TY - JOUR
AB - During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.
AU - Smutny, Michael
AU - Ákos, Zsuzsa
AU - Grigolon, Silvia
AU - Shamipour, Shayan
AU - Ruprecht, Verena
AU - Capek, Daniel
AU - Behrndt, Martin
AU - Papusheva, Ekaterina
AU - Tada, Masazumi
AU - Hof, Björn
AU - Vicsek, Tamás
AU - Salbreux, Guillaume
AU - Heisenberg, Carl-Philipp J
ID - 661
JF - Nature Cell Biology
SN - 14657392
TI - Friction forces position the neural anlage
VL - 19
ER -
TY - JOUR
AB - Turbulence is one of the most frequently encountered non-equilibrium phenomena in nature, yet characterizing the transition that gives rise to turbulence in basic shear flows has remained an elusive task. Although, in recent studies, critical points marking the onset of sustained turbulence have been determined for several such flows, the physical nature of the transition could not be fully explained. In extensive experimental and computational studies we show for the example of Couette flow that the onset of turbulence is a second-order phase transition and falls into the directed percolation universality class. Consequently, the complex laminar–turbulent patterns distinctive for the onset of turbulence in shear flows result from short-range interactions of turbulent domains and are characterized by universal critical exponents. More generally, our study demonstrates that even high-dimensional systems far from equilibrium such as turbulence exhibit universality at onset and that here the collective dynamics obeys simple rules.
AU - Lemoult, Grégoire M
AU - Shi, Liang
AU - Avila, Kerstin
AU - Jalikop, Shreyas V
AU - Avila, Marc
AU - Hof, Björn
ID - 1494
IS - 3
JF - Nature Physics
TI - Directed percolation phase transition to sustained turbulence in Couette flow
VL - 12
ER -
TY - JOUR
AB - It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control.
AU - Altmeyer, Sebastian
AU - Do, Younghae
AU - Lai, Ying
ID - 1804
JF - Scientific Reports
TI - Transition to turbulence in Taylor-Couette ferrofluidic flow
VL - 5
ER -
TY - JOUR
AB - Transition to turbulence in straight pipes occurs in spite of the linear stability of the laminar Hagen-Poiseuille flow if both the amplitude of flow perturbations and the Reynolds number Re exceed a minimum threshold (subcritical transition). As the pipe curvature increases, centrifugal effects become important, modifying the basic flow as well as the most unstable linear modes. If the curvature (tube-to-coiling diameter d/D) is sufficiently large, a Hopf bifurcation (supercritical instability) is encountered before turbulence can be excited (subcritical instability). We trace the instability thresholds in the Re - d/D parameter space in the range 0.01 ≤ d/D\ ≤ 0.1 by means of laser-Doppler velocimetry and determine the point where the subcritical and supercritical instabilities meet. Two different experimental set-ups are used: a closed system where the pipe forms an axisymmetric torus and an open system employing a helical pipe. Implications for the measurement of friction factors in curved pipes are discussed.
AU - Kühnen, Jakob
AU - Braunshier, P
AU - Schwegel, M
AU - Kuhlmann, Hendrik
AU - Hof, Björn
ID - 1837
IS - 5
JF - Journal of Fluid Mechanics
TI - Subcritical versus supercritical transition to turbulence in curved pipes
VL - 770
ER -
TY - JOUR
AB - We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under proper boundary conditions, we uncover the phenomenon of the early effect. Specifically, as a control parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances emerge at frequency values that are lower than those in the corresponding stationary system. The phenomenon is established by numerical characterization of physical quantities through the resonances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on the concept of instantaneous frequency. A simple formula is obtained which relates the resonance points in the time-dependent and time-independent systems. Our findings suggest that, in general, any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adiabatic parameter sweeping, in spite of a shift in the bifurcation point, which is of value to experimental studies of nonlinear dynamical systems.
AU - Park, Youngyong
AU - Do, Younghae
AU - Altmeyer, Sebastian
AU - Lai, Yingcheng
AU - Lee, Gyuwon
ID - 1868
IS - 2
JF - Physical Review E
SN - 1539-3755
TI - Early effect in time-dependent, high-dimensional nonlinear dynamical systems with multiple resonances
VL - 91
ER -