--- _id: '12837' abstract: - lang: eng text: As developing tissues grow in size and undergo morphogenetic changes, their material properties may be altered. Such changes result from tension dynamics at cell contacts or cellular jamming. Yet, in many cases, the cellular mechanisms controlling the physical state of growing tissues are unclear. We found that at early developmental stages, the epithelium in the developing mouse spinal cord maintains both high junctional tension and high fluidity. This is achieved via a mechanism in which interkinetic nuclear movements generate cell area dynamics that drive extensive cell rearrangements. Over time, the cell proliferation rate declines, effectively solidifying the tissue. Thus, unlike well-studied jamming transitions, the solidification uncovered here resembles a glass transition that depends on the dynamical stresses generated by proliferation and differentiation. Our finding that the fluidity of developing epithelia is linked to interkinetic nuclear movements and the dynamics of growth is likely to be relevant to multiple developing tissues. acknowledgement: 'We thank S. Hippenmeyer for the reagents and C. P. Heisenberg, J. Briscoe and K. Page for comments on the manuscript. This work was supported by IST Austria; the European Research Council under Horizon 2020 research and innovation programme grant no. 680037 and Horizon Europe grant 101044579 (A.K.); Austrian Science Fund (FWF): F78 (Stem Cell Modulation) (A.K.); ISTFELLOW postdoctoral program (A.S.); Narodowe Centrum Nauki, Poland SONATA, 2017/26/D/NZ2/00454 (M.Z.); and the Polish National Agency for Academic Exchange (M.Z.).' article_processing_charge: No article_type: original author: - first_name: Laura full_name: Bocanegra, Laura id: 4896F754-F248-11E8-B48F-1D18A9856A87 last_name: Bocanegra - first_name: Amrita full_name: Singh, Amrita id: 76250f9f-3a21-11eb-9a80-a6180a0d7958 last_name: Singh - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 2023;19:1050-1058. doi:10.1038/s41567-023-01977-w apa: Bocanegra, L., Singh, A., Hannezo, E. B., Zagórski, M. P., & Kicheva, A. (2023). Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-01977-w chicago: Bocanegra, Laura, Amrita Singh, Edouard B Hannezo, Marcin P Zagórski, and Anna Kicheva. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-01977-w. ieee: L. Bocanegra, A. Singh, E. B. Hannezo, M. P. Zagórski, and A. Kicheva, “Cell cycle dynamics control fluidity of the developing mouse neuroepithelium,” Nature Physics, vol. 19. Springer Nature, pp. 1050–1058, 2023. ista: Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. 2023. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 19, 1050–1058. mla: Bocanegra, Laura, et al. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1050–58, doi:10.1038/s41567-023-01977-w. short: L. Bocanegra, A. Singh, E.B. Hannezo, M.P. Zagórski, A. Kicheva, Nature Physics 19 (2023) 1050–1058. date_created: 2023-04-16T22:01:09Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-10-04T11:14:05Z day: '01' ddc: - '570' department: - _id: EdHa - _id: AnKi doi: 10.1038/s41567-023-01977-w ec_funded: 1 external_id: isi: - '000964029300003' file: - access_level: open_access checksum: 858225a4205b74406e5045006cdd853f content_type: application/pdf creator: dernst date_created: 2023-10-04T11:13:28Z date_updated: 2023-10-04T11:13:28Z file_id: '14392' file_name: 2023_NaturePhysics_Boncanegra.pdf file_size: 5532285 relation: main_file success: 1 file_date_updated: 2023-10-04T11:13:28Z has_accepted_license: '1' intvolume: ' 19' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 1050-1058 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: bd7e737f-d553-11ed-ba76-d69ffb5ee3aa grant_number: '101044579' name: Mechanisms of tissue size regulation in spinal cord development - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13081' relation: dissertation_contains status: public scopus_import: '1' status: public title: Cell cycle dynamics control fluidity of the developing mouse neuroepithelium tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '13081' abstract: - lang: eng text: During development, tissues undergo changes in size and shape to form functional organs. Distinct cellular processes such as cell division and cell rearrangements underlie tissue morphogenesis. Yet how the distinct processes are controlled and coordinated, and how they contribute to morphogenesis is poorly understood. In our study, we addressed these questions using the developing mouse neural tube. This epithelial organ transforms from a flat epithelial sheet to an epithelial tube while increasing in size and undergoing morpho-gen-mediated patterning. The extent and mechanism of neural progenitor rearrangement within the developing mouse neuroepithelium is unknown. To investigate this, we per-formed high resolution lineage tracing analysis to quantify the extent of epithelial rear-rangement at different stages of neural tube development. We quantitatively described the relationship between apical cell size with cell cycle dependent interkinetic nuclear migra-tions (IKNM) and performed high cellular resolution live imaging of the neuroepithelium to study the dynamics of junctional remodeling. Furthermore, developed a vertex model of the neuroepithelium to investigate the quantitative contribution of cell proliferation, cell differentiation and mechanical properties to the epithelial rearrangement dynamics and validated the model predictions through functional experiments. Our analysis revealed that at early developmental stages, the apical cell area kinetics driven by IKNM induce high lev-els of cell rearrangements in a regime of high junctional tension and contractility. After E9.5, there is a sharp decline in the extent of cell rearrangements, suggesting that the epi-thelium transitions from a fluid-like to a solid-like state. We found that this transition is regulated by the growth rate of the tissue, rather than by changes in cell-cell adhesion and contractile forces. Overall, our study provides a quantitative description of the relationship between tissue growth, cell cycle dynamics, epithelia rearrangements and the emergent tissue material properties, and novel insights on how epithelial cell dynamics influences tissue morphogenesis. acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Laura full_name: Bocanegra, Laura id: 4896F754-F248-11E8-B48F-1D18A9856A87 last_name: Bocanegra citation: ama: Bocanegra L. Epithelial dynamics during mouse neural tube development. 2023. doi:10.15479/at:ista:13081 apa: Bocanegra, L. (2023). Epithelial dynamics during mouse neural tube development. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:13081 chicago: Bocanegra, Laura. “Epithelial Dynamics during Mouse Neural Tube Development.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:13081. ieee: L. Bocanegra, “Epithelial dynamics during mouse neural tube development,” Institute of Science and Technology Austria, 2023. ista: Bocanegra L. 2023. Epithelial dynamics during mouse neural tube development. Institute of Science and Technology Austria. mla: Bocanegra, Laura. Epithelial Dynamics during Mouse Neural Tube Development. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:13081. short: L. Bocanegra, Epithelial Dynamics during Mouse Neural Tube Development, Institute of Science and Technology Austria, 2023. date_created: 2023-05-23T19:10:42Z date_published: 2023-05-23T00:00:00Z date_updated: 2023-10-04T11:14:04Z day: '23' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: AnKi doi: 10.15479/at:ista:13081 file: - access_level: closed checksum: 74f3f89e59a0189bee53ebfad9c1b9af content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lbocaneg date_created: 2023-05-25T06:32:12Z date_updated: 2023-05-25T06:32:12Z file_id: '13089' file_name: Thesis_final_LauraBocanegra.docx file_size: 25615534 relation: source_file - access_level: closed checksum: c6cdef6323eacfb4b7a8af20f32eae97 content_type: application/pdf creator: lbocaneg date_created: 2023-05-25T06:32:16Z date_updated: 2023-05-25T06:32:16Z embargo: 2024-05-31 embargo_to: open_access file_id: '13090' file_name: TotalFinal_Thesis_LauraBocanegraArx.pdf file_size: 12386046 relation: main_file file_date_updated: 2023-05-25T06:32:16Z has_accepted_license: '1' language: - iso: eng month: '05' oa_version: Published Version page: '93' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9349' relation: part_of_dissertation status: public - id: '12837' relation: part_of_dissertation status: public status: public supervisor: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 title: Epithelial dynamics during mouse neural tube development tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14484' abstract: - lang: eng text: Intercellular signaling molecules, known as morphogens, act at a long range in developing tissues to provide spatial information and control properties such as cell fate and tissue growth. The production, transport, and removal of morphogens shape their concentration profiles in time and space. Downstream signaling cascades and gene regulatory networks within cells then convert the spatiotemporal morphogen profiles into distinct cellular responses. Current challenges are to understand the diverse molecular and cellular mechanisms underlying morphogen gradient formation, as well as the logic of downstream regulatory circuits involved in morphogen interpretation. This knowledge, combining experimental and theoretical results, is essential to understand emerging properties of morphogen-controlled systems, such as robustness and scaling. acknowledgement: We are grateful to Zena Hadjivasiliou for comments on this article. A.K. is supported by grants from the European Research Council under the European Union (EU) Horizon 2020 research and innovation program (680037) and Horizon Europe (101044579), and the Austrian Science Fund (F78) (Stem Cell Modulation). J.B. is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (CC001051), the UK Medical Research Council (CC001051), and the Wellcome Trust (CC001051), and by a grant from the European Research Council under the EU Horizon 2020 research and innovation program (742138). article_processing_charge: Yes (in subscription journal) article_type: review author: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: James full_name: Briscoe, James last_name: Briscoe citation: ama: Kicheva A, Briscoe J. Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology. 2023;39:91-121. doi:10.1146/annurev-cellbio-020823-011522 apa: Kicheva, A., & Briscoe, J. (2023). Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology. Annual Reviews. https://doi.org/10.1146/annurev-cellbio-020823-011522 chicago: Kicheva, Anna, and James Briscoe. “Control of Tissue Development by Morphogens.” Annual Review of Cell and Developmental Biology. Annual Reviews, 2023. https://doi.org/10.1146/annurev-cellbio-020823-011522. ieee: A. Kicheva and J. Briscoe, “Control of tissue development by morphogens,” Annual Review of Cell and Developmental Biology, vol. 39. Annual Reviews, pp. 91–121, 2023. ista: Kicheva A, Briscoe J. 2023. Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology. 39, 91–121. mla: Kicheva, Anna, and James Briscoe. “Control of Tissue Development by Morphogens.” Annual Review of Cell and Developmental Biology, vol. 39, Annual Reviews, 2023, pp. 91–121, doi:10.1146/annurev-cellbio-020823-011522. short: A. Kicheva, J. Briscoe, Annual Review of Cell and Developmental Biology 39 (2023) 91–121. date_created: 2023-11-05T23:00:53Z date_published: 2023-10-16T00:00:00Z date_updated: 2023-11-06T09:56:24Z day: '16' ddc: - '570' department: - _id: AnKi doi: 10.1146/annurev-cellbio-020823-011522 ec_funded: 1 external_id: pmid: - '37418774' file: - access_level: open_access checksum: 461726014cf5907010afbd418d3c13ec content_type: application/pdf creator: dernst date_created: 2023-11-06T09:47:50Z date_updated: 2023-11-06T09:47:50Z file_id: '14491' file_name: 2023_AnnualReviews_Kicheva.pdf file_size: 434819 relation: main_file success: 1 file_date_updated: 2023-11-06T09:47:50Z has_accepted_license: '1' intvolume: ' 39' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 91-121 pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: bd7e737f-d553-11ed-ba76-d69ffb5ee3aa grant_number: '101044579' name: Mechanisms of tissue size regulation in spinal cord development - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord publication: Annual Review of Cell and Developmental Biology publication_identifier: eissn: - 1530-8995 issn: - 1081-0706 publication_status: published publisher: Annual Reviews quality_controlled: '1' scopus_import: '1' status: public title: Control of tissue development by morphogens tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2023' ... --- _id: '14774' abstract: - lang: eng text: Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential. acknowledgement: "We thank members of the Brand lab, as well as Justina Stark (Ivo Sbalzarini group, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany) for project-related discussions; Darren Gilmour (University of Zurich), Karuna Sampath (University of Warwick) and Gokul Kesavan (Vowels Lifesciences Private Limited, Bangalore) for comments on the manuscript; personnel of the CMCB technology platform, TU Dresden for imaging and image analysis-related support; and Maurizio Abbate (Technical support, Arivis) for help with image analysis. We are also grateful to Stapornwongkul and Briscoe for commenting on a preprint version of our work (Stapornwongkul and Briscoe, 2022).\r\nThis work was supported by the Deutsche Forschungsgemeinschaft (BR 1746/6-2, BR 1746/11-1 and BR 1746/3 to M.B.), by a Cluster of Excellence ‘Physics of Life’ seed grant and by institutional funds from Technische Universitat Dresden (to M.B.). Open Access funding provided by Technische Universitat Dresden. Deposited in PMC for immediate release." article_number: dev201559 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Rohit K full_name: Harish, Rohit K id: 1bae78aa-ee0e-11ec-9b76-bc42990f409d last_name: Harish - first_name: Mansi full_name: Gupta, Mansi last_name: Gupta - first_name: Daniela full_name: Zöller, Daniela last_name: Zöller - first_name: Hella full_name: Hartmann, Hella last_name: Hartmann - first_name: Ali full_name: Gheisari, Ali last_name: Gheisari - first_name: Anja full_name: Machate, Anja last_name: Machate - first_name: Stefan full_name: Hans, Stefan last_name: Hans - first_name: Michael full_name: Brand, Michael last_name: Brand citation: ama: Harish RK, Gupta M, Zöller D, et al. Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development. 2023;150(19). doi:10.1242/dev.201559 apa: Harish, R. K., Gupta, M., Zöller, D., Hartmann, H., Gheisari, A., Machate, A., … Brand, M. (2023). Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development. The Company of Biologists. https://doi.org/10.1242/dev.201559 chicago: Harish, Rohit K, Mansi Gupta, Daniela Zöller, Hella Hartmann, Ali Gheisari, Anja Machate, Stefan Hans, and Michael Brand. “Real-Time Monitoring of an Endogenous Fgf8a Gradient Attests to Its Role as a Morphogen during Zebrafish Gastrulation.” Development. The Company of Biologists, 2023. https://doi.org/10.1242/dev.201559. ieee: R. K. Harish et al., “Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation,” Development, vol. 150, no. 19. The Company of Biologists, 2023. ista: Harish RK, Gupta M, Zöller D, Hartmann H, Gheisari A, Machate A, Hans S, Brand M. 2023. Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development. 150(19), dev201559. mla: Harish, Rohit K., et al. “Real-Time Monitoring of an Endogenous Fgf8a Gradient Attests to Its Role as a Morphogen during Zebrafish Gastrulation.” Development, vol. 150, no. 19, dev201559, The Company of Biologists, 2023, doi:10.1242/dev.201559. short: R.K. Harish, M. Gupta, D. Zöller, H. Hartmann, A. Gheisari, A. Machate, S. Hans, M. Brand, Development 150 (2023). date_created: 2024-01-10T09:18:54Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-10T12:45:25Z day: '01' ddc: - '570' department: - _id: AnKi doi: 10.1242/dev.201559 external_id: isi: - '001097449100002' pmid: - '37665167' file: - access_level: open_access checksum: 2d6f52dc33260a9b2352b8f28374ba5f content_type: application/pdf creator: dernst date_created: 2024-01-10T12:41:13Z date_updated: 2024-01-10T12:41:13Z file_id: '14790' file_name: 2023_Development_Harish.pdf file_size: 12836306 relation: main_file success: 1 file_date_updated: 2024-01-10T12:41:13Z has_accepted_license: '1' intvolume: ' 150' isi: 1 issue: '19' keyword: - Developmental Biology - Molecular Biology language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' status: public title: Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 150 year: '2023' ... --- _id: '13136' abstract: - lang: eng text: Despite its fundamental importance for development, the question of how organs achieve their correct size and shape is poorly understood. This complex process requires coordination between the generation of cell mass and the morphogenetic mechanisms that sculpt tissues. These processes are regulated by morphogen signalling pathways and mechanical forces. Yet, in many systems, it is unclear how biochemical and mechanical signalling are quantitatively interpreted to determine the behaviours of individual cells and how they contribute to growth and morphogenesis at the tissue scale. In this review, we discuss the development of the vertebrate neural tube and somites as an example of the state of knowledge, as well as the challenges in understanding the mechanisms of tissue size control in vertebrate organogenesis. We highlight how the recent advances in stem cell differentiation and organoid approaches can be harnessed to provide new insights into this question. acknowledgement: 'We thank J. Briscoe for comments on the manuscript. Work in the AK lab is supported by ISTA, the European Research Council under Horizon Europe: grant 101044579, and Austrian Science Fund (FWF): F78 (Stem Cell Modulation). SR is supported by Gesellschaft für Forschungsförderung Niederösterreich m.b.H. fellowship SC19-011.' article_number: '100459' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Thomas full_name: Minchington, Thomas id: 7d1648cb-19e9-11eb-8e7a-f8c037fb3e3f last_name: Minchington - first_name: Stefanie full_name: Rus, Stefanie id: 4D9EC9B6-F248-11E8-B48F-1D18A9856A87 last_name: Rus orcid: 0000-0001-8703-1093 - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: Minchington T, Rus S, Kicheva A. Control of tissue dimensions in the developing neural tube and somites. Current Opinion in Systems Biology. 2023;35. doi:10.1016/j.coisb.2023.100459 apa: Minchington, T., Rus, S., & Kicheva, A. (2023). Control of tissue dimensions in the developing neural tube and somites. Current Opinion in Systems Biology. Elsevier. https://doi.org/10.1016/j.coisb.2023.100459 chicago: Minchington, Thomas, Stefanie Rus, and Anna Kicheva. “Control of Tissue Dimensions in the Developing Neural Tube and Somites.” Current Opinion in Systems Biology. Elsevier, 2023. https://doi.org/10.1016/j.coisb.2023.100459. ieee: T. Minchington, S. Rus, and A. Kicheva, “Control of tissue dimensions in the developing neural tube and somites,” Current Opinion in Systems Biology, vol. 35. Elsevier, 2023. ista: Minchington T, Rus S, Kicheva A. 2023. Control of tissue dimensions in the developing neural tube and somites. Current Opinion in Systems Biology. 35, 100459. mla: Minchington, Thomas, et al. “Control of Tissue Dimensions in the Developing Neural Tube and Somites.” Current Opinion in Systems Biology, vol. 35, 100459, Elsevier, 2023, doi:10.1016/j.coisb.2023.100459. short: T. Minchington, S. Rus, A. Kicheva, Current Opinion in Systems Biology 35 (2023). date_created: 2023-06-18T22:00:46Z date_published: 2023-09-01T00:00:00Z date_updated: 2024-01-29T11:07:47Z day: '01' ddc: - '570' department: - _id: AnKi doi: 10.1016/j.coisb.2023.100459 file: - access_level: open_access checksum: 8a75c4e29fd9b62e3c50663c2265b173 content_type: application/pdf creator: dernst date_created: 2024-01-29T11:06:45Z date_updated: 2024-01-29T11:06:45Z file_id: '14896' file_name: 2023_CurrOpSystBioloy_Minchington.pdf file_size: 598842 relation: main_file success: 1 file_date_updated: 2024-01-29T11:06:45Z has_accepted_license: '1' intvolume: ' 35' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: bd7e737f-d553-11ed-ba76-d69ffb5ee3aa grant_number: '101044579' name: Mechanisms of tissue size regulation in spinal cord development - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord - _id: 9B9B39FA-BA93-11EA-9121-9846C619BF3A grant_number: SC19-011 name: The regulatory logic of pattern formation in the vertebrate dorsal neural tube publication: Current Opinion in Systems Biology publication_identifier: eissn: - 2452-3100 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Control of tissue dimensions in the developing neural tube and somites tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2023' ... --- _id: '14323' abstract: - lang: eng text: Morphogens are signaling molecules that are known for their prominent role in pattern formation within developing tissues. In addition to patterning, morphogens also control tissue growth. However, the underlying mechanisms are poorly understood. We studied the role of morphogens in regulating tissue growth in the developing vertebrate neural tube. In this system, opposing morphogen gradients of Shh and BMP establish the dorsoventral pattern of neural progenitor domains. Perturbations in these morphogen pathways result in alterations in tissue growth and cell cycle progression, however, it has been unclear what cellular process is affected. To address this, we analysed the rates of cell proliferation and cell death in mouse mutants in which signaling is perturbed, as well as in chick neural plate explants exposed to defined concentrations of signaling activators or inhibitors. Our results indicated that the rate of cell proliferation was not altered in these assays. By contrast, both the Shh and BMP signaling pathways had profound effects on neural progenitor survival. Our results indicate that these pathways synergise to promote cell survival within neural progenitors. Consistent with this, we found that progenitors within the intermediate region of the neural tube, where the combined levels of Shh and BMP are the lowest, are most prone to cell death when signaling activity is inhibited. In addition, we found that downregulation of Shh results in increased apoptosis within the roof plate, which is the dorsal source of BMP ligand production. This revealed a cross-interaction between the Shh and BMP morphogen signaling pathways that may be relevant for understanding how gradients scale in neural tubes with different overall sizes. We further studied the mechanism acting downstream of Shh in cell survival regulation using genetic and genomic approaches. We propose that Shh transcriptionally regulates a non-canonical apoptotic pathway. Altogether, our study points to a novel role of opposing morphogen gradients in tissue size regulation and provides new insights into complex interactions between Shh and BMP signaling gradients in the neural tube. acknowledged_ssus: - _id: Bio - _id: PreCl alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Katarzyna full_name: Kuzmicz-Kowalska, Katarzyna id: 4CED352A-F248-11E8-B48F-1D18A9856A87 last_name: Kuzmicz-Kowalska citation: ama: Kuzmicz-Kowalska K. Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord. 2023. doi:10.15479/at:ista:14323 apa: Kuzmicz-Kowalska, K. (2023). Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14323 chicago: Kuzmicz-Kowalska, Katarzyna. “Regulation of Neural Progenitor Survival by Shh and BMP in the Developing Spinal Cord.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14323. ieee: K. Kuzmicz-Kowalska, “Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord,” Institute of Science and Technology Austria, 2023. ista: Kuzmicz-Kowalska K. 2023. Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord. Institute of Science and Technology Austria. mla: Kuzmicz-Kowalska, Katarzyna. Regulation of Neural Progenitor Survival by Shh and BMP in the Developing Spinal Cord. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14323. short: K. Kuzmicz-Kowalska, Regulation of Neural Progenitor Survival by Shh and BMP in the Developing Spinal Cord, Institute of Science and Technology Austria, 2023. date_created: 2023-09-13T10:07:18Z date_published: 2023-09-13T00:00:00Z date_updated: 2024-03-07T15:02:59Z day: '13' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: AnKi doi: 10.15479/at:ista:14323 file: - access_level: closed checksum: bd83596869c814b24aeff7077d031c0e content_type: application/pdf creator: kkuzmicz date_created: 2023-09-13T09:52:52Z date_updated: 2023-09-13T10:08:25Z embargo: 2025-03-13 embargo_to: open_access file_id: '14324' file_name: PhDThesis_KK_final_pdfA.pdf file_size: 10147911 relation: main_file - access_level: closed checksum: aa2757ae4c3478041fd7e62c587d3e4d content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: kkuzmicz date_created: 2023-09-13T09:53:29Z date_updated: 2023-09-13T09:53:29Z file_id: '14325' file_name: thesis_KK_final_corrections_092023.docx file_size: 103980668 relation: source_file file_date_updated: 2023-09-13T10:08:25Z has_accepted_license: '1' language: - iso: eng month: '09' oa_version: Published Version page: '151' project: - _id: 267AF0E4-B435-11E9-9278-68D0E5697425 name: The role of morphogens in the regulation of neural tube growth publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7883' relation: part_of_dissertation status: public status: public supervisor: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 title: Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12245' abstract: - lang: eng text: MicroRNAs (miRs) have an important role in tuning dynamic gene expression. However, the mechanism by which they are quantitatively controlled is unknown. We show that the amount of mature miR-9, a key regulator of neuronal development, increases during zebrafish neurogenesis in a sharp stepwise manner. We characterize the spatiotemporal profile of seven distinct microRNA primary transcripts (pri-mir)-9s that produce the same mature miR-9 and show that they are sequentially expressed during hindbrain neurogenesis. Expression of late-onset pri-mir-9-1 is added on to, rather than replacing, the expression of early onset pri-mir-9-4 and -9-5 in single cells. CRISPR/Cas9 mutation of the late-onset pri-mir-9-1 prevents the developmental increase of mature miR-9, reduces late neuronal differentiation and fails to downregulate Her6 at late stages. Mathematical modelling shows that an adaptive network containing Her6 is insensitive to linear increases in miR-9 but responds to stepwise increases of miR-9. We suggest that a sharp stepwise increase of mature miR-9 is created by sequential and additive temporal activation of distinct loci. This may be a strategy to overcome adaptation and facilitate a transition of Her6 to a new dynamic regime or steady state. acknowledgement: "We are grateful to Dr Tom Pettini for the advice on smiFISH technique and Dr Laure Bally-Cuif for sharing plasmids. The authors also thank the Biological Services Facility, Bioimaging and Systems Microscopy Facilities of the University of Manchester for technical support.\r\nThis work was supported by a Wellcome Trust Senior Research Fellowship (090868/Z/09/Z) and a Wellcome Trust Investigator Award (224394/Z/21/Z) to N.P. and a Medical Research Council Career Development Award to C.S.M. (MR/V032534/1). J.B. was supported by a Wellcome Trust Four-Year PhD Studentship in Basic Science (219992/Z/19/Z). Open Access funding provided by The University of Manchester. Deposited in PMC for immediate release." article_number: dev200474 article_processing_charge: No article_type: original author: - first_name: Ximena full_name: Soto, Ximena last_name: Soto - first_name: Joshua full_name: Burton, Joshua last_name: Burton - first_name: Cerys S. full_name: Manning, Cerys S. last_name: Manning - first_name: Thomas full_name: Minchington, Thomas id: 7d1648cb-19e9-11eb-8e7a-f8c037fb3e3f last_name: Minchington - first_name: Robert full_name: Lea, Robert last_name: Lea - first_name: Jessica full_name: Lee, Jessica last_name: Lee - first_name: Jochen full_name: Kursawe, Jochen last_name: Kursawe - first_name: Magnus full_name: Rattray, Magnus last_name: Rattray - first_name: Nancy full_name: Papalopulu, Nancy last_name: Papalopulu citation: ama: Soto X, Burton J, Manning CS, et al. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. 2022;149(19). doi:10.1242/dev.200474 apa: Soto, X., Burton, J., Manning, C. S., Minchington, T., Lea, R., Lee, J., … Papalopulu, N. (2022). Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. The Company of Biologists. https://doi.org/10.1242/dev.200474 chicago: Soto, Ximena, Joshua Burton, Cerys S. Manning, Thomas Minchington, Robert Lea, Jessica Lee, Jochen Kursawe, Magnus Rattray, and Nancy Papalopulu. “Sequential and Additive Expression of MiR-9 Precursors Control Timing of Neurogenesis.” Development. The Company of Biologists, 2022. https://doi.org/10.1242/dev.200474. ieee: X. Soto et al., “Sequential and additive expression of miR-9 precursors control timing of neurogenesis,” Development, vol. 149, no. 19. The Company of Biologists, 2022. ista: Soto X, Burton J, Manning CS, Minchington T, Lea R, Lee J, Kursawe J, Rattray M, Papalopulu N. 2022. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. 149(19), dev200474. mla: Soto, Ximena, et al. “Sequential and Additive Expression of MiR-9 Precursors Control Timing of Neurogenesis.” Development, vol. 149, no. 19, dev200474, The Company of Biologists, 2022, doi:10.1242/dev.200474. short: X. Soto, J. Burton, C.S. Manning, T. Minchington, R. Lea, J. Lee, J. Kursawe, M. Rattray, N. Papalopulu, Development 149 (2022). date_created: 2023-01-16T09:53:17Z date_published: 2022-10-01T00:00:00Z date_updated: 2023-08-04T09:41:08Z day: '01' ddc: - '570' department: - _id: AnKi doi: 10.1242/dev.200474 external_id: isi: - '000918161000003' pmid: - '36189829' file: - access_level: open_access checksum: d7c29b74e9e4032308228cc704a30e88 content_type: application/pdf creator: dernst date_created: 2023-01-30T08:35:44Z date_updated: 2023-01-30T08:35:44Z file_id: '12438' file_name: 2022_Development_Soto.pdf file_size: 9348839 relation: main_file success: 1 file_date_updated: 2023-01-30T08:35:44Z has_accepted_license: '1' intvolume: ' 149' isi: 1 issue: '19' keyword: - Developmental Biology - Molecular Biology language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' related_material: link: - relation: software url: ' https://github.com/burtonjosh/StepwiseMir9' scopus_import: '1' status: public title: Sequential and additive expression of miR-9 precursors control timing of neurogenesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 149 year: '2022' ... --- _id: '9349' abstract: - lang: eng text: 'The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics: from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.' acknowledgement: The AK group is supported by IST Austria and by the ERC under European Union Horizon 2020 research and innovation programme Grant 680037. Apologies to those whose work could not be mentioned due to limited space. We thank all my lab members, both past and present, for stimulating discussion. This work was funded by a Singapore Ministry of Education Tier 3 Grant, MOE2016-T3-1-005. We thank Francis Corson for continuous discussion and collaboration contributing to these views and for figure 4(A). PC is sponsored by the Institut Pasteur and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665807. Research in JG's laboratory is funded by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 337635, Institut Pasteur, CNRS, Cercle FSER, Fondation pour la Recherche Medicale, the Vallee Foundation and the ANR-19-CE-13-0024 Grant. We thank Erez Braun and Alex Mogilner for comments on the manuscript and Niv Ierushalmi for help with figure 5. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. ERC-2018-COG Grant 819174-HydraMechanics awarded to KK. EH thanks all lab members, as well as Pierre Recho, Tsuyoshi Hirashima, Diana Pinheiro and Carl-Philip Heisenberg, for fruitful discussions on these topics—and apologize for not being able to cite many very relevant publications due to the strict 10-reference limit. EH acknowledges the support of Austrian Science Fund (FWF) (P 31639) and the European Research Council under the European Union's Horizon 2020 Research and Innovation Programme Grant Agreements (851288). The authors acknowledge the inspiring scientists whose work could not be cited in this perspective due to space constraints; the members of the Gartner Lab for helpful discussions; the Barbara and Gerson Bakar Foundation, the Chan Zuckerberg Biohub Investigators Programme, the National Institute of Health, and the Centre for Cellular Construction, an NSF Science and Technology Centre. The Minc laboratory is currently funded by the CNRS and the European Research Council (CoG Forcaster No. 647073). Research in the lab of J-LM is supported by the Institut Curie, the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé Et de la Recherche Médicale (INSERM), and is funded by grants from the ATIP-Avenir programme, the Fondation Schlumberger pour l'Éducation et la Recherche via the Fondation pour la Recherche Médicale, the European Research Council Starting Grant ERC-2017-StG 757557, the European Molecular Biology Organization Young Investigator programme (EMBO YIP), the INSERM transversal programme Human Development Cell Atlas (HuDeCA), Paris Sciences Lettres (PSL) 'nouvelle équipe' and QLife (17-CONV-0005) grants and Labex DEEP (ANR-11-LABX-0044) which are part of the IDEX PSL (ANR-10-IDEX-0001-02). We acknowledge useful discussions with Massimo Vergassola, Sebastian Streichan and my lab members. Work in my laboratory on Drosophila embryogenesis is partly supported by NIH-R01GM122936. The authors acknowledge the support by a grant from the European Research Council (Grant No. 682161). Lenne group is funded by a grant from the 'Investissements d'Avenir' French Government programme managed by the French National Research Agency (ANR-16-CONV-0001) and by the Excellence Initiative of Aix-Marseille University—A*MIDEX, and ANR projects MechaResp (ANR-17-CE13-0032) and AdGastrulo (ANR-19-CE13-0022). article_number: '041501' article_processing_charge: No article_type: original author: - first_name: Pierre François full_name: Lenne, Pierre François last_name: Lenne - first_name: Edwin full_name: Munro, Edwin last_name: Munro - first_name: Idse full_name: Heemskerk, Idse last_name: Heemskerk - first_name: Aryeh full_name: Warmflash, Aryeh last_name: Warmflash - first_name: Laura full_name: Bocanegra, Laura id: 4896F754-F248-11E8-B48F-1D18A9856A87 last_name: Bocanegra - first_name: Kasumi full_name: Kishi, Kasumi id: 3065DFC4-F248-11E8-B48F-1D18A9856A87 last_name: Kishi - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: Yuchen full_name: Long, Yuchen last_name: Long - first_name: Antoine full_name: Fruleux, Antoine last_name: Fruleux - first_name: Arezki full_name: Boudaoud, Arezki last_name: Boudaoud - first_name: Timothy E. full_name: Saunders, Timothy E. last_name: Saunders - first_name: Paolo full_name: Caldarelli, Paolo last_name: Caldarelli - first_name: Arthur full_name: Michaut, Arthur last_name: Michaut - first_name: Jerome full_name: Gros, Jerome last_name: Gros - first_name: Yonit full_name: Maroudas-Sacks, Yonit last_name: Maroudas-Sacks - first_name: Kinneret full_name: Keren, Kinneret last_name: Keren - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Zev J. full_name: Gartner, Zev J. last_name: Gartner - first_name: Benjamin full_name: Stormo, Benjamin last_name: Stormo - first_name: Amy full_name: Gladfelter, Amy last_name: Gladfelter - first_name: Alan full_name: Rodrigues, Alan last_name: Rodrigues - first_name: Amy full_name: Shyer, Amy last_name: Shyer - first_name: Nicolas full_name: Minc, Nicolas last_name: Minc - first_name: Jean Léon full_name: Maître, Jean Léon last_name: Maître - first_name: Stefano full_name: Di Talia, Stefano last_name: Di Talia - first_name: Bassma full_name: Khamaisi, Bassma last_name: Khamaisi - first_name: David full_name: Sprinzak, David last_name: Sprinzak - first_name: Sham full_name: Tlili, Sham last_name: Tlili citation: ama: Lenne PF, Munro E, Heemskerk I, et al. Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Physical biology. 2021;18(4). doi:10.1088/1478-3975/abd0db apa: Lenne, P. F., Munro, E., Heemskerk, I., Warmflash, A., Bocanegra, L., Kishi, K., … Tlili, S. (2021). Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Physical Biology. IOP Publishing. https://doi.org/10.1088/1478-3975/abd0db chicago: Lenne, Pierre François, Edwin Munro, Idse Heemskerk, Aryeh Warmflash, Laura Bocanegra, Kasumi Kishi, Anna Kicheva, et al. “Roadmap for the Multiscale Coupling of Biochemical and Mechanical Signals during Development.” Physical Biology. IOP Publishing, 2021. https://doi.org/10.1088/1478-3975/abd0db. ieee: P. F. Lenne et al., “Roadmap for the multiscale coupling of biochemical and mechanical signals during development,” Physical biology, vol. 18, no. 4. IOP Publishing, 2021. ista: Lenne PF, Munro E, Heemskerk I, Warmflash A, Bocanegra L, Kishi K, Kicheva A, Long Y, Fruleux A, Boudaoud A, Saunders TE, Caldarelli P, Michaut A, Gros J, Maroudas-Sacks Y, Keren K, Hannezo EB, Gartner ZJ, Stormo B, Gladfelter A, Rodrigues A, Shyer A, Minc N, Maître JL, Di Talia S, Khamaisi B, Sprinzak D, Tlili S. 2021. Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Physical biology. 18(4), 041501. mla: Lenne, Pierre François, et al. “Roadmap for the Multiscale Coupling of Biochemical and Mechanical Signals during Development.” Physical Biology, vol. 18, no. 4, 041501, IOP Publishing, 2021, doi:10.1088/1478-3975/abd0db. short: P.F. Lenne, E. Munro, I. Heemskerk, A. Warmflash, L. Bocanegra, K. Kishi, A. Kicheva, Y. Long, A. Fruleux, A. Boudaoud, T.E. Saunders, P. Caldarelli, A. Michaut, J. Gros, Y. Maroudas-Sacks, K. Keren, E.B. Hannezo, Z.J. Gartner, B. Stormo, A. Gladfelter, A. Rodrigues, A. Shyer, N. Minc, J.L. Maître, S. Di Talia, B. Khamaisi, D. Sprinzak, S. Tlili, Physical Biology 18 (2021). date_created: 2021-04-25T22:01:29Z date_published: 2021-04-14T00:00:00Z date_updated: 2023-08-08T13:15:46Z day: '14' ddc: - '570' department: - _id: AnKi - _id: EdHa doi: 10.1088/1478-3975/abd0db ec_funded: 1 external_id: isi: - '000640396400001' pmid: - '33276350' file: - access_level: open_access checksum: 4f52082549d3561c4c15d4d8d84ca5d8 content_type: application/pdf creator: cziletti date_created: 2021-04-27T08:38:35Z date_updated: 2021-04-27T08:38:35Z file_id: '9355' file_name: 2021_PhysBio_Lenne.pdf file_size: 6296324 relation: main_file success: 1 file_date_updated: 2021-04-27T08:38:35Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis publication: Physical biology publication_identifier: eissn: - 1478-3975 publication_status: published publisher: IOP Publishing quality_controlled: '1' related_material: record: - id: '13081' relation: dissertation_contains status: public scopus_import: '1' status: public title: Roadmap for the multiscale coupling of biochemical and mechanical signals during development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2021' ... --- _id: '7883' abstract: - lang: eng text: All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern. acknowledgement: 'Austrian Academy of Sciences, Grant/Award Number: DOC fellowship for Katarzyna Kuzmicz-Kowalska; Austrian Science Fund, Grant/Award Number: F78 (Stem Cell Modulation); H2020 European Research Council, Grant/Award Number: 680037' article_number: e383 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Katarzyna full_name: Kuzmicz-Kowalska, Katarzyna id: 4CED352A-F248-11E8-B48F-1D18A9856A87 last_name: Kuzmicz-Kowalska - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: 'Kuzmicz-Kowalska K, Kicheva A. Regulation of size and scale in vertebrate spinal cord development. Wiley Interdisciplinary Reviews: Developmental Biology. 2021. doi:10.1002/wdev.383' apa: 'Kuzmicz-Kowalska, K., & Kicheva, A. (2021). Regulation of size and scale in vertebrate spinal cord development. Wiley Interdisciplinary Reviews: Developmental Biology. Wiley. https://doi.org/10.1002/wdev.383' chicago: 'Kuzmicz-Kowalska, Katarzyna, and Anna Kicheva. “Regulation of Size and Scale in Vertebrate Spinal Cord Development.” Wiley Interdisciplinary Reviews: Developmental Biology. Wiley, 2021. https://doi.org/10.1002/wdev.383.' ieee: 'K. Kuzmicz-Kowalska and A. Kicheva, “Regulation of size and scale in vertebrate spinal cord development,” Wiley Interdisciplinary Reviews: Developmental Biology. Wiley, 2021.' ista: 'Kuzmicz-Kowalska K, Kicheva A. 2021. Regulation of size and scale in vertebrate spinal cord development. Wiley Interdisciplinary Reviews: Developmental Biology., e383.' mla: 'Kuzmicz-Kowalska, Katarzyna, and Anna Kicheva. “Regulation of Size and Scale in Vertebrate Spinal Cord Development.” Wiley Interdisciplinary Reviews: Developmental Biology, e383, Wiley, 2021, doi:10.1002/wdev.383.' short: 'K. Kuzmicz-Kowalska, A. Kicheva, Wiley Interdisciplinary Reviews: Developmental Biology (2021).' date_created: 2020-05-24T22:01:00Z date_published: 2021-04-15T00:00:00Z date_updated: 2024-03-07T15:03:00Z day: '15' ddc: - '570' department: - _id: AnKi doi: 10.1002/wdev.383 ec_funded: 1 external_id: isi: - '000531419400001' pmid: - '32391980' file: - access_level: open_access checksum: f0a7745d48afa09ea7025e876a0145a8 content_type: application/pdf creator: dernst date_created: 2020-11-24T13:11:39Z date_updated: 2020-11-24T13:11:39Z file_id: '8800' file_name: 2020_WIREs_DevBio_KuzmiczKowalska.pdf file_size: 2527276 relation: main_file success: 1 file_date_updated: 2020-11-24T13:11:39Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: 267AF0E4-B435-11E9-9278-68D0E5697425 name: The role of morphogens in the regulation of neural tube growth - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord publication: 'Wiley Interdisciplinary Reviews: Developmental Biology' publication_identifier: eissn: - '17597692' issn: - '17597684' publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '14323' relation: dissertation_contains status: public scopus_import: '1' status: public title: Regulation of size and scale in vertebrate spinal cord development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '7165' abstract: - lang: eng text: Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube. article_number: dev176297 article_processing_charge: No article_type: original author: - first_name: Pilar full_name: Guerrero, Pilar last_name: Guerrero - first_name: Ruben full_name: Perez-Carrasco, Ruben last_name: Perez-Carrasco - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: David full_name: Page, David last_name: Page - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: James full_name: Briscoe, James last_name: Briscoe - first_name: Karen M. full_name: Page, Karen M. last_name: Page citation: ama: Guerrero P, Perez-Carrasco R, Zagórski MP, et al. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development. 2019;146(23). doi:10.1242/dev.176297 apa: Guerrero, P., Perez-Carrasco, R., Zagórski, M. P., Page, D., Kicheva, A., Briscoe, J., & Page, K. M. (2019). Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development. The Company of Biologists. https://doi.org/10.1242/dev.176297 chicago: Guerrero, Pilar, Ruben Perez-Carrasco, Marcin P Zagórski, David Page, Anna Kicheva, James Briscoe, and Karen M. Page. “Neuronal Differentiation Influences Progenitor Arrangement in the Vertebrate Neuroepithelium.” Development. The Company of Biologists, 2019. https://doi.org/10.1242/dev.176297. ieee: P. Guerrero et al., “Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium,” Development, vol. 146, no. 23. The Company of Biologists, 2019. ista: Guerrero P, Perez-Carrasco R, Zagórski MP, Page D, Kicheva A, Briscoe J, Page KM. 2019. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development. 146(23), dev176297. mla: Guerrero, Pilar, et al. “Neuronal Differentiation Influences Progenitor Arrangement in the Vertebrate Neuroepithelium.” Development, vol. 146, no. 23, dev176297, The Company of Biologists, 2019, doi:10.1242/dev.176297. short: P. Guerrero, R. Perez-Carrasco, M.P. Zagórski, D. Page, A. Kicheva, J. Briscoe, K.M. Page, Development 146 (2019). date_created: 2019-12-10T14:39:50Z date_published: 2019-12-04T00:00:00Z date_updated: 2023-09-06T11:26:36Z day: '04' ddc: - '570' department: - _id: AnKi doi: 10.1242/dev.176297 ec_funded: 1 external_id: isi: - '000507575700004' pmid: - '31784457' file: - access_level: open_access checksum: b6533c37dc8fbd803ffeca216e0a8b8a content_type: application/pdf creator: dernst date_created: 2019-12-13T07:34:06Z date_updated: 2020-07-14T12:47:50Z file_id: '7177' file_name: 2019_Development_Guerrero.pdf file_size: 7797881 relation: main_file file_date_updated: 2020-07-14T12:47:50Z has_accepted_license: '1' intvolume: ' 146' isi: 1 issue: '23' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 146 year: '2019' ...