--- _id: '14466' abstract: - lang: eng text: The first long-lived turbulent structures observable in planar shear flows take the form of localized stripes, inclined with respect to the mean flow direction. The dynamics of these stripes is central to transition, and recent studies proposed an analogy to directed percolation where the stripes’ proliferation is ultimately responsible for the turbulence becoming sustained. In the present study we focus on the internal stripe dynamics as well as on the eventual stripe expansion, and we compare the underlying mechanisms in pressure- and shear-driven planar flows, respectively, plane-Poiseuille and plane-Couette flow. Despite the similarities of the overall laminar–turbulence patterns, the stripe proliferation processes in the two cases are fundamentally different. Starting from the growth and sustenance of individual stripes, we find that in plane-Couette flow new streaks are created stochastically throughout the stripe whereas in plane-Poiseuille flow streak creation is deterministic and occurs locally at the downstream tip. Because of the up/downstream symmetry, Couette stripes, in contrast to Poiseuille stripes, have two weak and two strong laminar turbulent interfaces. These differences in symmetry as well as in internal growth give rise to two fundamentally different stripe splitting mechanisms. In plane-Poiseuille flow splitting is connected to the elongational growth of the original stripe, and it results from a break-off/shedding of the stripe's tail. In plane-Couette flow splitting follows from a broadening of the original stripe and a division along the stripe into two slimmer stripes. acknowledgement: E.M. acknowledges funding from the ISTplus fellowship programme. G.Y. and B.H. acknowledge a grant from the Simons Foundation (662960, BH). article_number: A21 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Elena full_name: Marensi, Elena id: 0BE7553A-1004-11EA-B805-18983DDC885E last_name: Marensi orcid: 0000-0001-7173-4923 - first_name: Gökhan full_name: Yalniz, Gökhan id: 66E74FA2-D8BF-11E9-8249-8DE2E5697425 last_name: Yalniz orcid: 0000-0002-8490-9312 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Marensi E, Yalniz G, Hof B. Dynamics and proliferation of turbulent stripes in plane-Poiseuille and plane-Couette flows. Journal of Fluid Mechanics. 2023;974. doi:10.1017/jfm.2023.780 apa: Marensi, E., Yalniz, G., & Hof, B. (2023). Dynamics and proliferation of turbulent stripes in plane-Poiseuille and plane-Couette flows. Journal of Fluid Mechanics. Cambridge University Press. https://doi.org/10.1017/jfm.2023.780 chicago: Marensi, Elena, Gökhan Yalniz, and Björn Hof. “Dynamics and Proliferation of Turbulent Stripes in Plane-Poiseuille and Plane-Couette Flows.” Journal of Fluid Mechanics. Cambridge University Press, 2023. https://doi.org/10.1017/jfm.2023.780. ieee: E. Marensi, G. Yalniz, and B. Hof, “Dynamics and proliferation of turbulent stripes in plane-Poiseuille and plane-Couette flows,” Journal of Fluid Mechanics, vol. 974. Cambridge University Press, 2023. ista: Marensi E, Yalniz G, Hof B. 2023. Dynamics and proliferation of turbulent stripes in plane-Poiseuille and plane-Couette flows. Journal of Fluid Mechanics. 974, A21. mla: Marensi, Elena, et al. “Dynamics and Proliferation of Turbulent Stripes in Plane-Poiseuille and Plane-Couette Flows.” Journal of Fluid Mechanics, vol. 974, A21, Cambridge University Press, 2023, doi:10.1017/jfm.2023.780. short: E. Marensi, G. Yalniz, B. Hof, Journal of Fluid Mechanics 974 (2023). date_created: 2023-10-30T09:32:28Z date_published: 2023-11-10T00:00:00Z date_updated: 2024-02-15T09:06:23Z day: '10' ddc: - '530' department: - _id: GradSch - _id: BjHo doi: 10.1017/jfm.2023.780 external_id: arxiv: - '2212.12406' isi: - '001088363700001' file: - access_level: open_access checksum: 17c64c1fb0d5f73252364bf98b0b9e1a content_type: application/pdf creator: dernst date_created: 2024-02-15T09:05:21Z date_updated: 2024-02-15T09:05:21Z file_id: '14996' file_name: 2023_JourFluidMechanics_Marensi.pdf file_size: 2804641 relation: main_file success: 1 file_date_updated: 2024-02-15T09:05:21Z has_accepted_license: '1' intvolume: ' 974' isi: 1 keyword: - turbulence - transition to turbulence - patterns language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 238598C6-32DE-11EA-91FC-C7463DDC885E grant_number: '662960' name: 'Revisiting the Turbulence Problem Using Statistical Mechanics: Experimental Studies on Transitional and Turbulent Flows' publication: Journal of Fluid Mechanics publication_identifier: eissn: - 1469-7645 issn: - 0022-1120 publication_status: published publisher: Cambridge University Press quality_controlled: '1' status: public title: Dynamics and proliferation of turbulent stripes in plane-Poiseuille and plane-Couette flows tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 974 year: '2023' ... --- _id: '14641' acknowledged_ssus: - _id: LifeSc - _id: Bio - _id: CampIT alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mike full_name: Hennessey-Wesen, Mike id: 3F338C72-F248-11E8-B48F-1D18A9856A87 last_name: Hennessey-Wesen citation: ama: Hennessey-Wesen M. Adaptive mutation in E. coli modulated by luxS. 2023. doi:10.15479/at:ista:14641 apa: Hennessey-Wesen, M. (2023). Adaptive mutation in E. coli modulated by luxS. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14641 chicago: Hennessey-Wesen, Mike. “Adaptive Mutation in E. Coli Modulated by LuxS.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14641. ieee: M. Hennessey-Wesen, “Adaptive mutation in E. coli modulated by luxS,” Institute of Science and Technology Austria, 2023. ista: Hennessey-Wesen M. 2023. Adaptive mutation in E. coli modulated by luxS. Institute of Science and Technology Austria. mla: Hennessey-Wesen, Mike. Adaptive Mutation in E. Coli Modulated by LuxS. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14641. short: M. Hennessey-Wesen, Adaptive Mutation in E. Coli Modulated by LuxS, Institute of Science and Technology Austria, 2023. date_created: 2023-12-04T13:17:37Z date_published: 2023-11-30T00:00:00Z date_updated: 2024-03-22T13:21:17Z day: '30' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: BjHo doi: 10.15479/at:ista:14641 ec_funded: 1 file: - access_level: closed checksum: 4127c285b34f4bf7fb31ef24f9d14c25 content_type: application/vnd.oasis.opendocument.text creator: mhenness date_created: 2023-12-06T13:13:26Z date_updated: 2023-12-06T13:13:26Z file_id: '14648' file_name: mike_thesis_v06-12-2023.odt file_size: 46405919 relation: source_file - access_level: closed checksum: f5203a61eddaf35235bbc51904d73982 content_type: application/pdf creator: mhenness date_created: 2023-12-06T13:14:15Z date_updated: 2023-12-06T13:14:15Z embargo: 2024-11-30 embargo_to: open_access file_id: '14649' file_name: mike_thesis_v06-12-2023.pdf file_size: 21282155 relation: main_file - access_level: closed checksum: 9f7b4d646f1cfb57e3b9106a8a9cdd9d content_type: application/pdf creator: cchlebak date_created: 2024-03-20T13:19:36Z date_updated: 2024-03-20T13:19:36Z file_id: '15145' file_name: 2023_Hennessey_Michael_Thesis_from_source.pdf file_size: 2930287 relation: other file_date_updated: 2024-03-20T13:19:36Z has_accepted_license: '1' keyword: - microfluidics - miceobiology - mutations - quorum sensing language: - iso: eng month: '11' oa_version: Published Version page: '104' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: Adaptive mutation in E. coli modulated by luxS type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12134' abstract: - lang: eng text: Standard epidemic models exhibit one continuous, second order phase transition to macroscopic outbreaks. However, interventions to control outbreaks may fundamentally alter epidemic dynamics. Here we reveal how such interventions modify the type of phase transition. In particular, we uncover three distinct types of explosive phase transitions for epidemic dynamics with capacity-limited interventions. Depending on the capacity limit, interventions may (i) leave the standard second order phase transition unchanged but exponentially suppress the probability of large outbreaks, (ii) induce a first-order discontinuous transition to macroscopic outbreaks, or (iii) cause a secondary explosive yet continuous third-order transition. These insights highlight inherent limitations in predicting and containing epidemic outbreaks. More generally our study offers a cornerstone example of a third-order explosive phase transition in complex systems. acknowledgement: We acknowledge support from the Volkswagen Foundation under Grant No. 99720 and the German Federal Ministry for Education and Research (BMBF) under Grant No. 16ICR01. This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2068—390729961—Cluster of Excellence Physics of Life of TU Dresden. article_number: 04LT02 article_processing_charge: No article_type: original author: - first_name: Georg full_name: Börner, Georg last_name: Börner - first_name: Malte full_name: Schröder, Malte last_name: Schröder - first_name: Davide full_name: Scarselli, Davide id: 40315C30-F248-11E8-B48F-1D18A9856A87 last_name: Scarselli orcid: 0000-0001-5227-4271 - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Marc full_name: Timme, Marc last_name: Timme citation: ama: 'Börner G, Schröder M, Scarselli D, Budanur NB, Hof B, Timme M. Explosive transitions in epidemic dynamics. Journal of Physics: Complexity. 2022;3(4). doi:10.1088/2632-072x/ac99cd' apa: 'Börner, G., Schröder, M., Scarselli, D., Budanur, N. B., Hof, B., & Timme, M. (2022). Explosive transitions in epidemic dynamics. Journal of Physics: Complexity. IOP Publishing. https://doi.org/10.1088/2632-072x/ac99cd' chicago: 'Börner, Georg, Malte Schröder, Davide Scarselli, Nazmi B Budanur, Björn Hof, and Marc Timme. “Explosive Transitions in Epidemic Dynamics.” Journal of Physics: Complexity. IOP Publishing, 2022. https://doi.org/10.1088/2632-072x/ac99cd.' ieee: 'G. Börner, M. Schröder, D. Scarselli, N. B. Budanur, B. Hof, and M. Timme, “Explosive transitions in epidemic dynamics,” Journal of Physics: Complexity, vol. 3, no. 4. IOP Publishing, 2022.' ista: 'Börner G, Schröder M, Scarselli D, Budanur NB, Hof B, Timme M. 2022. Explosive transitions in epidemic dynamics. Journal of Physics: Complexity. 3(4), 04LT02.' mla: 'Börner, Georg, et al. “Explosive Transitions in Epidemic Dynamics.” Journal of Physics: Complexity, vol. 3, no. 4, 04LT02, IOP Publishing, 2022, doi:10.1088/2632-072x/ac99cd.' short: 'G. Börner, M. Schröder, D. Scarselli, N.B. Budanur, B. Hof, M. Timme, Journal of Physics: Complexity 3 (2022).' date_created: 2023-01-12T12:03:43Z date_published: 2022-10-25T00:00:00Z date_updated: 2023-02-13T09:15:13Z day: '25' ddc: - '530' department: - _id: BjHo doi: 10.1088/2632-072x/ac99cd file: - access_level: open_access checksum: 35c5c5cb0eb17ea1b5184755daab9fc9 content_type: application/pdf creator: dernst date_created: 2023-01-24T07:24:37Z date_updated: 2023-01-24T07:24:37Z file_id: '12350' file_name: 2022_JourPhysics_Boerner.pdf file_size: 1006106 relation: main_file success: 1 file_date_updated: 2023-01-24T07:24:37Z has_accepted_license: '1' intvolume: ' 3' issue: '4' keyword: - Artificial Intelligence - Computer Networks and Communications - Computer Science Applications - Information Systems language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: 'Journal of Physics: Complexity' publication_identifier: issn: - 2632-072X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Explosive transitions in epidemic dynamics tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2022' ... --- _id: '10654' abstract: - lang: eng text: "Directed percolation (DP) has recently emerged as a possible solution to the century old puzzle surrounding the transition to turbulence. Multiple model studies reported DP exponents, however, experimental evidence is limited since the largest possible observation times are orders of magnitude shorter than the flows’ characteristic timescales. An exception is cylindrical Couette flow where the limit is not temporal, but rather the realizable system size. We present experiments in a Couette setup of unprecedented azimuthal and axial aspect ratios. Approaching the critical point to within less than 0.1% we determine five critical exponents, all of which are in excellent agreement with the 2+1D DP universality class. The complex dynamics encountered at \r\nthe onset of turbulence can hence be fully rationalized within the framework of statistical mechanics." acknowledged_ssus: - _id: M-Shop acknowledgement: "We thank T.Menner, T.Asenov, P. Maier and the Miba machine shop of IST Austria for their valuable support in all technical aspects. We thank Marc Avila for comments on the manuscript. This work was supported by a grant from the Simons Foundation (662960, B.H.). We acknowledge the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement 306589 for financial support. K.A.\r\nacknowledges funding from the Central Research Development Fund of the University of Bremen, grant number ZF04B /2019/FB04 Avila Kerstin (”Independent Project for Postdocs”). L.K. was supported by the European Union’s Horizon 2020 Research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754411.\r\n" article_number: '014502' article_processing_charge: No article_type: original author: - first_name: Lukasz full_name: Klotz, Lukasz id: 2C9AF1C2-F248-11E8-B48F-1D18A9856A87 last_name: Klotz orcid: 0000-0003-1740-7635 - first_name: Grégoire M full_name: Lemoult, Grégoire M id: 4787FE80-F248-11E8-B48F-1D18A9856A87 last_name: Lemoult - first_name: Kerstin full_name: Avila, Kerstin last_name: Avila - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Klotz L, Lemoult GM, Avila K, Hof B. Phase transition to turbulence in spatially extended shear flows. Physical Review Letters. 2022;128(1). doi:10.1103/PhysRevLett.128.014502 apa: Klotz, L., Lemoult, G. M., Avila, K., & Hof, B. (2022). Phase transition to turbulence in spatially extended shear flows. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.128.014502 chicago: Klotz, Lukasz, Grégoire M Lemoult, Kerstin Avila, and Björn Hof. “Phase Transition to Turbulence in Spatially Extended Shear Flows.” Physical Review Letters. American Physical Society, 2022. https://doi.org/10.1103/PhysRevLett.128.014502. ieee: L. Klotz, G. M. Lemoult, K. Avila, and B. Hof, “Phase transition to turbulence in spatially extended shear flows,” Physical Review Letters, vol. 128, no. 1. American Physical Society, 2022. ista: Klotz L, Lemoult GM, Avila K, Hof B. 2022. Phase transition to turbulence in spatially extended shear flows. Physical Review Letters. 128(1), 014502. mla: Klotz, Lukasz, et al. “Phase Transition to Turbulence in Spatially Extended Shear Flows.” Physical Review Letters, vol. 128, no. 1, 014502, American Physical Society, 2022, doi:10.1103/PhysRevLett.128.014502. short: L. Klotz, G.M. Lemoult, K. Avila, B. Hof, Physical Review Letters 128 (2022). date_created: 2022-01-23T23:01:28Z date_published: 2022-01-05T00:00:00Z date_updated: 2023-08-02T13:59:19Z day: '05' department: - _id: BjHo doi: 10.1103/PhysRevLett.128.014502 ec_funded: 1 external_id: arxiv: - '2111.14894' isi: - '000748271700010' pmid: - '35061458' intvolume: ' 128' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2111.14894 month: '01' oa: 1 oa_version: Preprint pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25152F3A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '306589' name: Decoding the complexity of turbulence at its origin - _id: 238598C6-32DE-11EA-91FC-C7463DDC885E grant_number: '662960' name: 'Revisiting the Turbulence Problem Using Statistical Mechanics: Experimental Studies on Transitional and Turbulent Flows' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Phase transition to turbulence in spatially extended shear flows type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 128 year: '2022' ... --- _id: '11704' abstract: - lang: eng text: In Fall 2020, several European countries reported rapid increases in COVID-19 cases along with growing estimates of the effective reproduction rates. Such an acceleration in epidemic spread is usually attributed to time-dependent effects, e.g. human travel, seasonal behavioral changes, mutations of the pathogen etc. In this case however the acceleration occurred when counter measures such as testing and contact tracing exceeded their capacity limit. Considering Austria as an example, here we show that this dynamics can be captured by a time-independent, i.e. autonomous, compartmental model that incorporates these capacity limits. In this model, the epidemic acceleration coincides with the exhaustion of mitigation efforts, resulting in an increasing fraction of undetected cases that drive the effective reproduction rate progressively higher. We demonstrate that standard models which does not include this effect necessarily result in a systematic underestimation of the effective reproduction rate. article_number: e0269975 article_processing_charge: No article_type: original author: - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Budanur NB, Hof B. An autonomous compartmental model for accelerating epidemics. PLoS ONE. 2022;17(7). doi:10.1371/journal.pone.0269975 apa: Budanur, N. B., & Hof, B. (2022). An autonomous compartmental model for accelerating epidemics. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0269975 chicago: Budanur, Nazmi B, and Björn Hof. “An Autonomous Compartmental Model for Accelerating Epidemics.” PLoS ONE. Public Library of Science, 2022. https://doi.org/10.1371/journal.pone.0269975. ieee: N. B. Budanur and B. Hof, “An autonomous compartmental model for accelerating epidemics,” PLoS ONE, vol. 17, no. 7. Public Library of Science, 2022. ista: Budanur NB, Hof B. 2022. An autonomous compartmental model for accelerating epidemics. PLoS ONE. 17(7), e0269975. mla: Budanur, Nazmi B., and Björn Hof. “An Autonomous Compartmental Model for Accelerating Epidemics.” PLoS ONE, vol. 17, no. 7, e0269975, Public Library of Science, 2022, doi:10.1371/journal.pone.0269975. short: N.B. Budanur, B. Hof, PLoS ONE 17 (2022). date_created: 2022-07-31T22:01:48Z date_published: 2022-07-18T00:00:00Z date_updated: 2023-08-03T12:24:22Z day: '18' ddc: - '510' department: - _id: BjHo doi: 10.1371/journal.pone.0269975 external_id: isi: - '000911392100055' file: - access_level: open_access checksum: 1ddd9b91e6dec31ab0e7a8433ca2d452 content_type: application/pdf creator: dernst date_created: 2022-08-01T08:02:38Z date_updated: 2022-08-01T08:02:38Z file_id: '11712' file_name: 2022_PLoSONE_Budanur.pdf file_size: 1421256 relation: main_file success: 1 file_date_updated: 2022-08-01T08:02:38Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: PLoS ONE publication_identifier: eissn: - 1932-6203 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: record: - id: '11711' relation: research_data status: public scopus_import: '1' status: public title: An autonomous compartmental model for accelerating epidemics tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2022' ...