TY - DATA AB - Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions, such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks remains a major challenge. Here, we use a well-defined synthetic gene regulatory network to study how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one gene regulatory network with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Our results demonstrate that changes in local genetic context can place a single transcriptional unit within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual transcriptional units, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of gene regulatory networks. AU - Nagy-Staron, Anna A ID - 8951 KW - Gene regulatory networks KW - Gene expression KW - Escherichia coli KW - Synthetic Biology TI - Sequences of gene regulatory network permutations for the article "Local genetic context shapes the function of a gene regulatory network" ER - TY - DATA AB - Organisms cope with change by employing transcriptional regulators. However, when faced with rare environments, the evolution of transcriptional regulators and their promoters may be too slow. We ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. By real-time monitoring of gene copy number mutations in E. coli, we show that gene duplications and amplifications enable adaptation to fluctuating environments by rapidly generating copy number, and hence expression level, polymorphism. This ‘amplification-mediated gene expression tuning’ occurs on timescales similar to canonical gene regulation and can deal with rapid environmental changes. Mathematical modeling shows that amplifications also tune gene expression in stochastic environments where transcription factor-based schemes are hard to evolve or maintain. The fleeting nature of gene amplifications gives rise to a generic population-level mechanism that relies on genetic heterogeneity to rapidly tune expression of any gene, without leaving any genomic signature. AU - Grah, Rok ID - 7383 KW - Matlab scripts KW - analysis of microfluidics KW - mathematical model TI - Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation ER - TY - DATA AB - Organisms cope with change by employing transcriptional regulators. However, when faced with rare environments, the evolution of transcriptional regulators and their promoters may be too slow. We ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. By real-time monitoring of gene copy number mutations in E. coli, we show that gene duplications and amplifications enable adaptation to fluctuating environments by rapidly generating copy number, and hence expression level, polymorphism. This ‘amplification-mediated gene expression tuning’ occurs on timescales similar to canonical gene regulation and can deal with rapid environmental changes. Mathematical modeling shows that amplifications also tune gene expression in stochastic environments where transcription factor-based schemes are hard to evolve or maintain. The fleeting nature of gene amplifications gives rise to a generic population-level mechanism that relies on genetic heterogeneity to rapidly tune expression of any gene, without leaving any genomic signature. AU - Tomanek, Isabella ID - 7016 KW - Escherichia coli KW - gene amplification KW - galactose KW - DOG KW - experimental evolution KW - Illumina sequence data KW - FACS data KW - microfluidics data TI - Data for the paper "Gene amplification as a form of population-level gene expression regulation" ER - TY - DATA AB - Nela Nikolic, Tobias Bergmiller, Alexandra Vandervelde, Tanino G. Albanese, Lendert Gelens, and Isabella Moll (2018) “Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations” Nucleic Acids Research, doi: 10.15479/AT:ISTA:74; microscopy experiments by Tobias Bergmiller; image and data analysis by Nela Nikolic. AU - Bergmiller, Tobias AU - Nikolic, Nela ID - 5569 KW - microscopy KW - microfluidics TI - Time-lapse microscopy data ER - TY - DATA AB - Mean repression values and standard error of the mean are given for all operator mutant libraries. AU - Igler, Claudia AU - Lagator, Mato AU - Tkacik, Gasper AU - Bollback, Jonathan P AU - Guet, Calin C ID - 5585 TI - Data for the paper Evolutionary potential of transcription factors for gene regulatory rewiring ER - TY - DATA AB - Compressed Fastq files with whole-genome sequencing data of IS-wt strain D and clones from four evolved populations (A11, C08, C10, D08). Information on this data collection is available in the Methods Section of the primary publication. AU - Steinrück, Magdalena AU - Guet, Calin C ID - 5564 TI - Fastq files for "Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection" ER - TY - DATA AB - This repository contains the data collected for the manuscript "Biased partitioning of the multi-drug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity". The data is compressed into a single archive. Within the archive, different folders correspond to figures of the main text and the SI of the related publication. Data is saved as plain text, with each folder containing a separate readme file describing the format. Typically, the data is from fluorescence microscopy measurements of single cells growing in a microfluidic "mother machine" device, and consists of relevant values (primarily arbitrary unit or normalized fluorescence measurements, and division times / growth rates) after raw microscopy images have been processed, segmented, and their features extracted, as described in the methods section of the related publication. AU - Bergmiller, Tobias AU - Andersson, Anna M AU - Tomasek, Kathrin AU - Balleza, Enrique AU - Kiviet, Daniel AU - Hauschild, Robert AU - Tkacik, Gasper AU - Guet, Calin C ID - 5560 KW - single cell microscopy KW - mother machine microfluidic device KW - AcrAB-TolC pump KW - multi-drug efflux KW - Escherichia coli TI - Biased partitioning of the multi-drug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity ER -