--- _id: '14579' abstract: - lang: eng text: "This is associated with our paper \"Plant size, latitude, and phylogeny explain within-population variability in herbivory\" published in Science.\r\n" article_processing_charge: No author: - first_name: William full_name: Wetzel, William last_name: Wetzel citation: ama: 'Wetzel W. HerbVar-Network/HV-Large-Patterns-MS-public: v1.0.0. 2023. doi:10.5281/ZENODO.8133117' apa: 'Wetzel, W. (2023). HerbVar-Network/HV-Large-Patterns-MS-public: v1.0.0. Zenodo. https://doi.org/10.5281/ZENODO.8133117' chicago: 'Wetzel, William. “HerbVar-Network/HV-Large-Patterns-MS-Public: V1.0.0.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.8133117.' ieee: 'W. Wetzel, “HerbVar-Network/HV-Large-Patterns-MS-public: v1.0.0.” Zenodo, 2023.' ista: 'Wetzel W. 2023. HerbVar-Network/HV-Large-Patterns-MS-public: v1.0.0, Zenodo, 10.5281/ZENODO.8133117.' mla: 'Wetzel, William. HerbVar-Network/HV-Large-Patterns-MS-Public: V1.0.0. Zenodo, 2023, doi:10.5281/ZENODO.8133117.' short: W. Wetzel, (2023). date_created: 2023-11-20T11:07:45Z date_published: 2023-07-11T00:00:00Z date_updated: 2023-11-20T11:17:33Z day: '11' ddc: - '570' department: - _id: NiBa doi: 10.5281/ZENODO.8133117 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.8133118 month: '07' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '14552' relation: used_in_publication status: public status: public title: 'HerbVar-Network/HV-Large-Patterns-MS-public: v1.0.0' type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12334' abstract: - lang: eng text: Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration. acknowledged_ssus: - _id: ScienComp - _id: LifeSc - _id: Bio - _id: EM-Fac acknowledgement: "We would like to thank K. von Peinen and B. Denker (Helmholtz Centre for Infection Research, Braunschweig, Germany) for experimental and technical assistance, respectively.\r\nThis research was supported by the Scientific Service Units (SSUs) of ISTA through resources provided by Scientific Computing (SciComp), the Life Science Facility (LSF), the Imaging and Optics facility (IOF), and the Electron Microscopy Facility (EMF). We acknowledge support from ISTA and from the Austrian Science Fund (FWF) (P33367) to F.K.M.S., from the Research Training Group GRK2223 and the Helmholtz Society to K.R,. and from the Deutsche Forschungsgemeinschaft (DFG) to J.F. and K.R." article_number: add6495 article_processing_charge: No article_type: original author: - first_name: Florian full_name: Fäßler, Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - first_name: Manjunath full_name: Javoor, Manjunath id: 305ab18b-dc7d-11ea-9b2f-b58195228ea2 last_name: Javoor - first_name: Julia full_name: Datler, Julia id: 3B12E2E6-F248-11E8-B48F-1D18A9856A87 last_name: Datler orcid: 0000-0002-3616-8580 - first_name: Hermann full_name: Döring, Hermann last_name: Döring - first_name: Florian full_name: Hofer, Florian id: b9d234ba-9e33-11ed-95b6-cd561df280e6 last_name: Hofer - first_name: Georgi A full_name: Dimchev, Georgi A id: 38C393BE-F248-11E8-B48F-1D18A9856A87 last_name: Dimchev orcid: 0000-0001-8370-6161 - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - first_name: Jan full_name: Faix, Jan last_name: Faix - first_name: Klemens full_name: Rottner, Klemens last_name: Rottner - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Fäßler F, Javoor M, Datler J, et al. ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning. Science Advances. 2023;9(3). doi:10.1126/sciadv.add6495 apa: Fäßler, F., Javoor, M., Datler, J., Döring, H., Hofer, F., Dimchev, G. A., … Schur, F. K. (2023). ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.add6495 chicago: Fäßler, Florian, Manjunath Javoor, Julia Datler, Hermann Döring, Florian Hofer, Georgi A Dimchev, Victor-Valentin Hodirnau, Jan Faix, Klemens Rottner, and Florian KM Schur. “ArpC5 Isoforms Regulate Arp2/3 Complex–Dependent Protrusion through Differential Ena/VASP Positioning.” Science Advances. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/sciadv.add6495. ieee: F. Fäßler et al., “ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning,” Science Advances, vol. 9, no. 3. American Association for the Advancement of Science, 2023. ista: Fäßler F, Javoor M, Datler J, Döring H, Hofer F, Dimchev GA, Hodirnau V-V, Faix J, Rottner K, Schur FK. 2023. ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning. Science Advances. 9(3), add6495. mla: Fäßler, Florian, et al. “ArpC5 Isoforms Regulate Arp2/3 Complex–Dependent Protrusion through Differential Ena/VASP Positioning.” Science Advances, vol. 9, no. 3, add6495, American Association for the Advancement of Science, 2023, doi:10.1126/sciadv.add6495. short: F. Fäßler, M. Javoor, J. Datler, H. Döring, F. Hofer, G.A. Dimchev, V.-V. Hodirnau, J. Faix, K. Rottner, F.K. Schur, Science Advances 9 (2023). date_created: 2023-01-23T07:26:42Z date_published: 2023-01-20T00:00:00Z date_updated: 2023-11-21T08:05:35Z day: '20' ddc: - '570' department: - _id: FlSc - _id: EM-Fac doi: 10.1126/sciadv.add6495 external_id: isi: - '000964550100015' file: - access_level: open_access checksum: ce81a6d0b84170e5e8c62f6acfa15d9e content_type: application/pdf creator: dernst date_created: 2023-01-23T07:45:54Z date_updated: 2023-01-23T07:45:54Z file_id: '12335' file_name: 2023_ScienceAdvances_Faessler.pdf file_size: 1756234 relation: main_file success: 1 file_date_updated: 2023-01-23T07:45:54Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '3' keyword: - Multidisciplinary language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex publication: Science Advances publication_identifier: issn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: record: - id: '14562' relation: research_data status: public scopus_import: '1' status: public title: ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2023' ... --- _id: '14562' abstract: - lang: eng text: "Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration.\r\n" acknowledged_ssus: - _id: LifeSc - _id: Bio - _id: ScienComp - _id: EM-Fac acknowledgement: "We would like to thank K. von Peinen and B. Denker (Helmholtz Centre for Infection Research, Braunschweig, Germany) for experimental and technical assistance, respectively.\r\nFunding: This research was supported by the Scientific Service Units (SSUs) of ISTA through resources provided by Scientific Computing (SciComp), the Life Science Facility (LSF), the Imaging and Optics facility (IOF), and the Electron Microscopy Facility (EMF). We acknowledge support from ISTA and from the Austrian Science Fund (FWF) (P33367) to F.K.M.S., from the Research Training Group GRK2223 and the Helmholtz Society to K.R,. and from the Deutsche Forschungsgemeinschaft (DFG) to J.F. and K.R." article_processing_charge: No author: - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Schur FK. Research data of the publication “ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning.” 2023. doi:10.15479/AT:ISTA:14562 apa: Schur, F. K. (2023). Research data of the publication “ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:14562 chicago: Schur, Florian KM. “Research Data of the Publication ‘ArpC5 Isoforms Regulate Arp2/3 Complex-Dependent Protrusion through Differential Ena/VASP Positioning.’” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:14562. ieee: F. K. Schur, “Research data of the publication ‘ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning.’” Institute of Science and Technology Austria, 2023. ista: Schur FK. 2023. Research data of the publication ‘ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:14562. mla: Schur, Florian KM. Research Data of the Publication “ArpC5 Isoforms Regulate Arp2/3 Complex-Dependent Protrusion through Differential Ena/VASP Positioning.” Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:14562. short: F.K. Schur, (2023). contributor: - contributor_type: researcher first_name: Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - contributor_type: researcher first_name: Manjunath id: 305ab18b-dc7d-11ea-9b2f-b58195228ea2 last_name: Javoor - contributor_type: researcher first_name: Julia id: 3B12E2E6-F248-11E8-B48F-1D18A9856A87 last_name: Datler orcid: 0000-0002-3616-8580 - contributor_type: researcher first_name: Hermann last_name: Döring - contributor_type: researcher first_name: Florian id: b9d234ba-9e33-11ed-95b6-cd561df280e6 last_name: Hofer - contributor_type: researcher first_name: Georgi A id: 38C393BE-F248-11E8-B48F-1D18A9856A87 last_name: Dimchev orcid: 0000-0001-8370-6161 - contributor_type: researcher first_name: Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - contributor_type: researcher first_name: Jan last_name: Faix - contributor_type: researcher first_name: Klemens last_name: Rottner - contributor_type: researcher first_name: Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 date_created: 2023-11-20T09:22:33Z date_published: 2023-11-21T00:00:00Z date_updated: 2023-11-21T08:05:34Z day: '21' ddc: - '570' department: - _id: FlSc doi: 10.15479/AT:ISTA:14562 file: - access_level: open_access checksum: e9bab797b44614f144a5b02d9636f8c3 content_type: application/zip creator: fschur date_created: 2023-11-20T10:27:17Z date_updated: 2023-11-20T10:27:17Z file_id: '14570' file_name: Figure2.zip file_size: 1581687449 relation: main_file success: 1 - access_level: open_access checksum: 4efd388cccd03c549fc90f6e46d37006 content_type: application/zip creator: fschur date_created: 2023-11-20T10:29:18Z date_updated: 2023-11-20T10:29:18Z file_id: '14571' file_name: SupplementaryFigure3.zip file_size: 116088565 relation: main_file success: 1 - access_level: open_access checksum: bdeb232dc94d0c22a3f7e0d18189ce89 content_type: application/zip creator: fschur date_created: 2023-11-20T10:44:39Z date_updated: 2023-11-20T10:44:39Z file_id: '14572' file_name: Figure5.zip file_size: 5154614201 relation: main_file success: 1 - access_level: open_access checksum: 83aee17d621a05d865f68f39c8892d27 content_type: application/zip creator: fschur date_created: 2023-11-20T10:46:00Z date_updated: 2023-11-20T10:46:00Z file_id: '14573' file_name: SupplementaryFigure7.zip file_size: 1277893286 relation: main_file success: 1 - access_level: open_access checksum: fb9beb6fe15c8dac6679dd02044d2ea6 content_type: application/zip creator: fschur date_created: 2023-11-20T10:46:08Z date_updated: 2023-11-20T10:46:08Z file_id: '14574' file_name: SupplementaryFigure9.zip file_size: 228485124 relation: main_file success: 1 - access_level: open_access checksum: 4f3644e5feabe4824486d56885bb79fe content_type: application/zip creator: fschur date_created: 2023-11-20T10:46:32Z date_updated: 2023-11-20T10:46:32Z file_id: '14575' file_name: SupplementaryFigure10.zip file_size: 1226788198 relation: main_file success: 1 - access_level: open_access checksum: 96167f722ed0ca78e30681cd1573b9d7 content_type: application/zip creator: fschur date_created: 2023-11-20T10:46:17Z date_updated: 2023-11-20T10:46:17Z file_id: '14576' file_name: SupplementaryFigure11.zip file_size: 277577131 relation: main_file success: 1 - access_level: open_access checksum: d1e03c9805c18cfbc2e9fdf38a9f556f content_type: application/zip creator: fschur date_created: 2023-11-20T10:46:29Z date_updated: 2023-11-20T10:46:29Z file_id: '14577' file_name: SupplementaryFigure15.zip file_size: 591483468 relation: main_file success: 1 - access_level: open_access checksum: 4d437c04fdb3c1e699618063c4bd21c3 content_type: application/zip creator: fschur date_created: 2023-11-20T10:47:00Z date_updated: 2023-11-20T10:47:00Z file_id: '14578' file_name: SupplementaryFigure17.zip file_size: 1709528579 relation: main_file success: 1 - access_level: open_access checksum: 967b5378a4f16c43f490eae328afe50e content_type: application/zip creator: fschur date_created: 2023-11-20T11:26:36Z date_updated: 2023-11-20T11:26:36Z file_id: '14581' file_name: SupplementaryFigure4.zip file_size: 1920765280 relation: main_file success: 1 - access_level: open_access checksum: 11899986cf0b471d258fe168ee33a3ea content_type: application/zip creator: fschur date_created: 2023-11-20T11:38:12Z date_updated: 2023-11-20T11:38:12Z file_id: '14583' file_name: Figure1_partA.zip file_size: 3013566196 relation: main_file success: 1 - access_level: open_access checksum: c452afe1ab506d58d32e601d5b3878bb content_type: application/zip creator: fschur date_created: 2023-11-20T11:43:23Z date_updated: 2023-11-20T11:43:23Z file_id: '14584' file_name: Figure1_partB.zip file_size: 3250260203 relation: main_file success: 1 - access_level: open_access checksum: 223c98eceecbe65dd268f4f363a620d8 content_type: text/rtf creator: fschur date_created: 2023-11-20T11:49:58Z date_updated: 2023-11-20T11:49:58Z file_id: '14585' file_name: ReadMe.rtf file_size: 1460 relation: main_file success: 1 file_date_updated: 2023-11-20T11:49:58Z has_accepted_license: '1' month: '11' oa: 1 oa_version: Published Version project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex publisher: Institute of Science and Technology Austria related_material: record: - id: '12334' relation: used_in_publication status: public status: public title: Research data of the publication "ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning" tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14502' abstract: - lang: eng text: A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. This also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of segmented and vectorized fila- mentous networks from pre-processed cryo-electron tomograms, facilitating the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the processing of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner. author: - first_name: Georgi A full_name: Dimchev, Georgi A id: 38C393BE-F248-11E8-B48F-1D18A9856A87 last_name: Dimchev orcid: 0000-0001-8370-6161 - first_name: Behnam full_name: Amiri, Behnam last_name: Amiri - first_name: Florian full_name: Fäßler, Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - first_name: Martin full_name: Falcke, Martin last_name: Falcke - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Dimchev GA, Amiri B, Fäßler F, Falcke M, Schur FK. Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data. 2023. doi:10.15479/AT:ISTA:14502 apa: Dimchev, G. A., Amiri, B., Fäßler, F., Falcke, M., & Schur, F. K. (2023). Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:14502 chicago: Dimchev, Georgi A, Behnam Amiri, Florian Fäßler, Martin Falcke, and Florian KM Schur. “Computational Toolbox for Ultrastructural Quantitative Analysis of Filament Networks in Cryo-ET Data.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:14502. ieee: G. A. Dimchev, B. Amiri, F. Fäßler, M. Falcke, and F. K. Schur, “Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data.” Institute of Science and Technology Austria, 2023. ista: Dimchev GA, Amiri B, Fäßler F, Falcke M, Schur FK. 2023. Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data, Institute of Science and Technology Austria, 10.15479/AT:ISTA:14502. mla: Dimchev, Georgi A., et al. Computational Toolbox for Ultrastructural Quantitative Analysis of Filament Networks in Cryo-ET Data. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:14502. short: G.A. Dimchev, B. Amiri, F. Fäßler, M. Falcke, F.K. Schur, (2023). date_created: 2023-11-08T19:40:54Z date_published: 2023-11-21T00:00:00Z date_updated: 2023-11-21T08:36:02Z day: '21' ddc: - '570' department: - _id: FlSc doi: 10.15479/AT:ISTA:14502 file: - access_level: open_access checksum: a8b9adeb53a4109dea4d5e39fa1acccf content_type: application/zip creator: fschur date_created: 2023-11-08T20:23:07Z date_updated: 2023-11-08T20:23:07Z file_id: '14503' file_name: Computational_Toolbox_v1.2.zip file_size: 347641117 relation: main_file success: 1 - access_level: open_access checksum: 14db2addbfca61a085ba301ed6f2900b content_type: text/plain creator: dernst date_created: 2023-11-21T08:20:23Z date_updated: 2023-11-21T08:20:23Z file_id: '14586' file_name: Readme.txt file_size: 1522 relation: main_file success: 1 file_date_updated: 2023-11-21T08:20:23Z has_accepted_license: '1' keyword: - cryo-electron tomography - actin cytoskeleton - toolbox license: https://choosealicense.com/licenses/agpl-3.0/ month: '11' oa: 1 project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex publisher: Institute of Science and Technology Austria related_material: record: - id: '10290' relation: used_for_analysis_in status: public status: public title: Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data tmp: legal_code_url: https://www.gnu.org/licenses/agpl-3.0.html name: GNU Affero General Public License v3.0 short: 'GNU AGPLv3 ' type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13342' abstract: - lang: eng text: Motile cells moving in multicellular organisms encounter microenvironments of locally heterogeneous mechanochemical composition. Individual compositional parameters like chemotactic signals, adhesiveness, and pore sizes are well known to be sensed by motile cells, providing individual guidance cues for cellular pathfinding. However, motile cells encounter diverse mechanochemical signals at the same time, raising the question of how cells respond to locally diverse and potentially competing signals on their migration routes. Here, we reveal that motile amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical microenvironments. Using mammalian immune cells and the amoebaDictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step cell polarity switch and is driven by myosin II-forces, sliding the nucleus from a ‘losing’ to the ‘winning’ leading edge to re-adjust the nuclear to the cellular path. Impaired nucleokinesis distorts fast path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that motile single-cell amoebae, many immune cells, and some cancer cells utilize an amoeboid migration strategy, these results suggest that amoeboid nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease. acknowledgement: We thank Christoph Mayr and Bingzhi Wang for initial experiments on amoeboid nucleokinesis, Ana-Maria Lennon-Duménil and Aline Yatim for bone marrow from MyoIIA-Flox*CD11c-Cre mice, Michael Sixt and Aglaja Kopf for EMTB-mCherry, EB3-mCherry, Lifeact-GFP, Lfc knockout, and Myh9-GFP expressing HoxB8 cells, Malte Benjamin Braun, Mauricio Ruiz, and Madeleine T. Schmitt for critical reading of the manuscript, and the Core Facility Bioimaging, the Core Facility Flow Cytometry, and the Animal Core Facility of the Biomedical Center (BMC) for excellent support. This study was supported by the Peter Hans Hofschneider Professorship of the foundation “Stiftung Experimentelle Biomedizin” (to JR), the LMU Institutional Strategy LMU-Excellent within the framework of the German Excellence Initiative (to JR), and the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation; SFB914 project A12, to JR), and the CZI grant DAF2020-225401 (https://doi.org/10.37921/120055ratwvi) from the Chan Zuckerberg Initiative DAF (to RH; an advised fund of Silicon Valley Community Foundation (funder https://doi.org/10.13039/100014989)). Open Access funding enabled and organized by Projekt DEAL. article_number: e114557 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Janina full_name: Kroll, Janina last_name: Kroll - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Arthur full_name: Kuznetcov, Arthur last_name: Kuznetcov - first_name: Kasia full_name: Stefanowski, Kasia last_name: Stefanowski - first_name: Monika D. full_name: Hermann, Monika D. last_name: Hermann - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Lubuna B full_name: Shafeek, Lubuna B id: 3CD37A82-F248-11E8-B48F-1D18A9856A87 last_name: Shafeek orcid: 0000-0001-7180-6050 - first_name: Annette full_name: Müller-Taubenberger, Annette last_name: Müller-Taubenberger - first_name: Jörg full_name: Renkawitz, Jörg id: 3F0587C8-F248-11E8-B48F-1D18A9856A87 last_name: Renkawitz orcid: 0000-0003-2856-3369 citation: ama: Kroll J, Hauschild R, Kuznetcov A, et al. Adaptive pathfinding by nucleokinesis during amoeboid migration. EMBO Journal. 2023. doi:10.15252/embj.2023114557 apa: Kroll, J., Hauschild, R., Kuznetcov, A., Stefanowski, K., Hermann, M. D., Merrin, J., … Renkawitz, J. (2023). Adaptive pathfinding by nucleokinesis during amoeboid migration. EMBO Journal. Embo Press. https://doi.org/10.15252/embj.2023114557 chicago: Kroll, Janina, Robert Hauschild, Arthur Kuznetcov, Kasia Stefanowski, Monika D. Hermann, Jack Merrin, Lubuna B Shafeek, Annette Müller-Taubenberger, and Jörg Renkawitz. “Adaptive Pathfinding by Nucleokinesis during Amoeboid Migration.” EMBO Journal. Embo Press, 2023. https://doi.org/10.15252/embj.2023114557. ieee: J. Kroll et al., “Adaptive pathfinding by nucleokinesis during amoeboid migration,” EMBO Journal. Embo Press, 2023. ista: Kroll J, Hauschild R, Kuznetcov A, Stefanowski K, Hermann MD, Merrin J, Shafeek LB, Müller-Taubenberger A, Renkawitz J. 2023. Adaptive pathfinding by nucleokinesis during amoeboid migration. EMBO Journal., e114557. mla: Kroll, Janina, et al. “Adaptive Pathfinding by Nucleokinesis during Amoeboid Migration.” EMBO Journal, e114557, Embo Press, 2023, doi:10.15252/embj.2023114557. short: J. Kroll, R. Hauschild, A. Kuznetcov, K. Stefanowski, M.D. Hermann, J. Merrin, L.B. Shafeek, A. Müller-Taubenberger, J. Renkawitz, EMBO Journal (2023). date_created: 2023-08-01T08:59:06Z date_published: 2023-11-21T00:00:00Z date_updated: 2023-11-27T08:47:45Z day: '21' ddc: - '570' department: - _id: NanoFab - _id: Bio doi: 10.15252/embj.2023114557 external_id: pmid: - '37987147' file: - access_level: open_access checksum: 6261d0041c7e8d284c39712c40079730 content_type: application/pdf creator: dernst date_created: 2023-11-27T08:45:56Z date_updated: 2023-11-27T08:45:56Z file_id: '14611' file_name: 2023_EmboJournal_Kroll.pdf file_size: 4862497 relation: main_file success: 1 file_date_updated: 2023-11-27T08:45:56Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: EMBO Journal publication_identifier: eissn: - 1460-2075 issn: - 0261-4189 publication_status: published publisher: Embo Press quality_controlled: '1' scopus_import: '1' status: public title: Adaptive pathfinding by nucleokinesis during amoeboid migration tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14610' abstract: - lang: eng text: AbstractEndomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3–7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host. acknowledgement: "We thank the Human Embryonic Stem Cell Unit, Advanced Light Microscopy and High-throughput Screening facilities at the Crick for their support in various aspects of the work. We thank the laboratory of P. Anderson for providing the G3BP-DKO U2OS cells. The authors thank N. Chen for providing the purified glycinin protein; Z. Zhao for providing the microfluidic chip wafers; and M. Amaral and F. Frey for helpful discussions and valuable input regarding analysis methods. This work was supported by the Francis Crick Institute (to M.G.G.), which receives its core funding from Cancer Research UK (FC001092), the UK Medical Research Council (FC001092) and the Wellcome Trust (FC001092). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 772022 to M.G.G.). C.B. has received funding from the European Respiratory Society and the European Union’s H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 713406. A.M. acknowledges support from Alexander von Humboldt Foundation and C.V.-C. acknowledges funding by the Royal Society and the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant no. 802960 to A.S.). All simulations were carried out on the high-performance computing cluster at the Institute of Science and Technology Austria. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.\r\nOpen Access funding provided by The Francis Crick Institute." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Claudio full_name: Bussi, Claudio last_name: Bussi - first_name: Agustín full_name: Mangiarotti, Agustín last_name: Mangiarotti - first_name: Christian Eduardo full_name: Vanhille-Campos, Christian Eduardo id: 3adeca52-9313-11ed-b1ac-c170b2505714 last_name: Vanhille-Campos - first_name: Beren full_name: Aylan, Beren last_name: Aylan - first_name: Enrica full_name: Pellegrino, Enrica last_name: Pellegrino - first_name: Natalia full_name: Athanasiadi, Natalia last_name: Athanasiadi - first_name: Antony full_name: Fearns, Antony last_name: Fearns - first_name: Angela full_name: Rodgers, Angela last_name: Rodgers - first_name: Titus M. full_name: Franzmann, Titus M. last_name: Franzmann - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Rumiana full_name: Dimova, Rumiana last_name: Dimova - first_name: Maximiliano G. full_name: Gutierrez, Maximiliano G. last_name: Gutierrez citation: ama: Bussi C, Mangiarotti A, Vanhille-Campos CE, et al. Stress granules plug and stabilize damaged endolysosomal membranes. Nature. 2023. doi:10.1038/s41586-023-06726-w apa: Bussi, C., Mangiarotti, A., Vanhille-Campos, C. E., Aylan, B., Pellegrino, E., Athanasiadi, N., … Gutierrez, M. G. (2023). Stress granules plug and stabilize damaged endolysosomal membranes. Nature. Springer Nature. https://doi.org/10.1038/s41586-023-06726-w chicago: Bussi, Claudio, Agustín Mangiarotti, Christian Eduardo Vanhille-Campos, Beren Aylan, Enrica Pellegrino, Natalia Athanasiadi, Antony Fearns, et al. “Stress Granules Plug and Stabilize Damaged Endolysosomal Membranes.” Nature. Springer Nature, 2023. https://doi.org/10.1038/s41586-023-06726-w. ieee: C. Bussi et al., “Stress granules plug and stabilize damaged endolysosomal membranes,” Nature. Springer Nature, 2023. ista: Bussi C, Mangiarotti A, Vanhille-Campos CE, Aylan B, Pellegrino E, Athanasiadi N, Fearns A, Rodgers A, Franzmann TM, Šarić A, Dimova R, Gutierrez MG. 2023. Stress granules plug and stabilize damaged endolysosomal membranes. Nature. mla: Bussi, Claudio, et al. “Stress Granules Plug and Stabilize Damaged Endolysosomal Membranes.” Nature, Springer Nature, 2023, doi:10.1038/s41586-023-06726-w. short: C. Bussi, A. Mangiarotti, C.E. Vanhille-Campos, B. Aylan, E. Pellegrino, N. Athanasiadi, A. Fearns, A. Rodgers, T.M. Franzmann, A. Šarić, R. Dimova, M.G. Gutierrez, Nature (2023). date_created: 2023-11-27T07:56:37Z date_published: 2023-11-15T00:00:00Z date_updated: 2023-11-27T09:05:08Z day: '15' department: - _id: AnSa doi: 10.1038/s41586-023-06726-w external_id: pmid: - '37968398' keyword: - Multidisciplinary language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41586-023-06726-w month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41586-023-06882-z record: - id: '14472' relation: research_data status: public status: public title: Stress granules plug and stabilize damaged endolysosomal membranes type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14472' abstract: - lang: eng text: "Data related to the following paper:\r\n\"Stress granules plug and stabilize damaged endolysosomal membranes\" (https://doi.org/10.1038/s41586-023-06726-w)\r\n\r\nAbstract: \r\nEndomembrane damage represents a form of stress that is detrimental for eukaryotic cells. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. In this work we use a minimal coarse-grained molecular dynamics system to explore how lipid vesicles undergoing poration in a protein-rich medium can be plugged and stabilised by condensate formation. The solution of proteins in and out of the vesicle is described by beads dispersed in implicit solvent. The membrane is described as a one-bead-thick fluid elastic layer of mechanical properties that mimic biological membranes. We tune the interactions between solution beads in the different compartments to capture the differences between the cytoplasmic and endosomal protein solutions and explore how the system responds to different degrees of membrane poration. We find that, in the right interaction regime, condensates form rapidly at the damage site upon solution mixing and act as a plug that prevents futher mixing and destabilisation of the vesicle. Further, when the condensate can interact with the membrane (wetting interactions) we find that it mediates pore sealing and membrane repair. This research is part of the work published in \"Stress granules plug and stabilize damaged endolysosomal membranes\", Bussi et al, Nature, 2023 - 10.1038/s41586-023-06726-w." article_processing_charge: No author: - first_name: Christian Eduardo full_name: Vanhille-Campos, Christian Eduardo id: 3adeca52-9313-11ed-b1ac-c170b2505714 last_name: Vanhille-Campos - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 citation: ama: Vanhille-Campos CE, Šarić A. Stress granules plug and stabilize damaged endolysosomal membranes. 2023. doi:10.15479/AT:ISTA:14472 apa: Vanhille-Campos, C. E., & Šarić, A. (2023). Stress granules plug and stabilize damaged endolysosomal membranes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:14472 chicago: Vanhille-Campos, Christian Eduardo, and Anđela Šarić. “Stress Granules Plug and Stabilize Damaged Endolysosomal Membranes.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:14472. ieee: C. E. Vanhille-Campos and A. Šarić, “Stress granules plug and stabilize damaged endolysosomal membranes.” Institute of Science and Technology Austria, 2023. ista: Vanhille-Campos CE, Šarić A. 2023. Stress granules plug and stabilize damaged endolysosomal membranes, Institute of Science and Technology Austria, 10.15479/AT:ISTA:14472. mla: Vanhille-Campos, Christian Eduardo, and Anđela Šarić. Stress Granules Plug and Stabilize Damaged Endolysosomal Membranes. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:14472. short: C.E. Vanhille-Campos, A. Šarić, (2023). date_created: 2023-10-30T16:38:32Z date_published: 2023-10-31T00:00:00Z date_updated: 2023-11-27T09:05:07Z day: '31' ddc: - '570' department: - _id: AnSa doi: 10.15479/AT:ISTA:14472 file: - access_level: open_access checksum: a18706e952e8660c51ede52a167270b7 content_type: application/zip creator: ipalaia date_created: 2023-10-30T16:31:08Z date_updated: 2023-10-30T16:31:08Z file_id: '14473' file_name: SGporecondensation-main.zip file_size: 62821432 relation: main_file success: 1 - access_level: open_access checksum: 389eab31c6509dbc05795017fb618758 content_type: text/plain creator: dernst date_created: 2023-10-31T08:57:50Z date_updated: 2023-10-31T08:57:50Z file_id: '14474' file_name: README.txt file_size: 1697 relation: main_file success: 1 file_date_updated: 2023-10-31T08:57:50Z has_accepted_license: '1' month: '10' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '14610' relation: used_in_publication status: public status: public title: Stress granules plug and stabilize damaged endolysosomal membranes tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12747' abstract: - lang: eng text: Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing. acknowledgement: 'The authors thank the participants and their families for participating in the study. We thank all members of our laboratories for helpful discussions. We are grateful to Vienna BioCenter Core Facilities: Mouse Phenotyping Unit, Histopathology Unit, Bioinformatics Unit, BioOptics Unit, Electron Microscopy Unit and Comparative Medicine Unit. We are grateful to the Lipidomics Facility, and K. Klavins and T. Hannich at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences for assistance with lipidomics analysis. We also thank T. Huan and A. Hui (UBC Vancouver) for mouse tissue and mitochondria lipidomics analysis. We thank A. Klymchenko (Laboratoire de Bioimagerie et Pathologies Université de Strasbourg, Strasbourg, France) for providing the NR12S probe. We are thankful to the Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Specialized Research Center Viral Vector Core Facility for AAV6 production. We also thank K. P. Campbell and M. E. Anderson (University of Iowa, Carver College of Medicine) for advice on muscle tissue handling. We thank A. Al-Qassabi from the Sultan Qaboos University for the clinical assessment of the participants. D.C. and J.M.P. are supported by the Austrian Federal Ministry of Education, Science and Research, the Austrian Academy of Sciences, and the City of Vienna, and grants from the Austrian Science Fund (FWF) Wittgenstein award (Z 271-B19), the T. von Zastrow Foundation, and a Canada 150 Research Chairs Program (F18-01336). J.S.C. is supported by grants RO1AR44533 and P50AR065139 from the US National Institutes of Health. C.K. is supported by a grant from the Agence Nationale de la Recherche (ANR-18-CE14-0007-01). A.V.K. is supported by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 67544, and an Austrian Science Fund (FWF; no P-33799). A.W. is supported by Austrian Research Promotion Agency (FFG) project no 867674. E.S. is supported by a SciLifeLab fellowship and Karolinska Institutet Foundation Grants. Work in the laboratory of G.S.-F. is supported by the Austrian Academy of Sciences, the European Research Council (ERC AdG 695214 GameofGates) and the Innovative Medicines Initiative 2 Joint Undertaking (grant agreement no. 777372, ReSOLUTE). S.B., M.L. and R.Y. acknowledge the support of the Spastic Paraplegia Foundation.' article_processing_charge: No article_type: original author: - first_name: Domagoj full_name: Cikes, Domagoj last_name: Cikes - first_name: Kareem full_name: Elsayad, Kareem last_name: Elsayad - first_name: Erdinc full_name: Sezgin, Erdinc last_name: Sezgin - first_name: Erika full_name: Koitai, Erika last_name: Koitai - first_name: Torma full_name: Ferenc, Torma last_name: Ferenc - first_name: Michael full_name: Orthofer, Michael last_name: Orthofer - first_name: Rebecca full_name: Yarwood, Rebecca last_name: Yarwood - first_name: Leonhard X. full_name: Heinz, Leonhard X. last_name: Heinz - first_name: Vitaly full_name: Sedlyarov, Vitaly last_name: Sedlyarov - first_name: Nasser full_name: Darwish-Miranda, Nasser id: 39CD9926-F248-11E8-B48F-1D18A9856A87 last_name: Darwish-Miranda orcid: 0000-0002-8821-8236 - first_name: Adrian full_name: Taylor, Adrian last_name: Taylor - first_name: Sophie full_name: Grapentine, Sophie last_name: Grapentine - first_name: Fathiya full_name: al-Murshedi, Fathiya last_name: al-Murshedi - first_name: Anne full_name: Abot, Anne last_name: Abot - first_name: Adelheid full_name: Weidinger, Adelheid last_name: Weidinger - first_name: Candice full_name: Kutchukian, Candice last_name: Kutchukian - first_name: Colline full_name: Sanchez, Colline last_name: Sanchez - first_name: Shane J. F. full_name: Cronin, Shane J. F. last_name: Cronin - first_name: Maria full_name: Novatchkova, Maria last_name: Novatchkova - first_name: Anoop full_name: Kavirayani, Anoop last_name: Kavirayani - first_name: Thomas full_name: Schuetz, Thomas last_name: Schuetz - first_name: Bernhard full_name: Haubner, Bernhard last_name: Haubner - first_name: Lisa full_name: Haas, Lisa last_name: Haas - first_name: Astrid full_name: Hagelkruys, Astrid last_name: Hagelkruys - first_name: Suzanne full_name: Jackowski, Suzanne last_name: Jackowski - first_name: Andrey full_name: Kozlov, Andrey last_name: Kozlov - first_name: Vincent full_name: Jacquemond, Vincent last_name: Jacquemond - first_name: Claude full_name: Knauf, Claude last_name: Knauf - first_name: Giulio full_name: Superti-Furga, Giulio last_name: Superti-Furga - first_name: Eric full_name: Rullman, Eric last_name: Rullman - first_name: Thomas full_name: Gustafsson, Thomas last_name: Gustafsson - first_name: John full_name: McDermot, John last_name: McDermot - first_name: Martin full_name: Lowe, Martin last_name: Lowe - first_name: Zsolt full_name: Radak, Zsolt last_name: Radak - first_name: Jeffrey S. full_name: Chamberlain, Jeffrey S. last_name: Chamberlain - first_name: Marica full_name: Bakovic, Marica last_name: Bakovic - first_name: Siddharth full_name: Banka, Siddharth last_name: Banka - first_name: Josef M. full_name: Penninger, Josef M. last_name: Penninger citation: ama: Cikes D, Elsayad K, Sezgin E, et al. PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nature Metabolism. 2023;5:495-515. doi:10.1038/s42255-023-00766-2 apa: Cikes, D., Elsayad, K., Sezgin, E., Koitai, E., Ferenc, T., Orthofer, M., … Penninger, J. M. (2023). PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nature Metabolism. Springer Nature. https://doi.org/10.1038/s42255-023-00766-2 chicago: Cikes, Domagoj, Kareem Elsayad, Erdinc Sezgin, Erika Koitai, Torma Ferenc, Michael Orthofer, Rebecca Yarwood, et al. “PCYT2-Regulated Lipid Biosynthesis Is Critical to Muscle Health and Ageing.” Nature Metabolism. Springer Nature, 2023. https://doi.org/10.1038/s42255-023-00766-2. ieee: D. Cikes et al., “PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing,” Nature Metabolism, vol. 5. Springer Nature, pp. 495–515, 2023. ista: Cikes D, Elsayad K, Sezgin E, Koitai E, Ferenc T, Orthofer M, Yarwood R, Heinz LX, Sedlyarov V, Darwish-Miranda N, Taylor A, Grapentine S, al-Murshedi F, Abot A, Weidinger A, Kutchukian C, Sanchez C, Cronin SJF, Novatchkova M, Kavirayani A, Schuetz T, Haubner B, Haas L, Hagelkruys A, Jackowski S, Kozlov A, Jacquemond V, Knauf C, Superti-Furga G, Rullman E, Gustafsson T, McDermot J, Lowe M, Radak Z, Chamberlain JS, Bakovic M, Banka S, Penninger JM. 2023. PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nature Metabolism. 5, 495–515. mla: Cikes, Domagoj, et al. “PCYT2-Regulated Lipid Biosynthesis Is Critical to Muscle Health and Ageing.” Nature Metabolism, vol. 5, Springer Nature, 2023, pp. 495–515, doi:10.1038/s42255-023-00766-2. short: D. Cikes, K. Elsayad, E. Sezgin, E. Koitai, T. Ferenc, M. Orthofer, R. Yarwood, L.X. Heinz, V. Sedlyarov, N. Darwish-Miranda, A. Taylor, S. Grapentine, F. al-Murshedi, A. Abot, A. Weidinger, C. Kutchukian, C. Sanchez, S.J.F. Cronin, M. Novatchkova, A. Kavirayani, T. Schuetz, B. Haubner, L. Haas, A. Hagelkruys, S. Jackowski, A. Kozlov, V. Jacquemond, C. Knauf, G. Superti-Furga, E. Rullman, T. Gustafsson, J. McDermot, M. Lowe, Z. Radak, J.S. Chamberlain, M. Bakovic, S. Banka, J.M. Penninger, Nature Metabolism 5 (2023) 495–515. date_created: 2023-03-23T12:58:43Z date_published: 2023-03-20T00:00:00Z date_updated: 2023-11-28T07:31:33Z day: '20' department: - _id: Bio doi: 10.1038/s42255-023-00766-2 external_id: isi: - '000992064000002' pmid: - '36941451' intvolume: ' 5' isi: 1 keyword: - Cell Biology - Physiology (medical) - Endocrinology - Diabetes and Metabolism - Internal Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2022.03.02.482658 month: '03' oa: 1 oa_version: Preprint page: 495-515 pmid: 1 publication: Nature Metabolism publication_identifier: issn: - 2522-5812 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s42255-023-00791-1 scopus_import: '1' status: public title: PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2023' ... --- _id: '14605' abstract: - lang: eng text: The phonon transport mechanisms and ultralow lattice thermal conductivities (κL) in silver halide AgX (X=Cl,Br,I) compounds are not yet well understood. Herein, we study the lattice dynamics and thermal property of AgX under the framework of perturbation theory and the two-channel Wigner thermal transport model based on accurate machine learning potentials. We find that an accurate extraction of the third-order atomic force constants from largely displaced configurations is significant for the calculation of the κL of AgX, and the coherence thermal transport is also non-negligible. In AgI, however, the calculated κL still considerably overestimates the experimental values even including four-phonon scatterings. Molecular dynamics (MD) simulations using machine learning potential suggest an important role of the higher-than-fourth-order lattice anharmonicity in the low-frequency phonon linewidths of AgI at room temperature, which can be related to the simultaneous restrictions of the three- and four-phonon phase spaces. The κL of AgI calculated using MD phonon lifetimes including full-order lattice anharmonicity shows a better agreement with experiments. acknowledgement: This work is supported by the Research Grants Council of Hong Kong (Grants No. 17318122 and No. 17306721). The authors are grateful for the research computing facilities offered by ITS, HKU. Z.Z. acknowledges the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 101034413. article_number: '174302' article_processing_charge: No article_type: original author: - first_name: Niuchang full_name: Ouyang, Niuchang last_name: Ouyang - first_name: Zezhu full_name: Zeng, Zezhu id: 54a2c730-803f-11ed-ab7e-95b29d2680e7 last_name: Zeng - first_name: Chen full_name: Wang, Chen last_name: Wang - first_name: Qi full_name: Wang, Qi last_name: Wang - first_name: Yue full_name: Chen, Yue last_name: Chen citation: ama: Ouyang N, Zeng Z, Wang C, Wang Q, Chen Y. Role of high-order lattice anharmonicity in the phonon thermal transport of silver halide AgX (X=Cl,Br, I). Physical Review B. 2023;108(17). doi:10.1103/PhysRevB.108.174302 apa: Ouyang, N., Zeng, Z., Wang, C., Wang, Q., & Chen, Y. (2023). Role of high-order lattice anharmonicity in the phonon thermal transport of silver halide AgX (X=Cl,Br, I). Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.108.174302 chicago: Ouyang, Niuchang, Zezhu Zeng, Chen Wang, Qi Wang, and Yue Chen. “Role of High-Order Lattice Anharmonicity in the Phonon Thermal Transport of Silver Halide AgX (X=Cl,Br, I).” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.108.174302. ieee: N. Ouyang, Z. Zeng, C. Wang, Q. Wang, and Y. Chen, “Role of high-order lattice anharmonicity in the phonon thermal transport of silver halide AgX (X=Cl,Br, I),” Physical Review B, vol. 108, no. 17. American Physical Society, 2023. ista: Ouyang N, Zeng Z, Wang C, Wang Q, Chen Y. 2023. Role of high-order lattice anharmonicity in the phonon thermal transport of silver halide AgX (X=Cl,Br, I). Physical Review B. 108(17), 174302. mla: Ouyang, Niuchang, et al. “Role of High-Order Lattice Anharmonicity in the Phonon Thermal Transport of Silver Halide AgX (X=Cl,Br, I).” Physical Review B, vol. 108, no. 17, 174302, American Physical Society, 2023, doi:10.1103/PhysRevB.108.174302. short: N. Ouyang, Z. Zeng, C. Wang, Q. Wang, Y. Chen, Physical Review B 108 (2023). date_created: 2023-11-26T23:00:54Z date_published: 2023-11-01T00:00:00Z date_updated: 2023-11-28T07:48:55Z day: '01' department: - _id: BiCh doi: 10.1103/PhysRevB.108.174302 ec_funded: 1 intvolume: ' 108' issue: '17' language: - iso: eng month: '11' oa_version: None project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Role of high-order lattice anharmonicity in the phonon thermal transport of silver halide AgX (X=Cl,Br, I) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ... --- _id: '14609' abstract: - lang: eng text: "Distributed Key Generation (DKG) is a technique to bootstrap threshold cryptosystems without a trusted party. DKG is an essential building block to many decentralized protocols such as randomness beacons, threshold signatures, Byzantine consensus, and multiparty computation. While significant progress has been made recently, existing asynchronous DKG constructions are inefficient when the reconstruction threshold is larger than one-third of the total nodes. In this paper, we present a simple and concretely efficient asynchronous DKG (ADKG) protocol among n = 3t + 1 nodes that can tolerate up to t malicious nodes and support any reconstruction threshold ℓ ≥ t. Our protocol has an expected O(κn3) communication cost, where κ is the security parameter, and only assumes the hardness of the Discrete Logarithm. The\r\ncore ingredient of our ADKG protocol is an asynchronous protocol to secret share a random polynomial of degree ℓ ≥ t, which has other applications, such as asynchronous proactive secret sharing and asynchronous multiparty computation. We implement our high-threshold ADKG protocol and evaluate it using a network of up to 128 geographically distributed nodes. Our evaluation shows that our high-threshold ADKG protocol reduces the running time by 90% and bandwidth usage by 80% over the state-of-the-art." acknowledgement: The authors would like to thank Amit Agarwal, Andrew Miller, and Tom Yurek for the helpful discussions related to the paper. This work is funded in part by a VMware early career faculty grant, a Chainlink Labs Ph.D. fellowship, the National Science Foundation, and the Austrian Science Fund (FWF) F8512-N. article_processing_charge: No author: - first_name: Sourav full_name: Das, Sourav last_name: Das - first_name: Zhuolun full_name: Xiang, Zhuolun last_name: Xiang - first_name: Eleftherios full_name: Kokoris Kogias, Eleftherios id: f5983044-d7ef-11ea-ac6d-fd1430a26d30 last_name: Kokoris Kogias - first_name: Ling full_name: Ren, Ling last_name: Ren citation: ama: 'Das S, Xiang Z, Kokoris Kogias E, Ren L. Practical asynchronous high-threshold distributed key generation and distributed polynomial sampling. In: 32nd USENIX Security Symposium. Vol 8. Usenix; 2023:5359-5376.' apa: 'Das, S., Xiang, Z., Kokoris Kogias, E., & Ren, L. (2023). Practical asynchronous high-threshold distributed key generation and distributed polynomial sampling. In 32nd USENIX Security Symposium (Vol. 8, pp. 5359–5376). Anaheim, CA, United States: Usenix.' chicago: Das, Sourav, Zhuolun Xiang, Eleftherios Kokoris Kogias, and Ling Ren. “Practical Asynchronous High-Threshold Distributed Key Generation and Distributed Polynomial Sampling.” In 32nd USENIX Security Symposium, 8:5359–76. Usenix, 2023. ieee: S. Das, Z. Xiang, E. Kokoris Kogias, and L. Ren, “Practical asynchronous high-threshold distributed key generation and distributed polynomial sampling,” in 32nd USENIX Security Symposium, Anaheim, CA, United States, 2023, vol. 8, pp. 5359–5376. ista: Das S, Xiang Z, Kokoris Kogias E, Ren L. 2023. Practical asynchronous high-threshold distributed key generation and distributed polynomial sampling. 32nd USENIX Security Symposium. USENIX Security Symposium vol. 8, 5359–5376. mla: Das, Sourav, et al. “Practical Asynchronous High-Threshold Distributed Key Generation and Distributed Polynomial Sampling.” 32nd USENIX Security Symposium, vol. 8, Usenix, 2023, pp. 5359–76. short: S. Das, Z. Xiang, E. Kokoris Kogias, L. Ren, in:, 32nd USENIX Security Symposium, Usenix, 2023, pp. 5359–5376. conference: end_date: 2023-08-11 location: Anaheim, CA, United States name: USENIX Security Symposium start_date: 2023-08-09 date_created: 2023-11-26T23:00:55Z date_published: 2023-08-15T00:00:00Z date_updated: 2023-11-28T09:17:38Z day: '15' ddc: - '000' department: - _id: ElKo file: - access_level: open_access checksum: 1a730765930138e23c6efd2575872641 content_type: application/pdf creator: dernst date_created: 2023-11-28T09:14:34Z date_updated: 2023-11-28T09:14:34Z file_id: '14621' file_name: 2023_USENIX_Das.pdf file_size: 704331 relation: main_file success: 1 file_date_updated: 2023-11-28T09:14:34Z has_accepted_license: '1' intvolume: ' 8' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2022/1389 month: '08' oa: 1 oa_version: Published Version page: 5359-5376 project: - _id: 34a4ce89-11ca-11ed-8bc3-8cc37fb6e11f grant_number: F8512 name: Secure Network and Hardware for Efficient Blockchains publication: 32nd USENIX Security Symposium publication_identifier: isbn: - '9781713879497' publication_status: published publisher: Usenix quality_controlled: '1' scopus_import: '1' status: public title: Practical asynchronous high-threshold distributed key generation and distributed polynomial sampling type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2023' ... --- _id: '14603' abstract: - lang: eng text: Computing the solubility of crystals in a solvent using atomistic simulations is notoriously challenging due to the complexities and convergence issues associated with free-energy methods, as well as the slow equilibration in direct-coexistence simulations. This paper introduces a molecular-dynamics workflow that simplifies and robustly computes the solubility of molecular or ionic crystals. This method is considerably more straightforward than the state-of-the-art, as we have streamlined and optimised each step of the process. Specifically, we calculate the chemical potential of the crystal using the gas-phase molecule as a reference state, and employ the S0 method to determine the concentration dependence of the chemical potential of the solute. We use this workflow to predict the solubilities of sodium chloride in water, urea polymorphs in water, and paracetamol polymorphs in both water and ethanol. Our findings indicate that the predicted solubility is sensitive to the chosen potential energy surface. Furthermore, we note that the harmonic approximation often fails for both molecular crystals and gas molecules at or above room temperature, and that the assumption of an ideal solution becomes less valid for highly soluble substances. acknowledgement: A.R. and B.C. acknowledge resources provided by the Cambridge Tier-2 system operated by the University of Cambridge Research Computing Service funded by EPSRC Tier-2 capital Grant No. EP/P020259/1. P.Y.C. acknowledges support from the Ernest Oppenheimer Fund and the Winton Programme for the Physics of Sustainability. article_number: '184110' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Aleks full_name: Reinhardt, Aleks last_name: Reinhardt - first_name: Pin Yu full_name: Chew, Pin Yu last_name: Chew - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 citation: ama: Reinhardt A, Chew PY, Cheng B. A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals. Journal of Chemical Physics. 2023;159(18). doi:10.1063/5.0173341 apa: Reinhardt, A., Chew, P. Y., & Cheng, B. (2023). A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals. Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/5.0173341 chicago: Reinhardt, Aleks, Pin Yu Chew, and Bingqing Cheng. “A Streamlined Molecular-Dynamics Workflow for Computing Solubilities of Molecular and Ionic Crystals.” Journal of Chemical Physics. AIP Publishing, 2023. https://doi.org/10.1063/5.0173341. ieee: A. Reinhardt, P. Y. Chew, and B. Cheng, “A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals,” Journal of Chemical Physics, vol. 159, no. 18. AIP Publishing, 2023. ista: Reinhardt A, Chew PY, Cheng B. 2023. A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals. Journal of Chemical Physics. 159(18), 184110. mla: Reinhardt, Aleks, et al. “A Streamlined Molecular-Dynamics Workflow for Computing Solubilities of Molecular and Ionic Crystals.” Journal of Chemical Physics, vol. 159, no. 18, 184110, AIP Publishing, 2023, doi:10.1063/5.0173341. short: A. Reinhardt, P.Y. Chew, B. Cheng, Journal of Chemical Physics 159 (2023). date_created: 2023-11-26T23:00:54Z date_published: 2023-11-14T00:00:00Z date_updated: 2023-11-28T08:39:23Z day: '14' ddc: - '530' - '540' department: - _id: BiCh doi: 10.1063/5.0173341 external_id: arxiv: - '2308.10886' file: - access_level: open_access checksum: f668ee0d07096eef81159d05bc27aabc content_type: application/pdf creator: dernst date_created: 2023-11-28T08:39:06Z date_updated: 2023-11-28T08:39:06Z file_id: '14620' file_name: 2023_JourChemicalPhysics_Reinhardt.pdf file_size: 6276059 relation: main_file success: 1 file_date_updated: 2023-11-28T08:39:06Z has_accepted_license: '1' intvolume: ' 159' issue: '18' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 issn: - 0021-9606 publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '14619' relation: research_data status: public scopus_import: '1' status: public title: A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 159 year: '2023' ... --- _id: '14604' abstract: - lang: eng text: Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex-chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years—the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content the dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders. acknowledgement: All computational analyses were performed on the server at Institute of Science and Technology Austria. We thank Marwan Elkrewi and Vincent Bett for analytical advice, and Tanja Schwander and Vincent Merel for useful discussions. We also thank Matthew Hahn for comments on an earlier version of the manuscript. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Melissa A full_name: Toups, Melissa A id: 4E099E4E-F248-11E8-B48F-1D18A9856A87 last_name: Toups orcid: 0000-0002-9752-7380 - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: Toups MA, Vicoso B. The X chromosome of insects likely predates the origin of class Insecta. Evolution. 2023;77(11):2504-2511. doi:10.1093/evolut/qpad169 apa: Toups, M. A., & Vicoso, B. (2023). The X chromosome of insects likely predates the origin of class Insecta. Evolution. Oxford University Press. https://doi.org/10.1093/evolut/qpad169 chicago: Toups, Melissa A, and Beatriz Vicoso. “The X Chromosome of Insects Likely Predates the Origin of Class Insecta.” Evolution. Oxford University Press, 2023. https://doi.org/10.1093/evolut/qpad169. ieee: M. A. Toups and B. Vicoso, “The X chromosome of insects likely predates the origin of class Insecta,” Evolution, vol. 77, no. 11. Oxford University Press, pp. 2504–2511, 2023. ista: Toups MA, Vicoso B. 2023. The X chromosome of insects likely predates the origin of class Insecta. Evolution. 77(11), 2504–2511. mla: Toups, Melissa A., and Beatriz Vicoso. “The X Chromosome of Insects Likely Predates the Origin of Class Insecta.” Evolution, vol. 77, no. 11, Oxford University Press, 2023, pp. 2504–11, doi:10.1093/evolut/qpad169. short: M.A. Toups, B. Vicoso, Evolution 77 (2023) 2504–2511. date_created: 2023-11-26T23:00:54Z date_published: 2023-11-02T00:00:00Z date_updated: 2023-11-28T08:25:28Z day: '02' ddc: - '570' department: - _id: BeVi doi: 10.1093/evolut/qpad169 external_id: pmid: - '37738212' file: - access_level: open_access checksum: b66dc10edae92d38918d534e64dda77c content_type: application/pdf creator: dernst date_created: 2023-11-28T08:12:15Z date_updated: 2023-11-28T08:12:15Z file_id: '14618' file_name: 2023_Evolution_Toups.pdf file_size: 1399102 relation: main_file success: 1 file_date_updated: 2023-11-28T08:12:15Z has_accepted_license: '1' intvolume: ' 77' issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 2504-2511 pmid: 1 publication: Evolution publication_identifier: eissn: - 1558-5646 publication_status: published publisher: Oxford University Press quality_controlled: '1' related_material: link: - relation: software url: https://git.ista.ac.at/bvicoso/veryoldx record: - id: '14616' relation: research_data status: public - id: '14617' relation: research_data status: public scopus_import: '1' status: public title: The X chromosome of insects likely predates the origin of class Insecta tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 77 year: '2023' ... --- _id: '14616' abstract: - lang: eng text: Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years – the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content of the Dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders. article_processing_charge: No author: - first_name: Melissa A full_name: Toups, Melissa A id: 4E099E4E-F248-11E8-B48F-1D18A9856A87 last_name: Toups orcid: 0000-0002-9752-7380 - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: Toups MA, Vicoso B. The X chromosome of insects likely predates the origin of Class Insecta. 2023. doi:10.5061/DRYAD.HX3FFBGKT apa: Toups, M. A., & Vicoso, B. (2023). The X chromosome of insects likely predates the origin of Class Insecta. Dryad. https://doi.org/10.5061/DRYAD.HX3FFBGKT chicago: Toups, Melissa A, and Beatriz Vicoso. “The X Chromosome of Insects Likely Predates the Origin of Class Insecta.” Dryad, 2023. https://doi.org/10.5061/DRYAD.HX3FFBGKT. ieee: M. A. Toups and B. Vicoso, “The X chromosome of insects likely predates the origin of Class Insecta.” Dryad, 2023. ista: Toups MA, Vicoso B. 2023. The X chromosome of insects likely predates the origin of Class Insecta, Dryad, 10.5061/DRYAD.HX3FFBGKT. mla: Toups, Melissa A., and Beatriz Vicoso. The X Chromosome of Insects Likely Predates the Origin of Class Insecta. Dryad, 2023, doi:10.5061/DRYAD.HX3FFBGKT. short: M.A. Toups, B. Vicoso, (2023). date_created: 2023-11-28T08:01:53Z date_published: 2023-09-15T00:00:00Z date_updated: 2023-11-28T08:17:31Z day: '15' ddc: - '570' department: - _id: BeVi doi: 10.5061/DRYAD.HX3FFBGKT has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.hx3ffbgkt month: '09' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '14604' relation: used_in_publication status: public status: public title: The X chromosome of insects likely predates the origin of Class Insecta tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14617' abstract: - lang: eng text: Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years – the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content of the Dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders. article_processing_charge: No author: - first_name: Melissa A full_name: Toups, Melissa A id: 4E099E4E-F248-11E8-B48F-1D18A9856A87 last_name: Toups orcid: 0000-0002-9752-7380 - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: Toups MA, Vicoso B. The X chromosome of insects likely predates the origin of Class Insecta. 2023. doi:10.5281/ZENODO.8138705 apa: Toups, M. A., & Vicoso, B. (2023). The X chromosome of insects likely predates the origin of Class Insecta. Zenodo. https://doi.org/10.5281/ZENODO.8138705 chicago: Toups, Melissa A, and Beatriz Vicoso. “The X Chromosome of Insects Likely Predates the Origin of Class Insecta.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.8138705. ieee: M. A. Toups and B. Vicoso, “The X chromosome of insects likely predates the origin of Class Insecta.” Zenodo, 2023. ista: Toups MA, Vicoso B. 2023. The X chromosome of insects likely predates the origin of Class Insecta, Zenodo, 10.5281/ZENODO.8138705. mla: Toups, Melissa A., and Beatriz Vicoso. The X Chromosome of Insects Likely Predates the Origin of Class Insecta. Zenodo, 2023, doi:10.5281/ZENODO.8138705. short: M.A. Toups, B. Vicoso, (2023). date_created: 2023-11-28T08:04:03Z date_published: 2023-09-15T00:00:00Z date_updated: 2023-11-28T08:25:28Z day: '15' ddc: - '570' department: - _id: BeVi doi: 10.5281/ZENODO.8138705 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.8138705 month: '09' oa: 1 oa_version: Published Version other_data_license: MIT License publisher: Zenodo related_material: record: - id: '14604' relation: used_in_publication status: public status: public title: The X chromosome of insects likely predates the origin of Class Insecta type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14619' abstract: - lang: eng text: Data underlying the publication "A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals" (DOI https://doi.org/10.1063/5.0173341). article_processing_charge: No author: - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 citation: ama: 'Cheng B. BingqingCheng/solubility: V1.0. 2023. doi:10.5281/ZENODO.8398094' apa: 'Cheng, B. (2023). BingqingCheng/solubility: V1.0. Zenodo. https://doi.org/10.5281/ZENODO.8398094' chicago: 'Cheng, Bingqing. “BingqingCheng/Solubility: V1.0.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.8398094.' ieee: 'B. Cheng, “BingqingCheng/solubility: V1.0.” Zenodo, 2023.' ista: 'Cheng B. 2023. BingqingCheng/solubility: V1.0, Zenodo, 10.5281/ZENODO.8398094.' mla: 'Cheng, Bingqing. BingqingCheng/Solubility: V1.0. Zenodo, 2023, doi:10.5281/ZENODO.8398094.' short: B. Cheng, (2023). date_created: 2023-11-28T08:32:18Z date_published: 2023-10-02T00:00:00Z date_updated: 2023-11-28T08:39:22Z day: '02' ddc: - '530' department: - _id: BiCh doi: 10.5281/ZENODO.8398094 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.8398094 month: '10' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '14603' relation: used_in_publication status: public status: public title: 'BingqingCheng/solubility: V1.0' type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14564' abstract: - lang: eng text: Cumulus parameterization (CP) in state‐of‐the‐art global climate models is based on the quasi‐equilibrium assumption (QEA), which views convection as the action of an ensemble of cumulus clouds, in a state of equilibrium with respect to a slowly varying atmospheric state. This view is not compatible with the organization and dynamical interactions across multiple scales of cloud systems in the tropics and progress in this research area was slow over decades despite the widely recognized major shortcomings. Novel ideas on how to represent key physical processes of moist convection‐large‐scale interaction to overcome the QEA have surged recently. The stochastic multicloud model (SMCM) CP in particular mimics the dynamical interactions of multiple cloud types that characterize organized tropical convection. Here, the SMCM is used to modify the Zhang‐McFarlane (ZM) CP by changing the way in which the bulk mass flux and bulk entrainment and detrainment rates are calculated. This is done by introducing a stochastic ensemble of plumes characterized by randomly varying detrainment level distributions based on the cloud area fraction of the SMCM. The SMCM is here extended to include shallow cumulus clouds resulting in a unified shallow‐deep CP. The new stochastic multicloud plume CP is validated against the control ZM scheme in the context of the single column Community Climate Model of the National Center for Atmospheric Research using data from both tropical ocean and midlatitude land convection. Some key features of the SMCM CP such as it capability to represent the tri‐modal nature of organized convection are emphasized. acknowledgement: The research of B.K. is supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (RGPIN-04246-2020). This research was conducted during the visits of P.M. Krishna to the Center for Prototype Climate Models at NYU Abu Dhabi and University of Victoria from November 2018 to June 2019 and July 2019 and October 2019, respectively. The authors are very grateful to the three anonymous reviewers who provided very thoughtful and constructive comments during the review process that helped greatly improve and shape the final version of the manuscript. article_number: e2022MS003391 article_processing_charge: Yes article_type: original author: - first_name: B. full_name: Khouider, B. last_name: Khouider - first_name: BIDYUT B full_name: GOSWAMI, BIDYUT B id: 3a4ac09c-6d61-11ec-bf66-884cde66b64b last_name: GOSWAMI orcid: 0000-0001-8602-3083 - first_name: R. full_name: Phani, R. last_name: Phani - first_name: A. J. full_name: Majda, A. J. last_name: Majda citation: ama: Khouider B, GOSWAMI BB, Phani R, Majda AJ. A shallow‐deep unified stochastic mass flux cumulus parameterization in the single column community climate model. Journal of Advances in Modeling Earth Systems. 2023;15(11). doi:10.1029/2022ms003391 apa: Khouider, B., GOSWAMI, B. B., Phani, R., & Majda, A. J. (2023). A shallow‐deep unified stochastic mass flux cumulus parameterization in the single column community climate model. Journal of Advances in Modeling Earth Systems. American Geophysical Union. https://doi.org/10.1029/2022ms003391 chicago: Khouider, B., BIDYUT B GOSWAMI, R. Phani, and A. J. Majda. “A Shallow‐deep Unified Stochastic Mass Flux Cumulus Parameterization in the Single Column Community Climate Model.” Journal of Advances in Modeling Earth Systems. American Geophysical Union, 2023. https://doi.org/10.1029/2022ms003391. ieee: B. Khouider, B. B. GOSWAMI, R. Phani, and A. J. Majda, “A shallow‐deep unified stochastic mass flux cumulus parameterization in the single column community climate model,” Journal of Advances in Modeling Earth Systems, vol. 15, no. 11. American Geophysical Union, 2023. ista: Khouider B, GOSWAMI BB, Phani R, Majda AJ. 2023. A shallow‐deep unified stochastic mass flux cumulus parameterization in the single column community climate model. Journal of Advances in Modeling Earth Systems. 15(11), e2022MS003391. mla: Khouider, B., et al. “A Shallow‐deep Unified Stochastic Mass Flux Cumulus Parameterization in the Single Column Community Climate Model.” Journal of Advances in Modeling Earth Systems, vol. 15, no. 11, e2022MS003391, American Geophysical Union, 2023, doi:10.1029/2022ms003391. short: B. Khouider, B.B. GOSWAMI, R. Phani, A.J. Majda, Journal of Advances in Modeling Earth Systems 15 (2023). date_created: 2023-11-20T09:18:21Z date_published: 2023-11-01T00:00:00Z date_updated: 2023-11-28T12:04:42Z day: '01' ddc: - '550' department: - _id: CaMu doi: 10.1029/2022ms003391 file: - access_level: open_access checksum: e30329dd985559de0ddc7021ca7382b4 content_type: application/pdf creator: dernst date_created: 2023-11-20T11:29:16Z date_updated: 2023-11-20T11:29:16Z file_id: '14582' file_name: 2023_JAMES_Khoulder.pdf file_size: 6435697 relation: main_file success: 1 file_date_updated: 2023-11-20T11:29:16Z has_accepted_license: '1' intvolume: ' 15' issue: '11' keyword: - General Earth and Planetary Sciences - Environmental Chemistry - Global and Planetary Change language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Journal of Advances in Modeling Earth Systems publication_identifier: eissn: - 1942-2466 publication_status: published publisher: American Geophysical Union quality_controlled: '1' scopus_import: '1' status: public title: A shallow‐deep unified stochastic mass flux cumulus parameterization in the single column community climate model tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2023' ... --- _id: '12789' abstract: - lang: eng text: Experiments have shown that charge distributions of granular materials are non-Gaussian, with broad tails that indicate many particles with high charge. This observation has consequences for the behavior of granular materials in many settings, and may bear relevance to the underlying charge transfer mechanism. However, there is the unaddressed possibility that broad tails arise due to experimental uncertainties, as determining the shapes of tails is nontrivial. Here we show that measurement uncertainties can indeed account for most of the tail broadening previously observed. The clue that reveals this is that distributions are sensitive to the electric field at which they are measured; ones measured at low (high) fields have larger (smaller) tails. Accounting for sources of uncertainty, we reproduce this broadening in silico. Finally, we use our results to back out the true charge distribution without broadening, which we find is still non-Guassian, though with substantially different behavior at the tails and indicating significantly fewer highly charged particles. These results have implications in many natural settings where electrostatic interactions, especially among highly charged particles, strongly affect granular behavior. acknowledged_ssus: - _id: M-Shop acknowledgement: This research was supported by Grants QUIMAL 160001 and Fondecyt 1221597. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 949120). This research was supported by the Scientific Service Units of The Institute of Science and Technology Austria (ISTA) through resources provided by the Miba Machine Shop. We thank the machine shop technical assistance of Ricardo Silva and Andrés Espinosa at Departamento de Física, Universidad de Chile. article_number: '034901' article_processing_charge: No article_type: original author: - first_name: Nicolás full_name: Mujica, Nicolás last_name: Mujica - first_name: Scott R full_name: Waitukaitis, Scott R id: 3A1FFC16-F248-11E8-B48F-1D18A9856A87 last_name: Waitukaitis orcid: 0000-0002-2299-3176 citation: ama: Mujica N, Waitukaitis SR. Accurate determination of the shapes of granular charge distributions. Physical Review E. 2023;107(3). doi:10.1103/PhysRevE.107.034901 apa: Mujica, N., & Waitukaitis, S. R. (2023). Accurate determination of the shapes of granular charge distributions. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.107.034901 chicago: Mujica, Nicolás, and Scott R Waitukaitis. “Accurate Determination of the Shapes of Granular Charge Distributions.” Physical Review E. American Physical Society, 2023. https://doi.org/10.1103/PhysRevE.107.034901. ieee: N. Mujica and S. R. Waitukaitis, “Accurate determination of the shapes of granular charge distributions,” Physical Review E, vol. 107, no. 3. American Physical Society, 2023. ista: Mujica N, Waitukaitis SR. 2023. Accurate determination of the shapes of granular charge distributions. Physical Review E. 107(3), 034901. mla: Mujica, Nicolás, and Scott R. Waitukaitis. “Accurate Determination of the Shapes of Granular Charge Distributions.” Physical Review E, vol. 107, no. 3, 034901, American Physical Society, 2023, doi:10.1103/PhysRevE.107.034901. short: N. Mujica, S.R. Waitukaitis, Physical Review E 107 (2023). date_created: 2023-04-02T22:01:10Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-11-28T09:22:25Z day: '01' ddc: - '530' department: - _id: ScWa doi: 10.1103/PhysRevE.107.034901 ec_funded: 1 external_id: isi: - '000992142700001' file: - access_level: open_access checksum: 48f5dfe4e5f1c46c3c86805cd8f84bea content_type: application/pdf creator: swaituka date_created: 2023-11-27T09:51:48Z date_updated: 2023-11-27T09:51:48Z file_id: '14612' file_name: PhysRevE.107.034901 (1).pdf file_size: 1428631 relation: main_file success: 1 file_date_updated: 2023-11-27T09:51:48Z has_accepted_license: '1' intvolume: ' 107' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 0aa60e99-070f-11eb-9043-a6de6bdc3afa call_identifier: H2020 grant_number: '949120' name: 'Tribocharge: a multi-scale approach to an enduring problem in physics' publication: Physical Review E publication_identifier: eissn: - 2470-0053 issn: - 2470-0045 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Accurate determination of the shapes of granular charge distributions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 107 year: '2023' ... --- _id: '13238' abstract: - lang: eng text: "We consider a natural problem dealing with weighted packet selection across a rechargeable link, which e.g., finds applications in cryptocurrency networks. The capacity of a link (u, v) is determined by how much nodes u and v allocate for this link. Specifically, the input is a finite ordered sequence of packets that arrive in both directions along a link. Given (u, v) and a packet of weight x going from u to v, node u can either accept or reject the packet. If u accepts the packet, the capacity on link (u, v) decreases by x. Correspondingly, v’s capacity on (u, v) increases by x. If a node rejects the packet, this will entail a cost affinely linear in the weight of the packet. A link is “rechargeable” in the sense that the total capacity of the link has to remain constant, but the allocation of capacity at the ends of the link can depend arbitrarily on the nodes’ decisions. The goal is to minimise the sum of the capacity injected into the link and the cost of rejecting packets. We show that the problem is NP-hard, but can be approximated efficiently with a ratio of (1+ε)⋅(1+3–√) for some arbitrary ε>0.\r\n." acknowledgement: We thank Mahsa Bastankhah and Mohammad Ali Maddah-Ali for fruitful discussions about different variants of the problem. This work is supported by the European Research Council (ERC) Consolidator Project 864228 (AdjustNet), 2020-2025, the ERC CoG 863818 (ForM-SMArt), and the German Research Foundation (DFG) grant 470029389 (FlexNets), 2021–2024. alternative_title: - LNCS article_processing_charge: No author: - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: Jakub full_name: Svoboda, Jakub id: 130759D2-D7DD-11E9-87D2-DE0DE6697425 last_name: Svoboda orcid: 0000-0002-1419-3267 - first_name: Michelle X full_name: Yeo, Michelle X id: 2D82B818-F248-11E8-B48F-1D18A9856A87 last_name: Yeo citation: ama: 'Schmid S, Svoboda J, Yeo MX. Weighted packet selection for rechargeable links in cryptocurrency networks: Complexity and approximation. In: SIROCCO 2023: Structural Information and Communication Complexity . Vol 13892. Springer Nature; 2023:576-594. doi:10.1007/978-3-031-32733-9_26' apa: 'Schmid, S., Svoboda, J., & Yeo, M. X. (2023). Weighted packet selection for rechargeable links in cryptocurrency networks: Complexity and approximation. In SIROCCO 2023: Structural Information and Communication Complexity (Vol. 13892, pp. 576–594). Alcala de Henares, Spain: Springer Nature. https://doi.org/10.1007/978-3-031-32733-9_26' chicago: 'Schmid, Stefan, Jakub Svoboda, and Michelle X Yeo. “Weighted Packet Selection for Rechargeable Links in Cryptocurrency Networks: Complexity and Approximation.” In SIROCCO 2023: Structural Information and Communication Complexity , 13892:576–94. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-32733-9_26.' ieee: 'S. Schmid, J. Svoboda, and M. X. Yeo, “Weighted packet selection for rechargeable links in cryptocurrency networks: Complexity and approximation,” in SIROCCO 2023: Structural Information and Communication Complexity , Alcala de Henares, Spain, 2023, vol. 13892, pp. 576–594.' ista: 'Schmid S, Svoboda J, Yeo MX. 2023. Weighted packet selection for rechargeable links in cryptocurrency networks: Complexity and approximation. SIROCCO 2023: Structural Information and Communication Complexity . SIROCCO: Structural Information and Communication Complexity, LNCS, vol. 13892, 576–594.' mla: 'Schmid, Stefan, et al. “Weighted Packet Selection for Rechargeable Links in Cryptocurrency Networks: Complexity and Approximation.” SIROCCO 2023: Structural Information and Communication Complexity , vol. 13892, Springer Nature, 2023, pp. 576–94, doi:10.1007/978-3-031-32733-9_26.' short: 'S. Schmid, J. Svoboda, M.X. Yeo, in:, SIROCCO 2023: Structural Information and Communication Complexity , Springer Nature, 2023, pp. 576–594.' conference: end_date: 2023-06-09 location: Alcala de Henares, Spain name: 'SIROCCO: Structural Information and Communication Complexity' start_date: 2023-06-06 date_created: 2023-07-16T22:01:12Z date_published: 2023-05-25T00:00:00Z date_updated: 2023-11-30T10:54:51Z day: '25' department: - _id: KrPi - _id: KrCh doi: 10.1007/978-3-031-32733-9_26 ec_funded: 1 external_id: arxiv: - '2204.13459' intvolume: ' 13892' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2204.13459 month: '05' oa: 1 oa_version: Preprint page: 576-594 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: 'SIROCCO 2023: Structural Information and Communication Complexity ' publication_identifier: eissn: - 1611-3349 isbn: - '9783031327322' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '14506' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Weighted packet selection for rechargeable links in cryptocurrency networks: Complexity and approximation' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13892 year: '2023' ... --- _id: '14506' abstract: - lang: eng text: "Payment channel networks are a promising approach to improve the scalability bottleneck\r\nof cryptocurrencies. Two design principles behind payment channel networks are\r\nefficiency and privacy. Payment channel networks improve efficiency by allowing users\r\nto transact in a peer-to-peer fashion along multi-hop routes in the network, avoiding\r\nthe lengthy process of consensus on the blockchain. Transacting over payment channel\r\nnetworks also improves privacy as these transactions are not broadcast to the blockchain.\r\nDespite the influx of recent protocols built on top of payment channel networks and\r\ntheir analysis, a common shortcoming of many of these protocols is that they typically\r\nfocus only on either improving efficiency or privacy, but not both. Another limitation\r\non the efficiency front is that the models used to model actions, costs and utilities of\r\nusers are limited or come with unrealistic assumptions.\r\nThis thesis aims to address some of the shortcomings of recent protocols and algorithms\r\non payment channel networks, particularly in their privacy and efficiency aspects. We\r\nfirst present a payment route discovery protocol based on hub labelling and private\r\ninformation retrieval that hides the route query and is also efficient. We then present\r\na rebalancing protocol that formulates the rebalancing problem as a linear program\r\nand solves the linear program using multiparty computation so as to hide the channel\r\nbalances. The rebalancing solution as output by our protocol is also globally optimal.\r\nWe go on to develop more realistic models of the action space, costs, and utilities of\r\nboth existing and new users that want to join the network. In each of these settings,\r\nwe also develop algorithms to optimise the utility of these users with good guarantees\r\non the approximation and competitive ratios." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michelle X full_name: Yeo, Michelle X id: 2D82B818-F248-11E8-B48F-1D18A9856A87 last_name: Yeo citation: ama: Yeo MX. Advances in efficiency and privacy in payment channel network analysis. 2023. doi:10.15479/14506 apa: Yeo, M. X. (2023). Advances in efficiency and privacy in payment channel network analysis. Institute of Science and Technology Austria. https://doi.org/10.15479/14506 chicago: Yeo, Michelle X. “Advances in Efficiency and Privacy in Payment Channel Network Analysis.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/14506. ieee: M. X. Yeo, “Advances in efficiency and privacy in payment channel network analysis,” Institute of Science and Technology Austria, 2023. ista: Yeo MX. 2023. Advances in efficiency and privacy in payment channel network analysis. Institute of Science and Technology Austria. mla: Yeo, Michelle X. Advances in Efficiency and Privacy in Payment Channel Network Analysis. Institute of Science and Technology Austria, 2023, doi:10.15479/14506. short: M.X. Yeo, Advances in Efficiency and Privacy in Payment Channel Network Analysis, Institute of Science and Technology Austria, 2023. date_created: 2023-11-10T08:10:43Z date_published: 2023-11-10T00:00:00Z date_updated: 2023-11-30T10:54:51Z day: '10' ddc: - '000' degree_awarded: PhD department: - _id: GradSch - _id: KrPi doi: 10.15479/14506 ec_funded: 1 file: - access_level: closed checksum: 521c72818d720a52b377207b2ee87b6a content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-11-23T10:29:55Z date_updated: 2023-11-23T10:29:55Z file_id: '14598' file_name: thesis_yeo.zip file_size: 3037720 relation: source_file - access_level: open_access checksum: 0ed5d16899687aecf13d843c9878c9f2 content_type: application/pdf creator: cchlebak date_created: 2023-11-23T10:30:08Z date_updated: 2023-11-23T10:30:08Z file_id: '14599' file_name: thesis_yeo.pdf file_size: 2717256 relation: main_file success: 1 file_date_updated: 2023-11-23T10:30:08Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '162' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9969' relation: part_of_dissertation status: public - id: '13238' relation: part_of_dissertation status: public - id: '14490' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 title: Advances in efficiency and privacy in payment channel network analysis type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14490' abstract: - lang: eng text: Payment channel networks (PCNs) are a promising solution to the scalability problem of cryptocurrencies. Any two users connected by a payment channel in the network can theoretically send an unbounded number of instant, costless transactions between them. Users who are not directly connected can also transact with each other in a multi-hop fashion. In this work, we study the incentive structure behind the creation of payment channel networks, particularly from the point of view of a single user that wants to join the network. We define a utility function for a new user in terms of expected revenue, expected fees, and the cost of creating channels, and then provide constant factor approximation algorithms that optimise the utility function given a certain budget. Additionally, we take a step back from a single user to the whole network and examine the parameter spaces under which simple graph topologies form a Nash equilibrium. acknowledgement: The work was partially supported by the Austrian Science Fund (FWF) through the project CoRaF (grant 2020388). It was also partially supported by NCN Grant 2019/35/B/ST6/04138 and ERC Grant 885666. article_processing_charge: No author: - first_name: Zeta full_name: Avarikioti, Zeta last_name: Avarikioti - first_name: Tomasz full_name: Lizurej, Tomasz last_name: Lizurej - first_name: Tomasz full_name: Michalak, Tomasz last_name: Michalak - first_name: Michelle X full_name: Yeo, Michelle X id: 2D82B818-F248-11E8-B48F-1D18A9856A87 last_name: Yeo citation: ama: 'Avarikioti Z, Lizurej T, Michalak T, Yeo MX. Lightning creation games. In: 43rd International Conference on Distributed Computing Systems. Vol 2023. IEEE; 2023:603-613. doi:10.1109/ICDCS57875.2023.00037' apa: 'Avarikioti, Z., Lizurej, T., Michalak, T., & Yeo, M. X. (2023). Lightning creation games. In 43rd International Conference on Distributed Computing Systems (Vol. 2023, pp. 603–613). Hong Kong, China: IEEE. https://doi.org/10.1109/ICDCS57875.2023.00037' chicago: Avarikioti, Zeta, Tomasz Lizurej, Tomasz Michalak, and Michelle X Yeo. “Lightning Creation Games.” In 43rd International Conference on Distributed Computing Systems, 2023:603–13. IEEE, 2023. https://doi.org/10.1109/ICDCS57875.2023.00037. ieee: Z. Avarikioti, T. Lizurej, T. Michalak, and M. X. Yeo, “Lightning creation games,” in 43rd International Conference on Distributed Computing Systems, Hong Kong, China, 2023, vol. 2023, pp. 603–613. ista: 'Avarikioti Z, Lizurej T, Michalak T, Yeo MX. 2023. Lightning creation games. 43rd International Conference on Distributed Computing Systems. ICDCS: International Conference on Distributed Computing Systems vol. 2023, 603–613.' mla: Avarikioti, Zeta, et al. “Lightning Creation Games.” 43rd International Conference on Distributed Computing Systems, vol. 2023, IEEE, 2023, pp. 603–13, doi:10.1109/ICDCS57875.2023.00037. short: Z. Avarikioti, T. Lizurej, T. Michalak, M.X. Yeo, in:, 43rd International Conference on Distributed Computing Systems, IEEE, 2023, pp. 603–613. conference: end_date: 2023-07-21 location: Hong Kong, China name: 'ICDCS: International Conference on Distributed Computing Systems' start_date: 2023-07-18 date_created: 2023-11-05T23:00:54Z date_published: 2023-10-11T00:00:00Z date_updated: 2023-11-30T10:54:51Z day: '11' department: - _id: KrPi doi: 10.1109/ICDCS57875.2023.00037 external_id: arxiv: - '2306.16006' intvolume: ' 2023' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2306.16006 month: '10' oa: 1 oa_version: Preprint page: 603-613 publication: 43rd International Conference on Distributed Computing Systems publication_identifier: eissn: - 2575-8411 isbn: - '9798350339864' publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '14506' relation: dissertation_contains status: public scopus_import: '1' status: public title: Lightning creation games type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2023 year: '2023' ... --- _id: '12726' abstract: - lang: eng text: "Most motions of many-body systems at any scale in nature with sufficient degrees\r\nof freedom tend to be chaotic; reaching from the orbital motion of planets, the air\r\ncurrents in our atmosphere, down to the water flowing through our pipelines or\r\nthe movement of a population of bacteria. To the observer it is therefore intriguing\r\nwhen a moving collective exhibits order. Collective motion of flocks of birds, schools\r\nof fish or swarms of self-propelled particles or robots have been studied extensively\r\nover the past decades but the mechanisms involved in the transition from chaos to\r\norder remain unclear. Here, the interactions, that in most systems give rise to chaos,\r\nsustain order. In this thesis we investigate mechanisms that preserve, destabilize\r\nor lead to the ordered state. We show that endothelial cells migrating in circular\r\nconfinements transition to a collective rotating state and concomitantly synchronize\r\nthe frequencies of nucleating actin waves within individual cells. Consequently,\r\nthe frequency dependent cell migration speed uniformizes across the population.\r\nComplementary to the WAVE dependent nucleation of traveling actin waves, we\r\nshow that in leukocytes the actin polymerization depending on WASp generates\r\npushing forces locally at stationary patches. Next, in pipe flows, we study methods\r\nto disrupt the self–sustaining cycle of turbulence and therefore relaminarize the\r\nflow. While we find in pulsating flow conditions that turbulence emerges through a\r\nhelical instability during the decelerating phase. Finally, we show quantitatively in\r\nbrain slices of mice that wild-type control neurons can compensate the migratory\r\ndeficits of a genetically modified neuronal sub–population in the developing cortex." acknowledged_ssus: - _id: M-Shop - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michael full_name: Riedl, Michael id: 3BE60946-F248-11E8-B48F-1D18A9856A87 last_name: Riedl orcid: 0000-0003-4844-6311 citation: ama: Riedl M. Synchronization in collectively moving active matter. 2023. doi:10.15479/at:ista:12726 apa: Riedl, M. (2023). Synchronization in collectively moving active matter. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12726 chicago: Riedl, Michael. “Synchronization in Collectively Moving Active Matter.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12726. ieee: M. Riedl, “Synchronization in collectively moving active matter,” Institute of Science and Technology Austria, 2023. ista: Riedl M. 2023. Synchronization in collectively moving active matter. Institute of Science and Technology Austria. mla: Riedl, Michael. Synchronization in Collectively Moving Active Matter. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12726. short: M. Riedl, Synchronization in Collectively Moving Active Matter, Institute of Science and Technology Austria, 2023. date_created: 2023-03-15T13:22:13Z date_published: 2023-03-23T00:00:00Z date_updated: 2023-11-30T10:55:13Z day: '23' ddc: - '530' degree_awarded: PhD department: - _id: GradSch - _id: BjHo doi: 10.15479/at:ista:12726 file: - access_level: closed checksum: eba0e19fe57a8c15e7aeab55a845efb7 content_type: application/pdf creator: cchlebak date_created: 2023-03-23T12:49:23Z date_updated: 2023-11-24T11:57:46Z description: the main file is missing the bibliography. See new thesis record 14530 for updated files. file_id: '12745' file_name: Thesis_Riedl_2023.pdf file_size: 63734746 relation: main_file - access_level: closed checksum: 0eb7b650cc8ae843bcec7c8a6109ae03 content_type: application/octet-stream creator: cchlebak date_created: 2023-03-23T12:54:34Z date_updated: 2023-09-24T22:30:03Z embargo_to: open_access file_id: '12746' file_name: Thesis_Riedl_2023_source.rar file_size: 339473651 relation: source_file file_date_updated: 2023-11-24T11:57:46Z has_accepted_license: '1' language: - iso: eng month: '03' oa_version: None page: '260' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10703' relation: part_of_dissertation status: public - id: '10791' relation: part_of_dissertation status: public - id: '7932' relation: part_of_dissertation status: public - id: '461' relation: part_of_dissertation status: public - id: '14530' relation: new_edition status: public status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: Synchronization in collectively moving active matter type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14530' abstract: - lang: eng text: 'Most motions of many-body systems at any scale in nature with sufficient degrees of freedom tend to be chaotic; reaching from the orbital motion of planets, the air currents in our atmosphere, down to the water flowing through our pipelines or the movement of a population of bacteria. To the observer it is therefore intriguing when a moving collective exhibits order. Collective motion of flocks of birds, schools of fish or swarms of self-propelled particles or robots have been studied extensively over the past decades but the mechanisms involved in the transition from chaos to order remain unclear. Here, the interactions, that in most systems give rise to chaos, sustain order. In this thesis we investigate mechanisms that preserve, destabilize or lead to the ordered state. We show that endothelial cells migrating in circular confinements transition to a collective rotating state and concomitantly synchronize the frequencies of nucleating actin waves within individual cells. Consequently, the frequency dependent cell migration speed uniformizes across the population. Complementary to the WAVE dependent nucleation of traveling actin waves, we show that in leukocytes the actin polymerization depending on WASp generates pushing forces locally at stationary patches. Next, in pipe flows, we study methods to disrupt the self--sustaining cycle of turbulence and therefore relaminarize the flow. While we find in pulsating flow conditions that turbulence emerges through a helical instability during the decelerating phase. Finally, we show quantitatively in brain slices of mice that wild-type control neurons can compensate the migratory deficits of a genetically modified neuronal sub--population in the developing cortex. ' acknowledged_ssus: - _id: M-Shop - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michael full_name: Riedl, Michael id: 3BE60946-F248-11E8-B48F-1D18A9856A87 last_name: Riedl orcid: 0000-0003-4844-6311 citation: ama: Riedl M. Synchronization in collectively moving active matter. 2023. doi:10.15479/14530 apa: Riedl, M. (2023). Synchronization in collectively moving active matter. Institute of Science and Technology Austria. https://doi.org/10.15479/14530 chicago: Riedl, Michael. “Synchronization in Collectively Moving Active Matter.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/14530. ieee: M. Riedl, “Synchronization in collectively moving active matter,” Institute of Science and Technology Austria, 2023. ista: Riedl M. 2023. Synchronization in collectively moving active matter. Institute of Science and Technology Austria. mla: Riedl, Michael. Synchronization in Collectively Moving Active Matter. Institute of Science and Technology Austria, 2023, doi:10.15479/14530. short: M. Riedl, Synchronization in Collectively Moving Active Matter, Institute of Science and Technology Austria, 2023. date_created: 2023-11-15T09:59:03Z date_published: 2023-11-16T00:00:00Z date_updated: 2023-11-30T10:55:13Z day: '16' ddc: - '530' - '570' degree_awarded: PhD department: - _id: GradSch - _id: MiSi doi: 10.15479/14530 file: - access_level: open_access checksum: 52e1d0ab6c1abe59c82dfe8c9ff5f83a content_type: application/pdf creator: mriedl date_created: 2023-11-15T09:52:54Z date_updated: 2023-11-15T09:52:54Z file_id: '14536' file_name: Thesis_Riedl_2023_corr.pdf file_size: 36743942 relation: main_file success: 1 file_date_updated: 2023-11-15T09:52:54Z has_accepted_license: '1' keyword: - Synchronization - Collective Movement - Active Matter - Cell Migration - Active Colloids language: - iso: eng month: '11' oa: 1 oa_version: Updated Version page: '260' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10703' relation: part_of_dissertation status: public - id: '10791' relation: part_of_dissertation status: public - id: '7932' relation: part_of_dissertation status: public - id: '461' relation: part_of_dissertation status: public - id: '12726' relation: old_edition status: public status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: Synchronization in collectively moving active matter type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14547' abstract: - lang: eng text: "Superconductor-semiconductor heterostructures currently capture a significant amount of research interest and they serve as the physical platform in many proposals towards topological quantum computation.\r\nDespite being under extensive investigations, historically using transport techniques, the basic properties of the interface between the superconductor and the semiconductor remain to be understood.\r\n\r\nIn this thesis, two separate studies on the Al-InAs heterostructures are reported with the first focusing on the physics of the material motivated by the emergence of a new phase, the Bogoliubov-Fermi surface. \r\nThe second focuses on a technological application, a gate-tunable Josephson parametric amplifier.\r\n\r\nIn the first study, we investigate the hypothesized unconventional nature of the induced superconductivity at the interface between the Al thin film and the InAs quantum well.\r\nWe embed a two-dimensional Al-InAs hybrid system in a resonant microwave circuit allowing measurements of change in inductance.\r\nThe behaviour of the resonance in a range of temperature and in-plane magnetic field has been studied and compared with the theory of conventional s-wave superconductor and a two-component theory that includes both contribution of the $s$-wave pairing in Al and the intraband $p \\pm ip$ pairing in InAs.\r\nMeasuring the temperature dependence of resonant frequency, no discrepancy is found between data and the conventional theory.\r\nWe observe the breakdown of superconductivity due to an applied magnetic field which contradicts the conventional theory.\r\nIn contrast, the data can be captured quantitatively by fitting to a two-component model.\r\nWe find the evidence of the intraband $p \\pm ip$ pairing in the InAs and the emergence of the Bogoliubov-Fermi surfaces due to magnetic field with the characteristic value $B^* = 0.33~\\mathrm{T}$.\r\nFrom the fits, the sheet resistance of Al, the carrier density and mobility in InAs are determined.\r\nBy systematically studying the anisotropy of the circuit response, we find weak anisotropy for $B < B^*$ and increasingly strong anisotropy for $B > B^*$ resulting in a pronounced two-lobe structure in polar plot of frequency versus field angle.\r\nStrong resemblance between the field dependence of dissipation and superfluid density hints at a hidden signature of the Bogoliubov-Fermi surface that is burried in the dissipation data.\r\n\r\nIn the second study, we realize a parametric amplifier with a Josephson field effect transistor as the active element.\r\nThe device's modest construction consists of a gated SNS weak link embedded at the center of a coplanar waveguide resonator.\r\nBy applying a gate voltage, the resonant frequency is field-effect tunable over a range of 2 GHz.\r\nModelling the JoFET minimally as a parallel RL circuit, the dissipation introduced by the JoFET can be quantitatively related to the gate voltage.\r\nWe observed gate-tunable Kerr nonlinearity qualitatively in line with expectation.\r\nThe JoFET amplifier has 20 dB of gain, 4 MHz of instantaneous bandwidth, and a 1dB compression point of -125.5 dBm when operated at a fixed resonant frequency.\r\nIn general, the signal-to-noise ratio is improved by 5-7 dB when the JoFET amplifier is activated compared.\r\nThe noise of the measurement chain and insertion loss of relevant circuit elements are calibrated to determine the expected and the real noise performance of the JoFET amplifier.\r\nAs a quantification of the noise performance, the measured total input-referred noise of the JoFET amplifier is in good agreement with the estimated expectation which takes device loss into account.\r\nWe found that the noise performance of the device reported in this document approaches one photon of total input-referred added noise which is the quantum limit imposed in nondegenerate parametric amplifier." acknowledged_ssus: - _id: NanoFab - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Duc T full_name: Phan, Duc T id: 29C8C0B4-F248-11E8-B48F-1D18A9856A87 last_name: Phan citation: ama: Phan DT. Resonant microwave spectroscopy of Al-InAs. 2023. doi:10.15479/14547 apa: Phan, D. T. (2023). Resonant microwave spectroscopy of Al-InAs. Institute of Science and Technology Austria. https://doi.org/10.15479/14547 chicago: Phan, Duc T. “Resonant Microwave Spectroscopy of Al-InAs.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/14547. ieee: D. T. Phan, “Resonant microwave spectroscopy of Al-InAs,” Institute of Science and Technology Austria, 2023. ista: Phan DT. 2023. Resonant microwave spectroscopy of Al-InAs. Institute of Science and Technology Austria. mla: Phan, Duc T. Resonant Microwave Spectroscopy of Al-InAs. Institute of Science and Technology Austria, 2023, doi:10.15479/14547. short: D.T. Phan, Resonant Microwave Spectroscopy of Al-InAs, Institute of Science and Technology Austria, 2023. date_created: 2023-11-17T13:45:26Z date_published: 2023-11-16T00:00:00Z date_updated: 2023-11-30T10:56:04Z day: '16' ddc: - '530' degree_awarded: PhD department: - _id: GradSch - _id: AnHi doi: 10.15479/14547 file: - access_level: open_access checksum: db0c37d213bc002125bd59690e9db246 content_type: application/pdf creator: pduc date_created: 2023-11-17T13:36:44Z date_updated: 2023-11-22T09:46:06Z file_id: '14548' file_name: Phan_Thesis_pdfa.pdf file_size: 34828019 relation: main_file - access_level: closed checksum: 8d3bd6afa279a0078ffd13e06bb6d56d content_type: application/zip creator: pduc date_created: 2023-11-17T13:44:53Z date_updated: 2023-11-17T13:47:54Z file_id: '14549' file_name: dissertation_src.zip file_size: 279319709 relation: source_file file_date_updated: 2023-11-22T09:46:06Z has_accepted_license: '1' keyword: - superconductor-semiconductor - superconductivity - Al - InAs - p-wave - superconductivity - JPA - microwave language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '80' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10851' relation: part_of_dissertation status: public - id: '13264' relation: part_of_dissertation status: public status: public supervisor: - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 title: Resonant microwave spectroscopy of Al-InAs tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13264' abstract: - lang: eng text: "We build a parametric amplifier with a Josephson field-effect transistor (JoFET) as the active element. The resonant frequency of the device is field-effect tunable over a range of 2 GHz. The JoFET amplifier has 20 dB of gain, 4 MHz of instantaneous bandwidth, and a 1-dB compression point of -125.5 dBm when operated at a fixed resonance frequency.\r\n\r\n" acknowledged_ssus: - _id: NanoFab - _id: M-Shop acknowledgement: We thank Shyam Shankar for helpful feedback on the manuscript. We gratefully acknowledge the support of the ISTA nanofabrication facility, the Miba Machine Shop, and the eMachine Shop. The NYU team acknowledges support from Army Research Office Grant No. W911NF2110303. article_number: '064032' article_processing_charge: No article_type: original author: - first_name: Duc T full_name: Phan, Duc T id: 29C8C0B4-F248-11E8-B48F-1D18A9856A87 last_name: Phan - first_name: Paul full_name: Falthansl-Scheinecker, Paul id: 85b43b21-15b2-11ec-abd3-e2c252cc2285 last_name: Falthansl-Scheinecker - first_name: Umang full_name: Mishra, Umang id: 4328fa4c-f128-11eb-9611-c107b0fe4d51 last_name: Mishra - first_name: W. M. full_name: Strickland, W. M. last_name: Strickland - first_name: D. full_name: Langone, D. last_name: Langone - first_name: J. full_name: Shabani, J. last_name: Shabani - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Phan DT, Falthansl-Scheinecker P, Mishra U, et al. Gate-tunable superconductor-semiconductor parametric amplifier. Physical Review Applied. 2023;19(6). doi:10.1103/PhysRevApplied.19.064032 apa: Phan, D. T., Falthansl-Scheinecker, P., Mishra, U., Strickland, W. M., Langone, D., Shabani, J., & Higginbotham, A. P. (2023). Gate-tunable superconductor-semiconductor parametric amplifier. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.19.064032 chicago: Phan, Duc T, Paul Falthansl-Scheinecker, Umang Mishra, W. M. Strickland, D. Langone, J. Shabani, and Andrew P Higginbotham. “Gate-Tunable Superconductor-Semiconductor Parametric Amplifier.” Physical Review Applied. American Physical Society, 2023. https://doi.org/10.1103/PhysRevApplied.19.064032. ieee: D. T. Phan et al., “Gate-tunable superconductor-semiconductor parametric amplifier,” Physical Review Applied, vol. 19, no. 6. American Physical Society, 2023. ista: Phan DT, Falthansl-Scheinecker P, Mishra U, Strickland WM, Langone D, Shabani J, Higginbotham AP. 2023. Gate-tunable superconductor-semiconductor parametric amplifier. Physical Review Applied. 19(6), 064032. mla: Phan, Duc T., et al. “Gate-Tunable Superconductor-Semiconductor Parametric Amplifier.” Physical Review Applied, vol. 19, no. 6, 064032, American Physical Society, 2023, doi:10.1103/PhysRevApplied.19.064032. short: D.T. Phan, P. Falthansl-Scheinecker, U. Mishra, W.M. Strickland, D. Langone, J. Shabani, A.P. Higginbotham, Physical Review Applied 19 (2023). date_created: 2023-07-23T22:01:12Z date_published: 2023-06-09T00:00:00Z date_updated: 2023-11-30T10:56:03Z day: '09' department: - _id: AnHi - _id: OnHo doi: 10.1103/PhysRevApplied.19.064032 external_id: arxiv: - '2206.05746' isi: - '001012022600004' intvolume: ' 19' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2206.05746 month: '06' oa: 1 oa_version: Preprint publication: Physical Review Applied publication_identifier: eissn: - 2331-7019 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '14547' relation: dissertation_contains status: public scopus_import: '1' status: public title: Gate-tunable superconductor-semiconductor parametric amplifier type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '14591' abstract: - lang: eng text: Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development by controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scissin machinery in plants, but the precise roles of these proteins in this process is not fully understood. Here, we characterised the roles of Plant Dynamin-Related Proteins 2 (DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to Dynamins’ recruiters, like Endophilin and Amphiphysin, in the CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the Dsh3p1,2,3 triple-mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggests that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME. One Sentence Summary In contrast to predictions based on mammalian systems, plant Dynamin-related proteins 2 are recruited to the site of Clathrin-mediated endocytosis independently of BAR-SH3 proteins. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio article_processing_charge: No author: - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Marie-Kristin full_name: Nagel, Marie-Kristin last_name: Nagel - first_name: Aline full_name: Monzer, Aline id: 2DB5D88C-D7B3-11E9-B8FD-7907E6697425 last_name: Monzer - first_name: Annamaria full_name: Hlavata, Annamaria id: 36062FEC-F248-11E8-B48F-1D18A9856A87 last_name: Hlavata - first_name: Erika full_name: Isono, Erika last_name: Isono - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Gnyliukh N, Johnson AJ, Nagel M-K, et al. Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv. doi:10.1101/2023.10.09.561523 apa: Gnyliukh, N., Johnson, A. J., Nagel, M.-K., Monzer, A., Hlavata, A., Isono, E., … Friml, J. (n.d.). Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv. https://doi.org/10.1101/2023.10.09.561523 chicago: Gnyliukh, Nataliia, Alexander J Johnson, Marie-Kristin Nagel, Aline Monzer, Annamaria Hlavata, Erika Isono, Martin Loose, and Jiří Friml. “Role of Dynamin-Related Proteins 2 and SH3P2 in Clathrin-Mediated Endocytosis in Plants.” BioRxiv, n.d. https://doi.org/10.1101/2023.10.09.561523. ieee: N. Gnyliukh et al., “Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants,” bioRxiv. . ista: Gnyliukh N, Johnson AJ, Nagel M-K, Monzer A, Hlavata A, Isono E, Loose M, Friml J. Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv, 10.1101/2023.10.09.561523. mla: Gnyliukh, Nataliia, et al. “Role of Dynamin-Related Proteins 2 and SH3P2 in Clathrin-Mediated Endocytosis in Plants.” BioRxiv, doi:10.1101/2023.10.09.561523. short: N. Gnyliukh, A.J. Johnson, M.-K. Nagel, A. Monzer, A. Hlavata, E. Isono, M. Loose, J. Friml, BioRxiv (n.d.). date_created: 2023-11-22T10:17:49Z date_published: 2023-10-10T00:00:00Z date_updated: 2023-12-01T13:51:06Z day: '10' department: - _id: JiFr - _id: MaLo - _id: CaBe doi: 10.1101/2023.10.09.561523 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2023.10.09.561523v2 month: '10' oa: 1 oa_version: Preprint project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: bioRxiv publication_status: submitted related_material: record: - id: '14510' relation: dissertation_contains status: public status: public title: Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14639' abstract: - lang: eng text: "Background: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship.\r\nMethods: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity.\r\nResults: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy.\r\nConclusions: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as “OGDHL-related disorders”." article_number: '102' article_processing_charge: Yes article_type: original author: - first_name: Sheng-Jia full_name: Lin, Sheng-Jia last_name: Lin - first_name: Barbara full_name: Vona, Barbara last_name: Vona - first_name: Tracy full_name: Lau, Tracy last_name: Lau - first_name: Kevin full_name: Huang, Kevin id: 3b3d2888-1ff6-11ee-9fa6-8f209ca91fe3 last_name: Huang orcid: 0000-0002-2512-7812 - first_name: Maha S. full_name: Zaki, Maha S. last_name: Zaki - first_name: Huda Shujaa full_name: Aldeen, Huda Shujaa last_name: Aldeen - first_name: Ehsan Ghayoor full_name: Karimiani, Ehsan Ghayoor last_name: Karimiani - first_name: Clarissa full_name: Rocca, Clarissa last_name: Rocca - first_name: Mahmoud M. full_name: Noureldeen, Mahmoud M. last_name: Noureldeen - first_name: Ahmed K. full_name: Saad, Ahmed K. last_name: Saad - first_name: Cassidy full_name: Petree, Cassidy last_name: Petree - first_name: Tobias full_name: Bartolomaeus, Tobias last_name: Bartolomaeus - first_name: Rami full_name: Abou Jamra, Rami last_name: Abou Jamra - first_name: Giovanni full_name: Zifarelli, Giovanni last_name: Zifarelli - first_name: Aditi full_name: Gotkhindikar, Aditi last_name: Gotkhindikar - first_name: Ingrid M. full_name: Wentzensen, Ingrid M. last_name: Wentzensen - first_name: Mingjuan full_name: Liao, Mingjuan last_name: Liao - first_name: Emalyn Elise full_name: Cork, Emalyn Elise last_name: Cork - first_name: Pratishtha full_name: Varshney, Pratishtha last_name: Varshney - first_name: Narges full_name: Hashemi, Narges last_name: Hashemi - first_name: Mohammad Hasan full_name: Mohammadi, Mohammad Hasan last_name: Mohammadi - first_name: Aboulfazl full_name: Rad, Aboulfazl last_name: Rad - first_name: Juanita full_name: Neira, Juanita last_name: Neira - first_name: Mehran Beiraghi full_name: Toosi, Mehran Beiraghi last_name: Toosi - first_name: Cordula full_name: Knopp, Cordula last_name: Knopp - first_name: Ingo full_name: Kurth, Ingo last_name: Kurth - first_name: Thomas D. full_name: Challman, Thomas D. last_name: Challman - first_name: Rebecca full_name: Smith, Rebecca last_name: Smith - first_name: Asmahan full_name: Abdalla, Asmahan last_name: Abdalla - first_name: Thomas full_name: Haaf, Thomas last_name: Haaf - first_name: Mohnish full_name: Suri, Mohnish last_name: Suri - first_name: Manali full_name: Joshi, Manali last_name: Joshi - first_name: Wendy K. full_name: Chung, Wendy K. last_name: Chung - first_name: Andres full_name: Moreno-De-Luca, Andres last_name: Moreno-De-Luca - first_name: Henry full_name: Houlden, Henry last_name: Houlden - first_name: Reza full_name: Maroofian, Reza last_name: Maroofian - first_name: Gaurav K. full_name: Varshney, Gaurav K. last_name: Varshney citation: ama: Lin S-J, Vona B, Lau T, et al. Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity. Genome Medicine. 2023;15. doi:10.1186/s13073-023-01258-4 apa: Lin, S.-J., Vona, B., Lau, T., Huang, K., Zaki, M. S., Aldeen, H. S., … Varshney, G. K. (2023). Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity. Genome Medicine. Springer Nature. https://doi.org/10.1186/s13073-023-01258-4 chicago: Lin, Sheng-Jia, Barbara Vona, Tracy Lau, Kevin Huang, Maha S. Zaki, Huda Shujaa Aldeen, Ehsan Ghayoor Karimiani, et al. “Evaluating the Association of Biallelic OGDHL Variants with Significant Phenotypic Heterogeneity.” Genome Medicine. Springer Nature, 2023. https://doi.org/10.1186/s13073-023-01258-4. ieee: S.-J. Lin et al., “Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity,” Genome Medicine, vol. 15. Springer Nature, 2023. ista: Lin S-J, Vona B, Lau T, Huang K, Zaki MS, Aldeen HS, Karimiani EG, Rocca C, Noureldeen MM, Saad AK, Petree C, Bartolomaeus T, Abou Jamra R, Zifarelli G, Gotkhindikar A, Wentzensen IM, Liao M, Cork EE, Varshney P, Hashemi N, Mohammadi MH, Rad A, Neira J, Toosi MB, Knopp C, Kurth I, Challman TD, Smith R, Abdalla A, Haaf T, Suri M, Joshi M, Chung WK, Moreno-De-Luca A, Houlden H, Maroofian R, Varshney GK. 2023. Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity. Genome Medicine. 15, 102. mla: Lin, Sheng-Jia, et al. “Evaluating the Association of Biallelic OGDHL Variants with Significant Phenotypic Heterogeneity.” Genome Medicine, vol. 15, 102, Springer Nature, 2023, doi:10.1186/s13073-023-01258-4. short: S.-J. Lin, B. Vona, T. Lau, K. Huang, M.S. Zaki, H.S. Aldeen, E.G. Karimiani, C. Rocca, M.M. Noureldeen, A.K. Saad, C. Petree, T. Bartolomaeus, R. Abou Jamra, G. Zifarelli, A. Gotkhindikar, I.M. Wentzensen, M. Liao, E.E. Cork, P. Varshney, N. Hashemi, M.H. Mohammadi, A. Rad, J. Neira, M.B. Toosi, C. Knopp, I. Kurth, T.D. Challman, R. Smith, A. Abdalla, T. Haaf, M. Suri, M. Joshi, W.K. Chung, A. Moreno-De-Luca, H. Houlden, R. Maroofian, G.K. Varshney, Genome Medicine 15 (2023). date_created: 2023-12-04T08:10:55Z date_published: 2023-11-23T00:00:00Z date_updated: 2023-12-04T08:17:22Z day: '23' ddc: - '570' doi: 10.1186/s13073-023-01258-4 extern: '1' file: - access_level: open_access checksum: 279efd212005549aba817a487d56d363 content_type: application/pdf creator: dernst date_created: 2023-12-04T08:15:43Z date_updated: 2023-12-04T08:15:43Z file_id: '14640' file_name: 2023_GenomeMed_Lin.pdf file_size: 14791081 relation: main_file success: 1 file_date_updated: 2023-12-04T08:15:43Z has_accepted_license: '1' intvolume: ' 15' keyword: - Genetics (clinical) - Genetics - Molecular Biology - Molecular Medicine language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Genome Medicine publication_identifier: issn: - 1756-994X publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2023' ... --- _id: '14628' abstract: - lang: eng text: We introduce a compact, intuitive procedural graph representation for cellular metamaterials, which are small-scale, tileable structures that can be architected to exhibit many useful material properties. Because the structures’ “architectures” vary widely—with elements such as beams, thin shells, and solid bulks—it is difficult to explore them using existing representations. Generic approaches like voxel grids are versatile, but it is cumbersome to represent and edit individual structures; architecture-specific approaches address these issues, but are incompatible with one another. By contrast, our procedural graph succinctly represents the construction process for any structure using a simple skeleton annotated with spatially varying thickness. To express the highly constrained triply periodic minimal surfaces (TPMS) in this manner, we present the first fully automated version of the conjugate surface construction method, which allows novices to create complex TPMS from intuitive input. We demonstrate our representation’s expressiveness, accuracy, and compactness by constructing a wide range of established structures and hundreds of novel structures with diverse architectures and material properties. We also conduct a user study to verify our representation’s ease-of-use and ability to expand engineers’ capacity for exploration. acknowledgement: "The authors thank Mina Konaković Luković and Michael Foshey for their early contributions to this project, David Palmer and Paul Zhang for their insightful discussions about minimal surfaces and the CSCM, Julian Panetta for providing the Elastic Textures code, and Hannes Hergeth for his feedback and support. We also thank our user study participants and anonymous reviewers.\r\nThis material is based upon work supported by the National Science Foundation\r\n(NSF) Graduate Research Fellowship under Grant No. 2141064; the MIT Morningside\r\nAcademy for Design Fellowship; the Defense Advanced Research Projects Agency\r\n(DARPA) Grant No. FA8750-20-C-0075; the ERC Consolidator Grant No. 101045083,\r\n“CoDiNA: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena”; and the NewSat project, which is co-funded by the Operational Program for Competitiveness and Internationalisation (COMPETE2020), Portugal 2020, the European Regional Development Fund (ERDF), and the Portuguese Foundation for Science and Technology (FTC) under the MIT Portugal program." article_number: '168' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Liane full_name: Makatura, Liane last_name: Makatura - first_name: Bohan full_name: Wang, Bohan last_name: Wang - first_name: Yi-Lu full_name: Chen, Yi-Lu id: 0b467602-dbcd-11ea-9d1d-ed480aa46b70 last_name: Chen - first_name: Bolei full_name: Deng, Bolei last_name: Deng - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Wojciech full_name: Matusik, Wojciech last_name: Matusik citation: ama: 'Makatura L, Wang B, Chen Y-L, et al. Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. 2023;42(5). doi:10.1145/3605389' apa: 'Makatura, L., Wang, B., Chen, Y.-L., Deng, B., Wojtan, C., Bickel, B., & Matusik, W. (2023). Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3605389' chicago: 'Makatura, Liane, Bohan Wang, Yi-Lu Chen, Bolei Deng, Chris Wojtan, Bernd Bickel, and Wojciech Matusik. “Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design.” ACM Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3605389.' ieee: 'L. Makatura et al., “Procedural metamaterials: A unified procedural graph for metamaterial design,” ACM Transactions on Graphics, vol. 42, no. 5. Association for Computing Machinery, 2023.' ista: 'Makatura L, Wang B, Chen Y-L, Deng B, Wojtan C, Bickel B, Matusik W. 2023. Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. 42(5), 168.' mla: 'Makatura, Liane, et al. “Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design.” ACM Transactions on Graphics, vol. 42, no. 5, 168, Association for Computing Machinery, 2023, doi:10.1145/3605389.' short: L. Makatura, B. Wang, Y.-L. Chen, B. Deng, C. Wojtan, B. Bickel, W. Matusik, ACM Transactions on Graphics 42 (2023). date_created: 2023-11-29T15:02:03Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-12-04T08:09:05Z day: '01' ddc: - '531' - '006' department: - _id: GradSch - _id: ChWo - _id: BeBi doi: 10.1145/3605389 file: - access_level: open_access checksum: 0192f597d7a2ceaf89baddfd6190d4c8 content_type: application/zip creator: yichen date_created: 2023-11-29T15:16:01Z date_updated: 2023-11-29T15:16:01Z file_id: '14630' file_name: tog-22-0089-File004.zip file_size: 95467870 relation: main_file success: 1 - access_level: open_access checksum: 7fb024963be81933494f38de191e4710 content_type: application/zip creator: yichen date_created: 2023-11-29T15:16:01Z date_updated: 2023-11-29T15:16:01Z file_id: '14631' file_name: tog-22-0089-File005.zip file_size: 103731880 relation: main_file success: 1 - access_level: open_access checksum: b7d6829ce396e21cac9fae0ec7130a6b content_type: application/pdf creator: dernst date_created: 2023-12-04T08:04:14Z date_updated: 2023-12-04T08:04:14Z file_id: '14638' file_name: 2023_ACMToG_Makatura.pdf file_size: 57067476 relation: main_file success: 1 file_date_updated: 2023-12-04T08:04:14Z has_accepted_license: '1' intvolume: ' 42' issue: '5' keyword: - Computer Graphics and Computer-Aided Design language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: issn: - 0730-0301 - 1557-7368 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: 'Procedural metamaterials: A unified procedural graph for metamaterial design' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '14644' abstract: - lang: eng text: Transcription by RNA polymerase II (Pol II) can be repressed by noncoding RNA, including the human RNA Alu. However, the mechanism by which endogenous RNAs repress transcription remains unclear. Here we present cryo-electron microscopy structures of Pol II bound to Alu RNA, which reveal that Alu RNA mimics how DNA and RNA bind to Pol II during transcription elongation. Further, we show how domains of the general transcription factor TFIIF affect complex dynamics and control repressive activity. Together, we reveal how a non-coding RNA can regulate mammalian gene expression. acknowledged_ssus: - _id: LifeSc - _id: EM-Fac - _id: PreCl acknowledgement: "We thank B. Kaczmarek and other members of the Bernecky lab for helpful discussions. We thank V.-V. Hodirnau for SerialEM data collection and support with EPU data collection. We thank D. Slade for the wild type TFIIF expression\r\nplasmid. We thank N. Thompson and R. Burgess for the 8WG16 hybridoma cell line. We thank C. Plaschka and M. Loose for critical reading of the manuscript. This work was supported by Austrian Science Fund (FWF) grant P34185. This research was further supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Lab Support Facility (LSF), Electron Microscopy Facility (EMF), Scientific Computing (SciComp), and the Preclinical Facility (PCF)." article_processing_charge: No author: - first_name: Katarina full_name: Tluckova, Katarina id: 4AC7D980-F248-11E8-B48F-1D18A9856A87 last_name: Tluckova - first_name: Anita P full_name: Testa Salmazo, Anita P id: 41F1F098-F248-11E8-B48F-1D18A9856A87 last_name: Testa Salmazo - first_name: Carrie A full_name: Bernecky, Carrie A id: 2CB9DFE2-F248-11E8-B48F-1D18A9856A87 last_name: Bernecky orcid: 0000-0003-0893-7036 citation: ama: Tluckova K, Testa Salmazo AP, Bernecky C. Mechanism of mammalian transcriptional repression by noncoding RNA. doi:10.15479/AT:ISTA:14644 apa: Tluckova, K., Testa Salmazo, A. P., & Bernecky, C. (n.d.). Mechanism of mammalian transcriptional repression by noncoding RNA. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:14644 chicago: Tluckova, Katarina, Anita P Testa Salmazo, and Carrie Bernecky. “Mechanism of Mammalian Transcriptional Repression by Noncoding RNA.” Institute of Science and Technology Austria, n.d. https://doi.org/10.15479/AT:ISTA:14644. ieee: K. Tluckova, A. P. Testa Salmazo, and C. Bernecky, “Mechanism of mammalian transcriptional repression by noncoding RNA.” Institute of Science and Technology Austria. ista: Tluckova K, Testa Salmazo AP, Bernecky C. Mechanism of mammalian transcriptional repression by noncoding RNA. 10.15479/AT:ISTA:14644. mla: Tluckova, Katarina, et al. Mechanism of Mammalian Transcriptional Repression by Noncoding RNA. Institute of Science and Technology Austria, doi:10.15479/AT:ISTA:14644. short: K. Tluckova, A.P. Testa Salmazo, C. Bernecky, (n.d.). date_created: 2023-12-04T14:51:00Z date_published: 2023-12-05T00:00:00Z date_updated: 2023-12-05T10:37:28Z day: '05' ddc: - '572' department: - _id: CaBe doi: 10.15479/AT:ISTA:14644 file: - access_level: open_access checksum: c45608cb97ee36d7b50ba518db8e07b0 content_type: application/pdf creator: dernst date_created: 2023-12-05T10:37:02Z date_updated: 2023-12-05T10:37:02Z file_id: '14646' file_name: 2023_Tluckova_etal_REx.pdf file_size: 4892920 relation: main_file success: 1 file_date_updated: 2023-12-05T10:37:02Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Submitted Version project: - _id: c08a6700-5a5b-11eb-8a69-82a722b2bc30 grant_number: P34185 name: Regulation of mammalian transcription by noncoding RNA publication_status: submitted publisher: Institute of Science and Technology Austria status: public title: Mechanism of mammalian transcriptional repression by noncoding RNA tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14658' abstract: - lang: eng text: "We investigate spin-charge separation of a spin-\r\n1\r\n2\r\n Fermi system confined in a triple well where multiple bands are occupied. We assume that our finite fermionic system is close to fully spin polarized while being doped by a hole and an impurity fermion with opposite spin. Our setup involves ferromagnetic couplings among the particles in different bands, leading to the development of strong spin-transport correlations in an intermediate interaction regime. Interactions are then strong enough to lift the degeneracy among singlet and triplet spin configurations in the well of the spin impurity but not strong enough to prohibit hole-induced magnetic excitations to the singlet state. Despite the strong spin-hole correlations, the system exhibits spin-charge deconfinement allowing for long-range entanglement of the spatial and spin degrees of freedom." acknowledgement: This work has been funded by the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG)-EXC 2056-Project ID No. 390715994. G.M.K. gratefully acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413. article_number: '043039' article_processing_charge: Yes article_type: original author: - first_name: J. M. full_name: Becker, J. M. last_name: Becker - first_name: Georgios full_name: Koutentakis, Georgios id: d7b23d3a-9e21-11ec-b482-f76739596b95 last_name: Koutentakis - first_name: P. full_name: Schmelcher, P. last_name: Schmelcher citation: ama: Becker JM, Koutentakis G, Schmelcher P. Spin-charge correlations in finite one-dimensional multiband Fermi systems. Physical Review Research. 2023;5(4). doi:10.1103/PhysRevResearch.5.043039 apa: Becker, J. M., Koutentakis, G., & Schmelcher, P. (2023). Spin-charge correlations in finite one-dimensional multiband Fermi systems. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.5.043039 chicago: Becker, J. M., Georgios Koutentakis, and P. Schmelcher. “Spin-Charge Correlations in Finite One-Dimensional Multiband Fermi Systems.” Physical Review Research. American Physical Society, 2023. https://doi.org/10.1103/PhysRevResearch.5.043039. ieee: J. M. Becker, G. Koutentakis, and P. Schmelcher, “Spin-charge correlations in finite one-dimensional multiband Fermi systems,” Physical Review Research, vol. 5, no. 4. American Physical Society, 2023. ista: Becker JM, Koutentakis G, Schmelcher P. 2023. Spin-charge correlations in finite one-dimensional multiband Fermi systems. Physical Review Research. 5(4), 043039. mla: Becker, J. M., et al. “Spin-Charge Correlations in Finite One-Dimensional Multiband Fermi Systems.” Physical Review Research, vol. 5, no. 4, 043039, American Physical Society, 2023, doi:10.1103/PhysRevResearch.5.043039. short: J.M. Becker, G. Koutentakis, P. Schmelcher, Physical Review Research 5 (2023). date_created: 2023-12-10T23:00:58Z date_published: 2023-10-12T00:00:00Z date_updated: 2023-12-11T10:55:52Z day: '12' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevResearch.5.043039 ec_funded: 1 external_id: arxiv: - '2305.09529' file: - access_level: open_access checksum: ee31c0d0de5d1b65591990ae6705a601 content_type: application/pdf creator: dernst date_created: 2023-12-11T10:49:07Z date_updated: 2023-12-11T10:49:07Z file_id: '14672' file_name: 2023_PhysReviewResearch_Becker.pdf file_size: 2362158 relation: main_file success: 1 file_date_updated: 2023-12-11T10:49:07Z has_accepted_license: '1' intvolume: ' 5' issue: '4' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Spin-charge correlations in finite one-dimensional multiband Fermi systems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2023' ... --- _id: '14650' abstract: - lang: eng text: We study the out-of-equilibrium quantum dynamics of dipolar polarons, i.e., impurities immersed in a dipolar Bose-Einstein condensate, after a quench of the impurity-boson interaction. We show that the dipolar nature of the condensate and of the impurity results in anisotropic relaxation dynamics, in particular, anisotropic dressing of the polaron. More relevantly for cold-atom setups, quench dynamics is strongly affected by the interplay between dipolar anisotropy and trap geometry. Our findings pave the way for simulating impurities in anisotropic media utilizing experiments with dipolar mixtures. acknowledgement: "We thank Lauriane Chomaz for useful discussions and comments on the manuscript. We also\r\nthank Ragheed Al Hyder for comments on the manuscript.\r\nG.B. acknowledges support from the Austrian Science Fund (FWF),\r\nunder Project No. M2641-N27. This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC2181/1-\r\n390900948 (the Heidelberg STRUCTURES Excellence Cluster). A. G. V. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the\r\nMarie Skłodowska-Curie Grant Agreement No. 754411. L.A.P.A acknowledges by the PNRR\r\nMUR project PE0000023 - NQSTI and the Deutsche Forschungsgemeinschaft (DFG, German\r\nResearch Foundation) under Germany’s Excellence Strategy - EXC - 2123 Quantum Frontiers390837967 and FOR2247." article_number: '232' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Luis full_name: Santos, Luis last_name: Santos - first_name: Luisllu A. full_name: Peña Ardila, Luisllu A. last_name: Peña Ardila citation: ama: Volosniev A, Bighin G, Santos L, Peña Ardila LA. Non-equilibrium dynamics of dipolar polarons. SciPost Physics. 2023;15(6). doi:10.21468/scipostphys.15.6.232 apa: Volosniev, A., Bighin, G., Santos, L., & Peña Ardila, L. A. (2023). Non-equilibrium dynamics of dipolar polarons. SciPost Physics. SciPost Foundation. https://doi.org/10.21468/scipostphys.15.6.232 chicago: Volosniev, Artem, Giacomo Bighin, Luis Santos, and Luisllu A. Peña Ardila. “Non-Equilibrium Dynamics of Dipolar Polarons.” SciPost Physics. SciPost Foundation, 2023. https://doi.org/10.21468/scipostphys.15.6.232. ieee: A. Volosniev, G. Bighin, L. Santos, and L. A. Peña Ardila, “Non-equilibrium dynamics of dipolar polarons,” SciPost Physics, vol. 15, no. 6. SciPost Foundation, 2023. ista: Volosniev A, Bighin G, Santos L, Peña Ardila LA. 2023. Non-equilibrium dynamics of dipolar polarons. SciPost Physics. 15(6), 232. mla: Volosniev, Artem, et al. “Non-Equilibrium Dynamics of Dipolar Polarons.” SciPost Physics, vol. 15, no. 6, 232, SciPost Foundation, 2023, doi:10.21468/scipostphys.15.6.232. short: A. Volosniev, G. Bighin, L. Santos, L.A. Peña Ardila, SciPost Physics 15 (2023). date_created: 2023-12-10T13:03:07Z date_published: 2023-12-07T00:00:00Z date_updated: 2023-12-11T07:44:08Z day: '07' ddc: - '530' department: - _id: MiLe doi: 10.21468/scipostphys.15.6.232 ec_funded: 1 external_id: arxiv: - '2305.17969' file: - access_level: open_access checksum: e664372a1fe9d628a9bb1d135ebab7d8 content_type: application/pdf creator: dernst date_created: 2023-12-11T07:42:04Z date_updated: 2023-12-11T07:42:04Z file_id: '14669' file_name: 2023_SciPostPhysics_Volosniev.pdf file_size: 3543541 relation: main_file success: 1 file_date_updated: 2023-12-11T07:42:04Z has_accepted_license: '1' intvolume: ' 15' issue: '6' keyword: - General Physics and Astronomy language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: SciPost Physics publication_identifier: issn: - 2542-4653 publication_status: published publisher: SciPost Foundation quality_controlled: '1' status: public title: Non-equilibrium dynamics of dipolar polarons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2023' ... --- _id: '14653' abstract: - lang: eng text: 'Mass spectrometry imaging (MSI) is a powerful analytical technique for the two-dimensional (2D) localization of chemicals on surfaces. Conventional MSI experiments require to predefine the surface of interest based on photographic or microscopic images. Typically, these boundaries can no longer be changed or adjusted once the experiment has been started. In terms of a more interactive approach we recently developed a pen-like ionization interface which is directly connected to the mass spectrometer. The device allows the user to ionize chemicals by desorption electrospray ionization (DESI) and to freely move the interface over a surface of interest. A mini camera, which is mounted on the tip of the pen, magnifies the desorption area and enables a simple positioning of the pen. The combination of optical data from the camera module and chemical data obtained by mass analysis facilitates a novel type of imaging experiment: interactive mass spectrometry imaging (IMSI). For this application, we present a novel approach for a robust, optical flow-based motion detection. While the live video stream from the camera is used to track the pen''s motion across the surface a post-acquisition algorithm correlates the coordinates of the pen trajectory with respective mass spectra obtained from a simultaneous mass spectrometric data acquisition. This algorithm is no longer dependent on a single, manually applied optical marker on the sample surface, which has to be visible on all video frames throughout the analysis. The advanced DESI-IMSI method was successfully tested on inkjet-printed letters as well as mouse brain tissue samples. Validation of the results was done by comparing DESI-IMSI with standard DESI-MSI data.' acknowledgement: We would like to thank Marco Sealey Cardona, PhD for help with the mouse brain samples and acknowledge the financial support by 1669 Förderkreis of the University of Innsbruck, Austria Wirtschaftsservice (AWS), D. Swarovski KG and Tyrolean Science Fund (TWF). article_number: '117168' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Florian full_name: Kluibenschedl, Florian id: 7499e70e-eb2c-11ec-b98b-f925648bc9d9 last_name: Kluibenschedl - first_name: Anna full_name: Ploner, Anna last_name: Ploner - first_name: Christina full_name: Meisenbichler, Christina last_name: Meisenbichler - first_name: Robert full_name: Konrat, Robert last_name: Konrat - first_name: Thomas full_name: Müller, Thomas last_name: Müller citation: ama: Kluibenschedl F, Ploner A, Meisenbichler C, Konrat R, Müller T. Advanced motion tracking for interactive mass spectrometry imaging (IMSI). International Journal of Mass Spectrometry. 2023;495. doi:10.1016/j.ijms.2023.117168 apa: Kluibenschedl, F., Ploner, A., Meisenbichler, C., Konrat, R., & Müller, T. (2023). Advanced motion tracking for interactive mass spectrometry imaging (IMSI). International Journal of Mass Spectrometry. Elsevier. https://doi.org/10.1016/j.ijms.2023.117168 chicago: Kluibenschedl, Florian, Anna Ploner, Christina Meisenbichler, Robert Konrat, and Thomas Müller. “Advanced Motion Tracking for Interactive Mass Spectrometry Imaging (IMSI).” International Journal of Mass Spectrometry. Elsevier, 2023. https://doi.org/10.1016/j.ijms.2023.117168. ieee: F. Kluibenschedl, A. Ploner, C. Meisenbichler, R. Konrat, and T. Müller, “Advanced motion tracking for interactive mass spectrometry imaging (IMSI),” International Journal of Mass Spectrometry, vol. 495. Elsevier, 2023. ista: Kluibenschedl F, Ploner A, Meisenbichler C, Konrat R, Müller T. 2023. Advanced motion tracking for interactive mass spectrometry imaging (IMSI). International Journal of Mass Spectrometry. 495, 117168. mla: Kluibenschedl, Florian, et al. “Advanced Motion Tracking for Interactive Mass Spectrometry Imaging (IMSI).” International Journal of Mass Spectrometry, vol. 495, 117168, Elsevier, 2023, doi:10.1016/j.ijms.2023.117168. short: F. Kluibenschedl, A. Ploner, C. Meisenbichler, R. Konrat, T. Müller, International Journal of Mass Spectrometry 495 (2023). date_created: 2023-12-10T23:00:57Z date_published: 2023-11-23T00:00:00Z date_updated: 2023-12-11T08:16:35Z day: '23' department: - _id: GradSch doi: 10.1016/j.ijms.2023.117168 intvolume: ' 495' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.ijms.2023.117168 month: '11' oa: 1 oa_version: Published Version publication: International Journal of Mass Spectrometry publication_identifier: issn: - 1387-3806 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Advanced motion tracking for interactive mass spectrometry imaging (IMSI) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 495 year: '2023' ... --- _id: '14647' abstract: - lang: eng text: In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and in postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic ligand FGF18 in new born neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons increases Fgf18 expression and enhances gliogenesis in the progenitors. These results fit well with the model that new born neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex. acknowledgement: "We thank Dr. Shital Suryavanshi and the animal house staff of the Tata Institute of\r\nFundamental Research (TIFR) for their excellent support; Gord Fishell and Goichi Miyoshi for\r\nthe Foxg1 floxed mouse line; Hiroshi Kawasaki for the plasmids pCAG-FGF8 and pCAGsFGFR3c. We thank Prof. S.K. Lee for the Foxg1lox/lox genotyping primers and protocol. We thank Dr. Deepak Modi and Dr. Vainav Patel for allowing us to use the NIRRCH FACS Facility and the staff of the NIRRCH and TIFR FACS facilities for their assistance.\r\nWe thank Denis Jabaudon for his critical comments on the manuscript and members of the\r\nJabaudon lab for helpful discussions. This work was funded by the Department of Atomic\r\nEnergy (DAE), Govt. of India (Project Identification no. RTI4003, DAE OM no.\r\n1303/2/2019/R&D-II/DAE/2079)." article_processing_charge: No author: - first_name: Mahima full_name: Bose, Mahima last_name: Bose - first_name: Varun full_name: Suresh, Varun last_name: Suresh - first_name: Urvi full_name: Mishra, Urvi last_name: Mishra - first_name: Ishita full_name: Talwar, Ishita last_name: Talwar - first_name: Anuradha full_name: Yadav, Anuradha last_name: Yadav - first_name: Shiona full_name: Biswas, Shiona last_name: Biswas - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Shubha full_name: Tole, Shubha last_name: Tole citation: ama: Bose M, Suresh V, Mishra U, et al. Dual role of FOXG1 in regulating gliogenesis in the developing neocortex via the FGF signalling pathway. bioRxiv. doi:10.1101/2023.11.30.569337 apa: Bose, M., Suresh, V., Mishra, U., Talwar, I., Yadav, A., Biswas, S., … Tole, S. (n.d.). Dual role of FOXG1 in regulating gliogenesis in the developing neocortex via the FGF signalling pathway. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.11.30.569337 chicago: Bose, Mahima, Varun Suresh, Urvi Mishra, Ishita Talwar, Anuradha Yadav, Shiona Biswas, Simon Hippenmeyer, and Shubha Tole. “Dual Role of FOXG1 in Regulating Gliogenesis in the Developing Neocortex via the FGF Signalling Pathway.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2023.11.30.569337. ieee: M. Bose et al., “Dual role of FOXG1 in regulating gliogenesis in the developing neocortex via the FGF signalling pathway,” bioRxiv. Cold Spring Harbor Laboratory. ista: Bose M, Suresh V, Mishra U, Talwar I, Yadav A, Biswas S, Hippenmeyer S, Tole S. Dual role of FOXG1 in regulating gliogenesis in the developing neocortex via the FGF signalling pathway. bioRxiv, 10.1101/2023.11.30.569337. mla: Bose, Mahima, et al. “Dual Role of FOXG1 in Regulating Gliogenesis in the Developing Neocortex via the FGF Signalling Pathway.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2023.11.30.569337. short: M. Bose, V. Suresh, U. Mishra, I. Talwar, A. Yadav, S. Biswas, S. Hippenmeyer, S. Tole, BioRxiv (n.d.). date_created: 2023-12-06T13:07:01Z date_published: 2023-12-01T00:00:00Z date_updated: 2023-12-11T07:37:17Z day: '01' department: - _id: SiHi doi: 10.1101/2023.11.30.569337 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2023.11.30.569337 month: '12' oa: 1 oa_version: Preprint publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory status: public title: Dual role of FOXG1 in regulating gliogenesis in the developing neocortex via the FGF signalling pathway type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14655' abstract: - lang: eng text: The kinetics of the assembly of semiflexible filaments through end-to-end annealing is key to the structure of the cytoskeleton, but is not understood. We analyze this problem through scaling theory and simulations, and uncover a regime where filaments’ ends find each other through bending fluctuations without the need for the whole filament to diffuse. This results in a very substantial speedup of assembly in physiological regimes, and could help with understanding the dynamics of actin and intermediate filaments in biological processes such as wound healing and cell division. acknowledgement: The authors thank C´ecile Leduc and Duc-Quang Tran for invaluable help with understanding the experimental behavior of intermediate filaments, and Raphael Voituriez, Nicolas Levernier, and Alexander Grosberg for fruitful discussion on the theoretical model. V. S. also thanks Davide Michieletto, Maria Panoukidou, and Lorenzo Rovigatti for very helpful suggestions on the simulation model. M. L. was supported by Marie Curie Integration Grant No. PCIG12-GA-2012-334053, “Investissements d’Avenir” LabEx PALM (ANR-10-LABX- 0039-PALM), ANR Grants No. ANR-15-CE13-0004-03, No. ANR-21-CE11-0004-02 and No. ANR-22-CE30-0024, as well as ERC Starting Grant No. 677532. M.L.’s group belongs to the CNRS consortium AQV. Part of this work was performed using HPC resources from GENCI–IDRIS (Grants No. 2020-A0090712066 and No. 2021-A0110712066). article_number: '228401' article_processing_charge: No article_type: original author: - first_name: Valerio full_name: Sorichetti, Valerio id: ef8a92cb-c7b6-11ec-8bea-e1fd5847bc5b last_name: Sorichetti orcid: 0000-0002-9645-6576 - first_name: Martin full_name: Lenz, Martin last_name: Lenz citation: ama: Sorichetti V, Lenz M. Transverse fluctuations control the assembly of semiflexible filaments. Physical Review Letters. 2023;131(22). doi:10.1103/PhysRevLett.131.228401 apa: Sorichetti, V., & Lenz, M. (2023). Transverse fluctuations control the assembly of semiflexible filaments. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.131.228401 chicago: Sorichetti, Valerio, and Martin Lenz. “Transverse Fluctuations Control the Assembly of Semiflexible Filaments.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/PhysRevLett.131.228401. ieee: V. Sorichetti and M. Lenz, “Transverse fluctuations control the assembly of semiflexible filaments,” Physical Review Letters, vol. 131, no. 22. American Physical Society, 2023. ista: Sorichetti V, Lenz M. 2023. Transverse fluctuations control the assembly of semiflexible filaments. Physical Review Letters. 131(22), 228401. mla: Sorichetti, Valerio, and Martin Lenz. “Transverse Fluctuations Control the Assembly of Semiflexible Filaments.” Physical Review Letters, vol. 131, no. 22, 228401, American Physical Society, 2023, doi:10.1103/PhysRevLett.131.228401. short: V. Sorichetti, M. Lenz, Physical Review Letters 131 (2023). date_created: 2023-12-10T23:00:57Z date_published: 2023-12-01T00:00:00Z date_updated: 2023-12-11T07:59:25Z day: '01' department: - _id: AnSa doi: 10.1103/PhysRevLett.131.228401 external_id: arxiv: - '2303.03088' intvolume: ' 131' issue: '22' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2303.03088 month: '12' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Transverse fluctuations control the assembly of semiflexible filaments type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 131 year: '2023' ... --- _id: '14660' abstract: - lang: eng text: "The classical Steinitz theorem states that if the origin belongs to the interior of the convex hull of a set \U0001D446⊂ℝ\U0001D451, then there are at most 2\U0001D451 points of \U0001D446 whose convex hull contains the origin in the interior. Bárány, Katchalski,and Pach proved the following quantitative version of Steinitz’s theorem. Let \U0001D444 be a convex polytope in ℝ\U0001D451 containing the standard Euclidean unit ball \U0001D401\U0001D451. Then there exist at most 2\U0001D451 vertices of \U0001D444 whose convex hull \U0001D444′ satisfies \U0001D45F\U0001D401\U0001D451⊂\U0001D444′ with \U0001D45F⩾\U0001D451−2\U0001D451. They conjectured that \U0001D45F⩾\U0001D450\U0001D451−1∕2 holds with a universal constant \U0001D450>0. We prove \U0001D45F⩾15\U0001D4512, the first polynomial lower bound on \U0001D45F. Furthermore, we show that \U0001D45F is not greater than 2/√\U0001D451." acknowledgement: M.N. was supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences aswell as the National Research, Development and Innovation Fund (NRDI) grants K119670 andK131529, and the ÚNKP-22-5 New National Excellence Program of the Ministry for Innovationand Technology from the source of the NRDI as well as the ELTE TKP 2021-NKTA-62 fundingscheme article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Grigory full_name: Ivanov, Grigory id: 87744F66-5C6F-11EA-AFE0-D16B3DDC885E last_name: Ivanov - first_name: Márton full_name: Naszódi, Márton last_name: Naszódi citation: ama: 'Ivanov G, Naszódi M. Quantitative Steinitz theorem: A polynomial bound. Bulletin of the London Mathematical Society. 2023. doi:10.1112/blms.12965' apa: 'Ivanov, G., & Naszódi, M. (2023). Quantitative Steinitz theorem: A polynomial bound. Bulletin of the London Mathematical Society. London Mathematical Society. https://doi.org/10.1112/blms.12965' chicago: 'Ivanov, Grigory, and Márton Naszódi. “Quantitative Steinitz Theorem: A Polynomial Bound.” Bulletin of the London Mathematical Society. London Mathematical Society, 2023. https://doi.org/10.1112/blms.12965.' ieee: 'G. Ivanov and M. Naszódi, “Quantitative Steinitz theorem: A polynomial bound,” Bulletin of the London Mathematical Society. London Mathematical Society, 2023.' ista: 'Ivanov G, Naszódi M. 2023. Quantitative Steinitz theorem: A polynomial bound. Bulletin of the London Mathematical Society.' mla: 'Ivanov, Grigory, and Márton Naszódi. “Quantitative Steinitz Theorem: A Polynomial Bound.” Bulletin of the London Mathematical Society, London Mathematical Society, 2023, doi:10.1112/blms.12965.' short: G. Ivanov, M. Naszódi, Bulletin of the London Mathematical Society (2023). date_created: 2023-12-10T23:00:58Z date_published: 2023-12-04T00:00:00Z date_updated: 2023-12-11T10:03:54Z day: '04' department: - _id: UlWa doi: 10.1112/blms.12965 external_id: arxiv: - '2212.04308' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.1112/blms.12965' month: '12' oa: 1 oa_version: Published Version publication: Bulletin of the London Mathematical Society publication_identifier: eissn: - 1469-2120 issn: - 0024-6093 publication_status: epub_ahead publisher: London Mathematical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Quantitative Steinitz theorem: A polynomial bound' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14666' abstract: - lang: eng text: So-called spontaneous activity is a central hallmark of most nervous systems. Such non-causal firing is contrary to the tenet of spikes as a means of communication, and its purpose remains unclear. We propose that self-initiated firing can serve as a release valve to protect neurons from the toxic conditions arising in mitochondria from lower-than-baseline energy consumption. To demonstrate the viability of our hypothesis, we built a set of models that incorporate recent experimental results indicating homeostatic control of metabolic products—Adenosine triphosphate (ATP), adenosine diphosphate (ADP), and reactive oxygen species (ROS)—by changes in firing. We explore the relationship of metabolic cost of spiking with its effect on the temporal patterning of spikes and reproduce experimentally observed changes in intrinsic firing in the fruitfly dorsal fan-shaped body neuron in a model with ROS-modulated potassium channels. We also show that metabolic spiking homeostasis can produce indefinitely sustained avalanche dynamics in cortical circuits. Our theory can account for key features of neuronal activity observed in many studies ranging from ion channel function all the way to resting state dynamics. We finish with a set of experimental predictions that would confirm an integrated, crucial role for metabolically regulated spiking and firmly link metabolic homeostasis and neuronal function. acknowledgement: We thank Prof. C. Nazaret and Prof. J.-P. Mazat for sharing the code of their mitochondrial model. We also thank G. Miesenböck, E. Marder, L. Abbott, A. Kempf, P. Hasenhuetl, W. Podlaski, F. Zenke, E. Agnes, P. Bozelos, J. Watson, B. Confavreux, and G. Christodoulou, and the rest of the Vogels Lab for their feedback. This work was funded by Wellcome Trust and Royal Society Sir Henry Dale Research Fellowship (WT100000), a Wellcome Trust Senior Research Fellowship (214316/Z/18/Z), and a UK Research and Innovation, Biotechnology and Biological Sciences Research Council grant (UKRI-BBSRC BB/N019512/1). article_number: e2306525120 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Chaitanya full_name: Chintaluri, Chaitanya id: E4EDB536-3485-11EA-98D2-20AF3DDC885E last_name: Chintaluri - first_name: Tim P full_name: Vogels, Tim P id: CB6FF8D2-008F-11EA-8E08-2637E6697425 last_name: Vogels orcid: 0000-0003-3295-6181 citation: ama: Chintaluri C, Vogels TP. Metabolically regulated spiking could serve neuronal energy homeostasis and protect from reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America. 2023;120(48). doi:10.1073/pnas.2306525120 apa: Chintaluri, C., & Vogels, T. P. (2023). Metabolically regulated spiking could serve neuronal energy homeostasis and protect from reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2306525120 chicago: Chintaluri, Chaitanya, and Tim P Vogels. “Metabolically Regulated Spiking Could Serve Neuronal Energy Homeostasis and Protect from Reactive Oxygen Species.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2023. https://doi.org/10.1073/pnas.2306525120. ieee: C. Chintaluri and T. P. Vogels, “Metabolically regulated spiking could serve neuronal energy homeostasis and protect from reactive oxygen species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 48. National Academy of Sciences, 2023. ista: Chintaluri C, Vogels TP. 2023. Metabolically regulated spiking could serve neuronal energy homeostasis and protect from reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America. 120(48), e2306525120. mla: Chintaluri, Chaitanya, and Tim P. Vogels. “Metabolically Regulated Spiking Could Serve Neuronal Energy Homeostasis and Protect from Reactive Oxygen Species.” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 48, e2306525120, National Academy of Sciences, 2023, doi:10.1073/pnas.2306525120. short: C. Chintaluri, T.P. Vogels, Proceedings of the National Academy of Sciences of the United States of America 120 (2023). date_created: 2023-12-10T23:01:00Z date_published: 2023-11-21T00:00:00Z date_updated: 2023-12-11T12:47:41Z day: '21' ddc: - '570' department: - _id: TiVo doi: 10.1073/pnas.2306525120 external_id: pmid: - '37988463' file: - access_level: open_access checksum: bf4ec38602a70dae4338077a5a4d497f content_type: application/pdf creator: dernst date_created: 2023-12-11T12:45:12Z date_updated: 2023-12-11T12:45:12Z file_id: '14678' file_name: 2023_PNAS_Chintaluri.pdf file_size: 16891602 relation: main_file success: 1 file_date_updated: 2023-12-11T12:45:12Z has_accepted_license: '1' intvolume: ' 120' issue: '48' language: - iso: eng month: '11' oa: 1 oa_version: None pmid: 1 project: - _id: c084a126-5a5b-11eb-8a69-d75314a70a87 grant_number: 214316/Z/18/Z name: What’s in a memory? Spatiotemporal dynamics in strongly coupled recurrent neuronal networks. publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - relation: software url: https://github.com/ccluri/metabolic_spiking scopus_import: '1' status: public title: Metabolically regulated spiking could serve neuronal energy homeostasis and protect from reactive oxygen species tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 120 year: '2023' ... --- _id: '14656' abstract: - lang: eng text: Although much is known about how single neurons in the hippocampus represent an animal's position, how circuit interactions contribute to spatial coding is less well understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured CA1 cell-cell interactions in male rats during open field exploration. The statistics of these interactions depend on whether the animal is in a familiar or novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the informativeness of their spatial inputs. This structure facilitates linear decodability, making the information easy to read out by downstream circuits. Overall, our findings suggest that the efficient coding hypothesis is not only applicable to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain. acknowledgement: M.N. was supported by the European Union Horizon 2020 Grant 665385. J.C. was supported by the European Research Council Consolidator Grant 281511. G.T. was supported by the Austrian Science Fund (FWF) Grant P34015. C.S. was supported by an Institute of Science and Technology fellow award and by the National Science Foundation (NSF) Award No. 1922658. We thank Peter Baracskay, Karola Kaefer, and Hugo Malagon-Vina for the acquisition of the data. We also thank Federico Stella, Wiktor Młynarski, Dori Derdikman, Colin Bredenberg, Roman Huszar, Heloisa Chiossi, Lorenzo Posani, and Mohamady El-Gaby for comments on an earlier version of the manuscript. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Cristina full_name: Savin, Cristina id: 3933349E-F248-11E8-B48F-1D18A9856A87 last_name: Savin citation: ama: Nardin M, Csicsvari JL, Tkačik G, Savin C. The structure of hippocampal CA1 interactions optimizes spatial coding across experience. The Journal of Neuroscience. 2023;43(48):8140-8156. doi:10.1523/JNEUROSCI.0194-23.2023 apa: Nardin, M., Csicsvari, J. L., Tkačik, G., & Savin, C. (2023). The structure of hippocampal CA1 interactions optimizes spatial coding across experience. The Journal of Neuroscience. Society of Neuroscience. https://doi.org/10.1523/JNEUROSCI.0194-23.2023 chicago: Nardin, Michele, Jozsef L Csicsvari, Gašper Tkačik, and Cristina Savin. “The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience.” The Journal of Neuroscience. Society of Neuroscience, 2023. https://doi.org/10.1523/JNEUROSCI.0194-23.2023. ieee: M. Nardin, J. L. Csicsvari, G. Tkačik, and C. Savin, “The structure of hippocampal CA1 interactions optimizes spatial coding across experience,” The Journal of Neuroscience, vol. 43, no. 48. Society of Neuroscience, pp. 8140–8156, 2023. ista: Nardin M, Csicsvari JL, Tkačik G, Savin C. 2023. The structure of hippocampal CA1 interactions optimizes spatial coding across experience. The Journal of Neuroscience. 43(48), 8140–8156. mla: Nardin, Michele, et al. “The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience.” The Journal of Neuroscience, vol. 43, no. 48, Society of Neuroscience, 2023, pp. 8140–56, doi:10.1523/JNEUROSCI.0194-23.2023. short: M. Nardin, J.L. Csicsvari, G. Tkačik, C. Savin, The Journal of Neuroscience 43 (2023) 8140–8156. date_created: 2023-12-10T23:00:58Z date_published: 2023-11-29T00:00:00Z date_updated: 2023-12-11T11:37:20Z day: '29' ddc: - '570' department: - _id: JoCs - _id: GaTk doi: 10.1523/JNEUROSCI.0194-23.2023 ec_funded: 1 external_id: pmid: - '37758476' file: - access_level: closed checksum: e2503c8f84be1050e28f64320f1d5bd2 content_type: application/pdf creator: dernst date_created: 2023-12-11T11:30:37Z date_updated: 2023-12-11T11:30:37Z embargo: 2024-06-01 embargo_to: open_access file_id: '14674' file_name: 2023_JourNeuroscience_Nardin.pdf file_size: 2280632 relation: main_file file_date_updated: 2023-12-11T11:30:37Z has_accepted_license: '1' intvolume: ' 43' issue: '48' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1523/JNEUROSCI.0194-23.2023 month: '11' oa: 1 oa_version: Published Version page: 8140-8156 pmid: 1 project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex - _id: 626c45b5-2b32-11ec-9570-e509828c1ba6 grant_number: P34015 name: Efficient coding with biophysical realism - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: The Journal of Neuroscience publication_identifier: eissn: - 1529-2401 publication_status: published publisher: Society of Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: The structure of hippocampal CA1 interactions optimizes spatial coding across experience tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 43 year: '2023' ... --- _id: '14657' abstract: - lang: eng text: 'Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader’s fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader’s dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader’s connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader’s fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.' acknowledgement: K.C. acknowledges support from the ERC CoG 863818(ForM-SMArt). J.T. is supported by Center for Foundations ofModern Computer Science (Charles Univ. project UNCE/SCI/004). article_number: '20230355' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Kamran full_name: Kaveh, Kamran last_name: Kaveh - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Tkadlec J, Kaveh K, Chatterjee K, Nowak MA. Evolutionary dynamics of mutants that modify population structure. Journal of the Royal Society, Interface. 2023;20(208). doi:10.1098/rsif.2023.0355 apa: Tkadlec, J., Kaveh, K., Chatterjee, K., & Nowak, M. A. (2023). Evolutionary dynamics of mutants that modify population structure. Journal of the Royal Society, Interface. The Royal Society. https://doi.org/10.1098/rsif.2023.0355 chicago: Tkadlec, Josef, Kamran Kaveh, Krishnendu Chatterjee, and Martin A. Nowak. “Evolutionary Dynamics of Mutants That Modify Population Structure.” Journal of the Royal Society, Interface. The Royal Society, 2023. https://doi.org/10.1098/rsif.2023.0355. ieee: J. Tkadlec, K. Kaveh, K. Chatterjee, and M. A. Nowak, “Evolutionary dynamics of mutants that modify population structure,” Journal of the Royal Society, Interface, vol. 20, no. 208. The Royal Society, 2023. ista: Tkadlec J, Kaveh K, Chatterjee K, Nowak MA. 2023. Evolutionary dynamics of mutants that modify population structure. Journal of the Royal Society, Interface. 20(208), 20230355. mla: Tkadlec, Josef, et al. “Evolutionary Dynamics of Mutants That Modify Population Structure.” Journal of the Royal Society, Interface, vol. 20, no. 208, 20230355, The Royal Society, 2023, doi:10.1098/rsif.2023.0355. short: J. Tkadlec, K. Kaveh, K. Chatterjee, M.A. Nowak, Journal of the Royal Society, Interface 20 (2023). date_created: 2023-12-10T23:00:58Z date_published: 2023-11-29T00:00:00Z date_updated: 2023-12-11T11:17:53Z day: '29' ddc: - '000' - '570' department: - _id: KrCh doi: 10.1098/rsif.2023.0355 ec_funded: 1 external_id: pmid: - '38016637' file: - access_level: open_access checksum: 2eefab13127c7786dbd33303c482a004 content_type: application/pdf creator: dernst date_created: 2023-12-11T11:10:32Z date_updated: 2023-12-11T11:10:32Z file_id: '14673' file_name: 2023_RoyalInterface_Tkadlec.pdf file_size: 1720243 relation: main_file success: 1 file_date_updated: 2023-12-11T11:10:32Z has_accepted_license: '1' intvolume: ' 20' issue: '208' language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Journal of the Royal Society, Interface publication_identifier: eissn: - 1742-5662 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: Evolutionary dynamics of mutants that modify population structure tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2023' ... --- _id: '14664' abstract: - lang: eng text: The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a “Janus” nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts “on demand”. acknowledgement: We acknowledge funding from the European Union’s Horizon 2020 Research and Innovation Program under the European Research Council (grant agreement 820008).We also thank the Deutsche Forschungsgemeinschaft (DFG) for support through priority program SPP1807(CL489/3-2) and RESOLV Cluster of Excellence EXC2033 (project number 390677874). A.B.G. acknowledges funding from the Zuckerman STEM Leadership Program. DFT calculations were carried out using resources provided by the Wrocław Center for Networking and Supercomputing, grant 329. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Kuntrapakam full_name: Hema, Kuntrapakam last_name: Hema - first_name: Angela B. full_name: Grommet, Angela B. last_name: Grommet - first_name: Michał J. full_name: Białek, Michał J. last_name: Białek - first_name: Jinhua full_name: Wang, Jinhua last_name: Wang - first_name: Laura full_name: Schneider, Laura last_name: Schneider - first_name: Christoph full_name: Drechsler, Christoph last_name: Drechsler - first_name: Oksana full_name: Yanshyna, Oksana last_name: Yanshyna - first_name: Yael full_name: Diskin-Posner, Yael last_name: Diskin-Posner - first_name: Guido H. full_name: Clever, Guido H. last_name: Clever - first_name: Rafal full_name: Klajn, Rafal id: 8e84690e-1e48-11ed-a02b-a1e6fb8bb53b last_name: Klajn citation: ama: Hema K, Grommet AB, Białek MJ, et al. Guest encapsulation alters the thermodynamic landscape of a coordination host. Journal of the American Chemical Society. 2023;145(45):24755-24764. doi:10.1021/jacs.3c08666 apa: Hema, K., Grommet, A. B., Białek, M. J., Wang, J., Schneider, L., Drechsler, C., … Klajn, R. (2023). Guest encapsulation alters the thermodynamic landscape of a coordination host. Journal of the American Chemical Society. American Chemical Society. https://doi.org/10.1021/jacs.3c08666 chicago: Hema, Kuntrapakam, Angela B. Grommet, Michał J. Białek, Jinhua Wang, Laura Schneider, Christoph Drechsler, Oksana Yanshyna, Yael Diskin-Posner, Guido H. Clever, and Rafal Klajn. “Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host.” Journal of the American Chemical Society. American Chemical Society, 2023. https://doi.org/10.1021/jacs.3c08666. ieee: K. Hema et al., “Guest encapsulation alters the thermodynamic landscape of a coordination host,” Journal of the American Chemical Society, vol. 145, no. 45. American Chemical Society, pp. 24755–24764, 2023. ista: Hema K, Grommet AB, Białek MJ, Wang J, Schneider L, Drechsler C, Yanshyna O, Diskin-Posner Y, Clever GH, Klajn R. 2023. Guest encapsulation alters the thermodynamic landscape of a coordination host. Journal of the American Chemical Society. 145(45), 24755–24764. mla: Hema, Kuntrapakam, et al. “Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host.” Journal of the American Chemical Society, vol. 145, no. 45, American Chemical Society, 2023, pp. 24755–64, doi:10.1021/jacs.3c08666. short: K. Hema, A.B. Grommet, M.J. Białek, J. Wang, L. Schneider, C. Drechsler, O. Yanshyna, Y. Diskin-Posner, G.H. Clever, R. Klajn, Journal of the American Chemical Society 145 (2023) 24755–24764. date_created: 2023-12-10T23:00:59Z date_published: 2023-11-02T00:00:00Z date_updated: 2023-12-11T11:47:07Z day: '02' ddc: - '540' department: - _id: RaKl doi: 10.1021/jacs.3c08666 external_id: pmid: - '37917939' file: - access_level: open_access checksum: a1f37df6b83f88f51ba64468ce0c1589 content_type: application/pdf creator: dernst date_created: 2023-12-11T11:44:54Z date_updated: 2023-12-11T11:44:54Z file_id: '14675' file_name: 2023_JACS_Hema.pdf file_size: 4304472 relation: main_file success: 1 file_date_updated: 2023-12-11T11:44:54Z has_accepted_license: '1' intvolume: ' 145' issue: '45' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 24755-24764 pmid: 1 publication: Journal of the American Chemical Society publication_identifier: eissn: - 1520-5126 issn: - 0002-7863 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Guest encapsulation alters the thermodynamic landscape of a coordination host tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 145 year: '2023' ... --- _id: '14663' abstract: - lang: eng text: As a bottleneck in the direct synthesis of hydrogen peroxide, the development of an efficient palladium-based catalyst has garnered great attention. However, elusive active centers and reaction mechanism issues inhibit further optimization of its performance. In this work, advanced microkinetic modeling with the adsorbate–adsorbate interaction and nanoparticle size effect based on first-principles calculations is developed. A full mechanism uncovering the significance of adsorbate–adsorbate interaction is determined on Pd nanoparticles. We demonstrate unambiguously that Pd(100) with main coverage species of O2 and H is beneficial to H2O2 production, being consistent with experimental operando observation, while H2O forms on Pd(111) covered by O species and Pd(211) covered by O and OH species. Kinetic analyses further enable quantitative estimation of the influence of temperature, pressure, and particle size. Large-size Pd nanoparticles are found to achieve a high H2O2 reaction rate when the operating conditions are moderate temperature and higher oxygen partial pressure. We reveal that specific facets of the Pd nanoparticles are crucial factors for their selectivity and activity. Consistent with the experiment, the production of H2O2 is discovered to be more favorable on Pd nanoparticles containing Pd(100) facets. The ratio of H2/O2 induces substantial variations in the coverage of intermediates of O2 and H on Pd(100), resulting in a change in product selectivity. acknowledgement: The authors acknowledge the financial support from the National Natural Science Foundation of China (22008211, 92045303, U21A20298), the National Key Research and Development Project of China (2021YFA1500900, 2022YFE0113800), and Zhejiang Innovation Team (2017R5203). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Jinyan full_name: Zhao, Jinyan last_name: Zhao - first_name: Zihao full_name: Yao, Zihao last_name: Yao - first_name: Rhys full_name: Bunting, Rhys id: 91deeae8-1207-11ec-b130-c194ad5b50c6 last_name: Bunting orcid: 0000-0001-6928-074X - first_name: P. full_name: Hu, P. last_name: Hu - first_name: Jianguo full_name: Wang, Jianguo last_name: Wang citation: ama: Zhao J, Yao Z, Bunting R, Hu P, Wang J. Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles. ACS Catalysis. 2023;13(22):15054-15073. doi:10.1021/acscatal.3c03893 apa: Zhao, J., Yao, Z., Bunting, R., Hu, P., & Wang, J. (2023). Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles. ACS Catalysis. American Chemical Society. https://doi.org/10.1021/acscatal.3c03893 chicago: Zhao, Jinyan, Zihao Yao, Rhys Bunting, P. Hu, and Jianguo Wang. “Microkinetic Modeling with Size-Dependent and Adsorbate-Adsorbate Interactions for the Direct Synthesis of H₂O₂ over Pd Nanoparticles.” ACS Catalysis. American Chemical Society, 2023. https://doi.org/10.1021/acscatal.3c03893. ieee: J. Zhao, Z. Yao, R. Bunting, P. Hu, and J. Wang, “Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles,” ACS Catalysis, vol. 13, no. 22. American Chemical Society, pp. 15054–15073, 2023. ista: Zhao J, Yao Z, Bunting R, Hu P, Wang J. 2023. Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles. ACS Catalysis. 13(22), 15054–15073. mla: Zhao, Jinyan, et al. “Microkinetic Modeling with Size-Dependent and Adsorbate-Adsorbate Interactions for the Direct Synthesis of H₂O₂ over Pd Nanoparticles.” ACS Catalysis, vol. 13, no. 22, American Chemical Society, 2023, pp. 15054–73, doi:10.1021/acscatal.3c03893. short: J. Zhao, Z. Yao, R. Bunting, P. Hu, J. Wang, ACS Catalysis 13 (2023) 15054–15073. date_created: 2023-12-10T23:00:59Z date_published: 2023-11-06T00:00:00Z date_updated: 2023-12-11T11:55:35Z day: '06' ddc: - '540' department: - _id: MaIb doi: 10.1021/acscatal.3c03893 file: - access_level: open_access checksum: a97c771077af71ddfb2249e34530895c content_type: application/pdf creator: dernst date_created: 2023-12-11T11:55:09Z date_updated: 2023-12-11T11:55:09Z file_id: '14676' file_name: 2023_ACSCatalysis_.pdf file_size: 14813812 relation: main_file success: 1 file_date_updated: 2023-12-11T11:55:09Z has_accepted_license: '1' intvolume: ' 13' issue: '22' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 15054-15073 publication: ACS Catalysis publication_identifier: eissn: - 2155-5435 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2023' ... --- _id: '14667' abstract: - lang: eng text: 'For large dimensional non-Hermitian random matrices X with real or complex independent, identically distributed, centered entries, we consider the fluctuations of f (X) as a matrix where f is an analytic function around the spectrum of X. We prove that for a generic bounded square matrix A, the quantity Tr f (X)A exhibits Gaussian fluctuations as the matrix size grows to infinity, which consists of two independent modes corresponding to the tracial and traceless parts of A. We find a new formula for the variance of the traceless part that involves the Frobenius norm of A and the L2-norm of f on the boundary of the limiting spectrum. ' - lang: fre text: On étudie les fluctuations de f (X), où X est une matrice aléatoire non-hermitienne de grande taille à coefficients i.i.d. (réels ou complexes), et f une fonction analytique sur un domaine qui contient le spectre de X. On prouve que, pour une matrice carrée générique et bornée A, les fluctuations de la quantité tr f (X)A sont asymptotiquement gaussiennes et comportent deux modes indépendants, correspondant aux composantes traciale et de trace nulle de A. Une nouvelle formule est établie pour la variance de la composante de trace nulle, qui fait intervenir la norme de Frobenius de A et la norme L2 de f sur la frontière du spectre limite. acknowledgement: "The first author was partially supported by ERC Advanced Grant “RMTBeyond” No. 101020331. The second author was supported by ERC Advanced Grant “RMTBeyond” No. 101020331.\r\nThe authors are grateful to the anonymous referees and associated editor for carefully reading this paper and providing helpful comments that improved the quality of the article. Also the authors would like to thank Peter Forrester for pointing out the reference [12] that was absent in the previous version of the manuscript." article_processing_charge: No article_type: original author: - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Hong Chang full_name: Ji, Hong Chang id: dd216c0a-c1f9-11eb-beaf-e9ea9d2de76d last_name: Ji citation: ama: Erdös L, Ji HC. Functional CLT for non-Hermitian random matrices. Annales de l’institut Henri Poincare (B) Probability and Statistics. 2023;59(4):2083-2105. doi:10.1214/22-AIHP1304 apa: Erdös, L., & Ji, H. C. (2023). Functional CLT for non-Hermitian random matrices. Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics. https://doi.org/10.1214/22-AIHP1304 chicago: Erdös, László, and Hong Chang Ji. “Functional CLT for Non-Hermitian Random Matrices.” Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics, 2023. https://doi.org/10.1214/22-AIHP1304. ieee: L. Erdös and H. C. Ji, “Functional CLT for non-Hermitian random matrices,” Annales de l’institut Henri Poincare (B) Probability and Statistics, vol. 59, no. 4. Institute of Mathematical Statistics, pp. 2083–2105, 2023. ista: Erdös L, Ji HC. 2023. Functional CLT for non-Hermitian random matrices. Annales de l’institut Henri Poincare (B) Probability and Statistics. 59(4), 2083–2105. mla: Erdös, László, and Hong Chang Ji. “Functional CLT for Non-Hermitian Random Matrices.” Annales de l’institut Henri Poincare (B) Probability and Statistics, vol. 59, no. 4, Institute of Mathematical Statistics, 2023, pp. 2083–105, doi:10.1214/22-AIHP1304. short: L. Erdös, H.C. Ji, Annales de l’institut Henri Poincare (B) Probability and Statistics 59 (2023) 2083–2105. date_created: 2023-12-10T23:01:00Z date_published: 2023-11-01T00:00:00Z date_updated: 2023-12-11T12:36:56Z day: '01' department: - _id: LaEr doi: 10.1214/22-AIHP1304 ec_funded: 1 external_id: arxiv: - '2112.11382' intvolume: ' 59' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2112.11382 month: '11' oa: 1 oa_version: Preprint page: 2083-2105 project: - _id: 62796744-2b32-11ec-9570-940b20777f1d call_identifier: H2020 grant_number: '101020331' name: Random matrices beyond Wigner-Dyson-Mehta publication: Annales de l'institut Henri Poincare (B) Probability and Statistics publication_identifier: issn: - 0246-0203 publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: Functional CLT for non-Hermitian random matrices type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 59 year: '2023' ... --- _id: '14662' abstract: - lang: eng text: "We consider a class of polaron models, including the Fröhlich model, at zero total\r\nmomentum, and show that at sufficiently weak coupling there are no excited eigenvalues below\r\nthe essential spectrum." article_processing_charge: Yes article_type: original author: - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Seiringer R. Absence of excited eigenvalues for Fröhlich type polaron models at weak coupling. Journal of Spectral Theory. 2023;13(3):1045-1055. doi:10.4171/JST/469 apa: Seiringer, R. (2023). Absence of excited eigenvalues for Fröhlich type polaron models at weak coupling. Journal of Spectral Theory. EMS Press. https://doi.org/10.4171/JST/469 chicago: Seiringer, Robert. “Absence of Excited Eigenvalues for Fröhlich Type Polaron Models at Weak Coupling.” Journal of Spectral Theory. EMS Press, 2023. https://doi.org/10.4171/JST/469. ieee: R. Seiringer, “Absence of excited eigenvalues for Fröhlich type polaron models at weak coupling,” Journal of Spectral Theory, vol. 13, no. 3. EMS Press, pp. 1045–1055, 2023. ista: Seiringer R. 2023. Absence of excited eigenvalues for Fröhlich type polaron models at weak coupling. Journal of Spectral Theory. 13(3), 1045–1055. mla: Seiringer, Robert. “Absence of Excited Eigenvalues for Fröhlich Type Polaron Models at Weak Coupling.” Journal of Spectral Theory, vol. 13, no. 3, EMS Press, 2023, pp. 1045–55, doi:10.4171/JST/469. short: R. Seiringer, Journal of Spectral Theory 13 (2023) 1045–1055. date_created: 2023-12-10T23:00:59Z date_published: 2023-11-25T00:00:00Z date_updated: 2023-12-11T12:12:14Z day: '25' ddc: - '510' department: - _id: RoSe doi: 10.4171/JST/469 external_id: arxiv: - '2210.17123' file: - access_level: open_access checksum: 9ce96ca87d56ea9a70d2eb9a32839f8d content_type: application/pdf creator: dernst date_created: 2023-12-11T12:03:12Z date_updated: 2023-12-11T12:03:12Z file_id: '14677' file_name: 2023_JST_Seiringer.pdf file_size: 201513 relation: main_file success: 1 file_date_updated: 2023-12-11T12:03:12Z has_accepted_license: '1' intvolume: ' 13' issue: '3' language: - iso: eng month: '11' oa: 1 oa_version: None page: 1045-1055 publication: Journal of Spectral Theory publication_identifier: eissn: - 1664-0403 issn: - 1664-039X publication_status: published publisher: EMS Press quality_controlled: '1' scopus_import: '1' status: public title: Absence of excited eigenvalues for Fröhlich type polaron models at weak coupling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2023' ... --- _id: '14652' abstract: - lang: eng text: In order to demonstrate the stability of newly proposed iridium-based Ir2Cr(In,Sn) and IrRhCr(In,Sn) heusler alloys, we present ab-initio analysis of these alloys by examining various properties to prove their stability. The stability of these alloys can be inferred from different cohesive and formation energies as well as positive phonon frequencies. Their electronic structure results indicate that they are semi-metals in nature. The magnetic moments are computed using the Slater-Pauling formula and exhibit a high value, with the Cr atom contributing the most in all alloys. Mulliken’s charge analysis results show that our alloys contain a range of linkages, mainly ionic and covalent ones. The ductility and mechanical stability of these alloys are confirmed by elastic constants viz. Poisson’s ratio, Pugh’s ratio, and many different types of elastic moduli. article_number: '415539' article_processing_charge: No article_type: original author: - first_name: Shyam Lal full_name: Gupta, Shyam Lal last_name: Gupta - first_name: Saurabh full_name: Singh, Saurabh id: 12d625da-9cb3-11ed-9667-af09d37d3f0a last_name: Singh orcid: 0000-0003-2209-5269 - first_name: Sumit full_name: Kumar, Sumit last_name: Kumar - first_name: Unknown full_name: Anupam, Unknown last_name: Anupam - first_name: Samjeet Singh full_name: Thakur, Samjeet Singh last_name: Thakur - first_name: Ashish full_name: Kumar, Ashish last_name: Kumar - first_name: Sanjay full_name: Panwar, Sanjay last_name: Panwar - first_name: D. full_name: Diwaker, D. last_name: Diwaker citation: ama: 'Gupta SL, Singh S, Kumar S, et al. Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys. Physica B: Condensed Matter. 2023;674. doi:10.1016/j.physb.2023.415539' apa: 'Gupta, S. L., Singh, S., Kumar, S., Anupam, U., Thakur, S. S., Kumar, A., … Diwaker, D. (2023). Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys. Physica B: Condensed Matter. Elsevier. https://doi.org/10.1016/j.physb.2023.415539' chicago: 'Gupta, Shyam Lal, Saurabh Singh, Sumit Kumar, Unknown Anupam, Samjeet Singh Thakur, Ashish Kumar, Sanjay Panwar, and D. Diwaker. “Ab-Initio Stability of Iridium Based Newly Proposed Full and Quaternary Heusler Alloys.” Physica B: Condensed Matter. Elsevier, 2023. https://doi.org/10.1016/j.physb.2023.415539.' ieee: 'S. L. Gupta et al., “Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys,” Physica B: Condensed Matter, vol. 674. Elsevier, 2023.' ista: 'Gupta SL, Singh S, Kumar S, Anupam U, Thakur SS, Kumar A, Panwar S, Diwaker D. 2023. Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys. Physica B: Condensed Matter. 674, 415539.' mla: 'Gupta, Shyam Lal, et al. “Ab-Initio Stability of Iridium Based Newly Proposed Full and Quaternary Heusler Alloys.” Physica B: Condensed Matter, vol. 674, 415539, Elsevier, 2023, doi:10.1016/j.physb.2023.415539.' short: 'S.L. Gupta, S. Singh, S. Kumar, U. Anupam, S.S. Thakur, A. Kumar, S. Panwar, D. Diwaker, Physica B: Condensed Matter 674 (2023).' date_created: 2023-12-10T23:00:56Z date_published: 2023-11-28T00:00:00Z date_updated: 2023-12-12T08:22:23Z day: '28' department: - _id: MaIb doi: 10.1016/j.physb.2023.415539 intvolume: ' 674' language: - iso: eng month: '11' oa_version: None publication: 'Physica B: Condensed Matter' publication_identifier: issn: - 0921-4526 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 674 year: '2023' ... --- _id: '12487' abstract: - lang: eng text: Sleep plays a key role in preserving brain function, keeping the brain network in a state that ensures optimal computational capabilities. Empirical evidence indicates that such a state is consistent with criticality, where scale-free neuronal avalanches emerge. However, the relationship between sleep, emergent avalanches, and criticality remains poorly understood. Here we fully characterize the critical behavior of avalanches during sleep, and study their relationship with the sleep macro- and micro-architecture, in particular the cyclic alternating pattern (CAP). We show that avalanche size and duration distributions exhibit robust power laws with exponents approximately equal to −3/2 e −2, respectively. Importantly, we find that sizes scale as a power law of the durations, and that all critical exponents for neuronal avalanches obey robust scaling relations, which are consistent with the mean-field directed percolation universality class. Our analysis demonstrates that avalanche dynamics depends on the position within the NREM-REM cycles, with the avalanche density increasing in the descending phases and decreasing in the ascending phases of sleep cycles. Moreover, we show that, within NREM sleep, avalanche occurrence correlates with CAP activation phases, particularly A1, which are the expression of slow wave sleep propensity and have been proposed to be beneficial for cognitive processes. The results suggest that neuronal avalanches, and thus tuning to criticality, actively contribute to sleep development and play a role in preserving network function. Such findings, alongside characterization of the universality class for avalanches, open new avenues to the investigation of functional role of criticality during sleep with potential clinical application.Significance statementWe fully characterize the critical behavior of neuronal avalanches during sleep, and show that avalanches follow precise scaling laws that are consistent with the mean-field directed percolation universality class. The analysis provides first evidence of a functional relationship between avalanche occurrence, slow-wave sleep dynamics, sleep stage transitions and occurrence of CAP phase A during NREM sleep. Because CAP is considered one of the major guardians of NREM sleep that allows the brain to dynamically react to external perturbation and contributes to the cognitive consolidation processes occurring in sleep, our observations suggest that neuronal avalanches at criticality are associated with flexible response to external inputs and to cognitive processes, a key assumption of the critical brain hypothesis. acknowledgement: FL acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 754411, and from the Austrian Science Fund (FWF) under the Lise Meitner fellowship No. PT1013M03318. IA acknowledges financial support from the MIUR PRIN 2017WZFTZP. article_processing_charge: Yes article_type: original author: - first_name: Silvia full_name: Scarpetta, Silvia last_name: Scarpetta - first_name: Niccolò full_name: Morrisi, Niccolò last_name: Morrisi - first_name: Carlotta full_name: Mutti, Carlotta last_name: Mutti - first_name: Nicoletta full_name: Azzi, Nicoletta last_name: Azzi - first_name: Irene full_name: Trippi, Irene last_name: Trippi - first_name: Rosario full_name: Ciliento, Rosario last_name: Ciliento - first_name: Ilenia full_name: Apicella, Ilenia last_name: Apicella - first_name: Giovanni full_name: Messuti, Giovanni last_name: Messuti - first_name: Marianna full_name: Angiolelli, Marianna last_name: Angiolelli - first_name: Fabrizio full_name: Lombardi, Fabrizio id: A057D288-3E88-11E9-986D-0CF4E5697425 last_name: Lombardi orcid: 0000-0003-2623-5249 - first_name: Liborio full_name: Parrino, Liborio last_name: Parrino - first_name: Anna Elisabetta full_name: Vaudano, Anna Elisabetta last_name: Vaudano citation: ama: Scarpetta S, Morrisi N, Mutti C, et al. Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture. iScience. 2023;26(10):107840. doi:10.1016/j.isci.2023.107840 apa: Scarpetta, S., Morrisi, N., Mutti, C., Azzi, N., Trippi, I., Ciliento, R., … Vaudano, A. E. (2023). Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture. IScience. Elsevier. https://doi.org/10.1016/j.isci.2023.107840 chicago: Scarpetta, Silvia, Niccolò Morrisi, Carlotta Mutti, Nicoletta Azzi, Irene Trippi, Rosario Ciliento, Ilenia Apicella, et al. “Criticality of Neuronal Avalanches in Human Sleep and Their Relationship with Sleep Macro- and Micro-Architecture.” IScience. Elsevier, 2023. https://doi.org/10.1016/j.isci.2023.107840. ieee: S. Scarpetta et al., “Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture,” iScience, vol. 26, no. 10. Elsevier, p. 107840, 2023. ista: Scarpetta S, Morrisi N, Mutti C, Azzi N, Trippi I, Ciliento R, Apicella I, Messuti G, Angiolelli M, Lombardi F, Parrino L, Vaudano AE. 2023. Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture. iScience. 26(10), 107840. mla: Scarpetta, Silvia, et al. “Criticality of Neuronal Avalanches in Human Sleep and Their Relationship with Sleep Macro- and Micro-Architecture.” IScience, vol. 26, no. 10, Elsevier, 2023, p. 107840, doi:10.1016/j.isci.2023.107840. short: S. Scarpetta, N. Morrisi, C. Mutti, N. Azzi, I. Trippi, R. Ciliento, I. Apicella, G. Messuti, M. Angiolelli, F. Lombardi, L. Parrino, A.E. Vaudano, IScience 26 (2023) 107840. date_created: 2023-02-02T10:50:17Z date_published: 2023-10-20T00:00:00Z date_updated: 2023-12-13T11:11:24Z day: '20' ddc: - '570' department: - _id: GaTk doi: 10.1016/j.isci.2023.107840 ec_funded: 1 external_id: isi: - '001082331200001' pmid: - '37766992' file: - access_level: open_access checksum: f499836af172ecc9865de4bb41fa99d1 content_type: application/pdf creator: dernst date_created: 2023-10-09T07:23:46Z date_updated: 2023-10-09T07:23:46Z file_id: '14412' file_name: 2023_iScience_Scarpetta.pdf file_size: 4872708 relation: main_file success: 1 file_date_updated: 2023-10-09T07:23:46Z has_accepted_license: '1' intvolume: ' 26' isi: 1 issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '107840' pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: eb943429-77a9-11ec-83b8-9f471cdf5c67 grant_number: M03318 name: Functional Advantages of Critical Brain Dynamics publication: iScience publication_identifier: eissn: - 2589-0042 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 26 year: '2023' ... --- _id: '12696' abstract: - lang: eng text: "Background: Fighting disease while fighting rivals exposes males to constraints and tradeoffs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfered with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony’s worker force.\r\nResults: We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on.\r\nConclusions: Males of the ant C. obscurior have evolved high immune investment, triggering an effective immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without cost to their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus revealed a novel social immunity mechanism how social insect workers protect the colony against disease risk." acknowledged_ssus: - _id: LifeSc acknowledgement: "We are thankful to Mike Bidochka for the fungal strain, Lukas Schrader for sharing the C. obscurior genome data for primer development, the Lab Support Facility of ISTA for general laboratory support and help with the permit approval procedures, and the Finca El Quinto for letting us collect ants on their property. We thank the Social Immunity Team at ISTA for help with ant collection and experimental help, in particular Elina Hanhimäki and Marta Gorecka for behavioural observation, and Elisabeth Naderlinger for spore load PCRs. We further thank the Social Immunity Team and Jürgen Heinze for continued discussion and comments on the manuscript.\r\nOpen access funding provided by Institute of Science and Technology Austria (ISTA). This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771402 to SC). " article_number: '37' article_processing_charge: Yes article_type: original author: - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler orcid: 0000-0002-9547-2494 - first_name: Jessica full_name: Kirchner, Jessica id: 21516227-15aa-11ec-9fb2-c6e8ffc155d3 last_name: Kirchner - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Metzler S, Kirchner J, Grasse AV, Cremer S. Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecology and Evolution. 2023;23. doi:10.1186/s12862-023-02137-7 apa: Metzler, S., Kirchner, J., Grasse, A. V., & Cremer, S. (2023). Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecology and Evolution. Springer Nature. https://doi.org/10.1186/s12862-023-02137-7 chicago: Metzler, Sina, Jessica Kirchner, Anna V Grasse, and Sylvia Cremer. “Trade-Offs between Immunity and Competitive Ability in Fighting Ant Males.” BMC Ecology and Evolution. Springer Nature, 2023. https://doi.org/10.1186/s12862-023-02137-7. ieee: S. Metzler, J. Kirchner, A. V. Grasse, and S. Cremer, “Trade-offs between immunity and competitive ability in fighting ant males,” BMC Ecology and Evolution, vol. 23. Springer Nature, 2023. ista: Metzler S, Kirchner J, Grasse AV, Cremer S. 2023. Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecology and Evolution. 23, 37. mla: Metzler, Sina, et al. “Trade-Offs between Immunity and Competitive Ability in Fighting Ant Males.” BMC Ecology and Evolution, vol. 23, 37, Springer Nature, 2023, doi:10.1186/s12862-023-02137-7. short: S. Metzler, J. Kirchner, A.V. Grasse, S. Cremer, BMC Ecology and Evolution 23 (2023). date_created: 2023-02-28T07:38:17Z date_published: 2023-08-07T00:00:00Z date_updated: 2023-12-13T11:13:14Z day: '07' ddc: - '570' department: - _id: SyCr doi: 10.1186/s12862-023-02137-7 ec_funded: 1 external_id: isi: - '001042643600002' pmid: - '37550612' file: - access_level: open_access checksum: 95966dc7d242d2c85bdd4fe14233dbd8 content_type: application/pdf creator: dernst date_created: 2023-08-14T07:51:47Z date_updated: 2023-08-14T07:51:47Z file_id: '14048' file_name: 2023_BMCEcology_Metzler.pdf file_size: 2004276 relation: main_file success: 1 file_date_updated: 2023-08-14T07:51:47Z has_accepted_license: '1' intvolume: ' 23' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication: BMC Ecology and Evolution publication_identifier: issn: - 2730-7182 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12693' relation: research_data status: public scopus_import: '1' status: public title: Trade-offs between immunity and competitive ability in fighting ant males tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2023' ... --- _id: '14659' abstract: - lang: eng text: Understanding the response of Himalayan glaciers to global warming is vital because of their role as a water source for the Asian subcontinent. However, great uncertainties still exist on the climate drivers of past and present glacier changes across scales. Here, we analyse continuous hourly climate station data from a glacierized elevation (Pyramid station, Mount Everest) since 1994 together with other ground observations and climate reanalysis. We show that a decrease in maximum air temperature and precipitation occurred during the last three decades at Pyramid in response to global warming. Reanalysis data suggest a broader occurrence of this effect in the glacierized areas of the Himalaya. We hypothesize that the counterintuitive cooling is caused by enhanced sensible heat exchange and the associated increase in glacier katabatic wind, which draws cool air downward from higher elevations. The stronger katabatic winds have also lowered the elevation of local wind convergence, thereby diminishing precipitation in glacial areas and negatively affecting glacier mass balance. This local cooling may have partially preserved glaciers from melting and could help protect the periglacial environment. acknowledgement: This work was carried out within the framework of the EV-K2-CNR and Nepal Academy of Science and Technology. K.Y. was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (grant no. 2019QZKK0206). N.C. was supported by the project NODES, which has received funding from the MUR–M4C2 1.5 of PNRR funded by the European Union - NextGeneration EU (Grant agreement no. ECS00000036). T.E.S. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant no. 101026058. F.P. has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme grant no. 772751, RAVEN, ‘Rapid mass losses of debris-covered glaciers in High Mountain Asia’ and has been supported by the SNSF grant ‘High-elevation precipitation in High Mountain Asia’ (grant no. 183633). A.A. was supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101004156 (CONFESS project) and by the European Union’s Horizon Europe research and innovation program under grant agreement no. 101081193 (OptimESM project). We thank H. Wehrli for valuable comments and suggestions and J. Giannitrapani for the graphic support. We thank A. Da Polenza and K. Bista of EV-K2-CNR for believing that studying the high elevations is relevant for the whole globe. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Franco full_name: Salerno, Franco last_name: Salerno - first_name: Nicolas full_name: Guyennon, Nicolas last_name: Guyennon - first_name: Kun full_name: Yang, Kun last_name: Yang - first_name: Thomas full_name: Shaw, Thomas id: 3caa3f91-1f03-11ee-96ce-e0e553054d6e last_name: Shaw orcid: 0000-0001-7640-6152 - first_name: Changgui full_name: Lin, Changgui last_name: Lin - first_name: Nicola full_name: Colombo, Nicola last_name: Colombo - first_name: Emanuele full_name: Romano, Emanuele last_name: Romano - first_name: Stephan full_name: Gruber, Stephan last_name: Gruber - first_name: Tobias full_name: Bolch, Tobias last_name: Bolch - first_name: Andrea full_name: Alessandri, Andrea last_name: Alessandri - first_name: Paolo full_name: Cristofanelli, Paolo last_name: Cristofanelli - first_name: Davide full_name: Putero, Davide last_name: Putero - first_name: Guglielmina full_name: Diolaiuti, Guglielmina last_name: Diolaiuti - first_name: Gianni full_name: Tartari, Gianni last_name: Tartari - first_name: Gianpietro full_name: Verza, Gianpietro last_name: Verza - first_name: Sudeep full_name: Thakuri, Sudeep last_name: Thakuri - first_name: Gianpaolo full_name: Balsamo, Gianpaolo last_name: Balsamo - first_name: Evan S. full_name: Miles, Evan S. last_name: Miles - first_name: Francesca full_name: Pellicciotti, Francesca id: b28f055a-81ea-11ed-b70c-a9fe7f7b0e70 last_name: Pellicciotti orcid: 0000-0002-5554-8087 citation: ama: Salerno F, Guyennon N, Yang K, et al. Local cooling and drying induced by Himalayan glaciers under global warming. Nature Geoscience. 2023;16:1120-1127. doi:10.1038/s41561-023-01331-y apa: Salerno, F., Guyennon, N., Yang, K., Shaw, T., Lin, C., Colombo, N., … Pellicciotti, F. (2023). Local cooling and drying induced by Himalayan glaciers under global warming. Nature Geoscience. Springer Nature. https://doi.org/10.1038/s41561-023-01331-y chicago: Salerno, Franco, Nicolas Guyennon, Kun Yang, Thomas Shaw, Changgui Lin, Nicola Colombo, Emanuele Romano, et al. “Local Cooling and Drying Induced by Himalayan Glaciers under Global Warming.” Nature Geoscience. Springer Nature, 2023. https://doi.org/10.1038/s41561-023-01331-y. ieee: F. Salerno et al., “Local cooling and drying induced by Himalayan glaciers under global warming,” Nature Geoscience, vol. 16. Springer Nature, pp. 1120–1127, 2023. ista: Salerno F, Guyennon N, Yang K, Shaw T, Lin C, Colombo N, Romano E, Gruber S, Bolch T, Alessandri A, Cristofanelli P, Putero D, Diolaiuti G, Tartari G, Verza G, Thakuri S, Balsamo G, Miles ES, Pellicciotti F. 2023. Local cooling and drying induced by Himalayan glaciers under global warming. Nature Geoscience. 16, 1120–1127. mla: Salerno, Franco, et al. “Local Cooling and Drying Induced by Himalayan Glaciers under Global Warming.” Nature Geoscience, vol. 16, Springer Nature, 2023, pp. 1120–27, doi:10.1038/s41561-023-01331-y. short: F. Salerno, N. Guyennon, K. Yang, T. Shaw, C. Lin, N. Colombo, E. Romano, S. Gruber, T. Bolch, A. Alessandri, P. Cristofanelli, D. Putero, G. Diolaiuti, G. Tartari, G. Verza, S. Thakuri, G. Balsamo, E.S. Miles, F. Pellicciotti, Nature Geoscience 16 (2023) 1120–1127. date_created: 2023-12-10T23:00:58Z date_published: 2023-12-04T00:00:00Z date_updated: 2023-12-13T11:01:10Z day: '04' ddc: - '550' department: - _id: FrPe doi: 10.1038/s41561-023-01331-y file: - access_level: open_access checksum: d5ae0d17069eebc6f454c8608cf83e21 content_type: application/pdf creator: dernst date_created: 2023-12-11T10:11:19Z date_updated: 2023-12-11T10:11:19Z file_id: '14671' file_name: 2023_NatureGeoscience_Salerno.pdf file_size: 6072603 relation: main_file success: 1 file_date_updated: 2023-12-11T10:11:19Z has_accepted_license: '1' intvolume: ' 16' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 1120-1127 publication: Nature Geoscience publication_identifier: eissn: - 1752-0908 issn: - 1752-0894 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on ISTA website relation: press_release url: https://ista.ac.at/en/news/wind-of-climate-change/ scopus_import: '1' status: public title: Local cooling and drying induced by Himalayan glaciers under global warming tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2023' ... --- _id: '12786' abstract: - lang: eng text: AMPA glutamate receptors (AMPARs) mediate excitatory neurotransmission throughout the brain. Their signalling is uniquely diversified by brain region-specific auxiliary subunits, providing an opportunity for the development of selective therapeutics. AMPARs associated with TARP γ8 are enriched in the hippocampus, and are targets of emerging anti-epileptic drugs. To understand their therapeutic activity, we determined cryo-EM structures of the GluA1/2-γ8 receptor associated with three potent, chemically diverse ligands. We find that despite sharing a lipid-exposed and water-accessible binding pocket, drug action is differentially affected by binding-site mutants. Together with patch-clamp recordings and MD simulations we also demonstrate that ligand-triggered reorganisation of the AMPAR-TARP interface contributes to modulation. Unexpectedly, one ligand (JNJ-61432059) acts bifunctionally, negatively affecting GluA1 but exerting positive modulatory action on GluA2-containing AMPARs, in a TARP stoichiometry-dependent manner. These results further illuminate the action of TARPs, demonstrate the sensitive balance between positive and negative modulatory action, and provide a mechanistic platform for development of both positive and negative selective AMPAR modulators. acknowledgement: We thank James Krieger for generating the ‘proDy’ interaction maps in Fig. 5B and S7C, and Jan-Niklas Dohrke for critically reading the manuscript. We thank members of the Greger lab for insightful comments during this study. We acknowledge Trevor Rutherford for confirming ligand integrity by NMR. We are also grateful to LMB scientific computing and the EM facility for their support. This research was funded in part by the Wellcome Trust (223194/Z/21/Z) to I.H.G. For the purpose of Open Access, the MRC Laboratory of Molecular Biology has applied a CC BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission. Further funding came from the Medical Research Council (MRU105174197) to I.H.G, and NIH grant (R56/R01MH123474) to T.N. article_number: '1659' article_processing_charge: No article_type: original author: - first_name: Danyang full_name: Zhang, Danyang last_name: Zhang - first_name: Remigijus full_name: Lape, Remigijus last_name: Lape - first_name: Saher A. full_name: Shaikh, Saher A. last_name: Shaikh - first_name: Bianka K. full_name: Kohegyi, Bianka K. last_name: Kohegyi - first_name: Jake full_name: Watson, Jake id: 63836096-4690-11EA-BD4E-32803DDC885E last_name: Watson orcid: 0000-0002-8698-3823 - first_name: Ondrej full_name: Cais, Ondrej last_name: Cais - first_name: Terunaga full_name: Nakagawa, Terunaga last_name: Nakagawa - first_name: Ingo H. full_name: Greger, Ingo H. last_name: Greger citation: ama: Zhang D, Lape R, Shaikh SA, et al. Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics. Nature Communications. 2023;14. doi:10.1038/s41467-023-37259-5 apa: Zhang, D., Lape, R., Shaikh, S. A., Kohegyi, B. K., Watson, J., Cais, O., … Greger, I. H. (2023). Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-37259-5 chicago: Zhang, Danyang, Remigijus Lape, Saher A. Shaikh, Bianka K. Kohegyi, Jake Watson, Ondrej Cais, Terunaga Nakagawa, and Ingo H. Greger. “Modulatory Mechanisms of TARP Γ8-Selective AMPA Receptor Therapeutics.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-37259-5. ieee: D. Zhang et al., “Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Zhang D, Lape R, Shaikh SA, Kohegyi BK, Watson J, Cais O, Nakagawa T, Greger IH. 2023. Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics. Nature Communications. 14, 1659. mla: Zhang, Danyang, et al. “Modulatory Mechanisms of TARP Γ8-Selective AMPA Receptor Therapeutics.” Nature Communications, vol. 14, 1659, Springer Nature, 2023, doi:10.1038/s41467-023-37259-5. short: D. Zhang, R. Lape, S.A. Shaikh, B.K. Kohegyi, J. Watson, O. Cais, T. Nakagawa, I.H. Greger, Nature Communications 14 (2023). date_created: 2023-04-02T22:01:09Z date_published: 2023-03-25T00:00:00Z date_updated: 2023-12-13T11:15:58Z day: '25' ddc: - '570' department: - _id: PeJo doi: 10.1038/s41467-023-37259-5 external_id: isi: - '001066658700003' file: - access_level: open_access checksum: 0a97b31191432dae5853bbb5ccb7698d content_type: application/pdf creator: dernst date_created: 2023-04-03T06:38:56Z date_updated: 2023-04-03T06:38:56Z file_id: '12797' file_name: 2023_NatureComm_Zhang.pdf file_size: 2613996 relation: main_file success: 1 file_date_updated: 2023-04-03T06:38:56Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '12693' abstract: - lang: eng text: See Readme File for further information. article_processing_charge: No author: - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: 'Cremer S. Source data for Metzler et al, 2023: Trade-offs between immunity and competitive ability in fighting ant males . 2023. doi:10.15479/AT:ISTA:12693' apa: 'Cremer, S. (2023). Source data for Metzler et al, 2023: Trade-offs between immunity and competitive ability in fighting ant males . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:12693' chicago: 'Cremer, Sylvia. “Source Data for Metzler et Al, 2023: Trade-Offs between Immunity and Competitive Ability in Fighting Ant Males .” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:12693.' ieee: 'S. Cremer, “Source data for Metzler et al, 2023: Trade-offs between immunity and competitive ability in fighting ant males .” Institute of Science and Technology Austria, 2023.' ista: 'Cremer S. 2023. Source data for Metzler et al, 2023: Trade-offs between immunity and competitive ability in fighting ant males , Institute of Science and Technology Austria, 10.15479/AT:ISTA:12693.' mla: 'Cremer, Sylvia. Source Data for Metzler et Al, 2023: Trade-Offs between Immunity and Competitive Ability in Fighting Ant Males . Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:12693.' short: S. Cremer, (2023). contributor: - contributor_type: data_collector first_name: Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler - contributor_type: data_collector first_name: Jessica id: 21516227-15aa-11ec-9fb2-c6e8ffc155d3 last_name: Kirchner - contributor_type: data_collector first_name: Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse date_created: 2023-02-28T06:38:37Z date_published: 2023-02-28T00:00:00Z date_updated: 2023-12-13T11:13:13Z day: '28' ddc: - '570' department: - _id: SyCr doi: 10.15479/AT:ISTA:12693 file: - access_level: open_access checksum: c1565d655ca05601acfd84e0d12b8563 content_type: application/pdf creator: scremer date_created: 2023-02-28T06:34:08Z date_updated: 2023-02-28T06:34:08Z file_id: '12694' file_name: Metzler_ReadMe.pdf file_size: 77070 relation: main_file success: 1 - access_level: open_access checksum: 75c4c4948563d6261cb7548f80d909f1 content_type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet creator: scremer date_created: 2023-02-28T06:34:12Z date_updated: 2023-02-28T06:34:12Z file_id: '12695' file_name: Metzler_RepositoryData.xlsx file_size: 88001 relation: main_file success: 1 file_date_updated: 2023-02-28T06:34:12Z has_accepted_license: '1' month: '02' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '12696' relation: used_in_publication status: public status: public title: 'Source data for Metzler et al, 2023: Trade-offs between immunity and competitive ability in fighting ant males ' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13168' abstract: - lang: eng text: Urban-living individuals are exposed to many environmental factors that may combine and interact to influence mental health. While individual factors of an urban environment have been investigated in isolation, no attempt has been made to model how complex, real-life exposure to living in the city relates to brain and mental health, and how this is moderated by genetic factors. Using the data of 156,075 participants from the UK Biobank, we carried out sparse canonical correlation analyses to investigate the relationships between urban environments and psychiatric symptoms. We found an environmental profile of social deprivation, air pollution, street network and urban land-use density that was positively correlated with an affective symptom group (r = 0.22, Pperm < 0.001), mediated by brain volume differences consistent with reward processing, and moderated by genes enriched for stress response, including CRHR1, explaining 2.01% of the variance in brain volume differences. Protective factors such as greenness and generous destination accessibility were negatively correlated with an anxiety symptom group (r = 0.10, Pperm < 0.001), mediated by brain regions necessary for emotion regulation and moderated by EXD3, explaining 1.65% of the variance. The third urban environmental profile was correlated with an emotional instability symptom group (r = 0.03, Pperm < 0.001). Our findings suggest that different environmental profiles of urban living may influence specific psychiatric symptom groups through distinct neurobiological pathways. acknowledgement: This work received support from the European Union-funded Horizon Europe project ‘environMENTAL’ (no. 101057429 to G.S., A.M. and M.M.N.) and cofunding by UK Research and Innovation under the UK Government’s Horizon Europe funding guarantee (nos. 10041392 and 10038599) for study design and data analysis; the Horizon 2020-funded European Research Council Advanced Grant ‘STRATIFY’ (no. 695313 to G.S. for study design and data analysis); the Human Brain Project (HBP SGA3, no. 945539 to G.S. for study design and data analysis); the National Institutes of Health (grant no. R01DA049238 to G.S. for study design and data analysis); the German Research Foundation (COPE; grant no. 675346 to G.S. for study design and data analysis); the National Natural Science Foundation of China (grant no. 82001797 to J.X., grant no. 82030053 to C.Y., grant no. 82202093 to J.T. and grant no. 82150710554 to G.S. for study design, data analysis and preparation of the manuscript); National Key Research and Development Program of China (grant no. 2018YFC1314301 to C.Y. for study design and data analysis); Tianjin Applied Basic Research Diversified Investment Foundation (grant no. 21JCYBJC01360 to J.X. for study design and data analysis); Tianjin Health Technology Project (grant no. TJWJ2021QN002 to J.X. for preparation of the manuscript); Science & Technology Development Fund of the Tianjin Education Commission for Higher Education (grant no. 2019KJ195 to J.X. for preparation of the manuscript); the Tianjin Medical University ‘Clinical Talent Training 123 Climbing Plan’ to J.X. for the preparation of the manuscript; Tianjin Key Medical Discipline (Specialty) Construction Project (grant no. TJYXZDXK-001A to C.Y. for preparation of the manuscript); the National Key R&D Program of China (grant no. 2022YFE0209400 to L.Y. for study design and data analysis); the Tsinghua University Initiative Scientific Research Program (grant no. 2021Z11GHX002 to L.Y. for study design and data analysis); the National Key Scientific and Technological Infrastructure Project ‘Earth System Science Numerical Simulator Facility’ (EarthLab to L.Y. for study design and data analysis); the Chinese National High-end Foreign Expert Recruitment Plan to G.S.; and the Alexander von Humboldt Foundation to G.S. for study design and data analysis. article_processing_charge: No article_type: original author: - first_name: Jiayuan full_name: Xu, Jiayuan last_name: Xu - first_name: Nana full_name: Liu, Nana last_name: Liu - first_name: Elli full_name: Polemiti, Elli last_name: Polemiti - first_name: Liliana full_name: Garcia-Mondragon, Liliana last_name: Garcia-Mondragon - first_name: Jie full_name: Tang, Jie last_name: Tang - first_name: Xiaoxuan full_name: Liu, Xiaoxuan last_name: Liu - first_name: Tristram full_name: Lett, Tristram last_name: Lett - first_name: Le full_name: Yu, Le last_name: Yu - first_name: Markus M. full_name: Nöthen, Markus M. last_name: Nöthen - first_name: Jianfeng full_name: Feng, Jianfeng last_name: Feng - first_name: Chunshui full_name: Yu, Chunshui last_name: Yu - first_name: Andre full_name: Marquand, Andre last_name: Marquand - first_name: Gunter full_name: Schumann, Gunter last_name: Schumann - first_name: Henrik full_name: Walter, Henrik last_name: Walter - first_name: Andreas full_name: Heinz, Andreas last_name: Heinz - first_name: Markus full_name: Ralser, Markus last_name: Ralser - first_name: Sven full_name: Twardziok, Sven last_name: Twardziok - first_name: Nilakshi full_name: Vaidya, Nilakshi last_name: Vaidya - first_name: Emin full_name: Serin, Emin last_name: Serin - first_name: Marcel full_name: Jentsch, Marcel last_name: Jentsch - first_name: Esther full_name: Hitchen, Esther last_name: Hitchen - first_name: Roland full_name: Eils, Roland last_name: Eils - first_name: Ulrike Helene full_name: Taron, Ulrike Helene last_name: Taron - first_name: Tatjana full_name: Schütz, Tatjana last_name: Schütz - first_name: Kerstin full_name: Schepanski, Kerstin last_name: Schepanski - first_name: Jamie full_name: Banks, Jamie last_name: Banks - first_name: Tobias full_name: Banaschewski, Tobias last_name: Banaschewski - first_name: Karina full_name: Jansone, Karina last_name: Jansone - first_name: Nina full_name: Christmann, Nina last_name: Christmann - first_name: Andreas full_name: Meyer-Lindenberg, Andreas last_name: Meyer-Lindenberg - first_name: Heike full_name: Tost, Heike last_name: Tost - first_name: Nathalie full_name: Holz, Nathalie last_name: Holz - first_name: Emanuel full_name: Schwarz, Emanuel last_name: Schwarz - first_name: Argyris full_name: Stringaris, Argyris last_name: Stringaris - first_name: Maja full_name: Neidhart, Maja last_name: Neidhart - first_name: Frauke full_name: Nees, Frauke last_name: Nees - first_name: Sebastian full_name: Siehl, Sebastian last_name: Siehl - first_name: Ole full_name: A. Andreassen, Ole last_name: A. Andreassen - first_name: Lars full_name: T. Westlye, Lars last_name: T. Westlye - first_name: Dennis full_name: Van Der Meer, Dennis last_name: Van Der Meer - first_name: Sara full_name: Fernandez, Sara last_name: Fernandez - first_name: Rikka full_name: Kjelkenes, Rikka last_name: Kjelkenes - first_name: Helga full_name: Ask, Helga last_name: Ask - first_name: Michael full_name: Rapp, Michael last_name: Rapp - first_name: Mira full_name: Tschorn, Mira last_name: Tschorn - first_name: Sarah Jane full_name: Böttger, Sarah Jane last_name: Böttger - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 - first_name: Lena full_name: Marr, Lena id: 4406F586-F248-11E8-B48F-1D18A9856A87 last_name: Marr - first_name: Mel full_name: Slater, Mel last_name: Slater - first_name: Guillem Feixas full_name: Viapiana, Guillem Feixas last_name: Viapiana - first_name: Francisco Eiroa full_name: Orosa, Francisco Eiroa last_name: Orosa - first_name: Jaime full_name: Gallego, Jaime last_name: Gallego - first_name: Alvaro full_name: Pastor, Alvaro last_name: Pastor - first_name: Andreas full_name: Forstner, Andreas last_name: Forstner - first_name: Per full_name: Hoffmann, Per last_name: Hoffmann - first_name: Markus full_name: M. Nöthen, Markus last_name: M. Nöthen - first_name: Andreas full_name: J. Forstner, Andreas last_name: J. Forstner - first_name: Isabelle full_name: Claus, Isabelle last_name: Claus - first_name: Abbi full_name: Miller, Abbi last_name: Miller - first_name: Stefanie full_name: Heilmann-Heimbach, Stefanie last_name: Heilmann-Heimbach - first_name: Peter full_name: Sommer, Peter last_name: Sommer - first_name: Mona full_name: Boye, Mona last_name: Boye - first_name: Johannes full_name: Wilbertz, Johannes last_name: Wilbertz - first_name: Karen full_name: Schmitt, Karen last_name: Schmitt - first_name: Viktor full_name: Jirsa, Viktor last_name: Jirsa - first_name: Spase full_name: Petkoski, Spase last_name: Petkoski - first_name: Séverine full_name: Pitel, Séverine last_name: Pitel - first_name: Lisa full_name: Otten, Lisa last_name: Otten - first_name: Anastasios Polykarpos full_name: Athanasiadis, Anastasios Polykarpos last_name: Athanasiadis - first_name: Charlie full_name: Pearmund, Charlie last_name: Pearmund - first_name: Bernhard full_name: Spanlang, Bernhard last_name: Spanlang - first_name: Elena full_name: Alvarez, Elena last_name: Alvarez - first_name: Mavi full_name: Sanchez, Mavi last_name: Sanchez - first_name: Arantxa full_name: Giner, Arantxa last_name: Giner - first_name: Sören full_name: Hese, Sören last_name: Hese - first_name: Paul full_name: Renner, Paul last_name: Renner - first_name: Tianye full_name: Jia, Tianye last_name: Jia - first_name: Yanting full_name: Gong, Yanting last_name: Gong - first_name: Yunman full_name: Xia, Yunman last_name: Xia - first_name: Xiao full_name: Chang, Xiao last_name: Chang - first_name: Vince full_name: Calhoun, Vince last_name: Calhoun - first_name: Jingyu full_name: Liu, Jingyu last_name: Liu - first_name: Paul full_name: Thompson, Paul last_name: Thompson - first_name: Nicholas full_name: Clinton, Nicholas last_name: Clinton - first_name: Sylvane full_name: Desrivieres, Sylvane last_name: Desrivieres - first_name: Allan full_name: H. Young, Allan last_name: H. Young - first_name: Bernd full_name: Stahl, Bernd last_name: Stahl - first_name: George full_name: Ogoh, George last_name: Ogoh citation: ama: Xu J, Liu N, Polemiti E, et al. Effects of urban living environments on mental health in adults. Nature Medicine. 2023;29:1456-1467. doi:10.1038/s41591-023-02365-w apa: Xu, J., Liu, N., Polemiti, E., Garcia-Mondragon, L., Tang, J., Liu, X., … Ogoh, G. (2023). Effects of urban living environments on mental health in adults. Nature Medicine. Springer Nature. https://doi.org/10.1038/s41591-023-02365-w chicago: Xu, Jiayuan, Nana Liu, Elli Polemiti, Liliana Garcia-Mondragon, Jie Tang, Xiaoxuan Liu, Tristram Lett, et al. “Effects of Urban Living Environments on Mental Health in Adults.” Nature Medicine. Springer Nature, 2023. https://doi.org/10.1038/s41591-023-02365-w. ieee: J. Xu et al., “Effects of urban living environments on mental health in adults,” Nature Medicine, vol. 29. Springer Nature, pp. 1456–1467, 2023. ista: Xu J, Liu N, Polemiti E, Garcia-Mondragon L, Tang J, Liu X, Lett T, Yu L, Nöthen MM, Feng J, Yu C, Marquand A, Schumann G, Walter H, Heinz A, Ralser M, Twardziok S, Vaidya N, Serin E, Jentsch M, Hitchen E, Eils R, Taron UH, Schütz T, Schepanski K, Banks J, Banaschewski T, Jansone K, Christmann N, Meyer-Lindenberg A, Tost H, Holz N, Schwarz E, Stringaris A, Neidhart M, Nees F, Siehl S, A. Andreassen O, T. Westlye L, Van Der Meer D, Fernandez S, Kjelkenes R, Ask H, Rapp M, Tschorn M, Böttger SJ, Novarino G, Marr L, Slater M, Viapiana GF, Orosa FE, Gallego J, Pastor A, Forstner A, Hoffmann P, M. Nöthen M, J. Forstner A, Claus I, Miller A, Heilmann-Heimbach S, Sommer P, Boye M, Wilbertz J, Schmitt K, Jirsa V, Petkoski S, Pitel S, Otten L, Athanasiadis AP, Pearmund C, Spanlang B, Alvarez E, Sanchez M, Giner A, Hese S, Renner P, Jia T, Gong Y, Xia Y, Chang X, Calhoun V, Liu J, Thompson P, Clinton N, Desrivieres S, H. Young A, Stahl B, Ogoh G. 2023. Effects of urban living environments on mental health in adults. Nature Medicine. 29, 1456–1467. mla: Xu, Jiayuan, et al. “Effects of Urban Living Environments on Mental Health in Adults.” Nature Medicine, vol. 29, Springer Nature, 2023, pp. 1456–67, doi:10.1038/s41591-023-02365-w. short: J. Xu, N. Liu, E. Polemiti, L. Garcia-Mondragon, J. Tang, X. Liu, T. Lett, L. Yu, M.M. Nöthen, J. Feng, C. Yu, A. Marquand, G. Schumann, H. Walter, A. Heinz, M. Ralser, S. Twardziok, N. Vaidya, E. Serin, M. Jentsch, E. Hitchen, R. Eils, U.H. Taron, T. Schütz, K. Schepanski, J. Banks, T. Banaschewski, K. Jansone, N. Christmann, A. Meyer-Lindenberg, H. Tost, N. Holz, E. Schwarz, A. Stringaris, M. Neidhart, F. Nees, S. Siehl, O. A. Andreassen, L. T. Westlye, D. Van Der Meer, S. Fernandez, R. Kjelkenes, H. Ask, M. Rapp, M. Tschorn, S.J. Böttger, G. Novarino, L. Marr, M. Slater, G.F. Viapiana, F.E. Orosa, J. Gallego, A. Pastor, A. Forstner, P. Hoffmann, M. M. Nöthen, A. J. Forstner, I. Claus, A. Miller, S. Heilmann-Heimbach, P. Sommer, M. Boye, J. Wilbertz, K. Schmitt, V. Jirsa, S. Petkoski, S. Pitel, L. Otten, A.P. Athanasiadis, C. Pearmund, B. Spanlang, E. Alvarez, M. Sanchez, A. Giner, S. Hese, P. Renner, T. Jia, Y. Gong, Y. Xia, X. Chang, V. Calhoun, J. Liu, P. Thompson, N. Clinton, S. Desrivieres, A. H. Young, B. Stahl, G. Ogoh, Nature Medicine 29 (2023) 1456–1467. date_created: 2023-06-25T22:00:46Z date_published: 2023-06-15T00:00:00Z date_updated: 2023-12-13T11:25:55Z day: '15' ddc: - '570' department: - _id: GaNo doi: 10.1038/s41591-023-02365-w external_id: isi: - '001013172700001' file: - access_level: open_access checksum: bcd3225b2731c3442fa98987fd3bd46d content_type: application/pdf creator: dernst date_created: 2023-06-26T10:15:44Z date_updated: 2023-06-26T10:15:44Z file_id: '13171' file_name: 2023_NatureMedicine_Xu.pdf file_size: 7365360 relation: main_file success: 1 file_date_updated: 2023-06-26T10:15:44Z has_accepted_license: '1' intvolume: ' 29' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1456-1467 publication: Nature Medicine publication_identifier: eissn: - 1546-170X issn: - 1078-8956 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Effects of urban living environments on mental health in adults tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 29 year: '2023' ... --- _id: '12976' abstract: - lang: eng text: "3D printing based on continuous deposition of materials, such as filament-based 3D printing, has seen widespread adoption thanks to its versatility in working with a wide range of materials. An important shortcoming of this type of technology is its limited multi-material capabilities. While there are simple hardware designs that enable multi-material printing in principle, the required software is heavily underdeveloped. A typical hardware design fuses together individual materials fed into a single chamber from multiple inlets before they are deposited. This design, however, introduces a time delay between the intended material mixture and its actual deposition. In this work, inspired by diverse path planning research in robotics, we show that this mechanical challenge can be addressed via improved printer control. We propose to formulate the search for optimal multi-material printing policies in a reinforcement\r\nlearning setup. We put forward a simple numerical deposition model that takes into account the non-linear material mixing and delayed material deposition. To validate our system we focus on color fabrication, a problem known for its strict requirements for varying material mixtures at a high spatial frequency. We demonstrate that our learned control policy outperforms state-of-the-art hand-crafted algorithms." acknowledgement: This work is graciously supported by FWF Lise Meitner (Grant M 3319). Kang Liao sincerely thank Emiliano Luci, Chunyu Lin, and Yao Zhao for their huge support. article_processing_charge: No author: - first_name: Kang full_name: Liao, Kang last_name: Liao - first_name: Thibault full_name: Tricard, Thibault last_name: Tricard - first_name: Michael full_name: Piovarci, Michael id: 62E473F4-5C99-11EA-A40E-AF823DDC885E last_name: Piovarci orcid: 0000-0002-5062-4474 - first_name: Hans-Peter full_name: Seidel, Hans-Peter last_name: Seidel - first_name: Vahid full_name: Babaei, Vahid last_name: Babaei citation: ama: 'Liao K, Tricard T, Piovarci M, Seidel H-P, Babaei V. Learning deposition policies for fused multi-material 3D printing. In: 2023 IEEE International Conference on Robotics and Automation. Vol 2023. IEEE; 2023:12345-12352. doi:10.1109/ICRA48891.2023.10160465' apa: 'Liao, K., Tricard, T., Piovarci, M., Seidel, H.-P., & Babaei, V. (2023). Learning deposition policies for fused multi-material 3D printing. In 2023 IEEE International Conference on Robotics and Automation (Vol. 2023, pp. 12345–12352). London, United Kingdom: IEEE. https://doi.org/10.1109/ICRA48891.2023.10160465' chicago: Liao, Kang, Thibault Tricard, Michael Piovarci, Hans-Peter Seidel, and Vahid Babaei. “Learning Deposition Policies for Fused Multi-Material 3D Printing.” In 2023 IEEE International Conference on Robotics and Automation, 2023:12345–52. IEEE, 2023. https://doi.org/10.1109/ICRA48891.2023.10160465. ieee: K. Liao, T. Tricard, M. Piovarci, H.-P. Seidel, and V. Babaei, “Learning deposition policies for fused multi-material 3D printing,” in 2023 IEEE International Conference on Robotics and Automation, London, United Kingdom, 2023, vol. 2023, pp. 12345–12352. ista: 'Liao K, Tricard T, Piovarci M, Seidel H-P, Babaei V. 2023. Learning deposition policies for fused multi-material 3D printing. 2023 IEEE International Conference on Robotics and Automation. ICRA: International Conference on Robotics and Automation vol. 2023, 12345–12352.' mla: Liao, Kang, et al. “Learning Deposition Policies for Fused Multi-Material 3D Printing.” 2023 IEEE International Conference on Robotics and Automation, vol. 2023, IEEE, 2023, pp. 12345–52, doi:10.1109/ICRA48891.2023.10160465. short: K. Liao, T. Tricard, M. Piovarci, H.-P. Seidel, V. Babaei, in:, 2023 IEEE International Conference on Robotics and Automation, IEEE, 2023, pp. 12345–12352. conference: end_date: 2023-06-02 location: London, United Kingdom name: 'ICRA: International Conference on Robotics and Automation' start_date: 2023-05-29 date_created: 2023-05-16T09:14:09Z date_published: 2023-07-04T00:00:00Z date_updated: 2023-12-13T11:20:00Z day: '04' ddc: - '004' department: - _id: BeBi doi: 10.1109/ICRA48891.2023.10160465 external_id: isi: - '001048371104068' file: - access_level: open_access checksum: daeaa67124777d88487f933ea3f77164 content_type: application/pdf creator: mpiovarc date_created: 2023-05-16T09:12:05Z date_updated: 2023-05-16T09:12:05Z file_id: '12977' file_name: Liao2023.pdf file_size: 5367986 relation: main_file success: 1 file_date_updated: 2023-05-16T09:12:05Z has_accepted_license: '1' intvolume: ' 2023' isi: 1 keyword: - reinforcement learning - deposition - control - color - multi-filament language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 12345-12352 project: - _id: eb901961-77a9-11ec-83b8-f5c883a62027 grant_number: M03319 name: Perception-Aware Appearance Fabrication publication: 2023 IEEE International Conference on Robotics and Automation publication_identifier: eisbn: - '9798350323658' issn: - 1050-4729 publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Learning deposition policies for fused multi-material 3D printing type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2023 year: '2023' ... --- _id: '13164' abstract: - lang: eng text: Molecular compatibility between gametes is a prerequisite for successful fertilization. As long as a sperm and egg can recognize and bind each other via their surface proteins, gamete fusion may occur even between members of separate species, resulting in hybrids that can impact speciation. The egg membrane protein Bouncer confers species specificity to gamete interactions between medaka and zebrafish, preventing their cross-fertilization. Here, we leverage this specificity to uncover distinct amino acid residues and N-glycosylation patterns that differentially influence the function of medaka and zebrafish Bouncer and contribute to cross-species incompatibility. Curiously, in contrast to the specificity observed for medaka and zebrafish Bouncer, seahorse and fugu Bouncer are compatible with both zebrafish and medaka sperm, in line with the pervasive purifying selection that dominates Bouncer’s evolution. The Bouncer-sperm interaction is therefore the product of seemingly opposing evolutionary forces that, for some species, restrict fertilization to closely related fish, and for others, allow broad gamete compatibility that enables hybridization. acknowledgement: We thank Manfred Schartl for sharing RNA-seq data from medaka ovaries and testes prior to publication; Maria Novatchkova for help with RNA-seq analysis; Katharina Lust for advice on medaka techniques; Milan Malinsky for input on Lake Malawi cichlid Bouncer sequences; Felicia Spitzer, Mirjam Binner, and Anna Bandura for help with genotyping; Friedrich Puhl, Kerstin Rattner, Julia Koenig, and Dijana Sunjic for taking care of zebrafish and medaka; and the Pauli lab for helpful discussions about the project and feedback on the manuscript. K.R.B.G. was supported by a DOC Fellowship from the Austrian Academy of Sciences. Work in the Pauli lab was supported by the FWF START program (Y 1031-B28 to A.P.), the ERC CoG 101044495/GaMe, the HFSP Career Development Award (CDA00066/2015 to A.P.), a HFSP Young Investigator Award (RGY0079/2020 to A.P.) and the FWF SFB RNA-Deco (project number F80). The IMP receives institutional funding from Boehringer Ingelheim and the Austrian Research Promotion Agency (Headquarter grant FFG-852936). Work by J.S. and Y.M. in this project was supported by the Israel Science Foundation grant 636/21 to Y.M. Work by L.J. was supported by the Swedish Research Council grant 2020-04936 and the Knut and Alice Wallenberg Foundation grant 2018.0042. For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission. article_number: '3506' article_processing_charge: No article_type: original author: - first_name: Krista R.B. full_name: Gert, Krista R.B. last_name: Gert - first_name: Karin full_name: Panser, Karin last_name: Panser - first_name: Joachim full_name: Surm, Joachim last_name: Surm - first_name: Benjamin S. full_name: Steinmetz, Benjamin S. last_name: Steinmetz - first_name: Alexander full_name: Schleiffer, Alexander last_name: Schleiffer - first_name: Luca full_name: Jovine, Luca last_name: Jovine - first_name: Yehu full_name: Moran, Yehu last_name: Moran - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Andrea full_name: Pauli, Andrea last_name: Pauli citation: ama: Gert KRB, Panser K, Surm J, et al. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nature Communications. 2023;14. doi:10.1038/s41467-023-39317-4 apa: Gert, K. R. B., Panser, K., Surm, J., Steinmetz, B. S., Schleiffer, A., Jovine, L., … Pauli, A. (2023). Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-39317-4 chicago: Gert, Krista R.B., Karin Panser, Joachim Surm, Benjamin S. Steinmetz, Alexander Schleiffer, Luca Jovine, Yehu Moran, Fyodor Kondrashov, and Andrea Pauli. “Divergent Molecular Signatures in Fish Bouncer Proteins Define Cross-Fertilization Boundaries.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-39317-4. ieee: K. R. B. Gert et al., “Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Gert KRB, Panser K, Surm J, Steinmetz BS, Schleiffer A, Jovine L, Moran Y, Kondrashov F, Pauli A. 2023. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nature Communications. 14, 3506. mla: Gert, Krista R. B., et al. “Divergent Molecular Signatures in Fish Bouncer Proteins Define Cross-Fertilization Boundaries.” Nature Communications, vol. 14, 3506, Springer Nature, 2023, doi:10.1038/s41467-023-39317-4. short: K.R.B. Gert, K. Panser, J. Surm, B.S. Steinmetz, A. Schleiffer, L. Jovine, Y. Moran, F. Kondrashov, A. Pauli, Nature Communications 14 (2023). date_created: 2023-06-25T22:00:45Z date_published: 2023-06-14T00:00:00Z date_updated: 2023-12-13T11:26:34Z day: '14' ddc: - '570' department: - _id: FyKo doi: 10.1038/s41467-023-39317-4 external_id: isi: - '001048208600023' file: - access_level: open_access checksum: d6165f41c7f1c2c04b04256ec9f003fb content_type: application/pdf creator: dernst date_created: 2023-06-26T10:26:04Z date_updated: 2023-06-26T10:26:04Z file_id: '13172' file_name: 2023_NatureComm_Gert.pdf file_size: 1555006 relation: main_file success: 1 file_date_updated: 2023-06-26T10:26:04Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ...