@article{735, abstract = {Cell-cell contact formation constitutes an essential step in evolution, leading to the differentiation of specialized cell types. However, remarkably little is known about whether and how the interplay between contact formation and fate specification affects development. Here, we identify a positive feedback loop between cell-cell contact duration, morphogen signaling, and mesendoderm cell-fate specification during zebrafish gastrulation. We show that long-lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for ppl cell-fate specification. We further show that Nodal signaling promotes ppl cell-cell contact duration, generating a positive feedback loop between ppl cell-cell contact duration and cell-fate specification. Finally, by combining mathematical modeling and experimentation, we show that this feedback determines whether anterior axial mesendoderm cells become ppl or, instead, turn into endoderm. Thus, the interdependent activities of cell-cell signaling and contact formation control fate diversification within the developing embryo.}, author = {Barone, Vanessa and Lang, Moritz and Krens, Gabriel and Pradhan, Saurabh and Shamipour, Shayan and Sako, Keisuke and Sikora, Mateusz K and Guet, Calin C and Heisenberg, Carl-Philipp J}, issn = {15345807}, journal = {Developmental Cell}, number = {2}, pages = {198 -- 211}, publisher = {Cell Press}, title = {{An effective feedback loop between cell-cell contact duration and morphogen signaling determines cell fate}}, doi = {10.1016/j.devcel.2017.09.014}, volume = {43}, year = {2017}, } @article{1239, abstract = {Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment.}, author = {Callan Jones, Andrew and Ruprecht, Verena and Wieser, Stefan and Heisenberg, Carl-Philipp J and Voituriez, Raphaël}, journal = {Physical Review Letters}, number = {2}, publisher = {American Physical Society}, title = {{Cortical flow-driven shapes of nonadherent cells}}, doi = {10.1103/PhysRevLett.116.028102}, volume = {116}, year = {2016}, } @article{1249, abstract = {Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell- and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example, the characteristic time of stress relaxation (the Maxwell time τM) in the actomyosin sets the timescale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length λ) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer in vivo directly from laser ablation experiments. For this we investigate the cortical response to laser ablation in the one-cell-stage Caenorhabditis elegans embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse-grained physical description of the cortex in terms of a two-dimensional thin film of an active viscoelastic gel. To determine the Maxwell time τM, the hydrodynamic length λ, the ratio of active stress ζΔμ, and per-area friction γ, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best-fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. Our method provides an accurate and robust means for measuring physical parameters of the actomyosin cortical layer. It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights into the active mechanics processes that govern tissue-scale morphogenesis.}, author = {Saha, Arnab and Nishikawa, Masatoshi and Behrndt, Martin and Heisenberg, Carl-Philipp J and Julicher, Frank and Grill, Stephan}, journal = {Biophysical Journal}, number = {6}, pages = {1421 -- 1429}, publisher = {Biophysical Society}, title = {{Determining physical properties of the cell cortex}}, doi = {10.1016/j.bpj.2016.02.013}, volume = {110}, year = {2016}, } @article{1271, abstract = {Background: High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Results: Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Conclusions: Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.}, author = {Diz Muñoz, Alba and Romanczuk, Pawel and Yu, Weimiao and Bergert, Martin and Ivanovitch, Kenzo and Salbreux, Guillame and Heisenberg, Carl-Philipp J and Paluch, Ewa}, journal = {BMC Biology}, number = {1}, publisher = {BioMed Central}, title = {{Steering cell migration by alternating blebs and actin-rich protrusions}}, doi = {10.1186/s12915-016-0294-x}, volume = {14}, year = {2016}, } @article{1275, author = {Callan Jones, Andrew and Ruprecht, Verena and Wieser, Stefan and Heisenberg, Carl-Philipp J and Voituriez, Raphaël}, journal = {Physical Review Letters}, number = {13}, publisher = {American Physical Society}, title = {{Callan-Jones et al. Reply}}, doi = {10.1103/PhysRevLett.117.139802}, volume = {117}, year = {2016}, } @article{1096, author = {Schwayer, Cornelia and Sikora, Mateusz K and Slovakova, Jana and Kardos, Roland and Heisenberg, Carl-Philipp J}, journal = {Developmental Cell}, number = {6}, pages = {493 -- 506}, publisher = {Cell Press}, title = {{Actin rings of power}}, doi = {10.1016/j.devcel.2016.05.024}, volume = {37}, year = {2016}, } @article{1100, abstract = {During metazoan development, the temporal pattern of morphogen signaling is critical for organizing cell fates in space and time. Yet, tools for temporally controlling morphogen signaling within the embryo are still scarce. Here, we developed a photoactivatable Nodal receptor to determine how the temporal pattern of Nodal signaling affects cell fate specification during zebrafish gastrulation. By using this receptor to manipulate the duration of Nodal signaling in vivo by light, we show that extended Nodal signaling within the organizer promotes prechordal plate specification and suppresses endoderm differentiation. Endoderm differentiation is suppressed by extended Nodal signaling inducing expression of the transcriptional repressor goosecoid (gsc) in prechordal plate progenitors, which in turn restrains Nodal signaling from upregulating the endoderm differentiation gene sox17 within these cells. Thus, optogenetic manipulation of Nodal signaling identifies a critical role of Nodal signaling duration for organizer cell fate specification during gastrulation.}, author = {Sako, Keisuke and Pradhan, Saurabh and Barone, Vanessa and Inglés Prieto, Álvaro and Mueller, Patrick and Ruprecht, Verena and Capek, Daniel and Galande, Sanjeev and Janovjak, Harald L and Heisenberg, Carl-Philipp J}, journal = {Cell Reports}, number = {3}, pages = {866 -- 877}, publisher = {Cell Press}, title = {{Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation}}, doi = {10.1016/j.celrep.2016.06.036}, volume = {16}, year = {2016}, } @article{1553, abstract = {Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns.}, author = {Maiuri, Paolo and Rupprecht, Jean and Wieser, Stefan and Ruprecht, Verena and Bénichou, Olivier and Carpi, Nicolas and Coppey, Mathieu and De Beco, Simon and Gov, Nir and Heisenberg, Carl-Philipp J and Lage Crespo, Carolina and Lautenschlaeger, Franziska and Le Berre, Maël and Lennon Duménil, Ana and Raab, Matthew and Thiam, Hawa and Piel, Matthieu and Sixt, Michael K and Voituriez, Raphaël}, journal = {Cell}, number = {2}, pages = {374 -- 386}, publisher = {Cell Press}, title = {{Actin flows mediate a universal coupling between cell speed and cell persistence}}, doi = {10.1016/j.cell.2015.01.056}, volume = {161}, year = {2015}, } @article{1581, abstract = {In animal embryos, morphogen gradients determine tissue patterning and morphogenesis. Shyer et al. provide evidence that, during vertebrate gut formation, tissue folding generates graded activity of signals required for subsequent steps of gut growth and differentiation, thereby revealing an intriguing link between tissue morphogenesis and morphogen gradient formation.}, author = {Bollenbach, Mark Tobias and Heisenberg, Carl-Philipp J}, journal = {Cell}, number = {3}, pages = {431 -- 432}, publisher = {Cell Press}, title = {{Gradients are shaping up}}, doi = {10.1016/j.cell.2015.04.009}, volume = {161}, year = {2015}, } @article{1817, abstract = {Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues. }, author = {Porazinski, Sean and Wang, Huijia and Asaoka, Yoichi and Behrndt, Martin and Miyamoto, Tatsuo and Morita, Hitoshi and Hata, Shoji and Sasaki, Takashi and Krens, Gabriel and Osada, Yumi and Asaka, Satoshi and Momoi, Akihiro and Linton, Sarah and Miesfeld, Joel and Link, Brian and Senga, Takeshi and Castillo Morales, Atahualpa and Urrutia, Araxi and Shimizu, Nobuyoshi and Nagase, Hideaki and Matsuura, Shinya and Bagby, Stefan and Kondoh, Hisato and Nishina, Hiroshi and Heisenberg, Carl-Philipp J and Furutani Seiki, Makoto}, journal = {Nature}, number = {7551}, pages = {217 -- 221}, publisher = {Nature Publishing Group}, title = {{YAP is essential for tissue tension to ensure vertebrate 3D body shape}}, doi = {10.1038/nature14215}, volume = {521}, year = {2015}, }