@article{6486, abstract = {Based on a novel control scheme, where a steady modification of the streamwise velocity profile leads to complete relaminarization of initially fully turbulent pipe flow, we investigate the applicability and usefulness of custom-shaped honeycombs for such control. The custom-shaped honeycombs are used as stationary flow management devices which generate specific modifications of the streamwise velocity profile. Stereoscopic particle image velocimetry and pressure drop measurements are used to investigate and capture the development of the relaminarizing flow downstream these devices. We compare the performance of straight (constant length across the radius of the pipe) honeycombs with custom-shaped ones (variable length across the radius) and try to determine the optimal shape for maximal relaminarization at minimal pressure loss. The optimally modified streamwise velocity profile is found to be M-shaped, and the maximum attainable Reynolds number for total relaminarization is found to be of the order of 10,000. Consequently, the respective reduction in skin friction downstream of the device is almost by a factor of 5. The break-even point, where the additional pressure drop caused by the device is balanced by the savings due to relaminarization and a net gain is obtained, corresponds to a downstream stretch of distances as low as approximately 100 pipe diameters of laminar flow.}, author = {Kühnen, Jakob and Scarselli, Davide and Hof, Björn}, issn = {1528901X}, journal = {Journal of Fluids Engineering}, number = {11}, publisher = {ASME}, title = {{Relaminarization of pipe flow by means of 3D-printed shaped honeycombs}}, doi = {10.1115/1.4043494}, volume = {141}, year = {2019}, } @article{6228, abstract = {Following the recent observation that turbulent pipe flow can be relaminarised bya relatively simple modification of the mean velocity profile, we here carry out aquantitative experimental investigation of this phenomenon. Our study confirms thata flat velocity profile leads to a collapse of turbulence and in order to achieve theblunted profile shape, we employ a moving pipe segment that is briefly and rapidlyshifted in the streamwise direction. The relaminarisation threshold and the minimumshift length and speeds are determined as a function of Reynolds number. Althoughturbulence is still active after the acceleration phase, the modulated profile possessesa severely decreased lift-up potential as measured by transient growth. As shown,this results in an exponential decay of fluctuations and the flow relaminarises. Whilethis method can be easily applied at low to moderate flow speeds, the minimumstreamwise length over which the acceleration needs to act increases linearly with theReynolds number.}, author = {Scarselli, Davide and Kühnen, Jakob and Hof, Björn}, issn = {14697645}, journal = {Journal of Fluid Mechanics}, pages = {934--948}, publisher = {Cambridge University Press}, title = {{Relaminarising pipe flow by wall movement}}, doi = {10.1017/jfm.2019.191}, volume = {867}, year = {2019}, } @article{6508, abstract = {Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation.}, author = {Shamipour, Shayan and Kardos, Roland and Xue, Shi-lei and Hof, Björn and Hannezo, Edouard B and Heisenberg, Carl-Philipp J}, issn = {10974172}, journal = {Cell}, number = {6}, pages = {1463--1479.e18}, publisher = {Elsevier}, title = {{Bulk actin dynamics drive phase segregation in zebrafish oocytes}}, doi = {10.1016/j.cell.2019.04.030}, volume = {177}, year = {2019}, } @article{7001, author = {Schwayer, Cornelia and Shamipour, Shayan and Pranjic-Ferscha, Kornelija and Schauer, Alexandra and Balda, M and Tada, M and Matter, K and Heisenberg, Carl-Philipp J}, issn = {1097-4172}, journal = {Cell}, number = {4}, pages = {937--952.e18}, publisher = {Cell Press}, title = {{Mechanosensation of tight junctions depends on ZO-1 phase separation and flow}}, doi = {10.1016/j.cell.2019.10.006}, volume = {179}, year = {2019}, } @article{6189, abstract = {Suspended particles can alter the properties of fluids and in particular also affect the transition fromlaminar to turbulent flow. An earlier study [Mataset al.,Phys. Rev. Lett.90, 014501 (2003)] reported howthe subcritical (i.e., hysteretic) transition to turbulent puffs is affected by the addition of particles. Here weshow that in addition to this known transition, with increasing concentration a supercritical (i.e.,continuous) transition to a globally fluctuating state is found. At the same time the Newtonian-typetransition to puffs is delayed to larger Reynolds numbers. At even higher concentration only the globallyfluctuating state is found. The dynamics of particle laden flows are hence determined by two competinginstabilities that give rise to three flow regimes: Newtonian-type turbulence at low, a particle inducedglobally fluctuating state at high, and a coexistence state at intermediate concentrations.}, author = {Agrawal, Nishchal and Choueiri, George H and Hof, Björn}, issn = {10797114}, journal = {Physical Review Letters}, number = {11}, publisher = {American Physical Society}, title = {{Transition to turbulence in particle laden flows}}, doi = {10.1103/PhysRevLett.122.114502}, volume = {122}, year = {2019}, } @article{291, abstract = {Over the past decade, the edge of chaos has proven to be a fruitful starting point for investigations of shear flows when the laminar base flow is linearly stable. Numerous computational studies of shear flows demonstrated the existence of states that separate laminar and turbulent regions of the state space. In addition, some studies determined invariant solutions that reside on this edge. In this paper, we study the unstable manifold of one such solution with the aid of continuous symmetry reduction, which we formulate here for the simultaneous quotiening of axial and azimuthal symmetries. Upon our investigation of the unstable manifold, we discover a previously unknown traveling-wave solution on the laminar-turbulent boundary with a relatively complex structure. By means of low-dimensional projections, we visualize different dynamical paths that connect these solutions to the turbulence. Our numerical experiments demonstrate that the laminar-turbulent boundary exhibits qualitatively different regions whose properties are influenced by the nearby invariant solutions.}, author = {Budanur, Nazmi B and Hof, Björn}, journal = {Physical Review Fluids}, number = {5}, publisher = {American Physical Society}, title = {{Complexity of the laminar-turbulent boundary in pipe flow}}, doi = {10.1103/PhysRevFluids.3.054401}, volume = {3}, year = {2018}, } @article{17, abstract = {Creeping flow of polymeric fluid without inertia exhibits elastic instabilities and elastic turbulence accompanied by drag enhancement due to elastic stress produced by flow-stretched polymers. However, in inertia-dominated flow at high Re and low fluid elasticity El, a reduction in turbulent frictional drag is caused by an intricate competition between inertial and elastic stresses. Here we explore the effect of inertia on the stability of viscoelastic flow in a broad range of control parameters El and (Re,Wi). We present the stability diagram of observed flow regimes in Wi-Re coordinates and find that the instabilities' onsets show an unexpectedly nonmonotonic dependence on El. Further, three distinct regions in the diagram are identified based on El. Strikingly, for high-elasticity fluids we discover a complete relaminarization of flow at Reynolds number in the range of 1 to 10, different from a well-known turbulent drag reduction. These counterintuitive effects may be explained by a finite polymer extensibility and a suppression of vorticity at high Wi. Our results call for further theoretical and numerical development to uncover the role of inertial effect on elastic turbulence in a viscoelastic flow.}, author = {Varshney, Atul and Steinberg, Victor}, journal = {Physical Review Fluids}, number = {10}, publisher = {American Physical Society}, title = {{Drag enhancement and drag reduction in viscoelastic flow}}, doi = {10.1103/PhysRevFluids.3.103302}, volume = {3}, year = {2018}, } @article{16, abstract = {We report quantitative evidence of mixing-layer elastic instability in a viscoelastic fluid flow between two widely spaced obstacles hindering a channel flow at Re 1 and Wi 1. Two mixing layers with nonuniform shear velocity profiles are formed in the region between the obstacles. The mixing-layer instability arises in the vicinity of an inflection point on the shear velocity profile with a steep variation in the elastic stress. The instability results in an intermittent appearance of small vortices in the mixing layers and an amplification of spatiotemporal averaged vorticity in the elastic turbulence regime. The latter is characterized through scaling of friction factor with Wi and both pressure and velocity spectra. Furthermore, the observations reported provide improved understanding of the stability of the mixing layer in a viscoelastic fluid at large elasticity, i.e., Wi 1 and Re 1 and oppose the current view of suppression of vorticity solely by polymer additives.}, author = {Varshney, Atul and Steinberg, Victor}, journal = {Physical Review Fluids}, number = {10}, publisher = {American Physical Society}, title = {{Mixing layer instability and vorticity amplification in a creeping viscoelastic flow}}, doi = {10.1103/PhysRevFluids.3.103303}, volume = {3}, year = {2018}, } @article{519, abstract = {This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow – flow confined between two concentric independently rotating cylinders. We detected alternating ‘flip’ solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion. }, author = {Altmeyer, Sebastian}, journal = {Journal of Magnetism and Magnetic Materials}, pages = {427 -- 441}, publisher = {Elsevier}, title = {{Non-linear dynamics and alternating ‘flip’ solutions in ferrofluidic Taylor-Couette flow}}, doi = {10.1016/j.jmmm.2017.12.073}, volume = {452}, year = {2018}, } @article{5996, abstract = {In pipes, turbulence sets in despite the linear stability of the laminar Hagen–Poiseuille flow. The Reynolds number ( ) for which turbulence first appears in a given experiment – the ‘natural transition point’ – depends on imperfections of the set-up, or, more precisely, on the magnitude of finite amplitude perturbations. At onset, turbulence typically only occupies a certain fraction of the flow, and this fraction equally is found to differ from experiment to experiment. Despite these findings, Reynolds proposed that after sufficiently long times, flows may settle to steady conditions: below a critical velocity, flows should (regardless of initial conditions) always return to laminar, while above this velocity, eddying motion should persist. As will be shown, even in pipes several thousand diameters long, the spatio-temporal intermittent flow patterns observed at the end of the pipe strongly depend on the initial conditions, and there is no indication that different flow patterns would eventually settle to a (statistical) steady state. Exploiting the fact that turbulent puffs do not age (i.e. they are memoryless), we continuously recreate the puff sequence exiting the pipe at the pipe entrance, and in doing so introduce periodic boundary conditions for the puff pattern. This procedure allows us to study the evolution of the flow patterns for arbitrary long times, and we find that after times in excess of advective time units, indeed a statistical steady state is reached. Although the resulting flows remain spatio-temporally intermittent, puff splitting and decay rates eventually reach a balance, so that the turbulent fraction fluctuates around a well-defined level which only depends on . In accordance with Reynolds’ proposition, we find that at lower (here 2020), flows eventually always resume to laminar, while for higher ( ), turbulence persists. The critical point for pipe flow hence falls in the interval of $2020 , which is in very good agreement with the recently proposed value of . The latter estimate was based on single-puff statistics and entirely neglected puff interactions. Unlike in typical contact processes where such interactions strongly affect the percolation threshold, in pipe flow, the critical point is only marginally influenced. Interactions, on the other hand, are responsible for the approach to the statistical steady state. As shown, they strongly affect the resulting flow patterns, where they cause ‘puff clustering’, and these regions of large puff densities are observed to travel across the puff pattern in a wave-like fashion.}, author = {Vasudevan, Mukund and Hof, Björn}, issn = {1469-7645}, journal = {Journal of Fluid Mechanics}, pages = {76--94}, publisher = {Cambridge University Press}, title = {{The critical point of the transition to turbulence in pipe flow}}, doi = {10.1017/jfm.2017.923}, volume = {839}, year = {2018}, }