cub.2017.07.010}, volume = {27}, year = {2017}, } @article{729, abstract = {The cellular mechanisms allowing tissues to efficiently regenerate are not fully understood. In this issue of Developmental Cell, Cao et al. (2017)) discover that during zebrafish heart regeneration, epicardial cells at the leading edge of regenerating tissue undergo endoreplication, possibly due to increased tissue tension, thereby boosting their regenerative capacity.}, author = {Spiro, Zoltan P and Heisenberg, Carl-Philipp J}, issn = {15345807}, journal = {Developmental Cell}, number = {6}, pages = {559 -- 560}, publisher = {Cell Press}, title = {{Regeneration tensed up polyploidy takes the lead}}, doi = {10.1016/j.devcel.2017.09.008}, volume = {42}, year = {2017}, } @article{946, abstract = {Roots navigate through soil integrating environmental signals to orient their growth. The Arabidopsis root is a widely used model for developmental, physiological and cell biological studies. Live imaging greatly aids these efforts, but the horizontal sample position and continuous root tip displacement present significant difficulties. Here, we develop a confocal microscope setup for vertical sample mounting and integrated directional illumination. We present TipTracker – a custom software for automatic tracking of diverse moving objects usable on various microscope setups. Combined, this enables observation of root tips growing along the natural gravity vector over prolonged periods of time, as well as the ability to induce rapid gravity or light stimulation. We also track migrating cells in the developing zebrafish embryo, demonstrating the utility of this system in the acquisition of high-resolution data sets of dynamic samples. We provide detailed descriptions of the tools enabling the easy implementation on other microscopes.}, author = {Von Wangenheim, Daniel and Hauschild, Robert and Fendrych, Matyas and Barone, Vanessa and Benková, Eva and Friml, Jirí}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Live tracking of moving samples in confocal microscopy for vertically grown roots}}, doi = {10.7554/eLife.26792}, volume = {6}, year = {2017}, } @article{676, abstract = {The segregation of different cell types into distinct tissues is a fundamental process in metazoan development. Differences in cell adhesion and cortex tension are commonly thought to drive cell sorting by regulating tissue surface tension (TST). However, the role that differential TST plays in cell segregation within the developing embryo is as yet unclear. Here, we have analyzed the role of differential TST for germ layer progenitor cell segregation during zebrafish gastrulation. Contrary to previous observations that differential TST drives germ layer progenitor cell segregation in vitro, we show that germ layers display indistinguishable TST within the gastrulating embryo, arguing against differential TST driving germ layer progenitor cell segregation in vivo. We further show that the osmolarity of the interstitial fluid (IF) is an important factor that influences germ layer TST in vivo, and that lower osmolarity of the IF compared with standard cell culture medium can explain why germ layers display differential TST in culture but not in vivo. Finally, we show that directed migration of mesendoderm progenitors is required for germ layer progenitor cell segregation and germ layer formation.}, author = {Krens, Gabriel and Veldhuis, Jim and Barone, Vanessa and Capek, Daniel and Maître, Jean-Léon and Brodland, Wayne and Heisenberg, Carl-Philipp J}, issn = {09501991}, journal = {Development}, number = {10}, pages = {1798 -- 1806}, publisher = {Company of Biologists}, title = {{Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation}}, doi = {10.1242/dev.144964}, volume = {144}, year = {2017}, } @article{661, abstract = {During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.}, author = {Smutny, Michael and Ákos, Zsuzsa and Grigolon, Silvia and Shamipour, Shayan and Ruprecht, Verena and Capek, Daniel and Behrndt, Martin and Papusheva, Ekaterina and Tada, Masazumi and Hof, Björn and Vicsek, Tamás and Salbreux, Guillaume and Heisenberg, Carl-Philipp J}, issn = {14657392}, journal = {Nature Cell Biology}, pages = {306 -- 317}, publisher = {Nature Publishing Group}, title = {{Friction forces position the neural anlage}}, doi = {10.1038/ncb3492}, volume = {19}, year = {2017}, }