--- _id: '12837' abstract: - lang: eng text: As developing tissues grow in size and undergo morphogenetic changes, their material properties may be altered. Such changes result from tension dynamics at cell contacts or cellular jamming. Yet, in many cases, the cellular mechanisms controlling the physical state of growing tissues are unclear. We found that at early developmental stages, the epithelium in the developing mouse spinal cord maintains both high junctional tension and high fluidity. This is achieved via a mechanism in which interkinetic nuclear movements generate cell area dynamics that drive extensive cell rearrangements. Over time, the cell proliferation rate declines, effectively solidifying the tissue. Thus, unlike well-studied jamming transitions, the solidification uncovered here resembles a glass transition that depends on the dynamical stresses generated by proliferation and differentiation. Our finding that the fluidity of developing epithelia is linked to interkinetic nuclear movements and the dynamics of growth is likely to be relevant to multiple developing tissues. acknowledgement: 'We thank S. Hippenmeyer for the reagents and C. P. Heisenberg, J. Briscoe and K. Page for comments on the manuscript. This work was supported by IST Austria; the European Research Council under Horizon 2020 research and innovation programme grant no. 680037 and Horizon Europe grant 101044579 (A.K.); Austrian Science Fund (FWF): F78 (Stem Cell Modulation) (A.K.); ISTFELLOW postdoctoral program (A.S.); Narodowe Centrum Nauki, Poland SONATA, 2017/26/D/NZ2/00454 (M.Z.); and the Polish National Agency for Academic Exchange (M.Z.).' article_processing_charge: No article_type: original author: - first_name: Laura full_name: Bocanegra, Laura id: 4896F754-F248-11E8-B48F-1D18A9856A87 last_name: Bocanegra - first_name: Amrita full_name: Singh, Amrita id: 76250f9f-3a21-11eb-9a80-a6180a0d7958 last_name: Singh - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 2023;19:1050-1058. doi:10.1038/s41567-023-01977-w apa: Bocanegra, L., Singh, A., Hannezo, E. B., Zagórski, M. P., & Kicheva, A. (2023). Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-01977-w chicago: Bocanegra, Laura, Amrita Singh, Edouard B Hannezo, Marcin P Zagórski, and Anna Kicheva. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-01977-w. ieee: L. Bocanegra, A. Singh, E. B. Hannezo, M. P. Zagórski, and A. Kicheva, “Cell cycle dynamics control fluidity of the developing mouse neuroepithelium,” Nature Physics, vol. 19. Springer Nature, pp. 1050–1058, 2023. ista: Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. 2023. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 19, 1050–1058. mla: Bocanegra, Laura, et al. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1050–58, doi:10.1038/s41567-023-01977-w. short: L. Bocanegra, A. Singh, E.B. Hannezo, M.P. Zagórski, A. Kicheva, Nature Physics 19 (2023) 1050–1058. date_created: 2023-04-16T22:01:09Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-10-04T11:14:05Z day: '01' ddc: - '570' department: - _id: EdHa - _id: AnKi doi: 10.1038/s41567-023-01977-w ec_funded: 1 external_id: isi: - '000964029300003' file: - access_level: open_access checksum: 858225a4205b74406e5045006cdd853f content_type: application/pdf creator: dernst date_created: 2023-10-04T11:13:28Z date_updated: 2023-10-04T11:13:28Z file_id: '14392' file_name: 2023_NaturePhysics_Boncanegra.pdf file_size: 5532285 relation: main_file success: 1 file_date_updated: 2023-10-04T11:13:28Z has_accepted_license: '1' intvolume: ' 19' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '07' oa: 1 oa_version: Published Version page: 1050-1058 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: bd7e737f-d553-11ed-ba76-d69ffb5ee3aa grant_number: '101044579' name: Mechanisms of tissue size regulation in spinal cord development - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13081' relation: dissertation_contains status: public scopus_import: '1' status: public title: Cell cycle dynamics control fluidity of the developing mouse neuroepithelium tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '13081' abstract: - lang: eng text: During development, tissues undergo changes in size and shape to form functional organs. Distinct cellular processes such as cell division and cell rearrangements underlie tissue morphogenesis. Yet how the distinct processes are controlled and coordinated, and how they contribute to morphogenesis is poorly understood. In our study, we addressed these questions using the developing mouse neural tube. This epithelial organ transforms from a flat epithelial sheet to an epithelial tube while increasing in size and undergoing morpho-gen-mediated patterning. The extent and mechanism of neural progenitor rearrangement within the developing mouse neuroepithelium is unknown. To investigate this, we per-formed high resolution lineage tracing analysis to quantify the extent of epithelial rear-rangement at different stages of neural tube development. We quantitatively described the relationship between apical cell size with cell cycle dependent interkinetic nuclear migra-tions (IKNM) and performed high cellular resolution live imaging of the neuroepithelium to study the dynamics of junctional remodeling. Furthermore, developed a vertex model of the neuroepithelium to investigate the quantitative contribution of cell proliferation, cell differentiation and mechanical properties to the epithelial rearrangement dynamics and validated the model predictions through functional experiments. Our analysis revealed that at early developmental stages, the apical cell area kinetics driven by IKNM induce high lev-els of cell rearrangements in a regime of high junctional tension and contractility. After E9.5, there is a sharp decline in the extent of cell rearrangements, suggesting that the epi-thelium transitions from a fluid-like to a solid-like state. We found that this transition is regulated by the growth rate of the tissue, rather than by changes in cell-cell adhesion and contractile forces. Overall, our study provides a quantitative description of the relationship between tissue growth, cell cycle dynamics, epithelia rearrangements and the emergent tissue material properties, and novel insights on how epithelial cell dynamics influences tissue morphogenesis. acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Laura full_name: Bocanegra, Laura id: 4896F754-F248-11E8-B48F-1D18A9856A87 last_name: Bocanegra citation: ama: Bocanegra L. Epithelial dynamics during mouse neural tube development. 2023. doi:10.15479/at:ista:13081 apa: Bocanegra, L. (2023). Epithelial dynamics during mouse neural tube development. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:13081 chicago: Bocanegra, Laura. “Epithelial Dynamics during Mouse Neural Tube Development.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:13081. ieee: L. Bocanegra, “Epithelial dynamics during mouse neural tube development,” Institute of Science and Technology Austria, 2023. ista: Bocanegra L. 2023. Epithelial dynamics during mouse neural tube development. Institute of Science and Technology Austria. mla: Bocanegra, Laura. Epithelial Dynamics during Mouse Neural Tube Development. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:13081. short: L. Bocanegra, Epithelial Dynamics during Mouse Neural Tube Development, Institute of Science and Technology Austria, 2023. date_created: 2023-05-23T19:10:42Z date_published: 2023-05-23T00:00:00Z date_updated: 2023-10-04T11:14:04Z day: '23' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: AnKi doi: 10.15479/at:ista:13081 file: - access_level: closed checksum: 74f3f89e59a0189bee53ebfad9c1b9af content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lbocaneg date_created: 2023-05-25T06:32:12Z date_updated: 2023-05-25T06:32:12Z file_id: '13089' file_name: Thesis_final_LauraBocanegra.docx file_size: 25615534 relation: source_file - access_level: closed checksum: c6cdef6323eacfb4b7a8af20f32eae97 content_type: application/pdf creator: lbocaneg date_created: 2023-05-25T06:32:16Z date_updated: 2023-05-25T06:32:16Z embargo: 2024-05-31 embargo_to: open_access file_id: '13090' file_name: TotalFinal_Thesis_LauraBocanegraArx.pdf file_size: 12386046 relation: main_file file_date_updated: 2023-05-25T06:32:16Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '05' oa_version: Published Version page: '93' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9349' relation: part_of_dissertation status: public - id: '12837' relation: part_of_dissertation status: public status: public supervisor: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 title: Epithelial dynamics during mouse neural tube development tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14484' abstract: - lang: eng text: Intercellular signaling molecules, known as morphogens, act at a long range in developing tissues to provide spatial information and control properties such as cell fate and tissue growth. The production, transport, and removal of morphogens shape their concentration profiles in time and space. Downstream signaling cascades and gene regulatory networks within cells then convert the spatiotemporal morphogen profiles into distinct cellular responses. Current challenges are to understand the diverse molecular and cellular mechanisms underlying morphogen gradient formation, as well as the logic of downstream regulatory circuits involved in morphogen interpretation. This knowledge, combining experimental and theoretical results, is essential to understand emerging properties of morphogen-controlled systems, such as robustness and scaling. acknowledgement: We are grateful to Zena Hadjivasiliou for comments on this article. A.K. is supported by grants from the European Research Council under the European Union (EU) Horizon 2020 research and innovation program (680037) and Horizon Europe (101044579), and the Austrian Science Fund (F78) (Stem Cell Modulation). J.B. is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (CC001051), the UK Medical Research Council (CC001051), and the Wellcome Trust (CC001051), and by a grant from the European Research Council under the EU Horizon 2020 research and innovation program (742138). article_processing_charge: Yes (in subscription journal) article_type: review author: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: James full_name: Briscoe, James last_name: Briscoe citation: ama: Kicheva A, Briscoe J. Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology. 2023;39:91-121. doi:10.1146/annurev-cellbio-020823-011522 apa: Kicheva, A., & Briscoe, J. (2023). Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology. Annual Reviews. https://doi.org/10.1146/annurev-cellbio-020823-011522 chicago: Kicheva, Anna, and James Briscoe. “Control of Tissue Development by Morphogens.” Annual Review of Cell and Developmental Biology. Annual Reviews, 2023. https://doi.org/10.1146/annurev-cellbio-020823-011522. ieee: A. Kicheva and J. Briscoe, “Control of tissue development by morphogens,” Annual Review of Cell and Developmental Biology, vol. 39. Annual Reviews, pp. 91–121, 2023. ista: Kicheva A, Briscoe J. 2023. Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology. 39, 91–121. mla: Kicheva, Anna, and James Briscoe. “Control of Tissue Development by Morphogens.” Annual Review of Cell and Developmental Biology, vol. 39, Annual Reviews, 2023, pp. 91–121, doi:10.1146/annurev-cellbio-020823-011522. short: A. Kicheva, J. Briscoe, Annual Review of Cell and Developmental Biology 39 (2023) 91–121. date_created: 2023-11-05T23:00:53Z date_published: 2023-10-16T00:00:00Z date_updated: 2023-11-06T09:56:24Z day: '16' ddc: - '570' department: - _id: AnKi doi: 10.1146/annurev-cellbio-020823-011522 ec_funded: 1 external_id: pmid: - '37418774' file: - access_level: open_access checksum: 461726014cf5907010afbd418d3c13ec content_type: application/pdf creator: dernst date_created: 2023-11-06T09:47:50Z date_updated: 2023-11-06T09:47:50Z file_id: '14491' file_name: 2023_AnnualReviews_Kicheva.pdf file_size: 434819 relation: main_file success: 1 file_date_updated: 2023-11-06T09:47:50Z has_accepted_license: '1' intvolume: ' 39' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 91-121 pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: bd7e737f-d553-11ed-ba76-d69ffb5ee3aa grant_number: '101044579' name: Mechanisms of tissue size regulation in spinal cord development - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord publication: Annual Review of Cell and Developmental Biology publication_identifier: eissn: - 1530-8995 issn: - 1081-0706 publication_status: published publisher: Annual Reviews quality_controlled: '1' scopus_import: '1' status: public title: Control of tissue development by morphogens tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2023' ... --- _id: '14774' abstract: - lang: eng text: Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential. acknowledgement: "We thank members of the Brand lab, as well as Justina Stark (Ivo Sbalzarini group, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany) for project-related discussions; Darren Gilmour (University of Zurich), Karuna Sampath (University of Warwick) and Gokul Kesavan (Vowels Lifesciences Private Limited, Bangalore) for comments on the manuscript; personnel of the CMCB technology platform, TU Dresden for imaging and image analysis-related support; and Maurizio Abbate (Technical support, Arivis) for help with image analysis. We are also grateful to Stapornwongkul and Briscoe for commenting on a preprint version of our work (Stapornwongkul and Briscoe, 2022).\r\nThis work was supported by the Deutsche Forschungsgemeinschaft (BR 1746/6-2, BR 1746/11-1 and BR 1746/3 to M.B.), by a Cluster of Excellence ‘Physics of Life’ seed grant and by institutional funds from Technische Universitat Dresden (to M.B.). Open Access funding provided by Technische Universitat Dresden. Deposited in PMC for immediate release." article_number: dev201559 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Rohit K full_name: Harish, Rohit K id: 1bae78aa-ee0e-11ec-9b76-bc42990f409d last_name: Harish - first_name: Mansi full_name: Gupta, Mansi last_name: Gupta - first_name: Daniela full_name: Zöller, Daniela last_name: Zöller - first_name: Hella full_name: Hartmann, Hella last_name: Hartmann - first_name: Ali full_name: Gheisari, Ali last_name: Gheisari - first_name: Anja full_name: Machate, Anja last_name: Machate - first_name: Stefan full_name: Hans, Stefan last_name: Hans - first_name: Michael full_name: Brand, Michael last_name: Brand citation: ama: Harish RK, Gupta M, Zöller D, et al. Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development. 2023;150(19). doi:10.1242/dev.201559 apa: Harish, R. K., Gupta, M., Zöller, D., Hartmann, H., Gheisari, A., Machate, A., … Brand, M. (2023). Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development. The Company of Biologists. https://doi.org/10.1242/dev.201559 chicago: Harish, Rohit K, Mansi Gupta, Daniela Zöller, Hella Hartmann, Ali Gheisari, Anja Machate, Stefan Hans, and Michael Brand. “Real-Time Monitoring of an Endogenous Fgf8a Gradient Attests to Its Role as a Morphogen during Zebrafish Gastrulation.” Development. The Company of Biologists, 2023. https://doi.org/10.1242/dev.201559. ieee: R. K. Harish et al., “Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation,” Development, vol. 150, no. 19. The Company of Biologists, 2023. ista: Harish RK, Gupta M, Zöller D, Hartmann H, Gheisari A, Machate A, Hans S, Brand M. 2023. Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development. 150(19), dev201559. mla: Harish, Rohit K., et al. “Real-Time Monitoring of an Endogenous Fgf8a Gradient Attests to Its Role as a Morphogen during Zebrafish Gastrulation.” Development, vol. 150, no. 19, dev201559, The Company of Biologists, 2023, doi:10.1242/dev.201559. short: R.K. Harish, M. Gupta, D. Zöller, H. Hartmann, A. Gheisari, A. Machate, S. Hans, M. Brand, Development 150 (2023). date_created: 2024-01-10T09:18:54Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-10T12:45:25Z day: '01' ddc: - '570' department: - _id: AnKi doi: 10.1242/dev.201559 external_id: isi: - '001097449100002' pmid: - '37665167' file: - access_level: open_access checksum: 2d6f52dc33260a9b2352b8f28374ba5f content_type: application/pdf creator: dernst date_created: 2024-01-10T12:41:13Z date_updated: 2024-01-10T12:41:13Z file_id: '14790' file_name: 2023_Development_Harish.pdf file_size: 12836306 relation: main_file success: 1 file_date_updated: 2024-01-10T12:41:13Z has_accepted_license: '1' intvolume: ' 150' isi: 1 issue: '19' keyword: - Developmental Biology - Molecular Biology language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' status: public title: Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 150 year: '2023' ... --- _id: '13136' abstract: - lang: eng text: Despite its fundamental importance for development, the question of how organs achieve their correct size and shape is poorly understood. This complex process requires coordination between the generation of cell mass and the morphogenetic mechanisms that sculpt tissues. These processes are regulated by morphogen signalling pathways and mechanical forces. Yet, in many systems, it is unclear how biochemical and mechanical signalling are quantitatively interpreted to determine the behaviours of individual cells and how they contribute to growth and morphogenesis at the tissue scale. In this review, we discuss the development of the vertebrate neural tube and somites as an example of the state of knowledge, as well as the challenges in understanding the mechanisms of tissue size control in vertebrate organogenesis. We highlight how the recent advances in stem cell differentiation and organoid approaches can be harnessed to provide new insights into this question. acknowledgement: 'We thank J. Briscoe for comments on the manuscript. Work in the AK lab is supported by ISTA, the European Research Council under Horizon Europe: grant 101044579, and Austrian Science Fund (FWF): F78 (Stem Cell Modulation). SR is supported by Gesellschaft für Forschungsförderung Niederösterreich m.b.H. fellowship SC19-011.' article_number: '100459' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Thomas full_name: Minchington, Thomas id: 7d1648cb-19e9-11eb-8e7a-f8c037fb3e3f last_name: Minchington - first_name: Stefanie full_name: Rus, Stefanie id: 4D9EC9B6-F248-11E8-B48F-1D18A9856A87 last_name: Rus orcid: 0000-0001-8703-1093 - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: Minchington T, Rus S, Kicheva A. Control of tissue dimensions in the developing neural tube and somites. Current Opinion in Systems Biology. 2023;35. doi:10.1016/j.coisb.2023.100459 apa: Minchington, T., Rus, S., & Kicheva, A. (2023). Control of tissue dimensions in the developing neural tube and somites. Current Opinion in Systems Biology. Elsevier. https://doi.org/10.1016/j.coisb.2023.100459 chicago: Minchington, Thomas, Stefanie Rus, and Anna Kicheva. “Control of Tissue Dimensions in the Developing Neural Tube and Somites.” Current Opinion in Systems Biology. Elsevier, 2023. https://doi.org/10.1016/j.coisb.2023.100459. ieee: T. Minchington, S. Rus, and A. Kicheva, “Control of tissue dimensions in the developing neural tube and somites,” Current Opinion in Systems Biology, vol. 35. Elsevier, 2023. ista: Minchington T, Rus S, Kicheva A. 2023. Control of tissue dimensions in the developing neural tube and somites. Current Opinion in Systems Biology. 35, 100459. mla: Minchington, Thomas, et al. “Control of Tissue Dimensions in the Developing Neural Tube and Somites.” Current Opinion in Systems Biology, vol. 35, 100459, Elsevier, 2023, doi:10.1016/j.coisb.2023.100459. short: T. Minchington, S. Rus, A. Kicheva, Current Opinion in Systems Biology 35 (2023). date_created: 2023-06-18T22:00:46Z date_published: 2023-09-01T00:00:00Z date_updated: 2024-01-29T11:07:47Z day: '01' ddc: - '570' department: - _id: AnKi doi: 10.1016/j.coisb.2023.100459 file: - access_level: open_access checksum: 8a75c4e29fd9b62e3c50663c2265b173 content_type: application/pdf creator: dernst date_created: 2024-01-29T11:06:45Z date_updated: 2024-01-29T11:06:45Z file_id: '14896' file_name: 2023_CurrOpSystBioloy_Minchington.pdf file_size: 598842 relation: main_file success: 1 file_date_updated: 2024-01-29T11:06:45Z has_accepted_license: '1' intvolume: ' 35' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: bd7e737f-d553-11ed-ba76-d69ffb5ee3aa grant_number: '101044579' name: Mechanisms of tissue size regulation in spinal cord development - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord - _id: 9B9B39FA-BA93-11EA-9121-9846C619BF3A grant_number: SC19-011 name: The regulatory logic of pattern formation in the vertebrate dorsal neural tube publication: Current Opinion in Systems Biology publication_identifier: eissn: - 2452-3100 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Control of tissue dimensions in the developing neural tube and somites tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2023' ... --- _id: '14323' abstract: - lang: eng text: Morphogens are signaling molecules that are known for their prominent role in pattern formation within developing tissues. In addition to patterning, morphogens also control tissue growth. However, the underlying mechanisms are poorly understood. We studied the role of morphogens in regulating tissue growth in the developing vertebrate neural tube. In this system, opposing morphogen gradients of Shh and BMP establish the dorsoventral pattern of neural progenitor domains. Perturbations in these morphogen pathways result in alterations in tissue growth and cell cycle progression, however, it has been unclear what cellular process is affected. To address this, we analysed the rates of cell proliferation and cell death in mouse mutants in which signaling is perturbed, as well as in chick neural plate explants exposed to defined concentrations of signaling activators or inhibitors. Our results indicated that the rate of cell proliferation was not altered in these assays. By contrast, both the Shh and BMP signaling pathways had profound effects on neural progenitor survival. Our results indicate that these pathways synergise to promote cell survival within neural progenitors. Consistent with this, we found that progenitors within the intermediate region of the neural tube, where the combined levels of Shh and BMP are the lowest, are most prone to cell death when signaling activity is inhibited. In addition, we found that downregulation of Shh results in increased apoptosis within the roof plate, which is the dorsal source of BMP ligand production. This revealed a cross-interaction between the Shh and BMP morphogen signaling pathways that may be relevant for understanding how gradients scale in neural tubes with different overall sizes. We further studied the mechanism acting downstream of Shh in cell survival regulation using genetic and genomic approaches. We propose that Shh transcriptionally regulates a non-canonical apoptotic pathway. Altogether, our study points to a novel role of opposing morphogen gradients in tissue size regulation and provides new insights into complex interactions between Shh and BMP signaling gradients in the neural tube. acknowledged_ssus: - _id: Bio - _id: PreCl alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Katarzyna full_name: Kuzmicz-Kowalska, Katarzyna id: 4CED352A-F248-11E8-B48F-1D18A9856A87 last_name: Kuzmicz-Kowalska citation: ama: Kuzmicz-Kowalska K. Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord. 2023. doi:10.15479/at:ista:14323 apa: Kuzmicz-Kowalska, K. (2023). Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14323 chicago: Kuzmicz-Kowalska, Katarzyna. “Regulation of Neural Progenitor Survival by Shh and BMP in the Developing Spinal Cord.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14323. ieee: K. Kuzmicz-Kowalska, “Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord,” Institute of Science and Technology Austria, 2023. ista: Kuzmicz-Kowalska K. 2023. Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord. Institute of Science and Technology Austria. mla: Kuzmicz-Kowalska, Katarzyna. Regulation of Neural Progenitor Survival by Shh and BMP in the Developing Spinal Cord. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14323. short: K. Kuzmicz-Kowalska, Regulation of Neural Progenitor Survival by Shh and BMP in the Developing Spinal Cord, Institute of Science and Technology Austria, 2023. date_created: 2023-09-13T10:07:18Z date_published: 2023-09-13T00:00:00Z date_updated: 2024-03-07T15:02:59Z day: '13' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: AnKi doi: 10.15479/at:ista:14323 file: - access_level: closed checksum: bd83596869c814b24aeff7077d031c0e content_type: application/pdf creator: kkuzmicz date_created: 2023-09-13T09:52:52Z date_updated: 2023-09-13T10:08:25Z embargo: 2025-03-13 embargo_to: open_access file_id: '14324' file_name: PhDThesis_KK_final_pdfA.pdf file_size: 10147911 relation: main_file - access_level: closed checksum: aa2757ae4c3478041fd7e62c587d3e4d content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: kkuzmicz date_created: 2023-09-13T09:53:29Z date_updated: 2023-09-13T09:53:29Z file_id: '14325' file_name: thesis_KK_final_corrections_092023.docx file_size: 103980668 relation: source_file file_date_updated: 2023-09-13T10:08:25Z has_accepted_license: '1' language: - iso: eng month: '09' oa_version: Published Version page: '151' project: - _id: 267AF0E4-B435-11E9-9278-68D0E5697425 name: The role of morphogens in the regulation of neural tube growth publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7883' relation: part_of_dissertation status: public status: public supervisor: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 title: Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12245' abstract: - lang: eng text: MicroRNAs (miRs) have an important role in tuning dynamic gene expression. However, the mechanism by which they are quantitatively controlled is unknown. We show that the amount of mature miR-9, a key regulator of neuronal development, increases during zebrafish neurogenesis in a sharp stepwise manner. We characterize the spatiotemporal profile of seven distinct microRNA primary transcripts (pri-mir)-9s that produce the same mature miR-9 and show that they are sequentially expressed during hindbrain neurogenesis. Expression of late-onset pri-mir-9-1 is added on to, rather than replacing, the expression of early onset pri-mir-9-4 and -9-5 in single cells. CRISPR/Cas9 mutation of the late-onset pri-mir-9-1 prevents the developmental increase of mature miR-9, reduces late neuronal differentiation and fails to downregulate Her6 at late stages. Mathematical modelling shows that an adaptive network containing Her6 is insensitive to linear increases in miR-9 but responds to stepwise increases of miR-9. We suggest that a sharp stepwise increase of mature miR-9 is created by sequential and additive temporal activation of distinct loci. This may be a strategy to overcome adaptation and facilitate a transition of Her6 to a new dynamic regime or steady state. acknowledgement: "We are grateful to Dr Tom Pettini for the advice on smiFISH technique and Dr Laure Bally-Cuif for sharing plasmids. The authors also thank the Biological Services Facility, Bioimaging and Systems Microscopy Facilities of the University of Manchester for technical support.\r\nThis work was supported by a Wellcome Trust Senior Research Fellowship (090868/Z/09/Z) and a Wellcome Trust Investigator Award (224394/Z/21/Z) to N.P. and a Medical Research Council Career Development Award to C.S.M. (MR/V032534/1). J.B. was supported by a Wellcome Trust Four-Year PhD Studentship in Basic Science (219992/Z/19/Z). Open Access funding provided by The University of Manchester. Deposited in PMC for immediate release." article_number: dev200474 article_processing_charge: No article_type: original author: - first_name: Ximena full_name: Soto, Ximena last_name: Soto - first_name: Joshua full_name: Burton, Joshua last_name: Burton - first_name: Cerys S. full_name: Manning, Cerys S. last_name: Manning - first_name: Thomas full_name: Minchington, Thomas id: 7d1648cb-19e9-11eb-8e7a-f8c037fb3e3f last_name: Minchington - first_name: Robert full_name: Lea, Robert last_name: Lea - first_name: Jessica full_name: Lee, Jessica last_name: Lee - first_name: Jochen full_name: Kursawe, Jochen last_name: Kursawe - first_name: Magnus full_name: Rattray, Magnus last_name: Rattray - first_name: Nancy full_name: Papalopulu, Nancy last_name: Papalopulu citation: ama: Soto X, Burton J, Manning CS, et al. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. 2022;149(19). doi:10.1242/dev.200474 apa: Soto, X., Burton, J., Manning, C. S., Minchington, T., Lea, R., Lee, J., … Papalopulu, N. (2022). Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. The Company of Biologists. https://doi.org/10.1242/dev.200474 chicago: Soto, Ximena, Joshua Burton, Cerys S. Manning, Thomas Minchington, Robert Lea, Jessica Lee, Jochen Kursawe, Magnus Rattray, and Nancy Papalopulu. “Sequential and Additive Expression of MiR-9 Precursors Control Timing of Neurogenesis.” Development. The Company of Biologists, 2022. https://doi.org/10.1242/dev.200474. ieee: X. Soto et al., “Sequential and additive expression of miR-9 precursors control timing of neurogenesis,” Development, vol. 149, no. 19. The Company of Biologists, 2022. ista: Soto X, Burton J, Manning CS, Minchington T, Lea R, Lee J, Kursawe J, Rattray M, Papalopulu N. 2022. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. 149(19), dev200474. mla: Soto, Ximena, et al. “Sequential and Additive Expression of MiR-9 Precursors Control Timing of Neurogenesis.” Development, vol. 149, no. 19, dev200474, The Company of Biologists, 2022, doi:10.1242/dev.200474. short: X. Soto, J. Burton, C.S. Manning, T. Minchington, R. Lea, J. Lee, J. Kursawe, M. Rattray, N. Papalopulu, Development 149 (2022). date_created: 2023-01-16T09:53:17Z date_published: 2022-10-01T00:00:00Z date_updated: 2023-08-04T09:41:08Z day: '01' ddc: - '570' department: - _id: AnKi doi: 10.1242/dev.200474 external_id: isi: - '000918161000003' pmid: - '36189829' file: - access_level: open_access checksum: d7c29b74e9e4032308228cc704a30e88 content_type: application/pdf creator: dernst date_created: 2023-01-30T08:35:44Z date_updated: 2023-01-30T08:35:44Z file_id: '12438' file_name: 2022_Development_Soto.pdf file_size: 9348839 relation: main_file success: 1 file_date_updated: 2023-01-30T08:35:44Z has_accepted_license: '1' intvolume: ' 149' isi: 1 issue: '19' keyword: - Developmental Biology - Molecular Biology language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' related_material: link: - relation: software url: ' https://github.com/burtonjosh/StepwiseMir9' scopus_import: '1' status: public title: Sequential and additive expression of miR-9 precursors control timing of neurogenesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 149 year: '2022' ... --- _id: '9349' abstract: - lang: eng text: 'The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics: from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.' acknowledgement: The AK group is supported by IST Austria and by the ERC under European Union Horizon 2020 research and innovation programme Grant 680037. Apologies to those whose work could not be mentioned due to limited space. We thank all my lab members, both past and present, for stimulating discussion. This work was funded by a Singapore Ministry of Education Tier 3 Grant, MOE2016-T3-1-005. We thank Francis Corson for continuous discussion and collaboration contributing to these views and for figure 4(A). PC is sponsored by the Institut Pasteur and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665807. Research in JG's laboratory is funded by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 337635, Institut Pasteur, CNRS, Cercle FSER, Fondation pour la Recherche Medicale, the Vallee Foundation and the ANR-19-CE-13-0024 Grant. We thank Erez Braun and Alex Mogilner for comments on the manuscript and Niv Ierushalmi for help with figure 5. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. ERC-2018-COG Grant 819174-HydraMechanics awarded to KK. EH thanks all lab members, as well as Pierre Recho, Tsuyoshi Hirashima, Diana Pinheiro and Carl-Philip Heisenberg, for fruitful discussions on these topics—and apologize for not being able to cite many very relevant publications due to the strict 10-reference limit. EH acknowledges the support of Austrian Science Fund (FWF) (P 31639) and the European Research Council under the European Union's Horizon 2020 Research and Innovation Programme Grant Agreements (851288). The authors acknowledge the inspiring scientists whose work could not be cited in this perspective due to space constraints; the members of the Gartner Lab for helpful discussions; the Barbara and Gerson Bakar Foundation, the Chan Zuckerberg Biohub Investigators Programme, the National Institute of Health, and the Centre for Cellular Construction, an NSF Science and Technology Centre. The Minc laboratory is currently funded by the CNRS and the European Research Council (CoG Forcaster No. 647073). Research in the lab of J-LM is supported by the Institut Curie, the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé Et de la Recherche Médicale (INSERM), and is funded by grants from the ATIP-Avenir programme, the Fondation Schlumberger pour l'Éducation et la Recherche via the Fondation pour la Recherche Médicale, the European Research Council Starting Grant ERC-2017-StG 757557, the European Molecular Biology Organization Young Investigator programme (EMBO YIP), the INSERM transversal programme Human Development Cell Atlas (HuDeCA), Paris Sciences Lettres (PSL) 'nouvelle équipe' and QLife (17-CONV-0005) grants and Labex DEEP (ANR-11-LABX-0044) which are part of the IDEX PSL (ANR-10-IDEX-0001-02). We acknowledge useful discussions with Massimo Vergassola, Sebastian Streichan and my lab members. Work in my laboratory on Drosophila embryogenesis is partly supported by NIH-R01GM122936. The authors acknowledge the support by a grant from the European Research Council (Grant No. 682161). Lenne group is funded by a grant from the 'Investissements d'Avenir' French Government programme managed by the French National Research Agency (ANR-16-CONV-0001) and by the Excellence Initiative of Aix-Marseille University—A*MIDEX, and ANR projects MechaResp (ANR-17-CE13-0032) and AdGastrulo (ANR-19-CE13-0022). article_number: '041501' article_processing_charge: No article_type: original author: - first_name: Pierre François full_name: Lenne, Pierre François last_name: Lenne - first_name: Edwin full_name: Munro, Edwin last_name: Munro - first_name: Idse full_name: Heemskerk, Idse last_name: Heemskerk - first_name: Aryeh full_name: Warmflash, Aryeh last_name: Warmflash - first_name: Laura full_name: Bocanegra, Laura id: 4896F754-F248-11E8-B48F-1D18A9856A87 last_name: Bocanegra - first_name: Kasumi full_name: Kishi, Kasumi id: 3065DFC4-F248-11E8-B48F-1D18A9856A87 last_name: Kishi - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: Yuchen full_name: Long, Yuchen last_name: Long - first_name: Antoine full_name: Fruleux, Antoine last_name: Fruleux - first_name: Arezki full_name: Boudaoud, Arezki last_name: Boudaoud - first_name: Timothy E. full_name: Saunders, Timothy E. last_name: Saunders - first_name: Paolo full_name: Caldarelli, Paolo last_name: Caldarelli - first_name: Arthur full_name: Michaut, Arthur last_name: Michaut - first_name: Jerome full_name: Gros, Jerome last_name: Gros - first_name: Yonit full_name: Maroudas-Sacks, Yonit last_name: Maroudas-Sacks - first_name: Kinneret full_name: Keren, Kinneret last_name: Keren - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Zev J. full_name: Gartner, Zev J. last_name: Gartner - first_name: Benjamin full_name: Stormo, Benjamin last_name: Stormo - first_name: Amy full_name: Gladfelter, Amy last_name: Gladfelter - first_name: Alan full_name: Rodrigues, Alan last_name: Rodrigues - first_name: Amy full_name: Shyer, Amy last_name: Shyer - first_name: Nicolas full_name: Minc, Nicolas last_name: Minc - first_name: Jean Léon full_name: Maître, Jean Léon last_name: Maître - first_name: Stefano full_name: Di Talia, Stefano last_name: Di Talia - first_name: Bassma full_name: Khamaisi, Bassma last_name: Khamaisi - first_name: David full_name: Sprinzak, David last_name: Sprinzak - first_name: Sham full_name: Tlili, Sham last_name: Tlili citation: ama: Lenne PF, Munro E, Heemskerk I, et al. Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Physical biology. 2021;18(4). doi:10.1088/1478-3975/abd0db apa: Lenne, P. F., Munro, E., Heemskerk, I., Warmflash, A., Bocanegra, L., Kishi, K., … Tlili, S. (2021). Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Physical Biology. IOP Publishing. https://doi.org/10.1088/1478-3975/abd0db chicago: Lenne, Pierre François, Edwin Munro, Idse Heemskerk, Aryeh Warmflash, Laura Bocanegra, Kasumi Kishi, Anna Kicheva, et al. “Roadmap for the Multiscale Coupling of Biochemical and Mechanical Signals during Development.” Physical Biology. IOP Publishing, 2021. https://doi.org/10.1088/1478-3975/abd0db. ieee: P. F. Lenne et al., “Roadmap for the multiscale coupling of biochemical and mechanical signals during development,” Physical biology, vol. 18, no. 4. IOP Publishing, 2021. ista: Lenne PF, Munro E, Heemskerk I, Warmflash A, Bocanegra L, Kishi K, Kicheva A, Long Y, Fruleux A, Boudaoud A, Saunders TE, Caldarelli P, Michaut A, Gros J, Maroudas-Sacks Y, Keren K, Hannezo EB, Gartner ZJ, Stormo B, Gladfelter A, Rodrigues A, Shyer A, Minc N, Maître JL, Di Talia S, Khamaisi B, Sprinzak D, Tlili S. 2021. Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Physical biology. 18(4), 041501. mla: Lenne, Pierre François, et al. “Roadmap for the Multiscale Coupling of Biochemical and Mechanical Signals during Development.” Physical Biology, vol. 18, no. 4, 041501, IOP Publishing, 2021, doi:10.1088/1478-3975/abd0db. short: P.F. Lenne, E. Munro, I. Heemskerk, A. Warmflash, L. Bocanegra, K. Kishi, A. Kicheva, Y. Long, A. Fruleux, A. Boudaoud, T.E. Saunders, P. Caldarelli, A. Michaut, J. Gros, Y. Maroudas-Sacks, K. Keren, E.B. Hannezo, Z.J. Gartner, B. Stormo, A. Gladfelter, A. Rodrigues, A. Shyer, N. Minc, J.L. Maître, S. Di Talia, B. Khamaisi, D. Sprinzak, S. Tlili, Physical Biology 18 (2021). date_created: 2021-04-25T22:01:29Z date_published: 2021-04-14T00:00:00Z date_updated: 2023-08-08T13:15:46Z day: '14' ddc: - '570' department: - _id: AnKi - _id: EdHa doi: 10.1088/1478-3975/abd0db ec_funded: 1 external_id: isi: - '000640396400001' pmid: - '33276350' file: - access_level: open_access checksum: 4f52082549d3561c4c15d4d8d84ca5d8 content_type: application/pdf creator: cziletti date_created: 2021-04-27T08:38:35Z date_updated: 2021-04-27T08:38:35Z file_id: '9355' file_name: 2021_PhysBio_Lenne.pdf file_size: 6296324 relation: main_file success: 1 file_date_updated: 2021-04-27T08:38:35Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis publication: Physical biology publication_identifier: eissn: - 1478-3975 publication_status: published publisher: IOP Publishing quality_controlled: '1' related_material: record: - id: '13081' relation: dissertation_contains status: public scopus_import: '1' status: public title: Roadmap for the multiscale coupling of biochemical and mechanical signals during development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2021' ... --- _id: '7883' abstract: - lang: eng text: All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern. acknowledgement: 'Austrian Academy of Sciences, Grant/Award Number: DOC fellowship for Katarzyna Kuzmicz-Kowalska; Austrian Science Fund, Grant/Award Number: F78 (Stem Cell Modulation); H2020 European Research Council, Grant/Award Number: 680037' article_number: e383 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Katarzyna full_name: Kuzmicz-Kowalska, Katarzyna id: 4CED352A-F248-11E8-B48F-1D18A9856A87 last_name: Kuzmicz-Kowalska - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: 'Kuzmicz-Kowalska K, Kicheva A. Regulation of size and scale in vertebrate spinal cord development. Wiley Interdisciplinary Reviews: Developmental Biology. 2021. doi:10.1002/wdev.383' apa: 'Kuzmicz-Kowalska, K., & Kicheva, A. (2021). Regulation of size and scale in vertebrate spinal cord development. Wiley Interdisciplinary Reviews: Developmental Biology. Wiley. https://doi.org/10.1002/wdev.383' chicago: 'Kuzmicz-Kowalska, Katarzyna, and Anna Kicheva. “Regulation of Size and Scale in Vertebrate Spinal Cord Development.” Wiley Interdisciplinary Reviews: Developmental Biology. Wiley, 2021. https://doi.org/10.1002/wdev.383.' ieee: 'K. Kuzmicz-Kowalska and A. Kicheva, “Regulation of size and scale in vertebrate spinal cord development,” Wiley Interdisciplinary Reviews: Developmental Biology. Wiley, 2021.' ista: 'Kuzmicz-Kowalska K, Kicheva A. 2021. Regulation of size and scale in vertebrate spinal cord development. Wiley Interdisciplinary Reviews: Developmental Biology., e383.' mla: 'Kuzmicz-Kowalska, Katarzyna, and Anna Kicheva. “Regulation of Size and Scale in Vertebrate Spinal Cord Development.” Wiley Interdisciplinary Reviews: Developmental Biology, e383, Wiley, 2021, doi:10.1002/wdev.383.' short: 'K. Kuzmicz-Kowalska, A. Kicheva, Wiley Interdisciplinary Reviews: Developmental Biology (2021).' date_created: 2020-05-24T22:01:00Z date_published: 2021-04-15T00:00:00Z date_updated: 2024-03-07T15:03:00Z day: '15' ddc: - '570' department: - _id: AnKi doi: 10.1002/wdev.383 ec_funded: 1 external_id: isi: - '000531419400001' pmid: - '32391980' file: - access_level: open_access checksum: f0a7745d48afa09ea7025e876a0145a8 content_type: application/pdf creator: dernst date_created: 2020-11-24T13:11:39Z date_updated: 2020-11-24T13:11:39Z file_id: '8800' file_name: 2020_WIREs_DevBio_KuzmiczKowalska.pdf file_size: 2527276 relation: main_file success: 1 file_date_updated: 2020-11-24T13:11:39Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: 267AF0E4-B435-11E9-9278-68D0E5697425 name: The role of morphogens in the regulation of neural tube growth - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord publication: 'Wiley Interdisciplinary Reviews: Developmental Biology' publication_identifier: eissn: - '17597692' issn: - '17597684' publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '14323' relation: dissertation_contains status: public scopus_import: '1' status: public title: Regulation of size and scale in vertebrate spinal cord development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '7165' abstract: - lang: eng text: Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube. article_number: dev176297 article_processing_charge: No article_type: original author: - first_name: Pilar full_name: Guerrero, Pilar last_name: Guerrero - first_name: Ruben full_name: Perez-Carrasco, Ruben last_name: Perez-Carrasco - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: David full_name: Page, David last_name: Page - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: James full_name: Briscoe, James last_name: Briscoe - first_name: Karen M. full_name: Page, Karen M. last_name: Page citation: ama: Guerrero P, Perez-Carrasco R, Zagórski MP, et al. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development. 2019;146(23). doi:10.1242/dev.176297 apa: Guerrero, P., Perez-Carrasco, R., Zagórski, M. P., Page, D., Kicheva, A., Briscoe, J., & Page, K. M. (2019). Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development. The Company of Biologists. https://doi.org/10.1242/dev.176297 chicago: Guerrero, Pilar, Ruben Perez-Carrasco, Marcin P Zagórski, David Page, Anna Kicheva, James Briscoe, and Karen M. Page. “Neuronal Differentiation Influences Progenitor Arrangement in the Vertebrate Neuroepithelium.” Development. The Company of Biologists, 2019. https://doi.org/10.1242/dev.176297. ieee: P. Guerrero et al., “Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium,” Development, vol. 146, no. 23. The Company of Biologists, 2019. ista: Guerrero P, Perez-Carrasco R, Zagórski MP, Page D, Kicheva A, Briscoe J, Page KM. 2019. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development. 146(23), dev176297. mla: Guerrero, Pilar, et al. “Neuronal Differentiation Influences Progenitor Arrangement in the Vertebrate Neuroepithelium.” Development, vol. 146, no. 23, dev176297, The Company of Biologists, 2019, doi:10.1242/dev.176297. short: P. Guerrero, R. Perez-Carrasco, M.P. Zagórski, D. Page, A. Kicheva, J. Briscoe, K.M. Page, Development 146 (2019). date_created: 2019-12-10T14:39:50Z date_published: 2019-12-04T00:00:00Z date_updated: 2023-09-06T11:26:36Z day: '04' ddc: - '570' department: - _id: AnKi doi: 10.1242/dev.176297 ec_funded: 1 external_id: isi: - '000507575700004' pmid: - '31784457' file: - access_level: open_access checksum: b6533c37dc8fbd803ffeca216e0a8b8a content_type: application/pdf creator: dernst date_created: 2019-12-13T07:34:06Z date_updated: 2020-07-14T12:47:50Z file_id: '7177' file_name: 2019_Development_Guerrero.pdf file_size: 7797881 relation: main_file file_date_updated: 2020-07-14T12:47:50Z has_accepted_license: '1' intvolume: ' 146' isi: 1 issue: '23' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 146 year: '2019' ... --- _id: '37' abstract: - lang: eng text: Developmental processes are inherently dynamic and understanding them requires quantitative measurements of gene and protein expression levels in space and time. While live imaging is a powerful approach for obtaining such data, it is still a challenge to apply it over long periods of time to large tissues, such as the embryonic spinal cord in mouse and chick. Nevertheless, dynamics of gene expression and signaling activity patterns in this organ can be studied by collecting tissue sections at different developmental stages. In combination with immunohistochemistry, this allows for measuring the levels of multiple developmental regulators in a quantitative manner with high spatiotemporal resolution. The mean protein expression levels over time, as well as embryo-to-embryo variability can be analyzed. A key aspect of the approach is the ability to compare protein levels across different samples. This requires a number of considerations in sample preparation, imaging and data analysis. Here we present a protocol for obtaining time course data of dorsoventral expression patterns from mouse and chick neural tube in the first 3 days of neural tube development. The described workflow starts from embryo dissection and ends with a processed dataset. Software scripts for data analysis are included. The protocol is adaptable and instructions that allow the user to modify different steps are provided. Thus, the procedure can be altered for analysis of time-lapse images and applied to systems other than the neural tube. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: 'Zagórski MP, Kicheva A. Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube. In: Morphogen Gradients . Vol 1863. MIMB. Springer Nature; 2018:47-63. doi:10.1007/978-1-4939-8772-6_4' apa: Zagórski, M. P., & Kicheva, A. (2018). Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube. In Morphogen Gradients (Vol. 1863, pp. 47–63). Springer Nature. https://doi.org/10.1007/978-1-4939-8772-6_4 chicago: Zagórski, Marcin P, and Anna Kicheva. “Measuring Dorsoventral Pattern and Morphogen Signaling Profiles in the Growing Neural Tube.” In Morphogen Gradients , 1863:47–63. MIMB. Springer Nature, 2018. https://doi.org/10.1007/978-1-4939-8772-6_4. ieee: M. P. Zagórski and A. Kicheva, “Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube,” in Morphogen Gradients , vol. 1863, Springer Nature, 2018, pp. 47–63. ista: 'Zagórski MP, Kicheva A. 2018.Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube. In: Morphogen Gradients . Methods in Molecular Biology, vol. 1863, 47–63.' mla: Zagórski, Marcin P., and Anna Kicheva. “Measuring Dorsoventral Pattern and Morphogen Signaling Profiles in the Growing Neural Tube.” Morphogen Gradients , vol. 1863, Springer Nature, 2018, pp. 47–63, doi:10.1007/978-1-4939-8772-6_4. short: M.P. Zagórski, A. Kicheva, in:, Morphogen Gradients , Springer Nature, 2018, pp. 47–63. date_created: 2018-12-11T11:44:17Z date_published: 2018-10-16T00:00:00Z date_updated: 2021-01-12T07:49:03Z day: '16' ddc: - '570' department: - _id: AnKi doi: 10.1007/978-1-4939-8772-6_4 ec_funded: 1 file: - access_level: open_access checksum: 2a97d0649fdcfcf1bdca7c8ad1dce71b content_type: application/pdf creator: dernst date_created: 2020-10-13T14:20:37Z date_updated: 2020-10-13T14:20:37Z file_id: '8656' file_name: 2018_MIMB_Zagorski.pdf file_size: 4906815 relation: main_file success: 1 file_date_updated: 2020-10-13T14:20:37Z has_accepted_license: '1' intvolume: ' 1863' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 47 - 63 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord publication: 'Morphogen Gradients ' publication_identifier: isbn: - 978-1-4939-8771-9 issn: - 1064-3745 publication_status: published publisher: Springer Nature publist_id: '8018' quality_controlled: '1' scopus_import: '1' series_title: MIMB status: public title: Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1863 year: '2018' ... --- _id: '162' abstract: - lang: eng text: 'Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.' article_number: e34465 article_processing_charge: No author: - first_name: Marketa full_name: Kaucka, Marketa last_name: Kaucka - first_name: Julian full_name: Petersen, Julian last_name: Petersen - first_name: Marketa full_name: Tesarova, Marketa last_name: Tesarova - first_name: Bara full_name: Szarowska, Bara last_name: Szarowska - first_name: Maria full_name: Kastriti, Maria last_name: Kastriti - first_name: Meng full_name: Xie, Meng last_name: Xie - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: Karl full_name: Annusver, Karl last_name: Annusver - first_name: Maria full_name: Kasper, Maria last_name: Kasper - first_name: Orsolya full_name: Symmons, Orsolya last_name: Symmons - first_name: Leslie full_name: Pan, Leslie last_name: Pan - first_name: Francois full_name: Spitz, Francois last_name: Spitz - first_name: Jozef full_name: Kaiser, Jozef last_name: Kaiser - first_name: Maria full_name: Hovorakova, Maria last_name: Hovorakova - first_name: Tomas full_name: Zikmund, Tomas last_name: Zikmund - first_name: Kazunori full_name: Sunadome, Kazunori last_name: Sunadome - first_name: Michael P full_name: Matise, Michael P last_name: Matise - first_name: Hui full_name: Wang, Hui last_name: Wang - first_name: Ulrika full_name: Marklund, Ulrika last_name: Marklund - first_name: Hind full_name: Abdo, Hind last_name: Abdo - first_name: Patrik full_name: Ernfors, Patrik last_name: Ernfors - first_name: Pascal full_name: Maire, Pascal last_name: Maire - first_name: Maud full_name: Wurmser, Maud last_name: Wurmser - first_name: Andrei S full_name: Chagin, Andrei S last_name: Chagin - first_name: Kaj full_name: Fried, Kaj last_name: Fried - first_name: Igor full_name: Adameyko, Igor last_name: Adameyko citation: ama: Kaucka M, Petersen J, Tesarova M, et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. eLife. 2018;7. doi:10.7554/eLife.34465 apa: Kaucka, M., Petersen, J., Tesarova, M., Szarowska, B., Kastriti, M., Xie, M., … Adameyko, I. (2018). Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.34465 chicago: Kaucka, Marketa, Julian Petersen, Marketa Tesarova, Bara Szarowska, Maria Kastriti, Meng Xie, Anna Kicheva, et al. “Signals from the Brain and Olfactory Epithelium Control Shaping of the Mammalian Nasal Capsule Cartilage.” ELife. eLife Sciences Publications, 2018. https://doi.org/10.7554/eLife.34465. ieee: M. Kaucka et al., “Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage,” eLife, vol. 7. eLife Sciences Publications, 2018. ista: Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti M, Xie M, Kicheva A, Annusver K, Kasper M, Symmons O, Pan L, Spitz F, Kaiser J, Hovorakova M, Zikmund T, Sunadome K, Matise MP, Wang H, Marklund U, Abdo H, Ernfors P, Maire P, Wurmser M, Chagin AS, Fried K, Adameyko I. 2018. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. eLife. 7, e34465. mla: Kaucka, Marketa, et al. “Signals from the Brain and Olfactory Epithelium Control Shaping of the Mammalian Nasal Capsule Cartilage.” ELife, vol. 7, e34465, eLife Sciences Publications, 2018, doi:10.7554/eLife.34465. short: M. Kaucka, J. Petersen, M. Tesarova, B. Szarowska, M. Kastriti, M. Xie, A. Kicheva, K. Annusver, M. Kasper, O. Symmons, L. Pan, F. Spitz, J. Kaiser, M. Hovorakova, T. Zikmund, K. Sunadome, M.P. Matise, H. Wang, U. Marklund, H. Abdo, P. Ernfors, P. Maire, M. Wurmser, A.S. Chagin, K. Fried, I. Adameyko, ELife 7 (2018). date_created: 2018-12-11T11:44:57Z date_published: 2018-06-13T00:00:00Z date_updated: 2023-09-18T09:29:07Z day: '13' ddc: - '571' department: - _id: AnKi doi: 10.7554/eLife.34465 ec_funded: 1 external_id: isi: - '000436227500001' file: - access_level: open_access checksum: da2378cdcf6b5461dcde194e4d608343 content_type: application/pdf creator: dernst date_created: 2018-12-17T16:41:58Z date_updated: 2020-07-14T12:45:07Z file_id: '5727' file_name: 2018_eLife_Kaucka.pdf file_size: 9816484 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '7759' quality_controlled: '1' related_material: record: - id: '9838' relation: research_data status: public scopus_import: '1' status: public title: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7 year: '2018' ... --- _id: '9838' abstract: - lang: eng text: 'Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.' article_processing_charge: No author: - first_name: Marketa full_name: Kaucka, Marketa last_name: Kaucka - first_name: Julian full_name: Petersen, Julian last_name: Petersen - first_name: Marketa full_name: Tesarova, Marketa last_name: Tesarova - first_name: Bara full_name: Szarowska, Bara last_name: Szarowska - first_name: Maria Eleni full_name: Kastriti, Maria Eleni last_name: Kastriti - first_name: Meng full_name: Xie, Meng last_name: Xie - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: Karl full_name: Annusver, Karl last_name: Annusver - first_name: Maria full_name: Kasper, Maria last_name: Kasper - first_name: Orsolya full_name: Symmons, Orsolya last_name: Symmons - first_name: Leslie full_name: Pan, Leslie last_name: Pan - first_name: Francois full_name: Spitz, Francois last_name: Spitz - first_name: Jozef full_name: Kaiser, Jozef last_name: Kaiser - first_name: Maria full_name: Hovorakova, Maria last_name: Hovorakova - first_name: Tomas full_name: Zikmund, Tomas last_name: Zikmund - first_name: Kazunori full_name: Sunadome, Kazunori last_name: Sunadome - first_name: Michael P full_name: Matise, Michael P last_name: Matise - first_name: Hui full_name: Wang, Hui last_name: Wang - first_name: Ulrika full_name: Marklund, Ulrika last_name: Marklund - first_name: Hind full_name: Abdo, Hind last_name: Abdo - first_name: Patrik full_name: Ernfors, Patrik last_name: Ernfors - first_name: Pascal full_name: Maire, Pascal last_name: Maire - first_name: Maud full_name: Wurmser, Maud last_name: Wurmser - first_name: Andrei S full_name: Chagin, Andrei S last_name: Chagin - first_name: Kaj full_name: Fried, Kaj last_name: Fried - first_name: Igor full_name: Adameyko, Igor last_name: Adameyko citation: ama: 'Kaucka M, Petersen J, Tesarova M, et al. Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. 2018. doi:10.5061/dryad.f1s76f2' apa: 'Kaucka, M., Petersen, J., Tesarova, M., Szarowska, B., Kastriti, M. E., Xie, M., … Adameyko, I. (2018). Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Dryad. https://doi.org/10.5061/dryad.f1s76f2' chicago: 'Kaucka, Marketa, Julian Petersen, Marketa Tesarova, Bara Szarowska, Maria Eleni Kastriti, Meng Xie, Anna Kicheva, et al. “Data from: Signals from the Brain and Olfactory Epithelium Control Shaping of the Mammalian Nasal Capsule Cartilage.” Dryad, 2018. https://doi.org/10.5061/dryad.f1s76f2.' ieee: 'M. Kaucka et al., “Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage.” Dryad, 2018.' ista: 'Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, Kicheva A, Annusver K, Kasper M, Symmons O, Pan L, Spitz F, Kaiser J, Hovorakova M, Zikmund T, Sunadome K, Matise MP, Wang H, Marklund U, Abdo H, Ernfors P, Maire P, Wurmser M, Chagin AS, Fried K, Adameyko I. 2018. Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage, Dryad, 10.5061/dryad.f1s76f2.' mla: 'Kaucka, Marketa, et al. Data from: Signals from the Brain and Olfactory Epithelium Control Shaping of the Mammalian Nasal Capsule Cartilage. Dryad, 2018, doi:10.5061/dryad.f1s76f2.' short: M. Kaucka, J. Petersen, M. Tesarova, B. Szarowska, M.E. Kastriti, M. Xie, A. Kicheva, K. Annusver, M. Kasper, O. Symmons, L. Pan, F. Spitz, J. Kaiser, M. Hovorakova, T. Zikmund, K. Sunadome, M.P. Matise, H. Wang, U. Marklund, H. Abdo, P. Ernfors, P. Maire, M. Wurmser, A.S. Chagin, K. Fried, I. Adameyko, (2018). date_created: 2021-08-09T12:54:35Z date_published: 2018-06-14T00:00:00Z date_updated: 2023-09-18T09:29:07Z day: '14' department: - _id: AnKi doi: 10.5061/dryad.f1s76f2 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.f1s76f2 month: '06' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '162' relation: used_in_publication status: public status: public title: 'Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '314' abstract: - lang: eng text: The interface of physics and biology pro-vides a fruitful environment for generatingnew concepts and exciting ways forwardto understanding living matter. Examplesof successful studies include the estab-lishment and readout of morphogen gra-dients during development, signal pro-cessing in protein and genetic networks,the role of fluctuations in determining thefates of cells and tissues, and collectiveeffects in proteins and in tissues. It is nothard to envision that significant further ad-vances will translate to societal benefitsby initiating the development of new de-vices and strategies for curing disease.However, research at the interface posesvarious challenges, in particular for youngscientists, and current institutions arerarely designed to facilitate such scientificprograms. In this Letter, we propose aninternational initiative that addressesthese challenges through the establish-ment of a worldwide network of platformsfor cross-disciplinary training and incuba-tors for starting new collaborations. article_processing_charge: No article_type: letter_note author: - first_name: Guntram full_name: Bauer, Guntram last_name: Bauer - first_name: Nikta full_name: Fakhri, Nikta last_name: Fakhri - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: Jané full_name: Kondev, Jané last_name: Kondev - first_name: Karsten full_name: Kruse, Karsten last_name: Kruse - first_name: Hiroyuki full_name: Noji, Hiroyuki last_name: Noji - first_name: Daniel full_name: Riveline, Daniel last_name: Riveline - first_name: Timothy full_name: Saunders, Timothy last_name: Saunders - first_name: Mukund full_name: Thatta, Mukund last_name: Thatta - first_name: Eric full_name: Wieschaus, Eric last_name: Wieschaus citation: ama: Bauer G, Fakhri N, Kicheva A, et al. The science of living matter for tomorrow. Cell Systems. 2018;6(4):400-402. doi:10.1016/j.cels.2018.04.003 apa: Bauer, G., Fakhri, N., Kicheva, A., Kondev, J., Kruse, K., Noji, H., … Wieschaus, E. (2018). The science of living matter for tomorrow. Cell Systems. Cell Press. https://doi.org/10.1016/j.cels.2018.04.003 chicago: Bauer, Guntram, Nikta Fakhri, Anna Kicheva, Jané Kondev, Karsten Kruse, Hiroyuki Noji, Daniel Riveline, Timothy Saunders, Mukund Thatta, and Eric Wieschaus. “The Science of Living Matter for Tomorrow.” Cell Systems. Cell Press, 2018. https://doi.org/10.1016/j.cels.2018.04.003. ieee: G. Bauer et al., “The science of living matter for tomorrow,” Cell Systems, vol. 6, no. 4. Cell Press, pp. 400–402, 2018. ista: Bauer G, Fakhri N, Kicheva A, Kondev J, Kruse K, Noji H, Riveline D, Saunders T, Thatta M, Wieschaus E. 2018. The science of living matter for tomorrow. Cell Systems. 6(4), 400–402. mla: Bauer, Guntram, et al. “The Science of Living Matter for Tomorrow.” Cell Systems, vol. 6, no. 4, Cell Press, 2018, pp. 400–02, doi:10.1016/j.cels.2018.04.003. short: G. Bauer, N. Fakhri, A. Kicheva, J. Kondev, K. Kruse, H. Noji, D. Riveline, T. Saunders, M. Thatta, E. Wieschaus, Cell Systems 6 (2018) 400–402. date_created: 2018-12-11T11:45:46Z date_published: 2018-04-25T00:00:00Z date_updated: 2023-09-19T10:11:25Z day: '25' department: - _id: AnKi doi: 10.1016/j.cels.2018.04.003 external_id: isi: - '000432192100003' pmid: - '29698645' intvolume: ' 6' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cels.2018.04.003 month: '04' oa: 1 oa_version: Published Version page: 400 - 402 pmid: 1 publication: Cell Systems publication_identifier: eissn: - 2405-4712 publication_status: published publisher: Cell Press publist_id: '7551' quality_controlled: '1' scopus_import: '1' status: public title: The science of living matter for tomorrow type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 6 year: '2018' ... --- _id: '654' abstract: - lang: eng text: In November 2016, developmental biologists, synthetic biologists and engineers gathered in Paris for a meeting called ‘Engineering the embryo’. The participants shared an interest in exploring how synthetic systems can reveal new principles of embryonic development, and how the in vitro manipulation and modeling of development using stem cells can be used to integrate ideas and expertise from physics, developmental biology and tissue engineering. As we review here, the conference pinpointed some of the challenges arising at the intersection of these fields, along with great enthusiasm for finding new approaches and collaborations. author: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: Nicolas full_name: Rivron, Nicolas last_name: Rivron citation: ama: Kicheva A, Rivron N. Creating to understand – developmental biology meets engineering in Paris. Development. 2017;144(5):733-736. doi:10.1242/dev.144915 apa: Kicheva, A., & Rivron, N. (2017). Creating to understand – developmental biology meets engineering in Paris. Development. Company of Biologists. https://doi.org/10.1242/dev.144915 chicago: Kicheva, Anna, and Nicolas Rivron. “Creating to Understand – Developmental Biology Meets Engineering in Paris.” Development. Company of Biologists, 2017. https://doi.org/10.1242/dev.144915. ieee: A. Kicheva and N. Rivron, “Creating to understand – developmental biology meets engineering in Paris,” Development, vol. 144, no. 5. Company of Biologists, pp. 733–736, 2017. ista: Kicheva A, Rivron N. 2017. Creating to understand – developmental biology meets engineering in Paris. Development. 144(5), 733–736. mla: Kicheva, Anna, and Nicolas Rivron. “Creating to Understand – Developmental Biology Meets Engineering in Paris.” Development, vol. 144, no. 5, Company of Biologists, 2017, pp. 733–36, doi:10.1242/dev.144915. short: A. Kicheva, N. Rivron, Development 144 (2017) 733–736. date_created: 2018-12-11T11:47:44Z date_published: 2017-03-01T00:00:00Z date_updated: 2021-01-12T08:07:54Z day: '01' ddc: - '571' department: - _id: AnKi doi: 10.1242/dev.144915 ec_funded: 1 file: - access_level: open_access checksum: eef22a0f42a55b232cb2d1188a2322cb content_type: application/pdf creator: system date_created: 2018-12-12T10:15:20Z date_updated: 2020-07-14T12:47:33Z file_id: '5139' file_name: IST-2018-987-v1+1_2017_KichevaRivron__Creating_to.pdf file_size: 228206 relation: main_file file_date_updated: 2020-07-14T12:47:33Z has_accepted_license: '1' intvolume: ' 144' issue: '5' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version page: 733 - 736 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord publication: Development publication_identifier: issn: - '09501991' publication_status: published publisher: Company of Biologists publist_id: '7089' pubrep_id: '987' quality_controlled: '1' scopus_import: 1 status: public title: Creating to understand – developmental biology meets engineering in Paris type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 144 year: '2017' ... --- _id: '685' abstract: - lang: eng text: By applying methods and principles from the physical sciences to biological problems, D'Arcy Thompson's On Growth and Form demonstrated how mathematical reasoning reveals elegant, simple explanations for seemingly complex processes. This has had a profound influence on subsequent generations of developmental biologists. We discuss how this influence can be traced through twentieth century morphologists, embryologists and theoreticians to current research that explores the molecular and cellular mechanisms of tissue growth and patterning, including our own studies of the vertebrate neural tube. author: - first_name: James full_name: Briscoe, James last_name: Briscoe - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: Briscoe J, Kicheva A. The physics of development 100 years after D’Arcy Thompson’s “on growth and form.” Mechanisms of Development. 2017;145:26-31. doi:10.1016/j.mod.2017.03.005 apa: Briscoe, J., & Kicheva, A. (2017). The physics of development 100 years after D’Arcy Thompson’s “on growth and form.” Mechanisms of Development. Elsevier. https://doi.org/10.1016/j.mod.2017.03.005 chicago: Briscoe, James, and Anna Kicheva. “The Physics of Development 100 Years after D’Arcy Thompson’s ‘on Growth and Form.’” Mechanisms of Development. Elsevier, 2017. https://doi.org/10.1016/j.mod.2017.03.005. ieee: J. Briscoe and A. Kicheva, “The physics of development 100 years after D’Arcy Thompson’s ‘on growth and form,’” Mechanisms of Development, vol. 145. Elsevier, pp. 26–31, 2017. ista: Briscoe J, Kicheva A. 2017. The physics of development 100 years after D’Arcy Thompson’s “on growth and form”. Mechanisms of Development. 145, 26–31. mla: Briscoe, James, and Anna Kicheva. “The Physics of Development 100 Years after D’Arcy Thompson’s ‘on Growth and Form.’” Mechanisms of Development, vol. 145, Elsevier, 2017, pp. 26–31, doi:10.1016/j.mod.2017.03.005. short: J. Briscoe, A. Kicheva, Mechanisms of Development 145 (2017) 26–31. date_created: 2018-12-11T11:47:55Z date_published: 2017-06-01T00:00:00Z date_updated: 2021-01-12T08:09:20Z day: '01' ddc: - '571' department: - _id: AnKi doi: 10.1016/j.mod.2017.03.005 ec_funded: 1 external_id: pmid: - '28366718' file: - access_level: open_access checksum: 727043d2e4199fbef6b3704e6d1ac105 content_type: application/pdf creator: dernst date_created: 2019-04-17T07:58:48Z date_updated: 2020-07-14T12:47:42Z file_id: '6335' file_name: 2017_Briscoe_Kicheva_and_DArcy_accepted_version.pdf file_size: 652313 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 145' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 26 - 31 pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord publication: Mechanisms of Development publication_identifier: issn: - '09254773' publication_status: published publisher: Elsevier publist_id: '7025' pubrep_id: '985' quality_controlled: '1' scopus_import: 1 status: public title: The physics of development 100 years after D'Arcy Thompson's “on growth and form” type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 145 year: '2017' ... --- _id: '943' abstract: - lang: eng text: Like many developing tissues, the vertebrate neural tube is patterned by antiparallel morphogen gradients. To understand how these inputs are interpreted, we measured morphogen signaling and target gene expression in mouse embryos and chick ex vivo assays. From these data, we derived and validated a characteristic decoding map that relates morphogen input to the positional identity of neural progenitors. Analysis of the observed responses indicates that the underlying interpretation strategy minimizes patterning errors in response to the joint input of noisy opposing gradients. We reverse-engineered a transcriptional network that provides a mechanistic basis for the observed cell fate decisions and accounts for the precision and dynamics of pattern formation. Together, our data link opposing gradient dynamics in a growing tissue to precise pattern formation. article_processing_charge: No author: - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Yoji full_name: Tabata, Yoji last_name: Tabata - first_name: Nathalie full_name: Brandenberg, Nathalie last_name: Brandenberg - first_name: Matthias full_name: Lutolf, Matthias last_name: Lutolf - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 - first_name: Tobias full_name: Bollenbach, Tobias last_name: Bollenbach - first_name: James full_name: Briscoe, James last_name: Briscoe - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: Zagórski MP, Tabata Y, Brandenberg N, et al. Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science. 2017;356(6345):1379-1383. doi:10.1126/science.aam5887 apa: Zagórski, M. P., Tabata, Y., Brandenberg, N., Lutolf, M., Tkačik, G., Bollenbach, T., … Kicheva, A. (2017). Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aam5887 chicago: Zagórski, Marcin P, Yoji Tabata, Nathalie Brandenberg, Matthias Lutolf, Gašper Tkačik, Tobias Bollenbach, James Briscoe, and Anna Kicheva. “Decoding of Position in the Developing Neural Tube from Antiparallel Morphogen Gradients.” Science. American Association for the Advancement of Science, 2017. https://doi.org/10.1126/science.aam5887. ieee: M. P. Zagórski et al., “Decoding of position in the developing neural tube from antiparallel morphogen gradients,” Science, vol. 356, no. 6345. American Association for the Advancement of Science, pp. 1379–1383, 2017. ista: Zagórski MP, Tabata Y, Brandenberg N, Lutolf M, Tkačik G, Bollenbach T, Briscoe J, Kicheva A. 2017. Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science. 356(6345), 1379–1383. mla: Zagórski, Marcin P., et al. “Decoding of Position in the Developing Neural Tube from Antiparallel Morphogen Gradients.” Science, vol. 356, no. 6345, American Association for the Advancement of Science, 2017, pp. 1379–83, doi:10.1126/science.aam5887. short: M.P. Zagórski, Y. Tabata, N. Brandenberg, M. Lutolf, G. Tkačik, T. Bollenbach, J. Briscoe, A. Kicheva, Science 356 (2017) 1379–1383. date_created: 2018-12-11T11:49:20Z date_published: 2017-06-30T00:00:00Z date_updated: 2023-09-26T15:38:05Z day: '30' department: - _id: AnKi - _id: GaTk doi: 10.1126/science.aam5887 ec_funded: 1 external_id: isi: - '000404351500036' pmid: - '28663499' intvolume: ' 356' isi: 1 issue: '6345' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568706/ month: '06' oa: 1 oa_version: Submitted Version page: 1379 - 1383 pmid: 1 project: - _id: 254E9036-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28844-B27 name: Biophysics of information processing in gene regulation - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2524F500-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '201439' name: Developing High-Throughput Bioassays for Human Cancers in Zebrafish publication: Science publication_identifier: issn: - '00368075' publication_status: published publisher: American Association for the Advancement of Science publist_id: '6474' quality_controlled: '1' scopus_import: '1' status: public title: Decoding of position in the developing neural tube from antiparallel morphogen gradients type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 356 year: '2017' ... --- _id: '1371' abstract: - lang: eng text: Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent "motifs", that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure. acknowledgement: 'MZ has been supported by Polish National Science Centre Grant No. DEC-2012/07/N/NZ2/00107 and by Foundation of Polish Science award START. ' author: - first_name: Olivier full_name: Martin, Olivier last_name: Martin - first_name: André full_name: Krzywicki, André last_name: Krzywicki - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 citation: ama: 'Martin O, Krzywicki A, Zagórski MP. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function. Physics of Life Reviews. 2016;17:124-158. doi:10.1016/j.plrev.2016.06.002' apa: 'Martin, O., Krzywicki, A., & Zagórski, M. P. (2016). Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function. Physics of Life Reviews. Elsevier. https://doi.org/10.1016/j.plrev.2016.06.002' chicago: 'Martin, Olivier, André Krzywicki, and Marcin P Zagórski. “Drivers of Structural Features in Gene Regulatory Networks: From Biophysical Constraints to Biological Function.” Physics of Life Reviews. Elsevier, 2016. https://doi.org/10.1016/j.plrev.2016.06.002.' ieee: 'O. Martin, A. Krzywicki, and M. P. Zagórski, “Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function,” Physics of Life Reviews, vol. 17. Elsevier, pp. 124–158, 2016.' ista: 'Martin O, Krzywicki A, Zagórski MP. 2016. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function. Physics of Life Reviews. 17, 124–158.' mla: 'Martin, Olivier, et al. “Drivers of Structural Features in Gene Regulatory Networks: From Biophysical Constraints to Biological Function.” Physics of Life Reviews, vol. 17, Elsevier, 2016, pp. 124–58, doi:10.1016/j.plrev.2016.06.002.' short: O. Martin, A. Krzywicki, M.P. Zagórski, Physics of Life Reviews 17 (2016) 124–158. date_created: 2018-12-11T11:51:38Z date_published: 2016-07-01T00:00:00Z date_updated: 2021-01-12T06:50:13Z day: '01' department: - _id: AnKi doi: 10.1016/j.plrev.2016.06.002 ec_funded: 1 intvolume: ' 17' language: - iso: eng month: '07' oa_version: None page: 124 - 158 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physics of Life Reviews publication_status: published publisher: Elsevier publist_id: '5840' quality_controlled: '1' scopus_import: 1 status: public title: 'Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2016' ... --- _id: '1373' article_processing_charge: No author: - first_name: Olivier full_name: Martin, Olivier last_name: Martin - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 citation: ama: 'Martin O, Zagórski MP. Network architectures and operating principles. Reply to comments on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" Physics of Life Reviews. 2016;17:168-171. doi:10.1016/j.plrev.2016.06.006' apa: 'Martin, O., & Zagórski, M. P. (2016). Network architectures and operating principles. Reply to comments on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" Physics of Life Reviews. Elsevier. https://doi.org/10.1016/j.plrev.2016.06.006' chicago: 'Martin, Olivier, and Marcin P Zagórski. “Network Architectures and Operating Principles. Reply to Comments on "Drivers of Structural Features in Gene Regulatory Networks: From Biophysical Constraints to Biological Function"” Physics of Life Reviews. Elsevier, 2016. https://doi.org/10.1016/j.plrev.2016.06.006.' ieee: 'O. Martin and M. P. Zagórski, “Network architectures and operating principles. Reply to comments on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function",” Physics of Life Reviews, vol. 17. Elsevier, pp. 168–171, 2016.' ista: 'Martin O, Zagórski MP. 2016. Network architectures and operating principles. Reply to comments on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" Physics of Life Reviews. 17, 168–171.' mla: 'Martin, Olivier, and Marcin P. Zagórski. “Network Architectures and Operating Principles. Reply to Comments on "Drivers of Structural Features in Gene Regulatory Networks: From Biophysical Constraints to Biological Function"” Physics of Life Reviews, vol. 17, Elsevier, 2016, pp. 168–71, doi:10.1016/j.plrev.2016.06.006.' short: O. Martin, M.P. Zagórski, Physics of Life Reviews 17 (2016) 168–171. date_created: 2018-12-11T11:51:39Z date_published: 2016-07-01T00:00:00Z date_updated: 2022-08-26T09:39:27Z day: '01' department: - _id: AnKi doi: 10.1016/j.plrev.2016.06.006 intvolume: ' 17' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.archives-ouvertes.fr/hal-01531698 month: '07' oa: 1 oa_version: Preprint page: 168 - 171 publication: Physics of Life Reviews publication_status: published publisher: Elsevier publist_id: '5838' quality_controlled: '1' scopus_import: '1' status: public title: 'Network architectures and operating principles. Reply to comments on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function"' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2016' ... --- _id: '1167' abstract: - lang: eng text: Evolutionary pathways describe trajectories of biological evolution in the space of different variants of organisms (genotypes). The probability of existence and the number of evolutionary pathways that lead from a given genotype to a better-adapted genotype are important measures of accessibility of local fitness optima and the reproducibility of evolution. Both quantities have been studied in simple mathematical models where genotypes are represented as binary sequences of two types of basic units, and the network of permitted mutations between the genotypes is a hypercube graph. However, it is unclear how these results translate to the biologically relevant case in which genotypes are represented by sequences of more than two units, for example four nucleotides (DNA) or 20 amino acids (proteins), and the mutational graph is not the hypercube. Here we investigate accessibility of the best-adapted genotype in the general case of K > 2 units. Using computer generated and experimental fitness landscapes we show that accessibility of the global fitness maximum increases with K and can be much higher than for binary sequences. The increase in accessibility comes from the increase in the number of indirect trajectories exploited by evolution for higher K. As one of the consequences, the fraction of genotypes that are accessible increases by three orders of magnitude when the number of units K increases from 2 to 16 for landscapes of size N ∼ 106genotypes. This suggests that evolution can follow many different trajectories on such landscapes and the reconstruction of evolutionary pathways from experimental data might be an extremely difficult task. acknowledgement: MZ acknowledges the Polish National Science Centre grant no. DEC-2012/07/N/NZ2/00107. BW was supported by the Scottish Government/Royal Society of Edinburgh Personal Research Fellowship. We thank Marjon de Vos and Oliver Martin for critically reading the manuscript. article_number: e1005218 article_processing_charge: No author: - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Zdzisław full_name: Burda, Zdzisław last_name: Burda - first_name: Bartłomiej full_name: Wacław, Bartłomiej last_name: Wacław citation: ama: Zagórski MP, Burda Z, Wacław B. Beyond the hypercube evolutionary accessibility of fitness landscapes with realistic mutational networks. PLoS Computational Biology. 2016;12(12). doi:10.1371/journal.pcbi.1005218 apa: Zagórski, M. P., Burda, Z., & Wacław, B. (2016). Beyond the hypercube evolutionary accessibility of fitness landscapes with realistic mutational networks. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005218 chicago: Zagórski, Marcin P, Zdzisław Burda, and Bartłomiej Wacław. “Beyond the Hypercube Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks.” PLoS Computational Biology. Public Library of Science, 2016. https://doi.org/10.1371/journal.pcbi.1005218. ieee: M. P. Zagórski, Z. Burda, and B. Wacław, “Beyond the hypercube evolutionary accessibility of fitness landscapes with realistic mutational networks,” PLoS Computational Biology, vol. 12, no. 12. Public Library of Science, 2016. ista: Zagórski MP, Burda Z, Wacław B. 2016. Beyond the hypercube evolutionary accessibility of fitness landscapes with realistic mutational networks. PLoS Computational Biology. 12(12), e1005218. mla: Zagórski, Marcin P., et al. “Beyond the Hypercube Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks.” PLoS Computational Biology, vol. 12, no. 12, e1005218, Public Library of Science, 2016, doi:10.1371/journal.pcbi.1005218. short: M.P. Zagórski, Z. Burda, B. Wacław, PLoS Computational Biology 12 (2016). date_created: 2018-12-11T11:50:30Z date_published: 2016-12-09T00:00:00Z date_updated: 2023-02-23T14:11:22Z day: '09' ddc: - '570' department: - _id: AnKi doi: 10.1371/journal.pcbi.1005218 file: - access_level: open_access checksum: 84f44ae92866c52ff1ca8a574558dca7 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:08Z date_updated: 2020-07-14T12:44:37Z file_id: '4926' file_name: IST-2017-740-v1+1_journal.pcbi.1005218.pdf file_size: 3822299 relation: main_file file_date_updated: 2020-07-14T12:44:37Z has_accepted_license: '1' intvolume: ' 12' issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version publication: PLoS Computational Biology publication_status: published publisher: Public Library of Science publist_id: '6190' pubrep_id: '740' quality_controlled: '1' related_material: record: - id: '9866' relation: research_data status: public scopus_import: '1' status: public title: Beyond the hypercube evolutionary accessibility of fitness landscapes with realistic mutational networks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 12 year: '2016' ... --- _id: '9866' article_processing_charge: No author: - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Zdzisław full_name: Burda, Zdzisław last_name: Burda - first_name: Bartłomiej full_name: Wacław, Bartłomiej last_name: Wacław citation: ama: Zagórski MP, Burda Z, Wacław B. ZIP-archived directory containing all data and computer programs. 2016. doi:10.1371/journal.pcbi.1005218.s009 apa: Zagórski, M. P., Burda, Z., & Wacław, B. (2016). ZIP-archived directory containing all data and computer programs. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005218.s009 chicago: Zagórski, Marcin P, Zdzisław Burda, and Bartłomiej Wacław. “ZIP-Archived Directory Containing All Data and Computer Programs.” Public Library of Science, 2016. https://doi.org/10.1371/journal.pcbi.1005218.s009. ieee: M. P. Zagórski, Z. Burda, and B. Wacław, “ZIP-archived directory containing all data and computer programs.” Public Library of Science, 2016. ista: Zagórski MP, Burda Z, Wacław B. 2016. ZIP-archived directory containing all data and computer programs, Public Library of Science, 10.1371/journal.pcbi.1005218.s009. mla: Zagórski, Marcin P., et al. ZIP-Archived Directory Containing All Data and Computer Programs. Public Library of Science, 2016, doi:10.1371/journal.pcbi.1005218.s009. short: M.P. Zagórski, Z. Burda, B. Wacław, (2016). date_created: 2021-08-10T08:37:20Z date_published: 2016-12-09T00:00:00Z date_updated: 2023-02-21T16:24:29Z day: '09' department: - _id: AnKi doi: 10.1371/journal.pcbi.1005218.s009 month: '12' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1167' relation: used_in_publication status: public status: public title: ZIP-archived directory containing all data and computer programs type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2016' ...