--- _id: '9647' abstract: - lang: eng text: 'Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, since transcription and translation of genes introduce intrinsic time delays and there is no global synchronisation among the arrival times of different molecular species at their targets. We present an experimentally implementable genetic circuit with two inputs and one output, which in the presence of small delays in input arrival, exhibits qualitatively distinct population-level phenotypes, over timescales that are longer than typical cell doubling times. From a dynamical systems point of view, these phenotypes represent long-lived transients: although they converge to the same value eventually, they do so after a very long time span. The key feature of this toy model genetic circuit is that, despite having only two inputs and one output, it is regulated by twenty-three distinct DNA-TF configurations, two of which are more stable than others (DNA looped states), one promoting and another blocking the expression of the output gene. Small delays in input arrival time result in a majority of cells in the population quickly reaching the stable state associated with the first input, while exiting of this stable state occurs at a slow timescale. In order to mechanistically model the behaviour of this genetic circuit, we used a rule-based modelling language, and implemented a grid-search to find parameter combinations giving rise to long-lived transients. Our analysis shows that in the absence of feedback, there exist path-dependent gene regulatory mechanisms based on the long timescale of transients. The behaviour of this toy model circuit suggests that gene regulatory networks can exploit event timing to create phenotypes, and it opens the possibility that they could use event timing to memorise events, without regulatory feedback. The model reveals the importance of (i) mechanistically modelling the transitions between the different DNA-TF states, and (ii) employing transient analysis thereof.' acknowledgement: 'Tatjana Petrov’s research was supported in part by SNSF Advanced Postdoctoral Mobility Fellowship grant number P300P2 161067, the Ministry of Science, Research and the Arts of the state of Baden-Wurttemberg, and the DFG Centre of Excellence 2117 ‘Centre for the Advanced Study of Collective Behaviour’ (ID: 422037984). Claudia Igler is the recipient of a DOC Fellowship of the Austrian Academy of Sciences. Thomas A. Henzinger’s research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award).' article_processing_charge: No article_type: original author: - first_name: Tatjana full_name: Petrov, Tatjana last_name: Petrov - first_name: Claudia full_name: Igler, Claudia id: 46613666-F248-11E8-B48F-1D18A9856A87 last_name: Igler - first_name: Ali full_name: Sezgin, Ali id: 4C7638DA-F248-11E8-B48F-1D18A9856A87 last_name: Sezgin - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 citation: ama: Petrov T, Igler C, Sezgin A, Henzinger TA, Guet CC. Long lived transients in gene regulation. Theoretical Computer Science. 2021;893:1-16. doi:10.1016/j.tcs.2021.05.023 apa: Petrov, T., Igler, C., Sezgin, A., Henzinger, T. A., & Guet, C. C. (2021). Long lived transients in gene regulation. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2021.05.023 chicago: Petrov, Tatjana, Claudia Igler, Ali Sezgin, Thomas A Henzinger, and Calin C Guet. “Long Lived Transients in Gene Regulation.” Theoretical Computer Science. Elsevier, 2021. https://doi.org/10.1016/j.tcs.2021.05.023. ieee: T. Petrov, C. Igler, A. Sezgin, T. A. Henzinger, and C. C. Guet, “Long lived transients in gene regulation,” Theoretical Computer Science, vol. 893. Elsevier, pp. 1–16, 2021. ista: Petrov T, Igler C, Sezgin A, Henzinger TA, Guet CC. 2021. Long lived transients in gene regulation. Theoretical Computer Science. 893, 1–16. mla: Petrov, Tatjana, et al. “Long Lived Transients in Gene Regulation.” Theoretical Computer Science, vol. 893, Elsevier, 2021, pp. 1–16, doi:10.1016/j.tcs.2021.05.023. short: T. Petrov, C. Igler, A. Sezgin, T.A. Henzinger, C.C. Guet, Theoretical Computer Science 893 (2021) 1–16. date_created: 2021-07-11T22:01:18Z date_published: 2021-06-04T00:00:00Z date_updated: 2023-08-10T14:11:19Z day: '04' ddc: - '004' department: - _id: ToHe - _id: CaGu doi: 10.1016/j.tcs.2021.05.023 external_id: isi: - '000710180500002' file: - access_level: open_access checksum: d3aef34cfb13e53bba4cf44d01680793 content_type: application/pdf creator: dernst date_created: 2022-05-12T12:13:27Z date_updated: 2022-05-12T12:13:27Z file_id: '11364' file_name: 2021_TheoreticalComputerScience_Petrov.pdf file_size: 2566504 relation: main_file success: 1 file_date_updated: 2022-05-12T12:13:27Z has_accepted_license: '1' intvolume: ' 893' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1-16 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Theoretical Computer Science publication_identifier: issn: - 0304-3975 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Long lived transients in gene regulation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 893 year: '2021' ... --- _id: '9822' abstract: - lang: eng text: Attachment of adhesive molecules on cell culture surfaces to restrict cell adhesion to defined areas and shapes has been vital for the progress of in vitro research. In currently existing patterning methods, a combination of pattern properties such as stability, precision, specificity, high-throughput outcome, and spatiotemporal control is highly desirable but challenging to achieve. Here, we introduce a versatile and high-throughput covalent photoimmobilization technique, comprising a light-dose-dependent patterning step and a subsequent functionalization of the pattern via click chemistry. This two-step process is feasible on arbitrary surfaces and allows for generation of sustainable patterns and gradients. The method is validated in different biological systems by patterning adhesive ligands on cell-repellent surfaces, thereby constraining the growth and migration of cells to the designated areas. We then implement a sequential photopatterning approach by adding a second switchable patterning step, allowing for spatiotemporal control over two distinct surface patterns. As a proof of concept, we reconstruct the dynamics of the tip/stalk cell switch during angiogenesis. Our results show that the spatiotemporal control provided by our “sequential photopatterning” system is essential for mimicking dynamic biological processes and that our innovative approach has great potential for further applications in cell science. acknowledgement: We would like to thank Charlott Leu for the production of our chromium wafers, Louise Ritter for her contribution of the IF stainings in Figure 4, Shokoufeh Teymouri for her help with the Bioinert coated slides, and finally Prof. Dr. Joachim Rädler for his valuable scientific guidance. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Themistoklis full_name: Zisis, Themistoklis last_name: Zisis - first_name: Jan full_name: Schwarz, Jan id: 346C1EC6-F248-11E8-B48F-1D18A9856A87 last_name: Schwarz - first_name: Miriam full_name: Balles, Miriam last_name: Balles - first_name: Maibritt full_name: Kretschmer, Maibritt last_name: Kretschmer - first_name: Maria full_name: Nemethova, Maria id: 34E27F1C-F248-11E8-B48F-1D18A9856A87 last_name: Nemethova - first_name: Remy P full_name: Chait, Remy P id: 3464AE84-F248-11E8-B48F-1D18A9856A87 last_name: Chait orcid: 0000-0003-0876-3187 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Janina full_name: Lange, Janina last_name: Lange - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-4561-241X - first_name: Stefan full_name: Zahler, Stefan last_name: Zahler citation: ama: Zisis T, Schwarz J, Balles M, et al. Sequential and switchable patterning for studying cellular processes under spatiotemporal control. ACS Applied Materials and Interfaces. 2021;13(30):35545–35560. doi:10.1021/acsami.1c09850 apa: Zisis, T., Schwarz, J., Balles, M., Kretschmer, M., Nemethova, M., Chait, R. P., … Zahler, S. (2021). Sequential and switchable patterning for studying cellular processes under spatiotemporal control. ACS Applied Materials and Interfaces. American Chemical Society. https://doi.org/10.1021/acsami.1c09850 chicago: Zisis, Themistoklis, Jan Schwarz, Miriam Balles, Maibritt Kretschmer, Maria Nemethova, Remy P Chait, Robert Hauschild, et al. “Sequential and Switchable Patterning for Studying Cellular Processes under Spatiotemporal Control.” ACS Applied Materials and Interfaces. American Chemical Society, 2021. https://doi.org/10.1021/acsami.1c09850. ieee: T. Zisis et al., “Sequential and switchable patterning for studying cellular processes under spatiotemporal control,” ACS Applied Materials and Interfaces, vol. 13, no. 30. American Chemical Society, pp. 35545–35560, 2021. ista: Zisis T, Schwarz J, Balles M, Kretschmer M, Nemethova M, Chait RP, Hauschild R, Lange J, Guet CC, Sixt MK, Zahler S. 2021. Sequential and switchable patterning for studying cellular processes under spatiotemporal control. ACS Applied Materials and Interfaces. 13(30), 35545–35560. mla: Zisis, Themistoklis, et al. “Sequential and Switchable Patterning for Studying Cellular Processes under Spatiotemporal Control.” ACS Applied Materials and Interfaces, vol. 13, no. 30, American Chemical Society, 2021, pp. 35545–35560, doi:10.1021/acsami.1c09850. short: T. Zisis, J. Schwarz, M. Balles, M. Kretschmer, M. Nemethova, R.P. Chait, R. Hauschild, J. Lange, C.C. Guet, M.K. Sixt, S. Zahler, ACS Applied Materials and Interfaces 13 (2021) 35545–35560. date_created: 2021-08-08T22:01:28Z date_published: 2021-08-04T00:00:00Z date_updated: 2023-08-10T14:22:48Z day: '04' ddc: - '620' - '570' department: - _id: MiSi - _id: GaTk - _id: Bio - _id: CaGu doi: 10.1021/acsami.1c09850 ec_funded: 1 external_id: isi: - '000683741400026' pmid: - '34283577' file: - access_level: open_access checksum: b043a91d9f9200e467b970b692687ed3 content_type: application/pdf creator: asandaue date_created: 2021-08-09T09:44:03Z date_updated: 2021-08-09T09:44:03Z file_id: '9833' file_name: 2021_ACSAppliedMaterialsAndInterfaces_Zisis.pdf file_size: 7123293 relation: main_file success: 1 file_date_updated: 2021-08-09T09:44:03Z has_accepted_license: '1' intvolume: ' 13' isi: 1 issue: '30' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 35545–35560 pmid: 1 project: - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients publication: ACS Applied Materials and Interfaces publication_identifier: eissn: - '19448252' issn: - '19448244' publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Sequential and switchable patterning for studying cellular processes under spatiotemporal control tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2021' ... --- _id: '9746' abstract: - lang: eng text: Evolutionary adaptation is a major source of antibiotic resistance in bacterial pathogens. Evolution-informed therapy aims to constrain resistance by accounting for bacterial evolvability. Sequential treatments with antibiotics that target different bacterial processes were previously shown to limit adaptation through genetic resistance trade-offs and negative hysteresis. Treatment with homogeneous sets of antibiotics is generally viewed to be disadvantageous, as it should rapidly lead to cross-resistance. We here challenged this assumption by determining the evolutionary response of Pseudomonas aeruginosa to experimental sequential treatments involving both heterogenous and homogeneous antibiotic sets. To our surprise, we found that fast switching between only β-lactam antibiotics resulted in increased extinction of bacterial populations. We demonstrate that extinction is favored by low rates of spontaneous resistance emergence and low levels of spontaneous cross-resistance among the antibiotics in sequence. The uncovered principles may help to guide the optimized use of available antibiotics in highly potent, evolution-informed treatment designs. acknowledgement: We would like to thank Leif Tueffers and João Botelho for discussions and suggestions as well as Kira Haas and Julia Bunk for technical support. We acknowledge financial support from the German Science Foundation (grant SCHU 1415/12-2 to HS, and funding under Germany’s Excellence Strategy EXC 2167–390884018 as well as the Research Training Group 2501 TransEvo to HS and SN), the Max Planck Society (IMPRS scholarship to AB; Max-Planck fellowship to HS), and the Leibniz Science Campus Evolutionary Medicine of the Lung (EvoLUNG, to HS and SN). This work was further supported by the German Science Foundation Research Infrastructure NGS_CC (project 407495230) as part of the Next Generation Sequencing Competence Network (project 423957469). NGS analyses were carried out at the Competence Centre for Genomic Analysis Kiel (CCGA Kiel). article_number: e68876 article_processing_charge: No article_type: original author: - first_name: Aditi full_name: Batra, Aditi last_name: Batra - first_name: Roderich full_name: Römhild, Roderich id: 68E56E44-62B0-11EA-B963-444F3DDC885E last_name: Römhild orcid: 0000-0001-9480-5261 - first_name: Emilie full_name: Rousseau, Emilie last_name: Rousseau - first_name: Sören full_name: Franzenburg, Sören last_name: Franzenburg - first_name: Stefan full_name: Niemann, Stefan last_name: Niemann - first_name: Hinrich full_name: Schulenburg, Hinrich last_name: Schulenburg citation: ama: Batra A, Römhild R, Rousseau E, Franzenburg S, Niemann S, Schulenburg H. High potency of sequential therapy with only beta-lactam antibiotics. eLife. 2021;10. doi:10.7554/elife.68876 apa: Batra, A., Römhild, R., Rousseau, E., Franzenburg, S., Niemann, S., & Schulenburg, H. (2021). High potency of sequential therapy with only beta-lactam antibiotics. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.68876 chicago: Batra, Aditi, Roderich Römhild, Emilie Rousseau, Sören Franzenburg, Stefan Niemann, and Hinrich Schulenburg. “High Potency of Sequential Therapy with Only Beta-Lactam Antibiotics.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/elife.68876. ieee: A. Batra, R. Römhild, E. Rousseau, S. Franzenburg, S. Niemann, and H. Schulenburg, “High potency of sequential therapy with only beta-lactam antibiotics,” eLife, vol. 10. eLife Sciences Publications, 2021. ista: Batra A, Römhild R, Rousseau E, Franzenburg S, Niemann S, Schulenburg H. 2021. High potency of sequential therapy with only beta-lactam antibiotics. eLife. 10, e68876. mla: Batra, Aditi, et al. “High Potency of Sequential Therapy with Only Beta-Lactam Antibiotics.” ELife, vol. 10, e68876, eLife Sciences Publications, 2021, doi:10.7554/elife.68876. short: A. Batra, R. Römhild, E. Rousseau, S. Franzenburg, S. Niemann, H. Schulenburg, ELife 10 (2021). date_created: 2021-07-28T13:36:57Z date_published: 2021-07-28T00:00:00Z date_updated: 2023-08-11T10:26:29Z day: '28' department: - _id: CaGu doi: 10.7554/elife.68876 external_id: isi: - '000692027800001' pmid: - '34318749' intvolume: ' 10' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.7554/eLife.68876 month: '07' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: High potency of sequential therapy with only beta-lactam antibiotics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2021' ... --- _id: '10363' abstract: - lang: eng text: Erythropoietin enhances oxygen delivery and reduces hypoxia-induced cell death, but its pro-thrombotic activity is problematic for use of erythropoietin in treating hypoxia. We constructed a fusion protein that stimulates red blood cell production and neuroprotection without triggering platelet production, a marker for thrombosis. The protein consists of an anti-glycophorin A nanobody and an erythropoietin mutant (L108A). The mutation reduces activation of erythropoietin receptor homodimers that induce erythropoiesis and thrombosis, but maintains the tissue-protective signaling. The binding of the nanobody element to glycophorin A rescues homodimeric erythropoietin receptor activation on red blood cell precursors. In a cell proliferation assay, the fusion protein is active at 10−14 M, allowing an estimate of the number of receptor–ligand complexes needed for signaling. This fusion protein stimulates erythroid cell proliferation in vitro and in mice, and shows neuroprotective activity in vitro. Our erythropoietin fusion protein presents a novel molecule for treating hypoxia. acknowledgement: This work was supported by funds from the Wyss Institute for Biologically Inspired Engineering and the Boston Biomedical Innovation Center (Pilot Award 112475; Drive Award U54HL119145). J.L., K.M.K., D.R.B., J.C.W. and P.A.S. were supported by the Harvard Medical School Department of Systems Biology. J.C.W. was further supported by the Harvard Medical School Laboratory of Systems Pharmacology. A.V., D.R.B. and P.A.S. were further supported by the Wyss Institute for Biologically Inspired Engineering. N.G.G. was sponsored by the Army Research Office under Grant Number W911NF-17-2-0092. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. We sincerely thank Amanda Graveline and the Wyss Institute at Harvard for their scientific support. article_number: gzab025 article_processing_charge: No article_type: original author: - first_name: Jungmin full_name: Lee, Jungmin last_name: Lee - first_name: Andyna full_name: Vernet, Andyna last_name: Vernet - first_name: Nathalie full_name: Gruber, Nathalie id: 2C9C8316-AA17-11E9-B5C2-8BC2E5697425 last_name: Gruber - first_name: Kasia M. full_name: Kready, Kasia M. last_name: Kready - first_name: Devin R. full_name: Burrill, Devin R. last_name: Burrill - first_name: Jeffrey C. full_name: Way, Jeffrey C. last_name: Way - first_name: Pamela A. full_name: Silver, Pamela A. last_name: Silver citation: ama: Lee J, Vernet A, Gruber N, et al. Rational engineering of an erythropoietin fusion protein to treat hypoxia. Protein Engineering, Design and Selection. 2021;34. doi:10.1093/protein/gzab025 apa: Lee, J., Vernet, A., Gruber, N., Kready, K. M., Burrill, D. R., Way, J. C., & Silver, P. A. (2021). Rational engineering of an erythropoietin fusion protein to treat hypoxia. Protein Engineering, Design and Selection. Oxford University Press. https://doi.org/10.1093/protein/gzab025 chicago: Lee, Jungmin, Andyna Vernet, Nathalie Gruber, Kasia M. Kready, Devin R. Burrill, Jeffrey C. Way, and Pamela A. Silver. “Rational Engineering of an Erythropoietin Fusion Protein to Treat Hypoxia.” Protein Engineering, Design and Selection. Oxford University Press, 2021. https://doi.org/10.1093/protein/gzab025. ieee: J. Lee et al., “Rational engineering of an erythropoietin fusion protein to treat hypoxia,” Protein Engineering, Design and Selection, vol. 34. Oxford University Press, 2021. ista: Lee J, Vernet A, Gruber N, Kready KM, Burrill DR, Way JC, Silver PA. 2021. Rational engineering of an erythropoietin fusion protein to treat hypoxia. Protein Engineering, Design and Selection. 34, gzab025. mla: Lee, Jungmin, et al. “Rational Engineering of an Erythropoietin Fusion Protein to Treat Hypoxia.” Protein Engineering, Design and Selection, vol. 34, gzab025, Oxford University Press, 2021, doi:10.1093/protein/gzab025. short: J. Lee, A. Vernet, N. Gruber, K.M. Kready, D.R. Burrill, J.C. Way, P.A. Silver, Protein Engineering, Design and Selection 34 (2021). date_created: 2021-11-28T23:01:28Z date_published: 2021-11-01T00:00:00Z date_updated: 2023-08-14T13:01:38Z day: '01' department: - _id: CaGu doi: 10.1093/protein/gzab025 external_id: isi: - '000746596900001' pmid: - '34725710' intvolume: ' 34' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/protein/gzab025 month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Protein Engineering, Design and Selection publication_identifier: eissn: - 1741-0134 issn: - 1741-0126 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Rational engineering of an erythropoietin fusion protein to treat hypoxia type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 34 year: '2021' ... --- _id: '9283' abstract: - lang: eng text: Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs. acknowledgement: "We thank J Bollback, L Hurst, M Lagator, C Nizak, O Rivoire, M Savageau, G Tkacik, and B Vicozo\r\nfor helpful discussions; A Dolinar and A Greshnova for technical assistance; T Bollenbach for supplying the strain JW0336; C Rusnac, and members of the Guet lab for comments. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n˚\r\n628377 (ANS) and an Austrian Science Fund (FWF) grant n˚ I 3901-B32 (CCG)." article_number: e65993 article_processing_charge: Yes article_type: original author: - first_name: Anna A full_name: Nagy-Staron, Anna A id: 3ABC5BA6-F248-11E8-B48F-1D18A9856A87 last_name: Nagy-Staron orcid: 0000-0002-1391-8377 - first_name: Kathrin full_name: Tomasek, Kathrin id: 3AEC8556-F248-11E8-B48F-1D18A9856A87 last_name: Tomasek orcid: 0000-0003-3768-877X - first_name: Caroline full_name: Caruso Carter, Caroline last_name: Caruso Carter - first_name: Elisabeth full_name: Sonnleitner, Elisabeth last_name: Sonnleitner - first_name: Bor full_name: Kavcic, Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X - first_name: Tiago full_name: Paixão, Tiago last_name: Paixão - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 citation: ama: Nagy-Staron AA, Tomasek K, Caruso Carter C, et al. Local genetic context shapes the function of a gene regulatory network. eLife. 2021;10. doi:10.7554/elife.65993 apa: Nagy-Staron, A. A., Tomasek, K., Caruso Carter, C., Sonnleitner, E., Kavcic, B., Paixão, T., & Guet, C. C. (2021). Local genetic context shapes the function of a gene regulatory network. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.65993 chicago: Nagy-Staron, Anna A, Kathrin Tomasek, Caroline Caruso Carter, Elisabeth Sonnleitner, Bor Kavcic, Tiago Paixão, and Calin C Guet. “Local Genetic Context Shapes the Function of a Gene Regulatory Network.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/elife.65993. ieee: A. A. Nagy-Staron et al., “Local genetic context shapes the function of a gene regulatory network,” eLife, vol. 10. eLife Sciences Publications, 2021. ista: Nagy-Staron AA, Tomasek K, Caruso Carter C, Sonnleitner E, Kavcic B, Paixão T, Guet CC. 2021. Local genetic context shapes the function of a gene regulatory network. eLife. 10, e65993. mla: Nagy-Staron, Anna A., et al. “Local Genetic Context Shapes the Function of a Gene Regulatory Network.” ELife, vol. 10, e65993, eLife Sciences Publications, 2021, doi:10.7554/elife.65993. short: A.A. Nagy-Staron, K. Tomasek, C. Caruso Carter, E. Sonnleitner, B. Kavcic, T. Paixão, C.C. Guet, ELife 10 (2021). date_created: 2021-03-23T10:11:46Z date_published: 2021-03-08T00:00:00Z date_updated: 2024-02-21T12:41:57Z day: '08' ddc: - '570' department: - _id: GaTk - _id: CaGu doi: 10.7554/elife.65993 ec_funded: 1 external_id: isi: - '000631050900001' file: - access_level: open_access checksum: 3c2f44058c2dd45a5a1027f09d263f8e content_type: application/pdf creator: bkavcic date_created: 2021-03-23T10:12:58Z date_updated: 2021-03-23T10:12:58Z file_id: '9284' file_name: elife-65993-v2.pdf file_size: 1390469 relation: main_file success: 1 file_date_updated: 2021-03-23T10:12:58Z has_accepted_license: '1' intvolume: ' 10' isi: 1 keyword: - Genetics and Molecular Biology language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 2517526A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '628377' name: 'The Systems Biology of Transcriptional Read-Through in Bacteria: from Synthetic Networks to Genomic Studies' - _id: 268BFA92-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03901 name: 'CyberCircuits: Cybergenetic circuits to test composability of gene networks' publication: eLife publication_identifier: issn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: record: - id: '8951' relation: research_data status: public status: public title: Local genetic context shapes the function of a gene regulatory network tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2021' ... --- _id: '10307' abstract: - lang: eng text: Bacteria-host interactions represent a continuous trade-off between benefit and risk. Thus, the host immune response is faced with a non-trivial problem – accommodate beneficial commensals and remove harmful pathogens. This is especially difficult as molecular patterns, such as lipopolysaccharide or specific surface organelles such as pili, are conserved in both, commensal and pathogenic bacteria. Type 1 pili, tightly regulated by phase variation, are considered an important virulence factor of pathogenic bacteria as they facilitate invasion into host cells. While invasion represents a de facto passive mechanism for pathogens to escape the host immune response, we demonstrate a fundamental role of type 1 pili as active modulators of the innate and adaptive immune response. acknowledged_ssus: - _id: LifeSc - _id: Bio - _id: PreCl - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Kathrin full_name: Tomasek, Kathrin id: 3AEC8556-F248-11E8-B48F-1D18A9856A87 last_name: Tomasek orcid: 0000-0003-3768-877X citation: ama: Tomasek K. Pathogenic Escherichia coli hijack the host immune response. 2021. doi:10.15479/at:ista:10307 apa: Tomasek, K. (2021). Pathogenic Escherichia coli hijack the host immune response. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:10307 chicago: Tomasek, Kathrin. “Pathogenic Escherichia Coli Hijack the Host Immune Response.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:10307. ieee: K. Tomasek, “Pathogenic Escherichia coli hijack the host immune response,” Institute of Science and Technology Austria, 2021. ista: Tomasek K. 2021. Pathogenic Escherichia coli hijack the host immune response. Institute of Science and Technology Austria. mla: Tomasek, Kathrin. Pathogenic Escherichia Coli Hijack the Host Immune Response. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:10307. short: K. Tomasek, Pathogenic Escherichia Coli Hijack the Host Immune Response, Institute of Science and Technology Austria, 2021. date_created: 2021-11-18T15:05:06Z date_published: 2021-11-18T00:00:00Z date_updated: 2023-09-07T13:34:38Z day: '18' ddc: - '570' degree_awarded: PhD department: - _id: MiSi - _id: CaGu - _id: GradSch doi: 10.15479/at:ista:10307 file: - access_level: open_access checksum: b39c9e0ef18d0484d537a67551effd02 content_type: application/pdf creator: ktomasek date_created: 2021-11-18T15:07:31Z date_updated: 2022-12-20T23:30:05Z embargo: 2022-11-18 file_id: '10308' file_name: ThesisTomasekKathrin.pdf file_size: 13266088 relation: main_file - access_level: closed checksum: c0c440ee9e5ef1102a518a4f9f023e7c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: ktomasek date_created: 2021-11-18T15:07:46Z date_updated: 2022-12-20T23:30:05Z embargo_to: open_access file_id: '10309' file_name: ThesisTomasekKathrin.docx file_size: 7539509 relation: source_file file_date_updated: 2022-12-20T23:30:05Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '73' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10316' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-4561-241X - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 title: Pathogenic Escherichia coli hijack the host immune response type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '10316' abstract: - lang: eng text: A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host’s immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on dendritic cells as a previously undescribed binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of pathogenic bacteria to CD14 lead to reduced dendritic cell migration and blunted expression of co-stimulatory molecules, both rate-limiting factors of T cell activation. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn’s disease. acknowledged_ssus: - _id: Bio - _id: PreCl - _id: EM-Fac acknowledgement: We thank Ulrich Dobrindt for providing UPEC strain CFT073, Vlad Gavra and Maximilian Götz, Bor Kavčič, Jonna Alanko and Eva Kiermaier for help with experiments and Robert Hauschild, Julian Stopp and Saren Tasciyan for help with data analysis. We thank the IST Austria Scientific Service Units, especially the Bioimaging facility, the Preclinical facility and the Electron microscopy facility for technical support, Jakob Wallner and all members of the Guet and Sixt lab for fruitful discussions and Daria Siekhaus for critically reading the manuscript. This work was supported by grants from the Austrian Research Promotion Agency (FEMtech 868984) to I.G., the European Research Council (CoG 724373) and the Austrian Science Fund (FWF P29911) to M.S. article_processing_charge: No author: - first_name: Kathrin full_name: Tomasek, Kathrin id: 3AEC8556-F248-11E8-B48F-1D18A9856A87 last_name: Tomasek orcid: 0000-0003-3768-877X - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X - first_name: Ivana full_name: Glatzová, Ivana id: 727b3c7d-4939-11ec-89b3-b9b0750ab74d last_name: Glatzová - first_name: Michael S. full_name: Lukesch, Michael S. last_name: Lukesch - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-4561-241X citation: ama: Tomasek K, Leithner AF, Glatzová I, Lukesch MS, Guet CC, Sixt MK. Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. bioRxiv. doi:10.1101/2021.10.18.464770 apa: Tomasek, K., Leithner, A. F., Glatzová, I., Lukesch, M. S., Guet, C. C., & Sixt, M. K. (n.d.). Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.10.18.464770 chicago: Tomasek, Kathrin, Alexander F Leithner, Ivana Glatzová, Michael S. Lukesch, Calin C Guet, and Michael K Sixt. “Type 1 Piliated Uropathogenic Escherichia Coli Hijack the Host Immune Response by Binding to CD14.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2021.10.18.464770. ieee: K. Tomasek, A. F. Leithner, I. Glatzová, M. S. Lukesch, C. C. Guet, and M. K. Sixt, “Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14,” bioRxiv. Cold Spring Harbor Laboratory. ista: Tomasek K, Leithner AF, Glatzová I, Lukesch MS, Guet CC, Sixt MK. Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. bioRxiv, 10.1101/2021.10.18.464770. mla: Tomasek, Kathrin, et al. “Type 1 Piliated Uropathogenic Escherichia Coli Hijack the Host Immune Response by Binding to CD14.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2021.10.18.464770. short: K. Tomasek, A.F. Leithner, I. Glatzová, M.S. Lukesch, C.C. Guet, M.K. Sixt, BioRxiv (n.d.). date_created: 2021-11-19T12:24:16Z date_published: 2021-10-18T00:00:00Z date_updated: 2024-03-27T23:30:35Z day: '18' department: - _id: CaGu - _id: MiSi doi: 10.1101/2021.10.18.464770 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2021.10.18.464770v1 month: '10' oa: 1 oa_version: Preprint project: - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients - _id: 26018E70-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29911 name: Mechanical adaptation of lamellipodial actin publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory related_material: record: - id: '11843' relation: later_version status: public - id: '10307' relation: dissertation_contains status: public status: public title: Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14 type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '8173' abstract: - lang: eng text: Understanding how the activity of membrane receptors and cellular signaling pathways shapes cell behavior is of fundamental interest in basic and applied research. Reengineering receptors to react to light instead of their cognate ligands allows for generating defined signaling inputs with high spatial and temporal precision and facilitates the dissection of complex signaling networks. Here, we describe fundamental considerations in the design of light-regulated receptor tyrosine kinases (Opto-RTKs) and appropriate control experiments. We also introduce methods for transient receptor expression in HEK293 cells, quantitative assessment of signaling activity in reporter gene assays, semiquantitative assessment of (in)activation time courses through Western blot (WB) analysis, and easy to implement light stimulation hardware. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Stephanie full_name: Kainrath, Stephanie id: 32CFBA64-F248-11E8-B48F-1D18A9856A87 last_name: Kainrath - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 citation: ama: 'Kainrath S, Janovjak HL. Design and application of light-regulated receptor tyrosine kinases. In: Niopek D, ed. Photoswitching Proteins. Vol 2173. MIMB. Springer Nature; 2020:233-246. doi:10.1007/978-1-0716-0755-8_16' apa: Kainrath, S., & Janovjak, H. L. (2020). Design and application of light-regulated receptor tyrosine kinases. In D. Niopek (Ed.), Photoswitching Proteins (Vol. 2173, pp. 233–246). Springer Nature. https://doi.org/10.1007/978-1-0716-0755-8_16 chicago: Kainrath, Stephanie, and Harald L Janovjak. “Design and Application of Light-Regulated Receptor Tyrosine Kinases.” In Photoswitching Proteins, edited by Dominik Niopek, 2173:233–46. MIMB. Springer Nature, 2020. https://doi.org/10.1007/978-1-0716-0755-8_16. ieee: S. Kainrath and H. L. Janovjak, “Design and application of light-regulated receptor tyrosine kinases,” in Photoswitching Proteins, vol. 2173, D. Niopek, Ed. Springer Nature, 2020, pp. 233–246. ista: 'Kainrath S, Janovjak HL. 2020.Design and application of light-regulated receptor tyrosine kinases. In: Photoswitching Proteins. Methods in Molecular Biology, vol. 2173, 233–246.' mla: Kainrath, Stephanie, and Harald L. Janovjak. “Design and Application of Light-Regulated Receptor Tyrosine Kinases.” Photoswitching Proteins, edited by Dominik Niopek, vol. 2173, Springer Nature, 2020, pp. 233–46, doi:10.1007/978-1-0716-0755-8_16. short: S. Kainrath, H.L. Janovjak, in:, D. Niopek (Ed.), Photoswitching Proteins, Springer Nature, 2020, pp. 233–246. date_created: 2020-07-26T22:01:03Z date_published: 2020-07-11T00:00:00Z date_updated: 2021-01-12T08:17:17Z day: '11' department: - _id: CaGu doi: 10.1007/978-1-0716-0755-8_16 editor: - first_name: Dominik full_name: Niopek, Dominik last_name: Niopek intvolume: ' 2173' language: - iso: eng month: '07' oa_version: None page: 233-246 publication: Photoswitching Proteins publication_identifier: eisbn: - '9781071607558' eissn: - '19406029' publication_status: published publisher: Springer Nature scopus_import: '1' series_title: MIMB status: public title: Design and application of light-regulated receptor tyrosine kinases type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2173 year: '2020' ... --- _id: '8155' abstract: - lang: eng text: "In the thesis we focus on the interplay of the biophysics and evolution of gene regulation. We start by addressing how the type of prokaryotic gene regulation – activation and repression – affects spurious binding to DNA, also known as\r\ntranscriptional crosstalk. We propose that regulatory interference caused by excess regulatory proteins in the dense cellular medium – global crosstalk – could be a factor in determining which type of gene regulatory network is evolutionarily preferred. Next,we use a normative approach in eukaryotic gene regulation to describe minimal\r\nnon-equilibrium enhancer models that optimize so-called regulatory phenotypes. We find a class of models that differ from standard thermodynamic equilibrium models by a single parameter that notably increases the regulatory performance. Next chapter addresses the question of genotype-phenotype-fitness maps of higher dimensional phenotypes. We show that our biophysically realistic approach allows us to understand how the mechanisms of promoter function constrain genotypephenotype maps, and how they affect the evolutionary trajectories of promoters.\r\nIn the last chapter we ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. Using mathematical modeling, we show that amplifications can tune gene expression in many environments, including those where transcription factor-based schemes are\r\nhard to evolve or maintain. " acknowledgement: For the duration of his PhD, Rok was a recipient of a DOC fellowship of the Austrian Academy of Sciences. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 citation: ama: Grah R. Gene regulation across scales – how biophysical constraints shape evolution. 2020. doi:10.15479/AT:ISTA:8155 apa: Grah, R. (2020). Gene regulation across scales – how biophysical constraints shape evolution. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8155 chicago: Grah, Rok. “Gene Regulation across Scales – How Biophysical Constraints Shape Evolution.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8155. ieee: R. Grah, “Gene regulation across scales – how biophysical constraints shape evolution,” Institute of Science and Technology Austria, 2020. ista: Grah R. 2020. Gene regulation across scales – how biophysical constraints shape evolution. Institute of Science and Technology Austria. mla: Grah, Rok. Gene Regulation across Scales – How Biophysical Constraints Shape Evolution. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8155. short: R. Grah, Gene Regulation across Scales – How Biophysical Constraints Shape Evolution, Institute of Science and Technology Austria, 2020. date_created: 2020-07-23T09:51:28Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-09-07T13:13:27Z day: '24' ddc: - '530' - '570' degree_awarded: PhD department: - _id: CaGu - _id: GaTk doi: 10.15479/AT:ISTA:8155 file: - access_level: open_access content_type: application/pdf creator: rgrah date_created: 2020-07-27T12:00:07Z date_updated: 2020-07-27T12:00:07Z file_id: '8176' file_name: Thesis_RokGrah_200727_convertedNew.pdf file_size: 16638998 relation: main_file success: 1 - access_level: closed content_type: application/zip creator: rgrah date_created: 2020-07-27T12:02:23Z date_updated: 2020-07-30T13:04:55Z file_id: '8177' file_name: Thesis_new.zip file_size: 347459978 relation: main_file file_date_updated: 2020-07-30T13:04:55Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '310' project: - _id: 267C84F4-B435-11E9-9278-68D0E5697425 name: Biophysically realistic genotype-phenotype maps for regulatory networks publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7675' relation: part_of_dissertation status: public - id: '7569' relation: part_of_dissertation status: public - id: '7652' relation: part_of_dissertation status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Gene regulation across scales – how biophysical constraints shape evolution type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7675' abstract: - lang: eng text: 'In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene expression levels that is compatible with in vivo and in vitro bio-physical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In non-equilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal non-equilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in non-equilibrium models is in a tradeoff with gene expression noise, predicting bursty dynamics — an experimentally-observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space to a much smaller subspace that optimally realizes biological function prior to inference from data, our normative approach holds promise for mathematical models in systems biology.' article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 - first_name: Benjamin full_name: Zoller, Benjamin last_name: Zoller - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Grah R, Zoller B, Tkačik G. Normative models of enhancer function. bioRxiv. 2020. doi:10.1101/2020.04.08.029405 apa: Grah, R., Zoller, B., & Tkačik, G. (2020). Normative models of enhancer function. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.04.08.029405 chicago: Grah, Rok, Benjamin Zoller, and Gašper Tkačik. “Normative Models of Enhancer Function.” BioRxiv. Cold Spring Harbor Laboratory, 2020. https://doi.org/10.1101/2020.04.08.029405. ieee: R. Grah, B. Zoller, and G. Tkačik, “Normative models of enhancer function,” bioRxiv. Cold Spring Harbor Laboratory, 2020. ista: Grah R, Zoller B, Tkačik G. 2020. Normative models of enhancer function. bioRxiv, 10.1101/2020.04.08.029405. mla: Grah, Rok, et al. “Normative Models of Enhancer Function.” BioRxiv, Cold Spring Harbor Laboratory, 2020, doi:10.1101/2020.04.08.029405. short: R. Grah, B. Zoller, G. Tkačik, BioRxiv (2020). date_created: 2020-04-23T10:12:51Z date_published: 2020-04-09T00:00:00Z date_updated: 2023-09-07T13:13:26Z day: '09' department: - _id: CaGu - _id: GaTk doi: 10.1101/2020.04.08.029405 language: - iso: eng main_file_link: - open_access: '1' url: 'https://doi.org/10.1101/2020.04.08.029405 ' month: '04' oa: 1 oa_version: Preprint project: - _id: 2665AAFE-B435-11E9-9278-68D0E5697425 grant_number: RGP0034/2018 name: Can evolution minimize spurious signaling crosstalk to reach optimal performance? - _id: 267C84F4-B435-11E9-9278-68D0E5697425 name: Biophysically realistic genotype-phenotype maps for regulatory networks publication: bioRxiv publication_status: published publisher: Cold Spring Harbor Laboratory related_material: record: - id: '8155' relation: dissertation_contains status: public status: public title: Normative models of enhancer function type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7569' abstract: - lang: eng text: 'Genes differ in the frequency at which they are expressed and in the form of regulation used to control their activity. In particular, positive or negative regulation can lead to activation of a gene in response to an external signal. Previous works proposed that the form of regulation of a gene correlates with its frequency of usage: positive regulation when the gene is frequently expressed and negative regulation when infrequently expressed. Such network design means that, in the absence of their regulators, the genes are found in their least required activity state, hence regulatory intervention is often necessary. Due to the multitude of genes and regulators, spurious binding and unbinding events, called “crosstalk”, could occur. To determine how the form of regulation affects the global crosstalk in the network, we used a mathematical model that includes multiple regulators and multiple target genes. We found that crosstalk depends non-monotonically on the availability of regulators. Our analysis showed that excess use of regulation entailed by the formerly suggested network design caused high crosstalk levels in a large part of the parameter space. We therefore considered the opposite ‘idle’ design, where the default unregulated state of genes is their frequently required activity state. We found, that ‘idle’ design minimized the use of regulation and thus minimized crosstalk. In addition, we estimated global crosstalk of S. cerevisiae using transcription factors binding data. We demonstrated that even partial network data could suffice to estimate its global crosstalk, suggesting its applicability to additional organisms. We found that S. cerevisiae estimated crosstalk is lower than that of a random network, suggesting that natural selection reduces crosstalk. In summary, our study highlights a new type of protein production cost which is typically overlooked: that of regulatory interference caused by the presence of excess regulators in the cell. It demonstrates the importance of whole-network descriptions, which could show effects missed by single-gene models.' article_number: e1007642 article_processing_charge: No article_type: original author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 - first_name: Tamar full_name: Friedlander, Tamar last_name: Friedlander citation: ama: Grah R, Friedlander T. The relation between crosstalk and gene regulation form revisited. PLOS Computational Biology. 2020;16(2). doi:10.1371/journal.pcbi.1007642 apa: Grah, R., & Friedlander, T. (2020). The relation between crosstalk and gene regulation form revisited. PLOS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1007642 chicago: Grah, Rok, and Tamar Friedlander. “The Relation between Crosstalk and Gene Regulation Form Revisited.” PLOS Computational Biology. Public Library of Science, 2020. https://doi.org/10.1371/journal.pcbi.1007642. ieee: R. Grah and T. Friedlander, “The relation between crosstalk and gene regulation form revisited,” PLOS Computational Biology, vol. 16, no. 2. Public Library of Science, 2020. ista: Grah R, Friedlander T. 2020. The relation between crosstalk and gene regulation form revisited. PLOS Computational Biology. 16(2), e1007642. mla: Grah, Rok, and Tamar Friedlander. “The Relation between Crosstalk and Gene Regulation Form Revisited.” PLOS Computational Biology, vol. 16, no. 2, e1007642, Public Library of Science, 2020, doi:10.1371/journal.pcbi.1007642. short: R. Grah, T. Friedlander, PLOS Computational Biology 16 (2020). date_created: 2020-03-06T07:39:38Z date_published: 2020-02-25T00:00:00Z date_updated: 2023-09-12T11:02:24Z day: '25' ddc: - '000' - '570' department: - _id: CaGu - _id: GaTk doi: 10.1371/journal.pcbi.1007642 external_id: isi: - '000526725200019' file: - access_level: open_access checksum: 5239dd134dc6e1c71fe7b3ce2953da37 content_type: application/pdf creator: dernst date_created: 2020-03-09T15:12:21Z date_updated: 2020-07-14T12:48:00Z file_id: '7579' file_name: 2020_PlosCompBio_Grah.pdf file_size: 2209325 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: PLOS Computational Biology publication_identifier: issn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: record: - id: '9716' relation: research_data status: deleted - id: '9776' relation: research_data status: public - id: '9779' relation: used_in_publication status: public - id: '8155' relation: dissertation_contains status: public - id: '9777' relation: research_data status: public scopus_import: '1' status: public title: The relation between crosstalk and gene regulation form revisited tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 16 year: '2020' ... --- _id: '8951' abstract: - lang: eng text: Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions, such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks remains a major challenge. Here, we use a well-defined synthetic gene regulatory network to study how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one gene regulatory network with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Our results demonstrate that changes in local genetic context can place a single transcriptional unit within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual transcriptional units, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of gene regulatory networks. article_processing_charge: No author: - first_name: Anna A full_name: Nagy-Staron, Anna A id: 3ABC5BA6-F248-11E8-B48F-1D18A9856A87 last_name: Nagy-Staron orcid: 0000-0002-1391-8377 citation: ama: Nagy-Staron AA. Sequences of gene regulatory network permutations for the article “Local genetic context shapes the function of a gene regulatory network.” 2020. doi:10.15479/AT:ISTA:8951 apa: Nagy-Staron, A. A. (2020). Sequences of gene regulatory network permutations for the article “Local genetic context shapes the function of a gene regulatory network.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8951 chicago: Nagy-Staron, Anna A. “Sequences of Gene Regulatory Network Permutations for the Article ‘Local Genetic Context Shapes the Function of a Gene Regulatory Network.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8951. ieee: A. A. Nagy-Staron, “Sequences of gene regulatory network permutations for the article ‘Local genetic context shapes the function of a gene regulatory network.’” Institute of Science and Technology Austria, 2020. ista: Nagy-Staron AA. 2020. Sequences of gene regulatory network permutations for the article ‘Local genetic context shapes the function of a gene regulatory network’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8951. mla: Nagy-Staron, Anna A. Sequences of Gene Regulatory Network Permutations for the Article “Local Genetic Context Shapes the Function of a Gene Regulatory Network.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8951. short: A.A. Nagy-Staron, (2020). contributor: - contributor_type: project_member first_name: Anna A id: 3ABC5BA6-F248-11E8-B48F-1D18A9856A87 last_name: Nagy-Staron - contributor_type: project_member first_name: Kathrin id: 3AEC8556-F248-11E8-B48F-1D18A9856A87 last_name: Tomasek - contributor_type: project_member first_name: Caroline last_name: Caruso Carter - contributor_type: project_member first_name: Elisabeth last_name: Sonnleitner - contributor_type: project_member first_name: Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X - contributor_type: project_member first_name: Tiago last_name: Paixão - contributor_type: project_manager first_name: Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 date_created: 2020-12-20T10:00:26Z date_published: 2020-12-21T00:00:00Z date_updated: 2024-02-21T12:41:57Z day: '21' ddc: - '570' department: - _id: CaGu doi: 10.15479/AT:ISTA:8951 file: - access_level: open_access checksum: f57862aeee1690c7effd2b1117d40ed1 content_type: text/plain creator: bkavcic date_created: 2020-12-20T09:52:52Z date_updated: 2020-12-20T09:52:52Z file_id: '8952' file_name: readme.txt file_size: 523 relation: main_file success: 1 - access_level: open_access checksum: f2c6d5232ec6d551b6993991e8689e9f content_type: application/octet-stream creator: bkavcic date_created: 2020-12-20T22:01:44Z date_updated: 2020-12-20T22:01:44Z file_id: '8954' file_name: GRNs Research depository.gb file_size: 379228 relation: main_file success: 1 file_date_updated: 2020-12-20T22:01:44Z has_accepted_license: '1' keyword: - Gene regulatory networks - Gene expression - Escherichia coli - Synthetic Biology month: '12' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '9283' relation: used_in_publication status: public status: public title: Sequences of gene regulatory network permutations for the article "Local genetic context shapes the function of a gene regulatory network" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7383' abstract: - lang: eng text: Organisms cope with change by employing transcriptional regulators. However, when faced with rare environments, the evolution of transcriptional regulators and their promoters may be too slow. We ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. By real-time monitoring of gene copy number mutations in E. coli, we show that gene duplications and amplifications enable adaptation to fluctuating environments by rapidly generating copy number, and hence expression level, polymorphism. This ‘amplification-mediated gene expression tuning’ occurs on timescales similar to canonical gene regulation and can deal with rapid environmental changes. Mathematical modeling shows that amplifications also tune gene expression in stochastic environments where transcription factor-based schemes are hard to evolve or maintain. The fleeting nature of gene amplifications gives rise to a generic population-level mechanism that relies on genetic heterogeneity to rapidly tune expression of any gene, without leaving any genomic signature. article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 citation: ama: 'Grah R. Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation. 2020. doi:10.15479/AT:ISTA:7383' apa: 'Grah, R. (2020). Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7383' chicago: 'Grah, Rok. “Matlab Scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression Regulation.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7383.' ieee: 'R. Grah, “Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation.” Institute of Science and Technology Austria, 2020.' ista: 'Grah R. 2020. Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation, Institute of Science and Technology Austria, 10.15479/AT:ISTA:7383.' mla: 'Grah, Rok. Matlab Scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression Regulation. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7383.' short: R. Grah, (2020). contributor: - contributor_type: project_leader first_name: Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 date_created: 2020-01-28T10:41:49Z date_published: 2020-01-28T00:00:00Z date_updated: 2024-02-21T12:42:31Z day: '28' department: - _id: CaGu - _id: GaTk doi: 10.15479/AT:ISTA:7383 file: - access_level: open_access checksum: 9d292cf5207b3829225f44c044cdb3fd content_type: application/zip creator: rgrah date_created: 2020-01-28T10:39:40Z date_updated: 2020-07-14T12:47:57Z file_id: '7384' file_name: Scripts.zip file_size: 73363365 relation: main_file - access_level: open_access checksum: 4076ceab32ef588cc233802bab24c1ab content_type: text/plain creator: rgrah date_created: 2020-01-28T10:39:30Z date_updated: 2020-07-14T12:47:57Z file_id: '7385' file_name: READ_ME_MAIN.txt file_size: 962 relation: main_file file_date_updated: 2020-07-14T12:47:57Z has_accepted_license: '1' keyword: - Matlab scripts - analysis of microfluidics - mathematical model month: '01' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '7652' relation: used_in_publication status: public status: public title: 'Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation' type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7680' abstract: - lang: eng text: "Proteins and their complex dynamic interactions regulate cellular mechanisms from sensing and transducing extracellular signals, to mediating genetic responses, and sustaining or changing cell morphology. To manipulate these protein-protein interactions (PPIs) that govern the behavior and fate of cells, synthetically constructed, genetically encoded tools provide the means to precisely target proteins of interest (POIs), and control their subcellular localization and activity in vitro and in vivo. Ideal synthetic tools react to an orthogonal cue, i.e. a trigger that does not activate any other endogenous process, thereby allowing manipulation of the POI alone.\r\nIn optogenetics, naturally occurring photosensory domain from plants, algae and bacteria are re-purposed and genetically fused to POIs. Illumination with light of a specific wavelength triggers a conformational change that can mediate PPIs, such as dimerization or oligomerization. By using light as a trigger, these tools can be activated with high spatial and temporal precision, on subcellular and millisecond scales. Chemogenetic tools consist of protein domains that recognize and bind small molecules. By genetic fusion to POIs, these domains can mediate PPIs upon addition of their specific ligands, which are often synthetically designed to provide highly specific interactions and exhibit good bioavailability.\r\nMost optogenetic tools to mediate PPIs are based on well-studied photoreceptors responding to red, blue or near-UV light, leaving a striking gap in the green band of the visible light spectrum. Among both optogenetic and chemogenetic tools, there is an abundance of methods to induce PPIs, but tools to disrupt them require UV illumination, rely on covalent linkage and subsequent enzymatic cleavage or initially result in protein clustering of unknown stoichiometry.\r\nThis work describes how the recently structurally and photochemically characterized green-light responsive cobalamin-binding domains (CBDs) from bacterial transcription factors were re-purposed to function as a green-light responsive optogenetic tool. In contrast to previously engineered optogenetic tools, CBDs do not induce PPI, but rather confer a PPI already upon expression, which can be rapidly disrupted by illumination. This was employed to mimic inhibition of constitutive activity of a growth factor receptor, and successfully implement for cell signalling in mammalian cells and in vivo to rescue development in zebrafish. This work further describes the development and application of a chemically induced de-dimerizer (CDD) based on a recently identified and structurally described bacterial oxyreductase. CDD forms a dimer upon expression in absence of its cofactor, the flavin derivative F420. Safety and of domain expression and ligand exposure are demonstrated in vitro and in vivo in zebrafish. The system is further applied to inhibit cell signalling output from a chimeric receptor upon F420 treatment.\r\nCBDs and CDD expand the repertoire of synthetic tools by providing novel mechanisms of mediating PPIs, and by recognizing previously not utilized cues. In the future, they can readily be combined with existing synthetic tools to functionally manipulate PPIs in vitro and in vivo." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Stephanie full_name: Kainrath, Stephanie id: 32CFBA64-F248-11E8-B48F-1D18A9856A87 last_name: Kainrath citation: ama: Kainrath S. Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals. 2020. doi:10.15479/AT:ISTA:7680 apa: Kainrath, S. (2020). Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7680 chicago: Kainrath, Stephanie. “Synthetic Tools for Optogenetic and Chemogenetic Inhibition of Cellular Signals.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7680. ieee: S. Kainrath, “Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals,” Institute of Science and Technology Austria, 2020. ista: Kainrath S. 2020. Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals. Institute of Science and Technology Austria. mla: Kainrath, Stephanie. Synthetic Tools for Optogenetic and Chemogenetic Inhibition of Cellular Signals. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7680. short: S. Kainrath, Synthetic Tools for Optogenetic and Chemogenetic Inhibition of Cellular Signals, Institute of Science and Technology Austria, 2020. date_created: 2020-04-24T16:00:51Z date_published: 2020-04-24T00:00:00Z date_updated: 2023-09-22T09:20:10Z day: '24' ddc: - '570' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:7680 file: - access_level: open_access checksum: fb9a4468eb27be92690728e35c823796 content_type: application/pdf creator: stgingl date_created: 2020-04-28T11:19:21Z date_updated: 2021-10-31T23:30:05Z embargo: 2021-10-30 file_id: '7692' file_name: Thesis_without-signatures_PDFA.pdf file_size: 3268017 relation: main_file - access_level: closed checksum: f6c80ca97104a631a328cb79a2c53493 content_type: application/octet-stream creator: stgingl date_created: 2020-04-28T11:19:24Z date_updated: 2021-10-31T23:30:05Z embargo_to: open_access file_id: '7693' file_name: Thesis_without signatures.docx file_size: 5167703 relation: source_file file_date_updated: 2021-10-31T23:30:05Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: None page: '98' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1028' relation: dissertation_contains status: public status: public supervisor: - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 title: Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7652' abstract: - lang: eng text: Organisms cope with change by taking advantage of transcriptional regulators. However, when faced with rare environments, the evolution of transcriptional regulators and their promoters may be too slow. Here, we investigate whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. Using real-time monitoring of gene-copy-number mutations in Escherichia coli, we show that gene duplications and amplifications enable adaptation to fluctuating environments by rapidly generating copy-number and, therefore, expression-level polymorphisms. This amplification-mediated gene expression tuning (AMGET) occurs on timescales that are similar to canonical gene regulation and can respond to rapid environmental changes. Mathematical modelling shows that amplifications also tune gene expression in stochastic environments in which transcription-factor-based schemes are hard to evolve or maintain. The fleeting nature of gene amplifications gives rise to a generic population-level mechanism that relies on genetic heterogeneity to rapidly tune the expression of any gene, without leaving any genomic signature. acknowledgement: We thank L. Hurst, N. Barton, M. Pleska, M. Steinrück, B. Kavcic and A. Staron for input on the manuscript, and To. Bergmiller and R. Chait for help with microfluidics experiments. I.T. is a recipient the OMV fellowship. R.G. is a recipient of a DOC (Doctoral Fellowship Programme of the Austrian Academy of Sciences) Fellowship of the Austrian Academy of Sciences. article_processing_charge: No article_type: original author: - first_name: Isabella full_name: Tomanek, Isabella id: 3981F020-F248-11E8-B48F-1D18A9856A87 last_name: Tomanek orcid: 0000-0001-6197-363X - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 - first_name: M. full_name: Lagator, M. last_name: Lagator - first_name: A. M. C. full_name: Andersson, A. M. C. last_name: Andersson - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 citation: ama: Tomanek I, Grah R, Lagator M, et al. Gene amplification as a form of population-level gene expression regulation. Nature Ecology & Evolution. 2020;4(4):612-625. doi:10.1038/s41559-020-1132-7 apa: Tomanek, I., Grah, R., Lagator, M., Andersson, A. M. C., Bollback, J. P., Tkačik, G., & Guet, C. C. (2020). Gene amplification as a form of population-level gene expression regulation. Nature Ecology & Evolution. Springer Nature. https://doi.org/10.1038/s41559-020-1132-7 chicago: Tomanek, Isabella, Rok Grah, M. Lagator, A. M. C. Andersson, Jonathan P Bollback, Gašper Tkačik, and Calin C Guet. “Gene Amplification as a Form of Population-Level Gene Expression Regulation.” Nature Ecology & Evolution. Springer Nature, 2020. https://doi.org/10.1038/s41559-020-1132-7. ieee: I. Tomanek et al., “Gene amplification as a form of population-level gene expression regulation,” Nature Ecology & Evolution, vol. 4, no. 4. Springer Nature, pp. 612–625, 2020. ista: Tomanek I, Grah R, Lagator M, Andersson AMC, Bollback JP, Tkačik G, Guet CC. 2020. Gene amplification as a form of population-level gene expression regulation. Nature Ecology & Evolution. 4(4), 612–625. mla: Tomanek, Isabella, et al. “Gene Amplification as a Form of Population-Level Gene Expression Regulation.” Nature Ecology & Evolution, vol. 4, no. 4, Springer Nature, 2020, pp. 612–25, doi:10.1038/s41559-020-1132-7. short: I. Tomanek, R. Grah, M. Lagator, A.M.C. Andersson, J.P. Bollback, G. Tkačik, C.C. Guet, Nature Ecology & Evolution 4 (2020) 612–625. date_created: 2020-04-08T15:20:53Z date_published: 2020-04-01T00:00:00Z date_updated: 2024-03-27T23:30:36Z day: '01' ddc: - '570' department: - _id: GaTk - _id: CaGu doi: 10.1038/s41559-020-1132-7 external_id: isi: - '000519008300005' file: - access_level: open_access checksum: ef3bbf42023e30b2c24a6278025d2040 content_type: application/pdf creator: dernst date_created: 2020-10-09T09:56:01Z date_updated: 2020-10-09T09:56:01Z file_id: '8640' file_name: 2020_NatureEcolEvo_Tomanek.pdf file_size: 745242 relation: main_file success: 1 file_date_updated: 2020-10-09T09:56:01Z has_accepted_license: '1' intvolume: ' 4' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version page: 612-625 project: - _id: 267C84F4-B435-11E9-9278-68D0E5697425 name: Biophysically realistic genotype-phenotype maps for regulatory networks publication: Nature Ecology & Evolution publication_identifier: issn: - 2397-334X publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-to-thrive-without-gene-regulation/ record: - id: '8155' relation: dissertation_contains status: public - id: '7383' relation: research_data status: public - id: '7016' relation: research_data status: public - id: '8653' relation: used_in_publication status: public scopus_import: '1' status: public title: Gene amplification as a form of population-level gene expression regulation type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 4 year: '2020' ... --- _id: '8653' abstract: - lang: eng text: "Mutations are the raw material of evolution and come in many different flavors. Point mutations change a single letter in the DNA sequence, while copy number mutations like duplications or deletions add or remove many letters of the DNA sequence simultaneously. Each type of mutation exhibits specific properties like its rate of formation and reversal. \r\nGene expression is a fundamental phenotype that can be altered by both, point and copy number mutations. The following thesis is concerned with the dynamics of gene expression evolution and how it is affected by the properties exhibited by point and copy number mutations. Specifically, we are considering i) copy number mutations during adaptation to fluctuating environments and ii) the interaction of copy number and point mutations during adaptation to constant environments.  " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Isabella full_name: Tomanek, Isabella id: 3981F020-F248-11E8-B48F-1D18A9856A87 last_name: Tomanek orcid: 0000-0001-6197-363X citation: ama: Tomanek I. The evolution of gene expression by copy number and point mutations. 2020. doi:10.15479/AT:ISTA:8653 apa: Tomanek, I. (2020). The evolution of gene expression by copy number and point mutations. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8653 chicago: Tomanek, Isabella. “The Evolution of Gene Expression by Copy Number and Point Mutations.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8653. ieee: I. Tomanek, “The evolution of gene expression by copy number and point mutations,” Institute of Science and Technology Austria, 2020. ista: Tomanek I. 2020. The evolution of gene expression by copy number and point mutations. Institute of Science and Technology Austria. mla: Tomanek, Isabella. The Evolution of Gene Expression by Copy Number and Point Mutations. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8653. short: I. Tomanek, The Evolution of Gene Expression by Copy Number and Point Mutations, Institute of Science and Technology Austria, 2020. date_created: 2020-10-13T13:02:33Z date_published: 2020-10-13T00:00:00Z date_updated: 2023-09-07T13:22:42Z day: '13' ddc: - '576' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:8653 file: - access_level: closed checksum: c01d9f59794b4b70528f37637c17ad02 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: itomanek date_created: 2020-10-16T12:14:21Z date_updated: 2021-10-20T22:30:03Z embargo_to: open_access file_id: '8666' file_name: Thesis_ITomanek_final_201016.docx file_size: 25131884 relation: source_file - access_level: open_access checksum: f8edbc3b0f81a780e13ca1e561d42d8b content_type: application/pdf creator: itomanek date_created: 2020-10-16T12:14:21Z date_updated: 2021-10-20T22:30:03Z embargo: 2021-10-19 file_id: '8667' file_name: Thesis_ITomanek_final_201016.pdf file_size: 15405675 relation: main_file file_date_updated: 2021-10-20T22:30:03Z has_accepted_license: '1' keyword: - duplication - amplification - promoter - CNV - AMGET - experimental evolution - Escherichia coli language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '117' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7652' relation: research_data status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 title: The evolution of gene expression by copy number and point mutations type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '6465' abstract: - lang: eng text: Tight control over protein degradation is a fundamental requirement for cells to respond rapidly to various stimuli and adapt to a fluctuating environment. Here we develop a versatile, easy-to-handle library of destabilizing tags (degrons) for the precise regulation of protein expression profiles in mammalian cells by modulating target protein half-lives in a predictable manner. Using the well-established tetracycline gene-regulation system as a model, we show that the dynamics of protein expression can be tuned by fusing appropriate degron tags to gene regulators. Next, we apply this degron library to tune a synthetic pulse-generating circuit in mammalian cells. With this toolbox we establish a set of pulse generators with tailored pulse lengths and magnitudes of protein expression. This methodology will prove useful in the functional roles of essential proteins, fine-tuning of gene-expression systems, and enabling a higher complexity in the design of synthetic biological systems in mammalian cells. article_number: '2013' article_processing_charge: No author: - first_name: Hélène full_name: Chassin, Hélène last_name: Chassin - first_name: Marius full_name: Müller, Marius last_name: Müller - first_name: Marcel full_name: Tigges, Marcel last_name: Tigges - first_name: Leo full_name: Scheller, Leo last_name: Scheller - first_name: Moritz full_name: Lang, Moritz id: 29E0800A-F248-11E8-B48F-1D18A9856A87 last_name: Lang - first_name: Martin full_name: Fussenegger, Martin last_name: Fussenegger citation: ama: Chassin H, Müller M, Tigges M, Scheller L, Lang M, Fussenegger M. A modular degron library for synthetic circuits in mammalian cells. Nature Communications. 2019;10(1). doi:10.1038/s41467-019-09974-5 apa: Chassin, H., Müller, M., Tigges, M., Scheller, L., Lang, M., & Fussenegger, M. (2019). A modular degron library for synthetic circuits in mammalian cells. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-09974-5 chicago: Chassin, Hélène, Marius Müller, Marcel Tigges, Leo Scheller, Moritz Lang, and Martin Fussenegger. “A Modular Degron Library for Synthetic Circuits in Mammalian Cells.” Nature Communications. Springer Nature, 2019. https://doi.org/10.1038/s41467-019-09974-5. ieee: H. Chassin, M. Müller, M. Tigges, L. Scheller, M. Lang, and M. Fussenegger, “A modular degron library for synthetic circuits in mammalian cells,” Nature Communications, vol. 10, no. 1. Springer Nature, 2019. ista: Chassin H, Müller M, Tigges M, Scheller L, Lang M, Fussenegger M. 2019. A modular degron library for synthetic circuits in mammalian cells. Nature Communications. 10(1), 2013. mla: Chassin, Hélène, et al. “A Modular Degron Library for Synthetic Circuits in Mammalian Cells.” Nature Communications, vol. 10, no. 1, 2013, Springer Nature, 2019, doi:10.1038/s41467-019-09974-5. short: H. Chassin, M. Müller, M. Tigges, L. Scheller, M. Lang, M. Fussenegger, Nature Communications 10 (2019). date_created: 2019-05-19T21:59:14Z date_published: 2019-05-01T00:00:00Z date_updated: 2023-08-25T10:33:51Z day: '01' ddc: - '570' department: - _id: CaGu doi: 10.1038/s41467-019-09974-5 external_id: isi: - '000466338600006' file: - access_level: open_access checksum: e214d3e4f8c81e35981583c4569b51b8 content_type: application/pdf creator: dernst date_created: 2019-05-20T07:33:54Z date_updated: 2020-07-14T12:47:31Z file_id: '6471' file_name: 2019_NatureComm_Chassin.pdf file_size: 1191827 relation: main_file file_date_updated: 2020-07-14T12:47:31Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41467-023-36111-0 scopus_import: '1' status: public title: A modular degron library for synthetic circuits in mammalian cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2019' ... --- _id: '6717' abstract: - lang: eng text: With the recent publication by Silpe and Bassler (2019), considering phage detection of a bacterial quorum-sensing (QS) autoinducer, we now have as many as five examples of phage-associated intercellular communication (Table 1). Each potentially involves ecological inferences by phages as to concentrations of surrounding phage-infected or uninfected bacteria. While the utility of phage detection of bacterial QS molecules may at first glance appear to be straightforward, we suggest in this commentary that the underlying ecological explanation is unlikely to be simple. article_number: '1171' article_processing_charge: Yes (via OA deal) author: - first_name: Claudia full_name: Igler, Claudia id: 46613666-F248-11E8-B48F-1D18A9856A87 last_name: Igler - first_name: Stephen T. full_name: Abedon, Stephen T. last_name: Abedon citation: ama: 'Igler C, Abedon ST. Commentary: A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Frontiers in Microbiology. 2019;10. doi:10.3389/fmicb.2019.01171' apa: 'Igler, C., & Abedon, S. T. (2019). Commentary: A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Frontiers in Microbiology. Frontiers. https://doi.org/10.3389/fmicb.2019.01171' chicago: 'Igler, Claudia, and Stephen T. Abedon. “Commentary: A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision.” Frontiers in Microbiology. Frontiers, 2019. https://doi.org/10.3389/fmicb.2019.01171.' ieee: 'C. Igler and S. T. Abedon, “Commentary: A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision,” Frontiers in Microbiology, vol. 10. Frontiers, 2019.' ista: 'Igler C, Abedon ST. 2019. Commentary: A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Frontiers in Microbiology. 10, 1171.' mla: 'Igler, Claudia, and Stephen T. Abedon. “Commentary: A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision.” Frontiers in Microbiology, vol. 10, 1171, Frontiers, 2019, doi:10.3389/fmicb.2019.01171.' short: C. Igler, S.T. Abedon, Frontiers in Microbiology 10 (2019). date_created: 2019-07-28T21:59:18Z date_published: 2019-06-03T00:00:00Z date_updated: 2023-08-29T06:41:20Z day: '03' ddc: - '570' department: - _id: CaGu doi: 10.3389/fmicb.2019.01171 external_id: isi: - '000470131200001' file: - access_level: open_access checksum: 317a06067e9a8e717bb55f23e0d77ba7 content_type: application/pdf creator: apreinsp date_created: 2019-07-29T07:51:54Z date_updated: 2020-07-14T12:47:38Z file_id: '6722' file_name: 2019_Frontiers_Igler.pdf file_size: 246151 relation: main_file file_date_updated: 2020-07-14T12:47:38Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 251EE76E-B435-11E9-9278-68D0E5697425 grant_number: '24573' name: Design principles underlying genetic switch architecture (DOC Fellowship) publication: Frontiers in Microbiology publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: 'Commentary: A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2019' ... --- _id: '6784' abstract: - lang: eng text: Mathematical models have been used successfully at diverse scales of biological organization, ranging from ecology and population dynamics to stochastic reaction events occurring between individual molecules in single cells. Generally, many biological processes unfold across multiple scales, with mutations being the best studied example of how stochasticity at the molecular scale can influence outcomes at the population scale. In many other contexts, however, an analogous link between micro- and macro-scale remains elusive, primarily due to the challenges involved in setting up and analyzing multi-scale models. Here, we employ such a model to investigate how stochasticity propagates from individual biochemical reaction events in the bacterial innate immune system to the ecology of bacteria and bacterial viruses. We show analytically how the dynamics of bacterial populations are shaped by the activities of immunity-conferring enzymes in single cells and how the ecological consequences imply optimal bacterial defense strategies against viruses. Our results suggest that bacterial populations in the presence of viruses can either optimize their initial growth rate or their population size, with the first strategy favoring simple immunity featuring a single restriction modification system and the second strategy favoring complex bacterial innate immunity featuring several simultaneously active restriction modification systems. article_number: e1007168 article_processing_charge: No article_type: original author: - first_name: Jakob full_name: Ruess, Jakob id: 4A245D00-F248-11E8-B48F-1D18A9856A87 last_name: Ruess orcid: 0000-0003-1615-3282 - first_name: Maros full_name: Pleska, Maros id: 4569785E-F248-11E8-B48F-1D18A9856A87 last_name: Pleska orcid: 0000-0001-7460-7479 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Ruess J, Pleska M, Guet CC, Tkačik G. Molecular noise of innate immunity shapes bacteria-phage ecologies. PLoS Computational Biology. 2019;15(7). doi:10.1371/journal.pcbi.1007168 apa: Ruess, J., Pleska, M., Guet, C. C., & Tkačik, G. (2019). Molecular noise of innate immunity shapes bacteria-phage ecologies. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1007168 chicago: Ruess, Jakob, Maros Pleska, Calin C Guet, and Gašper Tkačik. “Molecular Noise of Innate Immunity Shapes Bacteria-Phage Ecologies.” PLoS Computational Biology. Public Library of Science, 2019. https://doi.org/10.1371/journal.pcbi.1007168. ieee: J. Ruess, M. Pleska, C. C. Guet, and G. Tkačik, “Molecular noise of innate immunity shapes bacteria-phage ecologies,” PLoS Computational Biology, vol. 15, no. 7. Public Library of Science, 2019. ista: Ruess J, Pleska M, Guet CC, Tkačik G. 2019. Molecular noise of innate immunity shapes bacteria-phage ecologies. PLoS Computational Biology. 15(7), e1007168. mla: Ruess, Jakob, et al. “Molecular Noise of Innate Immunity Shapes Bacteria-Phage Ecologies.” PLoS Computational Biology, vol. 15, no. 7, e1007168, Public Library of Science, 2019, doi:10.1371/journal.pcbi.1007168. short: J. Ruess, M. Pleska, C.C. Guet, G. Tkačik, PLoS Computational Biology 15 (2019). date_created: 2019-08-11T21:59:19Z date_published: 2019-07-02T00:00:00Z date_updated: 2023-08-29T07:10:06Z day: '02' ddc: - '570' department: - _id: CaGu - _id: GaTk doi: 10.1371/journal.pcbi.1007168 external_id: isi: - '000481577700032' file: - access_level: open_access checksum: 7ded4721b41c2a0fc66a1c634540416a content_type: application/pdf creator: dernst date_created: 2019-08-12T12:27:26Z date_updated: 2020-07-14T12:47:40Z file_id: '6803' file_name: 2019_PlosComputBiology_Ruess.pdf file_size: 2200003 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 251D65D8-B435-11E9-9278-68D0E5697425 grant_number: '24210' name: Effects of Stochasticity on the Function of Restriction-Modi cation Systems at the Single-Cell Level - _id: 251BCBEC-B435-11E9-9278-68D0E5697425 grant_number: RGY0079/2011 name: Multi-Level Conflicts in Evolutionary Dynamics of Restriction-Modification Systems publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: record: - id: '9786' relation: research_data status: public scopus_import: '1' status: public title: Molecular noise of innate immunity shapes bacteria-phage ecologies tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2019' ... --- _id: '9786' article_processing_charge: No author: - first_name: Jakob full_name: Ruess, Jakob id: 4A245D00-F248-11E8-B48F-1D18A9856A87 last_name: Ruess orcid: 0000-0003-1615-3282 - first_name: Maros full_name: Pleska, Maros id: 4569785E-F248-11E8-B48F-1D18A9856A87 last_name: Pleska orcid: 0000-0001-7460-7479 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Ruess J, Pleska M, Guet CC, Tkačik G. Supporting text and results. 2019. doi:10.1371/journal.pcbi.1007168.s001 apa: Ruess, J., Pleska, M., Guet, C. C., & Tkačik, G. (2019). Supporting text and results. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1007168.s001 chicago: Ruess, Jakob, Maros Pleska, Calin C Guet, and Gašper Tkačik. “Supporting Text and Results.” Public Library of Science, 2019. https://doi.org/10.1371/journal.pcbi.1007168.s001. ieee: J. Ruess, M. Pleska, C. C. Guet, and G. Tkačik, “Supporting text and results.” Public Library of Science, 2019. ista: Ruess J, Pleska M, Guet CC, Tkačik G. 2019. Supporting text and results, Public Library of Science, 10.1371/journal.pcbi.1007168.s001. mla: Ruess, Jakob, et al. Supporting Text and Results. Public Library of Science, 2019, doi:10.1371/journal.pcbi.1007168.s001. short: J. Ruess, M. Pleska, C.C. Guet, G. Tkačik, (2019). date_created: 2021-08-06T08:23:43Z date_published: 2019-07-02T00:00:00Z date_updated: 2023-08-29T07:10:05Z day: '02' department: - _id: CaGu - _id: GaTk doi: 10.1371/journal.pcbi.1007168.s001 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '6784' relation: used_in_publication status: public status: public title: Supporting text and results type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ...