--- _id: '13221' abstract: - lang: eng text: The safety-liveness dichotomy is a fundamental concept in formal languages which plays a key role in verification. Recently, this dichotomy has been lifted to quantitative properties, which are arbitrary functions from infinite words to partially-ordered domains. We look into harnessing the dichotomy for the specific classes of quantitative properties expressed by quantitative automata. These automata contain finitely many states and rational-valued transition weights, and their common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totallyordered domain of real numbers. In this automata-theoretic setting, we establish a connection between quantitative safety and topological continuity and provide an alternative characterization of quantitative safety and liveness in terms of their boolean counterparts. For all common value functions, we show how the safety closure of a quantitative automaton can be constructed in PTime, and we provide PSpace-complete checks of whether a given quantitative automaton is safe or live, with the exception of LimInfAvg and LimSupAvg automata, for which the safety check is in ExpSpace. Moreover, for deterministic Sup, LimInf, and LimSup automata, we give PTime decompositions into safe and live automata. These decompositions enable the separation of techniques for safety and liveness verification for quantitative specifications. acknowledgement: We thank Christof Löding for pointing us to some results on PSpace-hardess of universality problems and the anonymous reviewers for their helpful comments. This work was supported in part by the ERC-2020-AdG 101020093 and the Israel Science Foundation grant 2410/22. alternative_title: - LIPIcs article_number: '17' article_processing_charge: No author: - first_name: Udi full_name: Boker, Udi id: 31E297B6-F248-11E8-B48F-1D18A9856A87 last_name: Boker - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Nicolas Adrien full_name: Mazzocchi, Nicolas Adrien id: b26baa86-3308-11ec-87b0-8990f34baa85 last_name: Mazzocchi - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Boker U, Henzinger TA, Mazzocchi NA, Sarac NE. Safety and liveness of quantitative automata. In: 34th International Conference on Concurrency Theory. Vol 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.CONCUR.2023.17' apa: 'Boker, U., Henzinger, T. A., Mazzocchi, N. A., & Sarac, N. E. (2023). Safety and liveness of quantitative automata. In 34th International Conference on Concurrency Theory (Vol. 279). Antwerp, Belgium: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2023.17' chicago: Boker, Udi, Thomas A Henzinger, Nicolas Adrien Mazzocchi, and Naci E Sarac. “Safety and Liveness of Quantitative Automata.” In 34th International Conference on Concurrency Theory, Vol. 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.CONCUR.2023.17. ieee: U. Boker, T. A. Henzinger, N. A. Mazzocchi, and N. E. Sarac, “Safety and liveness of quantitative automata,” in 34th International Conference on Concurrency Theory, Antwerp, Belgium, 2023, vol. 279. ista: 'Boker U, Henzinger TA, Mazzocchi NA, Sarac NE. 2023. Safety and liveness of quantitative automata. 34th International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 279, 17.' mla: Boker, Udi, et al. “Safety and Liveness of Quantitative Automata.” 34th International Conference on Concurrency Theory, vol. 279, 17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.CONCUR.2023.17. short: U. Boker, T.A. Henzinger, N.A. Mazzocchi, N.E. Sarac, in:, 34th International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-09-23 location: Antwerp, Belgium name: 'CONCUR: Conference on Concurrency Theory' start_date: 2023-09-18 date_created: 2023-07-14T10:00:15Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-10-09T07:14:03Z day: '01' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2023.17 ec_funded: 1 external_id: arxiv: - '2307.06016' file: - access_level: open_access checksum: d40e57a04448ea5c77d7e1cfb9590a81 content_type: application/pdf creator: esarac date_created: 2023-07-14T12:03:48Z date_updated: 2023-07-14T12:03:48Z file_id: '13224' file_name: CONCUR23.pdf file_size: 755529 relation: main_file success: 1 file_date_updated: 2023-07-14T12:03:48Z has_accepted_license: '1' intvolume: ' 279' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 34th International Conference on Concurrency Theory publication_identifier: eissn: - 1868-8969 isbn: - '9783959772990' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' status: public title: Safety and liveness of quantitative automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 279 year: '2023' ... --- _id: '14406' abstract: - lang: eng text: "Recently, a concept of generalized multifractality, which characterizes fluctuations and correlations of critical eigenstates, was introduced and explored for all 10 symmetry classes of disordered systems. Here, by using the nonlinear sigma-model (\r\nNL\r\nσ\r\nM\r\n) field theory, we extend the theory of generalized multifractality to boundaries of systems at criticality. Our numerical simulations on two-dimensional systems of symmetry classes A, C, and AII fully confirm the analytical predictions of pure-scaling observables and Weyl symmetry relations between critical exponents of surface generalized multifractality. This demonstrates the validity of the \r\nNL\r\nσ\r\nM\r\n for the description of Anderson-localization critical phenomena, not only in the bulk but also on the boundary. The critical exponents strongly violate generalized parabolicity, in analogy with earlier results for the bulk, corroborating the conclusion that the considered Anderson-localization critical points are not described by conformal field theories. We further derive relations between generalized surface multifractal spectra and linear combinations of Lyapunov exponents of a strip in quasi-one-dimensional geometry, which hold under the assumption of invariance with respect to a logarithmic conformal map. Our numerics demonstrate that these relations hold with an excellent accuracy. Taken together, our results indicate an intriguing situation: the conformal invariance is broken but holds partially at critical points of Anderson localization." acknowledgement: "We thank Ilya Gruzberg for many illuminating discussions. S.S.B., J.F.K., and A.D.M. acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) via the Grant\r\nNo. MI 658/14-1. I.S.B. acknowledges support from Russian Science Foundation (Grant No. 22-42-04416)." article_number: '104205' article_processing_charge: No article_type: original author: - first_name: Serafim full_name: Babkin, Serafim id: 41e64307-6672-11ee-b9ad-cc7a0075a479 last_name: Babkin orcid: 0009-0003-7382-8036 - first_name: Jonas F. full_name: Karcher, Jonas F. last_name: Karcher - first_name: Igor S. full_name: Burmistrov, Igor S. last_name: Burmistrov - first_name: Alexander D. full_name: Mirlin, Alexander D. last_name: Mirlin citation: ama: Babkin S, Karcher JF, Burmistrov IS, Mirlin AD. Generalized surface multifractality in two-dimensional disordered systems. Physical Review B. 2023;108(10). doi:10.1103/PhysRevB.108.104205 apa: Babkin, S., Karcher, J. F., Burmistrov, I. S., & Mirlin, A. D. (2023). Generalized surface multifractality in two-dimensional disordered systems. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.108.104205 chicago: Babkin, Serafim, Jonas F. Karcher, Igor S. Burmistrov, and Alexander D. Mirlin. “Generalized Surface Multifractality in Two-Dimensional Disordered Systems.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.108.104205. ieee: S. Babkin, J. F. Karcher, I. S. Burmistrov, and A. D. Mirlin, “Generalized surface multifractality in two-dimensional disordered systems,” Physical Review B, vol. 108, no. 10. American Physical Society, 2023. ista: Babkin S, Karcher JF, Burmistrov IS, Mirlin AD. 2023. Generalized surface multifractality in two-dimensional disordered systems. Physical Review B. 108(10), 104205. mla: Babkin, Serafim, et al. “Generalized Surface Multifractality in Two-Dimensional Disordered Systems.” Physical Review B, vol. 108, no. 10, 104205, American Physical Society, 2023, doi:10.1103/PhysRevB.108.104205. short: S. Babkin, J.F. Karcher, I.S. Burmistrov, A.D. Mirlin, Physical Review B 108 (2023). date_created: 2023-10-08T22:01:17Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-10-09T07:09:30Z day: '01' department: - _id: MaSe doi: 10.1103/PhysRevB.108.104205 external_id: arxiv: - '2306.09455' intvolume: ' 108' issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2306.09455 month: '09' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Generalized surface multifractality in two-dimensional disordered systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ... --- _id: '14410' abstract: - lang: eng text: This paper focuses on the implementation details of the baseline methods and a recent lightweight conditional model extrapolation algorithm LIMES [5] for streaming data under class-prior shift. LIMES achieves superior performance over the baseline methods, especially concerning the minimum-across-day accuracy, which is important for the users of the system. In this work, the key measures to facilitate reproducibility and enhance the credibility of the results are described. alternative_title: - LNCS article_processing_charge: No author: - first_name: Paulina full_name: Tomaszewska, Paulina last_name: Tomaszewska - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Tomaszewska P, Lampert C. On the implementation of baselines and lightweight conditional model extrapolation (LIMES) under class-prior shift. In: International Workshop on Reproducible Research in Pattern Recognition. Vol 14068. Springer Nature; 2023:67-73. doi:10.1007/978-3-031-40773-4_6' apa: 'Tomaszewska, P., & Lampert, C. (2023). On the implementation of baselines and lightweight conditional model extrapolation (LIMES) under class-prior shift. In International Workshop on Reproducible Research in Pattern Recognition (Vol. 14068, pp. 67–73). Montreal, Canada: Springer Nature. https://doi.org/10.1007/978-3-031-40773-4_6' chicago: Tomaszewska, Paulina, and Christoph Lampert. “On the Implementation of Baselines and Lightweight Conditional Model Extrapolation (LIMES) under Class-Prior Shift.” In International Workshop on Reproducible Research in Pattern Recognition, 14068:67–73. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-40773-4_6. ieee: P. Tomaszewska and C. Lampert, “On the implementation of baselines and lightweight conditional model extrapolation (LIMES) under class-prior shift,” in International Workshop on Reproducible Research in Pattern Recognition, Montreal, Canada, 2023, vol. 14068, pp. 67–73. ista: 'Tomaszewska P, Lampert C. 2023. On the implementation of baselines and lightweight conditional model extrapolation (LIMES) under class-prior shift. International Workshop on Reproducible Research in Pattern Recognition. RRPR: Reproducible Research in Pattern Recognition, LNCS, vol. 14068, 67–73.' mla: Tomaszewska, Paulina, and Christoph Lampert. “On the Implementation of Baselines and Lightweight Conditional Model Extrapolation (LIMES) under Class-Prior Shift.” International Workshop on Reproducible Research in Pattern Recognition, vol. 14068, Springer Nature, 2023, pp. 67–73, doi:10.1007/978-3-031-40773-4_6. short: P. Tomaszewska, C. Lampert, in:, International Workshop on Reproducible Research in Pattern Recognition, Springer Nature, 2023, pp. 67–73. conference: end_date: 2022-08-21 location: Montreal, Canada name: 'RRPR: Reproducible Research in Pattern Recognition' start_date: 2022-08-21 date_created: 2023-10-08T22:01:18Z date_published: 2023-08-20T00:00:00Z date_updated: 2023-10-09T06:48:02Z day: '20' department: - _id: ChLa doi: 10.1007/978-3-031-40773-4_6 intvolume: ' 14068' language: - iso: eng month: '08' oa_version: None page: 67-73 publication: International Workshop on Reproducible Research in Pattern Recognition publication_identifier: eissn: - 1611-3349 isbn: - '9783031407727' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: On the implementation of baselines and lightweight conditional model extrapolation (LIMES) under class-prior shift type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14068 year: '2023' ... --- _id: '14405' abstract: - lang: eng text: We introduce hypernode automata as a new specification formalism for hyperproperties of concurrent systems. They are finite automata with nodes labeled with hypernode logic formulas and transitions labeled with actions. A hypernode logic formula specifies relations between sequences of variable values in different system executions. Unlike HyperLTL, hypernode logic takes an asynchronous view on execution traces by constraining the values and the order of value changes of each variable without correlating the timing of the changes. Different execution traces are synchronized solely through the transitions of hypernode automata. Hypernode automata naturally combine asynchronicity at the node level with synchronicity at the transition level. We show that the model-checking problem for hypernode automata is decidable over action-labeled Kripke structures, whose actions induce transitions of the specification automata. For this reason, hypernode automaton is a suitable formalism for specifying and verifying asynchronous hyperproperties, such as declassifying observational determinism in multi-threaded programs. acknowledgement: "This work was supported in part by the Austrian Science Fund (FWF) SFB project\r\nSpyCoDe F8502, by the FWF projects ZK-35 and W1255-N23, and by the ERC Advanced Grant\r\nVAMOS 101020093." alternative_title: - LIPIcs article_number: '21' article_processing_charge: Yes author: - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic - first_name: Ana full_name: Oliveira da Costa, Ana id: f347ec37-6676-11ee-b395-a888cb7b4fb4 last_name: Oliveira da Costa orcid: 0000-0002-8741-5799 citation: ama: 'Bartocci E, Henzinger TA, Nickovic D, Oliveira da Costa A. Hypernode automata. In: 34th International Conference on Concurrency Theory. Vol 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.CONCUR.2023.21' apa: 'Bartocci, E., Henzinger, T. A., Nickovic, D., & Oliveira da Costa, A. (2023). Hypernode automata. In 34th International Conference on Concurrency Theory (Vol. 279). Antwerp, Belgium: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2023.21' chicago: Bartocci, Ezio, Thomas A Henzinger, Dejan Nickovic, and Ana Oliveira da Costa. “Hypernode Automata.” In 34th International Conference on Concurrency Theory, Vol. 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.CONCUR.2023.21. ieee: E. Bartocci, T. A. Henzinger, D. Nickovic, and A. Oliveira da Costa, “Hypernode automata,” in 34th International Conference on Concurrency Theory, Antwerp, Belgium, 2023, vol. 279. ista: 'Bartocci E, Henzinger TA, Nickovic D, Oliveira da Costa A. 2023. Hypernode automata. 34th International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 279, 21.' mla: Bartocci, Ezio, et al. “Hypernode Automata.” 34th International Conference on Concurrency Theory, vol. 279, 21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.CONCUR.2023.21. short: E. Bartocci, T.A. Henzinger, D. Nickovic, A. Oliveira da Costa, in:, 34th International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-09-22 location: Antwerp, Belgium name: 'CONCUR: Conference on Concurrency Theory' start_date: 2023-09-19 date_created: 2023-10-08T22:01:16Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-10-09T07:43:44Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2023.21 ec_funded: 1 external_id: arxiv: - '2305.02836' file: - access_level: open_access checksum: 215765e40454d806174ac0a223e8d6fa content_type: application/pdf creator: dernst date_created: 2023-10-09T07:42:45Z date_updated: 2023-10-09T07:42:45Z file_id: '14413' file_name: 2023_LIPcs_Bartocci.pdf file_size: 795790 relation: main_file success: 1 file_date_updated: 2023-10-09T07:42:45Z has_accepted_license: '1' intvolume: ' 279' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 34th International Conference on Concurrency Theory publication_identifier: isbn: - '9783959772990' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Hypernode automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 279 year: '2023' ... --- _id: '14408' abstract: - lang: eng text: "We prove that the mesoscopic linear statistics ∑if(na(σi−z0)) of the eigenvalues {σi}i of large n×n non-Hermitian random matrices with complex centred i.i.d. entries are asymptotically Gaussian for any H20-functions f around any point z0 in the bulk of the spectrum on any mesoscopic scale 0Probability Theory and Related Fields. 2023. doi:10.1007/s00440-023-01229-1 apa: Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Mesoscopic central limit theorem for non-Hermitian random matrices. Probability Theory and Related Fields. Springer Nature. https://doi.org/10.1007/s00440-023-01229-1 chicago: Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Mesoscopic Central Limit Theorem for Non-Hermitian Random Matrices.” Probability Theory and Related Fields. Springer Nature, 2023. https://doi.org/10.1007/s00440-023-01229-1. ieee: G. Cipolloni, L. Erdös, and D. J. Schröder, “Mesoscopic central limit theorem for non-Hermitian random matrices,” Probability Theory and Related Fields. Springer Nature, 2023. ista: Cipolloni G, Erdös L, Schröder DJ. 2023. Mesoscopic central limit theorem for non-Hermitian random matrices. Probability Theory and Related Fields. mla: Cipolloni, Giorgio, et al. “Mesoscopic Central Limit Theorem for Non-Hermitian Random Matrices.” Probability Theory and Related Fields, Springer Nature, 2023, doi:10.1007/s00440-023-01229-1. short: G. Cipolloni, L. Erdös, D.J. Schröder, Probability Theory and Related Fields (2023). date_created: 2023-10-08T22:01:17Z date_published: 2023-09-28T00:00:00Z date_updated: 2023-10-09T07:19:01Z day: '28' department: - _id: LaEr doi: 10.1007/s00440-023-01229-1 external_id: arxiv: - '2210.12060' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2210.12060 month: '09' oa: 1 oa_version: Preprint publication: Probability Theory and Related Fields publication_identifier: eissn: - 1432-2064 issn: - 0178-8051 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Mesoscopic central limit theorem for non-Hermitian random matrices type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14404' abstract: - lang: eng text: A light-triggered fabrication method extends the functionality of printable nanomaterials acknowledgement: The authors thank the Werner-Siemens-Stiftung and the Institute of Science and Technology Austria for financial support. article_processing_charge: No article_type: letter_note author: - first_name: Daniel full_name: Balazs, Daniel id: 302BADF6-85FC-11EA-9E3B-B9493DDC885E last_name: Balazs orcid: 0000-0001-7597-043X - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 citation: ama: Balazs D, Ibáñez M. Widening the use of 3D printing. Science. 2023;381(6665):1413-1414. doi:10.1126/science.adk3070 apa: Balazs, D., & Ibáñez, M. (2023). Widening the use of 3D printing. Science. AAAS. https://doi.org/10.1126/science.adk3070 chicago: Balazs, Daniel, and Maria Ibáñez. “Widening the Use of 3D Printing.” Science. AAAS, 2023. https://doi.org/10.1126/science.adk3070. ieee: D. Balazs and M. Ibáñez, “Widening the use of 3D printing,” Science, vol. 381, no. 6665. AAAS, pp. 1413–1414, 2023. ista: Balazs D, Ibáñez M. 2023. Widening the use of 3D printing. Science. 381(6665), 1413–1414. mla: Balazs, Daniel, and Maria Ibáñez. “Widening the Use of 3D Printing.” Science, vol. 381, no. 6665, AAAS, 2023, pp. 1413–14, doi:10.1126/science.adk3070. short: D. Balazs, M. Ibáñez, Science 381 (2023) 1413–1414. date_created: 2023-10-08T22:01:16Z date_published: 2023-09-29T00:00:00Z date_updated: 2023-10-09T07:32:58Z day: '29' department: - _id: MaIb - _id: LifeSc doi: 10.1126/science.adk3070 external_id: pmid: - '37769110' intvolume: ' 381' issue: '6665' language: - iso: eng month: '09' oa_version: None page: 1413-1414 pmid: 1 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Science publication_identifier: eissn: - 1095-9203 publication_status: published publisher: AAAS quality_controlled: '1' scopus_import: '1' status: public title: Widening the use of 3D printing type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 381 year: '2023' ... --- _id: '14417' abstract: - lang: eng text: Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic games with the total reward objective. This gives rise to an objective function that demands the control of systems in a risk-averse manner. We show that the resulting games are determined and, in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures that previously have been considered in the special case of Markov decision processes and that require randomization and/or memory. We provide several results on the decidability and the computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. In the most general case, the problem is decidable subject to Shanuel’s conjecture. If all inputs are rational, the resulting threshold problem can be solved using algebraic numbers, leading to decidability via a polynomial-time reduction to the existential theory of the reals. Further restrictions on the encoding of the input allow the solution of the threshold problem in NP∩coNP. Finally, an approximation algorithm for the optimal value of ERisk is provided. acknowledgement: "This work was partly funded by the ERC CoG 863818 (ForM-SMArt), the DFG Grant\r\n389792660 as part of TRR 248 (Foundations of Perspicuous Software Systems), the Cluster of\r\nExcellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy), and the DFG projects BA-1679/11-1 and BA-1679/12-1." alternative_title: - LIPIcs article_number: '15' article_processing_charge: Yes author: - first_name: Christel full_name: Baier, Christel last_name: Baier - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Tobias full_name: Meggendorfer, Tobias id: b21b0c15-30a2-11eb-80dc-f13ca25802e1 last_name: Meggendorfer orcid: 0000-0002-1712-2165 - first_name: Jakob full_name: Piribauer, Jakob last_name: Piribauer citation: ama: 'Baier C, Chatterjee K, Meggendorfer T, Piribauer J. Entropic risk for turn-based stochastic games. In: 48th International Symposium on Mathematical Foundations of Computer Science. Vol 272. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.MFCS.2023.15' apa: 'Baier, C., Chatterjee, K., Meggendorfer, T., & Piribauer, J. (2023). Entropic risk for turn-based stochastic games. In 48th International Symposium on Mathematical Foundations of Computer Science (Vol. 272). Bordeaux, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2023.15' chicago: Baier, Christel, Krishnendu Chatterjee, Tobias Meggendorfer, and Jakob Piribauer. “Entropic Risk for Turn-Based Stochastic Games.” In 48th International Symposium on Mathematical Foundations of Computer Science, Vol. 272. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.MFCS.2023.15. ieee: C. Baier, K. Chatterjee, T. Meggendorfer, and J. Piribauer, “Entropic risk for turn-based stochastic games,” in 48th International Symposium on Mathematical Foundations of Computer Science, Bordeaux, France, 2023, vol. 272. ista: 'Baier C, Chatterjee K, Meggendorfer T, Piribauer J. 2023. Entropic risk for turn-based stochastic games. 48th International Symposium on Mathematical Foundations of Computer Science. MFCS: Symposium on Mathematical Foundations of Computer Science, LIPIcs, vol. 272, 15.' mla: Baier, Christel, et al. “Entropic Risk for Turn-Based Stochastic Games.” 48th International Symposium on Mathematical Foundations of Computer Science, vol. 272, 15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.MFCS.2023.15. short: C. Baier, K. Chatterjee, T. Meggendorfer, J. Piribauer, in:, 48th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-09-01 location: Bordeaux, France name: 'MFCS: Symposium on Mathematical Foundations of Computer Science' start_date: 2023-08-28 date_created: 2023-10-09T09:21:05Z date_published: 2023-08-21T00:00:00Z date_updated: 2023-10-09T09:22:37Z day: '21' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.MFCS.2023.15 ec_funded: 1 external_id: arxiv: - '2307.06611' file: - access_level: open_access checksum: 402281b17ed669bbf149d0fdf68ac201 content_type: application/pdf creator: dernst date_created: 2023-10-09T09:19:11Z date_updated: 2023-10-09T09:19:11Z file_id: '14418' file_name: 2023_LIPIcsMFCS_Baier.pdf file_size: 826843 relation: main_file success: 1 file_date_updated: 2023-10-09T09:19:11Z has_accepted_license: '1' intvolume: ' 272' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: 48th International Symposium on Mathematical Foundations of Computer Science publication_identifier: eissn: - 1868-8969 isbn: - '9783959772921' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Entropic risk for turn-based stochastic games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 272 year: '2023' ... --- _id: '12960' abstract: - lang: eng text: "Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e., submanifolds of Rd defined as the zero set of some multivariate multivalued smooth function f:Rd→Rd−n, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M=f−1(0) is to consider its piecewise linear (PL) approximation M^\r\n based on a triangulation T of the ambient space Rd. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ=1/D (and unavoidably exponential in n). Since it is known that for δ=Ω(d2.5), M^ is O(D2)-close and isotopic to M\r\n, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M^ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art. " acknowledgement: The authors have received funding from the European Research Council under the European Union's ERC grant greement 339025 GUDHI (Algorithmic Foundations of Geometric Un-derstanding in Higher Dimensions). The first author was supported by the French government,through the 3IA C\^ote d'Azur Investments in the Future project managed by the National ResearchAgency (ANR) with the reference ANR-19-P3IA-0002. The third author was supported by the Eu-ropean Union's Horizon 2020 research and innovation programme under the Marie Sk\lodowska-Curiegrant agreement 754411 and the FWF (Austrian Science Fund) grant M 3073. article_processing_charge: No article_type: original author: - first_name: Jean Daniel full_name: Boissonnat, Jean Daniel last_name: Boissonnat - first_name: Siargey full_name: Kachanovich, Siargey last_name: Kachanovich - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Boissonnat JD, Kachanovich S, Wintraecken M. Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. 2023;52(2):452-486. doi:10.1137/21M1412918 apa: Boissonnat, J. D., Kachanovich, S., & Wintraecken, M. (2023). Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/21M1412918 chicago: Boissonnat, Jean Daniel, Siargey Kachanovich, and Mathijs Wintraecken. “Tracing Isomanifolds in Rd in Time Polynomial in d Using Coxeter–Freudenthal–Kuhn Triangulations.” SIAM Journal on Computing. Society for Industrial and Applied Mathematics, 2023. https://doi.org/10.1137/21M1412918. ieee: J. D. Boissonnat, S. Kachanovich, and M. Wintraecken, “Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations,” SIAM Journal on Computing, vol. 52, no. 2. Society for Industrial and Applied Mathematics, pp. 452–486, 2023. ista: Boissonnat JD, Kachanovich S, Wintraecken M. 2023. Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. 52(2), 452–486. mla: Boissonnat, Jean Daniel, et al. “Tracing Isomanifolds in Rd in Time Polynomial in d Using Coxeter–Freudenthal–Kuhn Triangulations.” SIAM Journal on Computing, vol. 52, no. 2, Society for Industrial and Applied Mathematics, 2023, pp. 452–86, doi:10.1137/21M1412918. short: J.D. Boissonnat, S. Kachanovich, M. Wintraecken, SIAM Journal on Computing 52 (2023) 452–486. date_created: 2023-05-14T22:01:00Z date_published: 2023-04-30T00:00:00Z date_updated: 2023-10-10T07:34:35Z day: '30' department: - _id: HeEd doi: 10.1137/21M1412918 ec_funded: 1 external_id: isi: - '001013183000012' intvolume: ' 52' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://hal-emse.ccsd.cnrs.fr/3IA-COTEDAZUR/hal-04083489v1 month: '04' oa: 1 oa_version: Submitted Version page: 452-486 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: fc390959-9c52-11eb-aca3-afa58bd282b2 grant_number: M03073 name: Learning and triangulating manifolds via collapses publication: SIAM Journal on Computing publication_identifier: eissn: - 1095-7111 issn: - 0097-5397 publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' related_material: record: - id: '9441' relation: earlier_version status: public scopus_import: '1' status: public title: Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 52 year: '2023' ... --- _id: '13134' abstract: - lang: eng text: We propose a characterization of discrete analytical spheres, planes and lines in the body-centered cubic (BCC) grid, both in the Cartesian and in the recently proposed alternative compact coordinate system, in which each integer triplet addresses some voxel in the grid. We define spheres and planes through double Diophantine inequalities and investigate their relevant topological features, such as functionality or the interrelation between the thickness of the objects and their connectivity and separation properties. We define lines as the intersection of planes. The number of the planes (up to six) is equal to the number of the pairs of faces of a BCC voxel that are parallel to the line. acknowledgement: The first author has been partially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia through the project no. 451-03-47/2023-01/200156. The fourth author is funded by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, Austrian Science Fund (FWF), grant no. I 02979-N35. article_number: '109693' article_processing_charge: No article_type: original author: - first_name: Lidija full_name: Čomić, Lidija last_name: Čomić - first_name: Gaëlle full_name: Largeteau-Skapin, Gaëlle last_name: Largeteau-Skapin - first_name: Rita full_name: Zrour, Rita last_name: Zrour - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Eric full_name: Andres, Eric last_name: Andres citation: ama: Čomić L, Largeteau-Skapin G, Zrour R, Biswas R, Andres E. Discrete analytical objects in the body-centered cubic grid. Pattern Recognition. 2023;142(10). doi:10.1016/j.patcog.2023.109693 apa: Čomić, L., Largeteau-Skapin, G., Zrour, R., Biswas, R., & Andres, E. (2023). Discrete analytical objects in the body-centered cubic grid. Pattern Recognition. Elsevier. https://doi.org/10.1016/j.patcog.2023.109693 chicago: Čomić, Lidija, Gaëlle Largeteau-Skapin, Rita Zrour, Ranita Biswas, and Eric Andres. “Discrete Analytical Objects in the Body-Centered Cubic Grid.” Pattern Recognition. Elsevier, 2023. https://doi.org/10.1016/j.patcog.2023.109693. ieee: L. Čomić, G. Largeteau-Skapin, R. Zrour, R. Biswas, and E. Andres, “Discrete analytical objects in the body-centered cubic grid,” Pattern Recognition, vol. 142, no. 10. Elsevier, 2023. ista: Čomić L, Largeteau-Skapin G, Zrour R, Biswas R, Andres E. 2023. Discrete analytical objects in the body-centered cubic grid. Pattern Recognition. 142(10), 109693. mla: Čomić, Lidija, et al. “Discrete Analytical Objects in the Body-Centered Cubic Grid.” Pattern Recognition, vol. 142, no. 10, 109693, Elsevier, 2023, doi:10.1016/j.patcog.2023.109693. short: L. Čomić, G. Largeteau-Skapin, R. Zrour, R. Biswas, E. Andres, Pattern Recognition 142 (2023). date_created: 2023-06-18T22:00:45Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-10-10T07:37:16Z day: '01' department: - _id: HeEd doi: 10.1016/j.patcog.2023.109693 external_id: isi: - '001013526000001' intvolume: ' 142' isi: 1 issue: '10' language: - iso: eng month: '10' oa_version: None project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes - _id: 0aa4bc98-070f-11eb-9043-e6fff9c6a316 grant_number: I4887 name: Discretization in Geometry and Dynamics publication: Pattern Recognition publication_identifier: issn: - 0031-3203 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Discrete analytical objects in the body-centered cubic grid type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 142 year: '2023' ... --- _id: '13216' abstract: - lang: eng text: Physical catalysts often have multiple sites where reactions can take place. One prominent example is single-atom alloys, where the reactive dopant atoms can preferentially locate in the bulk or at different sites on the surface of the nanoparticle. However, ab initio modeling of catalysts usually only considers one site of the catalyst, neglecting the effects of multiple sites. Here, nanoparticles of copper doped with single-atom rhodium or palladium are modeled for the dehydrogenation of propane. Single-atom alloy nanoparticles are simulated at 400–600 K, using machine learning potentials trained on density functional theory calculations, and then the occupation of different single-atom active sites is identified using a similarity kernel. Further, the turnover frequency for all possible sites is calculated for propane dehydrogenation to propene through microkinetic modeling using density functional theory calculations. The total turnover frequencies of the whole nanoparticle are then described from both the population and the individual turnover frequency of each site. Under operating conditions, rhodium as a dopant is found to almost exclusively occupy (111) surface sites while palladium as a dopant occupies a greater variety of facets. Undercoordinated dopant surface sites are found to tend to be more reactive for propane dehydrogenation compared to the (111) surface. It is found that considering the dynamics of the single-atom alloy nanoparticle has a profound effect on the calculated catalytic activity of single-atom alloys by several orders of magnitude. acknowledgement: "B.C. acknowledges resources provided by the Cambridge Tier2 system operated by the University of Cambridge Research\r\nComputing Service funded by EPSRC Tier-2 capital grant EP/\r\nP020259/1." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Rhys full_name: Bunting, Rhys id: 91deeae8-1207-11ec-b130-c194ad5b50c6 last_name: Bunting orcid: 0000-0001-6928-074X - first_name: Felix full_name: Wodaczek, Felix id: 8b4b6a9f-32b0-11ee-9fa8-bbe85e26258e last_name: Wodaczek orcid: 0009-0000-1457-795X - first_name: Tina full_name: Torabi, Tina last_name: Torabi - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 citation: ama: 'Bunting R, Wodaczek F, Torabi T, Cheng B. Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane. Journal of the American Chemical Society. 2023;145(27):14894-14902. doi:10.1021/jacs.3c04030' apa: 'Bunting, R., Wodaczek, F., Torabi, T., & Cheng, B. (2023). Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane. Journal of the American Chemical Society. American Chemical Society. https://doi.org/10.1021/jacs.3c04030' chicago: 'Bunting, Rhys, Felix Wodaczek, Tina Torabi, and Bingqing Cheng. “Reactivity of Single-Atom Alloy Nanoparticles: Modeling the Dehydrogenation of Propane.” Journal of the American Chemical Society. American Chemical Society, 2023. https://doi.org/10.1021/jacs.3c04030.' ieee: 'R. Bunting, F. Wodaczek, T. Torabi, and B. Cheng, “Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane,” Journal of the American Chemical Society, vol. 145, no. 27. American Chemical Society, pp. 14894–14902, 2023.' ista: 'Bunting R, Wodaczek F, Torabi T, Cheng B. 2023. Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane. Journal of the American Chemical Society. 145(27), 14894–14902.' mla: 'Bunting, Rhys, et al. “Reactivity of Single-Atom Alloy Nanoparticles: Modeling the Dehydrogenation of Propane.” Journal of the American Chemical Society, vol. 145, no. 27, American Chemical Society, 2023, pp. 14894–902, doi:10.1021/jacs.3c04030.' short: R. Bunting, F. Wodaczek, T. Torabi, B. Cheng, Journal of the American Chemical Society 145 (2023) 14894–14902. date_created: 2023-07-12T09:16:40Z date_published: 2023-06-30T00:00:00Z date_updated: 2023-10-11T08:45:10Z day: '30' ddc: - '540' department: - _id: MaIb - _id: BiCh doi: 10.1021/jacs.3c04030 external_id: isi: - '001020623900001' pmid: - '37390457' file: - access_level: open_access checksum: e07d5323f9c0e5cbd1ad6453f29440ab content_type: application/pdf creator: cchlebak date_created: 2023-07-12T10:22:04Z date_updated: 2023-07-12T10:22:04Z file_id: '13219' file_name: 2023_JACS_Bunting.pdf file_size: 3155843 relation: main_file success: 1 file_date_updated: 2023-07-12T10:22:04Z has_accepted_license: '1' intvolume: ' 145' isi: 1 issue: '27' keyword: - Colloid and Surface Chemistry - Biochemistry - General Chemistry - Catalysis language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 14894-14902 pmid: 1 publication: Journal of the American Chemical Society publication_identifier: eissn: - 1520-5126 issn: - 0002-7863 publication_status: published publisher: American Chemical Society quality_controlled: '1' status: public title: 'Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 145 year: '2023' ... --- _id: '14426' abstract: - lang: eng text: To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type–specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver. acknowledgement: "We thank the Ober group for discussion and comments on the manuscript. We are grateful to\r\nDr. F. Lemaigre for feedback on the manuscript and Dr. T. Piotrowski for invaluable support.\r\nWe thank the department of experimental medicine (AEM) in Copenhagen for expert fish\r\ncare. We gratefully acknowledge the DanStem Imaging Platform (University of Copenhagen)\r\nfor support and assistance in this work.\r\nThis work is supported by Novo Nordisk Foundation grant NNF17CC0027852 (EAO);\r\nNordisk Foundation grant NNF19OC0058327 (EAO); Novo Nordisk Foundation grant\r\nNNF17OC0031204 (PRL); https://novonordiskfonden.dk/en/; Danish National\r\nResearch Foundation grant DNRF116 (EAO and AT); https://dg.dk/en/; John and Birthe Meyer\r\nFoundation (PRL) and European Research Council (ERC) under the EU Horizon 2020 research and Innovation Programme Grant Agreement No. 851288 (EH)." article_number: e3002315 article_processing_charge: No article_type: original author: - first_name: Iris A. full_name: Unterweger, Iris A. last_name: Unterweger - first_name: Julie full_name: Klepstad, Julie last_name: Klepstad - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Pia R. full_name: Lundegaard, Pia R. last_name: Lundegaard - first_name: Ala full_name: Trusina, Ala last_name: Trusina - first_name: Elke A. full_name: Ober, Elke A. last_name: Ober citation: ama: Unterweger IA, Klepstad J, Hannezo EB, Lundegaard PR, Trusina A, Ober EA. Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics. PLoS Biology. 2023;21(10). doi:10.1371/journal.pbio.3002315 apa: Unterweger, I. A., Klepstad, J., Hannezo, E. B., Lundegaard, P. R., Trusina, A., & Ober, E. A. (2023). Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.3002315 chicago: Unterweger, Iris A., Julie Klepstad, Edouard B Hannezo, Pia R. Lundegaard, Ala Trusina, and Elke A. Ober. “Lineage Tracing Identifies Heterogeneous Hepatoblast Contribution to Cell Lineages and Postembryonic Organ Growth Dynamics.” PLoS Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pbio.3002315. ieee: I. A. Unterweger, J. Klepstad, E. B. Hannezo, P. R. Lundegaard, A. Trusina, and E. A. Ober, “Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics,” PLoS Biology, vol. 21, no. 10. Public Library of Science, 2023. ista: Unterweger IA, Klepstad J, Hannezo EB, Lundegaard PR, Trusina A, Ober EA. 2023. Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics. PLoS Biology. 21(10), e3002315. mla: Unterweger, Iris A., et al. “Lineage Tracing Identifies Heterogeneous Hepatoblast Contribution to Cell Lineages and Postembryonic Organ Growth Dynamics.” PLoS Biology, vol. 21, no. 10, e3002315, Public Library of Science, 2023, doi:10.1371/journal.pbio.3002315. short: I.A. Unterweger, J. Klepstad, E.B. Hannezo, P.R. Lundegaard, A. Trusina, E.A. Ober, PLoS Biology 21 (2023). date_created: 2023-10-15T22:01:10Z date_published: 2023-10-04T00:00:00Z date_updated: 2023-10-16T07:25:48Z day: '04' ddc: - '570' department: - _id: EdHa doi: 10.1371/journal.pbio.3002315 ec_funded: 1 file: - access_level: open_access checksum: 40a2b11b41d70a0e5939f8a52b66e389 content_type: application/pdf creator: dernst date_created: 2023-10-16T07:20:49Z date_updated: 2023-10-16T07:20:49Z file_id: '14431' file_name: 2023_PloSBiology_Unterweger.pdf file_size: 6193110 relation: main_file success: 1 file_date_updated: 2023-10-16T07:20:49Z has_accepted_license: '1' intvolume: ' 21' issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis publication: PLoS Biology publication_identifier: eissn: - 1545-7885 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: link: - relation: software url: https://github.com/JulieKlepstad/LiverDevelopment scopus_import: '1' status: public title: Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 21 year: '2023' ... --- _id: '14428' abstract: - lang: eng text: "Suppose we have two hash functions h1 and h2, but we trust the security of only one of them. To mitigate this worry, we wish to build a hash combiner Ch1,h2 which is secure so long as one of the underlying hash functions is. This question has been well-studied in the regime of collision resistance. In this case, concatenating the two hash function outputs clearly works. Unfortunately, a long series of works (Boneh and Boyen, CRYPTO’06; Pietrzak, Eurocrypt’07; Pietrzak, CRYPTO’08) showed no (noticeably) shorter combiner for collision resistance is possible.\r\nIn this work, we revisit this pessimistic state of affairs, motivated by the observation that collision-resistance is insufficient for many interesting applications of cryptographic hash functions anyway. We argue the right formulation of the “hash combiner” is to build what we call random oracle (RO) combiners, utilizing stronger assumptions for stronger constructions.\r\nIndeed, we circumvent the previous lower bounds for collision resistance by constructing a simple length-preserving RO combiner C˜h1,h2Z1,Z2(M)=h1(M,Z1)⊕h2(M,Z2),where Z1,Z2\r\n are random salts of appropriate length. We show that this extra randomness is necessary for RO combiners, and indeed our construction is somewhat tight with this lower bound.\r\nOn the negative side, we show that one cannot generically apply the composition theorem to further replace “monolithic” hash functions h1 and h2 by some simpler indifferentiable construction (such as the Merkle-Damgård transformation) from smaller components, such as fixed-length compression functions. Finally, despite this issue, we directly prove collision resistance of the Merkle-Damgård variant of our combiner, where h1 and h2 are replaced by iterative Merkle-Damgård hashes applied to a fixed-length compression function. Thus, we can still subvert the concatenation barrier for collision-resistance combiners while utilizing practically small fixed-length components underneath." alternative_title: - LNCS article_processing_charge: No author: - first_name: Yevgeniy full_name: Dodis, Yevgeniy last_name: Dodis - first_name: Niels full_name: Ferguson, Niels last_name: Ferguson - first_name: Eli full_name: Goldin, Eli last_name: Goldin - first_name: Peter full_name: Hall, Peter last_name: Hall - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Dodis Y, Ferguson N, Goldin E, Hall P, Pietrzak KZ. Random oracle combiners: Breaking the concatenation barrier for collision-resistance. In: 43rd Annual International Cryptology Conference. Vol 14082. Springer Nature; 2023:514-546. doi:10.1007/978-3-031-38545-2_17' apa: 'Dodis, Y., Ferguson, N., Goldin, E., Hall, P., & Pietrzak, K. Z. (2023). Random oracle combiners: Breaking the concatenation barrier for collision-resistance. In 43rd Annual International Cryptology Conference (Vol. 14082, pp. 514–546). Santa Barbara, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-031-38545-2_17' chicago: 'Dodis, Yevgeniy, Niels Ferguson, Eli Goldin, Peter Hall, and Krzysztof Z Pietrzak. “Random Oracle Combiners: Breaking the Concatenation Barrier for Collision-Resistance.” In 43rd Annual International Cryptology Conference, 14082:514–46. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-38545-2_17.' ieee: 'Y. Dodis, N. Ferguson, E. Goldin, P. Hall, and K. Z. Pietrzak, “Random oracle combiners: Breaking the concatenation barrier for collision-resistance,” in 43rd Annual International Cryptology Conference, Santa Barbara, CA, United States, 2023, vol. 14082, pp. 514–546.' ista: 'Dodis Y, Ferguson N, Goldin E, Hall P, Pietrzak KZ. 2023. Random oracle combiners: Breaking the concatenation barrier for collision-resistance. 43rd Annual International Cryptology Conference. CRYPTO: Advances in Cryptology, LNCS, vol. 14082, 514–546.' mla: 'Dodis, Yevgeniy, et al. “Random Oracle Combiners: Breaking the Concatenation Barrier for Collision-Resistance.” 43rd Annual International Cryptology Conference, vol. 14082, Springer Nature, 2023, pp. 514–46, doi:10.1007/978-3-031-38545-2_17.' short: Y. Dodis, N. Ferguson, E. Goldin, P. Hall, K.Z. Pietrzak, in:, 43rd Annual International Cryptology Conference, Springer Nature, 2023, pp. 514–546. conference: end_date: 2023-08-24 location: Santa Barbara, CA, United States name: 'CRYPTO: Advances in Cryptology' start_date: 2023-08-20 date_created: 2023-10-15T22:01:11Z date_published: 2023-08-09T00:00:00Z date_updated: 2023-10-16T08:02:11Z day: '09' department: - _id: KrPi doi: 10.1007/978-3-031-38545-2_17 intvolume: ' 14082' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2023/1041 month: '08' oa: 1 oa_version: Preprint page: 514-546 publication: 43rd Annual International Cryptology Conference publication_identifier: eissn: - 1611-3349 isbn: - '9783031385445' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Random oracle combiners: Breaking the concatenation barrier for collision-resistance' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14082 year: '2023' ... --- _id: '13052' abstract: - lang: eng text: Imaging of the immunological synapse (IS) between dendritic cells (DCs) and T cells in suspension is hampered by suboptimal alignment of cell-cell contacts along the vertical imaging plane. This requires optical sectioning that often results in unsatisfactory resolution in time and space. Here, we present a workflow where DCs and T cells are confined between a layer of glass and polydimethylsiloxane (PDMS) that orients the cells along one, horizontal imaging plane, allowing for fast en-face-imaging of the DC-T cell IS. acknowledged_ssus: - _id: Bio - _id: NanoFab - _id: M-Shop acknowledgement: 'A.L. was funded by an Erwin Schrödinger postdoctoral fellowship of the Austrian Science Fund (FWF, project number: J4542-B) and is an EMBO non-stipendiary postdoctoral fellow. This work was supported by a European Research Council grant ERC-CoG-72437 to M.S. We thank the Imaging & Optics facility, the Nanofabrication facility, and the Miba Machine Shop of ISTA for their excellent support.' alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: 'Leithner AF, Merrin J, Sixt MK. En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses. In: Baldari C, Dustin M, eds. The Immune Synapse. Vol 2654. MIMB. New York, NY: Springer Nature; 2023:137-147. doi:10.1007/978-1-0716-3135-5_9' apa: 'Leithner, A. F., Merrin, J., & Sixt, M. K. (2023). En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses. In C. Baldari & M. Dustin (Eds.), The Immune Synapse (Vol. 2654, pp. 137–147). New York, NY: Springer Nature. https://doi.org/10.1007/978-1-0716-3135-5_9' chicago: 'Leithner, Alexander F, Jack Merrin, and Michael K Sixt. “En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses.” In The Immune Synapse, edited by Cosima Baldari and Michael Dustin, 2654:137–47. MIMB. New York, NY: Springer Nature, 2023. https://doi.org/10.1007/978-1-0716-3135-5_9.' ieee: 'A. F. Leithner, J. Merrin, and M. K. Sixt, “En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses,” in The Immune Synapse, vol. 2654, C. Baldari and M. Dustin, Eds. New York, NY: Springer Nature, 2023, pp. 137–147.' ista: 'Leithner AF, Merrin J, Sixt MK. 2023.En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses. In: The Immune Synapse. Methods in Molecular Biology, vol. 2654, 137–147.' mla: Leithner, Alexander F., et al. “En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses.” The Immune Synapse, edited by Cosima Baldari and Michael Dustin, vol. 2654, Springer Nature, 2023, pp. 137–47, doi:10.1007/978-1-0716-3135-5_9. short: A.F. Leithner, J. Merrin, M.K. Sixt, in:, C. Baldari, M. Dustin (Eds.), The Immune Synapse, Springer Nature, New York, NY, 2023, pp. 137–147. date_created: 2023-05-22T08:41:48Z date_published: 2023-04-28T00:00:00Z date_updated: 2023-10-17T08:44:53Z day: '28' department: - _id: MiSi - _id: NanoFab doi: 10.1007/978-1-0716-3135-5_9 ec_funded: 1 editor: - first_name: Cosima full_name: Baldari, Cosima last_name: Baldari - first_name: Michael full_name: Dustin, Michael last_name: Dustin external_id: pmid: - '37106180' intvolume: ' 2654' language: - iso: eng month: '04' oa_version: None page: 137-147 place: New York, NY pmid: 1 project: - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients publication: The Immune Synapse publication_identifier: eisbn: - '9781071631355' eissn: - 1940-6029 isbn: - '9781071631348' issn: - 1064-3745 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: MIMB status: public title: En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2654 year: '2023' ... --- _id: '12406' abstract: - lang: eng text: Let X be a sufficiently large positive integer. We prove that one may choose a subset S of primes with cardinality O(logX) such that a positive proportion of integers less than X can be represented by x2+py2 for at least one p∈S. acknowledgement: "This article is a version the author’s master thesis at the University of Bonn. The author would like to thank his advisor Valentin Blomer for introducing the problem, and giving generous feedback and encouragement along the way, especially during the global pandemic.\r\nThe author thanks Edgar Assing for his lectures on analytic number theory. Finally, the author is grateful to the anonymous referees for their valuable time and comments.\r\n" article_processing_charge: No article_type: original author: - first_name: Yijie full_name: Diao, Yijie id: 7b7eb4ca-eb2c-11ec-b98b-accec0b20c3b last_name: Diao orcid: 0000-0002-4989-5330 citation: ama: Diao Y. Density of the union of positive diagonal binary quadratic forms. Acta Arithmetica. 2023;207:1-17. doi:10.4064/aa210830-24-11 apa: Diao, Y. (2023). Density of the union of positive diagonal binary quadratic forms. Acta Arithmetica. Instytut Matematyczny. https://doi.org/10.4064/aa210830-24-11 chicago: Diao, Yijie. “Density of the Union of Positive Diagonal Binary Quadratic Forms.” Acta Arithmetica. Instytut Matematyczny, 2023. https://doi.org/10.4064/aa210830-24-11. ieee: Y. Diao, “Density of the union of positive diagonal binary quadratic forms,” Acta Arithmetica, vol. 207. Instytut Matematyczny, pp. 1–17, 2023. ista: Diao Y. 2023. Density of the union of positive diagonal binary quadratic forms. Acta Arithmetica. 207, 1–17. mla: Diao, Yijie. “Density of the Union of Positive Diagonal Binary Quadratic Forms.” Acta Arithmetica, vol. 207, Instytut Matematyczny, 2023, pp. 1–17, doi:10.4064/aa210830-24-11. short: Y. Diao, Acta Arithmetica 207 (2023) 1–17. date_created: 2023-01-26T21:17:04Z date_published: 2023-01-09T00:00:00Z date_updated: 2023-10-17T09:15:17Z day: '09' department: - _id: GradSch doi: 10.4064/aa210830-24-11 external_id: arxiv: - '2103.08268' isi: - '000912903000001' intvolume: ' 207' isi: 1 keyword: - Algebra - Number Theory language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2103.08268 month: '01' oa: 1 oa_version: Preprint page: 1-17 publication: Acta Arithmetica publication_identifier: eissn: - 1730-6264 issn: - 0065-1036 publication_status: published publisher: Instytut Matematyczny quality_controlled: '1' status: public title: Density of the union of positive diagonal binary quadratic forms type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 207 year: '2023' ... --- _id: '13200' abstract: - lang: eng text: Recent quantum technologies have established precise quantum control of various microscopic systems using electromagnetic waves. Interfaces based on cryogenic cavity electro-optic systems are particularly promising, due to the direct interaction between microwave and optical fields in the quantum regime. Quantum optical control of superconducting microwave circuits has been precluded so far due to the weak electro-optical coupling as well as quasi-particles induced by the pump laser. Here we report the coherent control of a superconducting microwave cavity using laser pulses in a multimode electro-optical device at millikelvin temperature with near-unity cooperativity. Both the stationary and instantaneous responses of the microwave and optical modes comply with the coherent electro-optical interaction, and reveal only minuscule amount of excess back-action with an unanticipated time delay. Our demonstration enables wide ranges of applications beyond quantum transductions, from squeezing and quantum non-demolition measurements of microwave fields, to entanglement generation and hybrid quantum networks. acknowledgement: This work was supported by the European Research Council under grant agreement no. 758053 (ERC StG QUNNECT), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 899354 (FETopen SuperQuLAN), and the Austrian Science Fund (FWF) through BeyondC (F7105). L.Q. acknowledges generous support from the ISTFELLOW programme. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 754411. G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. article_number: '3784' article_processing_charge: No article_type: original author: - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Qiu L, Sahu R, Hease WJ, Arnold GM, Fink JM. Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action. Nature Communications. 2023;14. doi:10.1038/s41467-023-39493-3 apa: Qiu, L., Sahu, R., Hease, W. J., Arnold, G. M., & Fink, J. M. (2023). Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action. Nature Communications. Nature Research. https://doi.org/10.1038/s41467-023-39493-3 chicago: Qiu, Liu, Rishabh Sahu, William J Hease, Georg M Arnold, and Johannes M Fink. “Coherent Optical Control of a Superconducting Microwave Cavity via Electro-Optical Dynamical Back-Action.” Nature Communications. Nature Research, 2023. https://doi.org/10.1038/s41467-023-39493-3. ieee: L. Qiu, R. Sahu, W. J. Hease, G. M. Arnold, and J. M. Fink, “Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action,” Nature Communications, vol. 14. Nature Research, 2023. ista: Qiu L, Sahu R, Hease WJ, Arnold GM, Fink JM. 2023. Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action. Nature Communications. 14, 3784. mla: Qiu, Liu, et al. “Coherent Optical Control of a Superconducting Microwave Cavity via Electro-Optical Dynamical Back-Action.” Nature Communications, vol. 14, 3784, Nature Research, 2023, doi:10.1038/s41467-023-39493-3. short: L. Qiu, R. Sahu, W.J. Hease, G.M. Arnold, J.M. Fink, Nature Communications 14 (2023). date_created: 2023-07-09T22:01:11Z date_published: 2023-06-24T00:00:00Z date_updated: 2023-10-17T11:46:12Z day: '24' ddc: - '000' department: - _id: JoFi doi: 10.1038/s41467-023-39493-3 ec_funded: 1 external_id: arxiv: - '2210.12443' isi: - '001018100800002' pmid: - '37355691' file: - access_level: open_access checksum: ec7ccd2c08f90d59cab302fd0d7776a4 content_type: application/pdf creator: alisjak date_created: 2023-07-10T10:10:54Z date_updated: 2023-07-10T10:10:54Z file_id: '13206' file_name: 2023_NatureComms_Qiu.pdf file_size: 1349134 relation: main_file success: 1 file_date_updated: 2023-07-10T10:10:54Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: bdb108fd-d553-11ed-ba76-83dc74a9864f name: QUANTUM INFORMATION SYSTEMS BEYOND CLASSICAL CAPABILITIES / P5- Integration of Superconducting Quantum Circuits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Nature Research quality_controlled: '1' scopus_import: '1' status: public title: Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '13315' abstract: - lang: eng text: How do statistical dependencies in measurement noise influence high-dimensional inference? To answer this, we study the paradigmatic spiked matrix model of principal components analysis (PCA), where a rank-one matrix is corrupted by additive noise. We go beyond the usual independence assumption on the noise entries, by drawing the noise from a low-order polynomial orthogonal matrix ensemble. The resulting noise correlations make the setting relevant for applications but analytically challenging. We provide characterization of the Bayes optimal limits of inference in this model. If the spike is rotation invariant, we show that standard spectral PCA is optimal. However, for more general priors, both PCA and the existing approximate message-passing algorithm (AMP) fall short of achieving the information-theoretic limits, which we compute using the replica method from statistical physics. We thus propose an AMP, inspired by the theory of adaptive Thouless–Anderson–Palmer equations, which is empirically observed to saturate the conjectured theoretical limit. This AMP comes with a rigorous state evolution analysis tracking its performance. Although we focus on specific noise distributions, our methodology can be generalized to a wide class of trace matrix ensembles at the cost of more involved expressions. Finally, despite the seemingly strong assumption of rotation-invariant noise, our theory empirically predicts algorithmic performance on real data, pointing at strong universality properties. acknowledgement: J.B. was funded by the European Union (ERC, CHORAL, project number 101039794). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. M.M. was supported by the 2019 Lopez-Loreta Prize. We would like to thank the reviewers for the insightful comments and, in particular, for suggesting the BAMP-inspired denoisers leading to AMP-AP. article_number: e2302028120 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Jean full_name: Barbier, Jean last_name: Barbier - first_name: Francesco full_name: Camilli, Francesco last_name: Camilli - first_name: Marco full_name: Mondelli, Marco id: 27EB676C-8706-11E9-9510-7717E6697425 last_name: Mondelli orcid: 0000-0002-3242-7020 - first_name: Manuel full_name: Sáenz, Manuel last_name: Sáenz citation: ama: Barbier J, Camilli F, Mondelli M, Sáenz M. Fundamental limits in structured principal component analysis and how to reach them. Proceedings of the National Academy of Sciences of the United States of America. 2023;120(30). doi:10.1073/pnas.2302028120 apa: Barbier, J., Camilli, F., Mondelli, M., & Sáenz, M. (2023). Fundamental limits in structured principal component analysis and how to reach them. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2302028120 chicago: Barbier, Jean, Francesco Camilli, Marco Mondelli, and Manuel Sáenz. “Fundamental Limits in Structured Principal Component Analysis and How to Reach Them.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2023. https://doi.org/10.1073/pnas.2302028120. ieee: J. Barbier, F. Camilli, M. Mondelli, and M. Sáenz, “Fundamental limits in structured principal component analysis and how to reach them,” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 30. National Academy of Sciences, 2023. ista: Barbier J, Camilli F, Mondelli M, Sáenz M. 2023. Fundamental limits in structured principal component analysis and how to reach them. Proceedings of the National Academy of Sciences of the United States of America. 120(30), e2302028120. mla: Barbier, Jean, et al. “Fundamental Limits in Structured Principal Component Analysis and How to Reach Them.” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 30, e2302028120, National Academy of Sciences, 2023, doi:10.1073/pnas.2302028120. short: J. Barbier, F. Camilli, M. Mondelli, M. Sáenz, Proceedings of the National Academy of Sciences of the United States of America 120 (2023). date_created: 2023-07-30T22:01:02Z date_published: 2023-07-25T00:00:00Z date_updated: 2023-10-17T11:44:55Z day: '25' ddc: - '000' department: - _id: MaMo doi: 10.1073/pnas.2302028120 external_id: pmid: - '37463204' file: - access_level: open_access checksum: 1fc06228afdb3aa80cf8e7766bcf9dc5 content_type: application/pdf creator: dernst date_created: 2023-07-31T07:30:48Z date_updated: 2023-07-31T07:30:48Z file_id: '13323' file_name: 2023_PNAS_Barbier.pdf file_size: 995933 relation: main_file success: 1 file_date_updated: 2023-07-31T07:30:48Z has_accepted_license: '1' intvolume: ' 120' issue: '30' language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 059876FA-7A3F-11EA-A408-12923DDC885E name: Prix Lopez-Loretta 2019 - Marco Mondelli publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - relation: software url: https://github.com/fcamilli95/Structured-PCA- scopus_import: '1' status: public title: Fundamental limits in structured principal component analysis and how to reach them tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 120 year: '2023' ... --- _id: '14037' abstract: - lang: eng text: 'Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions.' acknowledgement: N.M.-S. acknowledges the support of the Ministry of Energy, Israel, as part of the scholarship program for graduate students in the fields of energy. M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). Y.P. acknowledges the support of the Ministry of Innovation, Science and Technology, Israel Grant No. 1001593872. Y.P acknowledges the support of the BSF-NSF 094 Grant No. 2022503. article_number: e2300828120 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Ofek full_name: Vardi, Ofek last_name: Vardi - first_name: Naama full_name: Maroudas-Sklare, Naama last_name: Maroudas-Sklare - first_name: Yuval full_name: Kolodny, Yuval last_name: Kolodny - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Amijai full_name: Saragovi, Amijai last_name: Saragovi - first_name: Nir full_name: Galili, Nir last_name: Galili - first_name: Stav full_name: Ferrera, Stav last_name: Ferrera - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Nir full_name: Yuran, Nir last_name: Yuran - first_name: Hagit P. full_name: Affek, Hagit P. last_name: Affek - first_name: Boaz full_name: Luz, Boaz last_name: Luz - first_name: Yonaton full_name: Goldsmith, Yonaton last_name: Goldsmith - first_name: Nir full_name: Keren, Nir last_name: Keren - first_name: Shira full_name: Yochelis, Shira last_name: Yochelis - first_name: Itay full_name: Halevy, Itay last_name: Halevy - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Yossi full_name: Paltiel, Yossi last_name: Paltiel citation: ama: Vardi O, Maroudas-Sklare N, Kolodny Y, et al. Nuclear spin effects in biological processes. Proceedings of the National Academy of Sciences of the United States of America. 2023;120(32). doi:10.1073/pnas.2300828120 apa: Vardi, O., Maroudas-Sklare, N., Kolodny, Y., Volosniev, A., Saragovi, A., Galili, N., … Paltiel, Y. (2023). Nuclear spin effects in biological processes. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2300828120 chicago: Vardi, Ofek, Naama Maroudas-Sklare, Yuval Kolodny, Artem Volosniev, Amijai Saragovi, Nir Galili, Stav Ferrera, et al. “Nuclear Spin Effects in Biological Processes.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2023. https://doi.org/10.1073/pnas.2300828120. ieee: O. Vardi et al., “Nuclear spin effects in biological processes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 32. National Academy of Sciences, 2023. ista: Vardi O, Maroudas-Sklare N, Kolodny Y, Volosniev A, Saragovi A, Galili N, Ferrera S, Ghazaryan A, Yuran N, Affek HP, Luz B, Goldsmith Y, Keren N, Yochelis S, Halevy I, Lemeshko M, Paltiel Y. 2023. Nuclear spin effects in biological processes. Proceedings of the National Academy of Sciences of the United States of America. 120(32), e2300828120. mla: Vardi, Ofek, et al. “Nuclear Spin Effects in Biological Processes.” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 32, e2300828120, National Academy of Sciences, 2023, doi:10.1073/pnas.2300828120. short: O. Vardi, N. Maroudas-Sklare, Y. Kolodny, A. Volosniev, A. Saragovi, N. Galili, S. Ferrera, A. Ghazaryan, N. Yuran, H.P. Affek, B. Luz, Y. Goldsmith, N. Keren, S. Yochelis, I. Halevy, M. Lemeshko, Y. Paltiel, Proceedings of the National Academy of Sciences of the United States of America 120 (2023). date_created: 2023-08-13T22:01:12Z date_published: 2023-07-31T00:00:00Z date_updated: 2023-10-17T11:45:25Z day: '31' ddc: - '530' department: - _id: MiLe doi: 10.1073/pnas.2300828120 ec_funded: 1 external_id: pmid: - '37523549' file: - access_level: open_access checksum: a5ed64788a5acef9b9a300a26fa5a177 content_type: application/pdf creator: dernst date_created: 2023-08-14T07:43:45Z date_updated: 2023-08-14T07:43:45Z file_id: '14047' file_name: 2023_PNAS_Vardi.pdf file_size: 1003092 relation: main_file success: 1 file_date_updated: 2023-08-14T07:43:45Z has_accepted_license: '1' intvolume: ' 120' issue: '32' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Nuclear spin effects in biological processes tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 120 year: '2023' ... --- _id: '12683' abstract: - lang: eng text: We study the eigenvalue trajectories of a time dependent matrix Gt=H+itvv∗ for t≥0, where H is an N×N Hermitian random matrix and v is a unit vector. In particular, we establish that with high probability, an outlier can be distinguished at all times t>1+N−1/3+ϵ, for any ϵ>0. The study of this natural process combines elements of Hermitian and non-Hermitian analysis, and illustrates some aspects of the intrinsic instability of (even weakly) non-Hermitian matrices. acknowledgement: G. Dubach gratefully acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. L. Erdős is supported by ERC Advanced Grant “RMTBeyond” No. 101020331. article_processing_charge: No article_type: original author: - first_name: Guillaume full_name: Dubach, Guillaume id: D5C6A458-10C4-11EA-ABF4-A4B43DDC885E last_name: Dubach orcid: 0000-0001-6892-8137 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 citation: ama: Dubach G, Erdös L. Dynamics of a rank-one perturbation of a Hermitian matrix. Electronic Communications in Probability. 2023;28:1-13. doi:10.1214/23-ECP516 apa: Dubach, G., & Erdös, L. (2023). Dynamics of a rank-one perturbation of a Hermitian matrix. Electronic Communications in Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/23-ECP516 chicago: Dubach, Guillaume, and László Erdös. “Dynamics of a Rank-One Perturbation of a Hermitian Matrix.” Electronic Communications in Probability. Institute of Mathematical Statistics, 2023. https://doi.org/10.1214/23-ECP516. ieee: G. Dubach and L. Erdös, “Dynamics of a rank-one perturbation of a Hermitian matrix,” Electronic Communications in Probability, vol. 28. Institute of Mathematical Statistics, pp. 1–13, 2023. ista: Dubach G, Erdös L. 2023. Dynamics of a rank-one perturbation of a Hermitian matrix. Electronic Communications in Probability. 28, 1–13. mla: Dubach, Guillaume, and László Erdös. “Dynamics of a Rank-One Perturbation of a Hermitian Matrix.” Electronic Communications in Probability, vol. 28, Institute of Mathematical Statistics, 2023, pp. 1–13, doi:10.1214/23-ECP516. short: G. Dubach, L. Erdös, Electronic Communications in Probability 28 (2023) 1–13. date_created: 2023-02-26T23:01:01Z date_published: 2023-02-08T00:00:00Z date_updated: 2023-10-17T12:48:10Z day: '08' ddc: - '510' department: - _id: LaEr doi: 10.1214/23-ECP516 ec_funded: 1 external_id: arxiv: - '2108.13694' isi: - '000950650200005' file: - access_level: open_access checksum: a1c6f0a3e33688fd71309c86a9aad86e content_type: application/pdf creator: dernst date_created: 2023-02-27T09:43:27Z date_updated: 2023-02-27T09:43:27Z file_id: '12692' file_name: 2023_ElectCommProbability_Dubach.pdf file_size: 479105 relation: main_file success: 1 file_date_updated: 2023-02-27T09:43:27Z has_accepted_license: '1' intvolume: ' 28' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1-13 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 62796744-2b32-11ec-9570-940b20777f1d call_identifier: H2020 grant_number: '101020331' name: Random matrices beyond Wigner-Dyson-Mehta publication: Electronic Communications in Probability publication_identifier: eissn: - 1083-589X publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: Dynamics of a rank-one perturbation of a Hermitian matrix tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2023' ... --- _id: '12761' abstract: - lang: eng text: "We consider the fluctuations of regular functions f of a Wigner matrix W viewed as an entire matrix f (W). Going beyond the well-studied tracial mode, Trf (W), which is equivalent to the customary linear statistics of eigenvalues, we show that Trf (W)A is asymptotically normal for any nontrivial bounded deterministic matrix A. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of f (W) in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. As a main motivation to study CLT in such generality on small mesoscopic scales, we determine\r\nthe fluctuations in the eigenstate thermalization hypothesis (Phys. Rev. A 43 (1991) 2046–2049), that is, prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. Finally, in the macroscopic regime our result also generalizes (Zh. Mat. Fiz. Anal. Geom. 9 (2013) 536–581, 611, 615) to complex W and to all crossover ensembles in between. The main technical inputs are the recent\r\nmultiresolvent local laws with traceless deterministic matrices from the companion paper (Comm. Math. Phys. 388 (2021) 1005–1048)." acknowledgement: The second author is partially funded by the ERC Advanced Grant “RMTBEYOND” No. 101020331. The third author is supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation. article_processing_charge: No article_type: original author: - first_name: Giorgio full_name: Cipolloni, Giorgio id: 42198EFA-F248-11E8-B48F-1D18A9856A87 last_name: Cipolloni orcid: 0000-0002-4901-7992 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Dominik J full_name: Schröder, Dominik J id: 408ED176-F248-11E8-B48F-1D18A9856A87 last_name: Schröder orcid: 0000-0002-2904-1856 citation: ama: Cipolloni G, Erdös L, Schröder DJ. Functional central limit theorems for Wigner matrices. Annals of Applied Probability. 2023;33(1):447-489. doi:10.1214/22-AAP1820 apa: Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Functional central limit theorems for Wigner matrices. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/22-AAP1820 chicago: Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Functional Central Limit Theorems for Wigner Matrices.” Annals of Applied Probability. Institute of Mathematical Statistics, 2023. https://doi.org/10.1214/22-AAP1820. ieee: G. Cipolloni, L. Erdös, and D. J. Schröder, “Functional central limit theorems for Wigner matrices,” Annals of Applied Probability, vol. 33, no. 1. Institute of Mathematical Statistics, pp. 447–489, 2023. ista: Cipolloni G, Erdös L, Schröder DJ. 2023. Functional central limit theorems for Wigner matrices. Annals of Applied Probability. 33(1), 447–489. mla: Cipolloni, Giorgio, et al. “Functional Central Limit Theorems for Wigner Matrices.” Annals of Applied Probability, vol. 33, no. 1, Institute of Mathematical Statistics, 2023, pp. 447–89, doi:10.1214/22-AAP1820. short: G. Cipolloni, L. Erdös, D.J. Schröder, Annals of Applied Probability 33 (2023) 447–489. date_created: 2023-03-26T22:01:08Z date_published: 2023-02-01T00:00:00Z date_updated: 2023-10-17T12:48:52Z day: '01' department: - _id: LaEr doi: 10.1214/22-AAP1820 ec_funded: 1 external_id: arxiv: - '2012.13218' isi: - '000946432400015' intvolume: ' 33' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2012.13218 month: '02' oa: 1 oa_version: Preprint page: 447-489 project: - _id: 62796744-2b32-11ec-9570-940b20777f1d call_identifier: H2020 grant_number: '101020331' name: Random matrices beyond Wigner-Dyson-Mehta publication: Annals of Applied Probability publication_identifier: issn: - 1050-5164 publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: Functional central limit theorems for Wigner matrices type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 33 year: '2023' ... --- _id: '8682' abstract: - lang: eng text: It is known that the Brauer--Manin obstruction to the Hasse principle is vacuous for smooth Fano hypersurfaces of dimension at least 3 over any number field. Moreover, for such varieties it follows from a general conjecture of Colliot-Thélène that the Brauer--Manin obstruction to the Hasse principle should be the only one, so that the Hasse principle is expected to hold. Working over the field of rational numbers and ordering Fano hypersurfaces of fixed degree and dimension by height, we prove that almost every such hypersurface satisfies the Hasse principle provided that the dimension is at least 3. This proves a conjecture of Poonen and Voloch in every case except for cubic surfaces. article_processing_charge: No article_type: original author: - first_name: Timothy D full_name: Browning, Timothy D id: 35827D50-F248-11E8-B48F-1D18A9856A87 last_name: Browning orcid: 0000-0002-8314-0177 - first_name: Pierre Le full_name: Boudec, Pierre Le last_name: Boudec - first_name: Will full_name: Sawin, Will last_name: Sawin citation: ama: Browning TD, Boudec PL, Sawin W. The Hasse principle for random Fano hypersurfaces. Annals of Mathematics. 2023;197(3):1115-1203. doi:10.4007/annals.2023.197.3.3 apa: Browning, T. D., Boudec, P. L., & Sawin, W. (2023). The Hasse principle for random Fano hypersurfaces. Annals of Mathematics. Princeton University. https://doi.org/10.4007/annals.2023.197.3.3 chicago: Browning, Timothy D, Pierre Le Boudec, and Will Sawin. “The Hasse Principle for Random Fano Hypersurfaces.” Annals of Mathematics. Princeton University, 2023. https://doi.org/10.4007/annals.2023.197.3.3. ieee: T. D. Browning, P. L. Boudec, and W. Sawin, “The Hasse principle for random Fano hypersurfaces,” Annals of Mathematics, vol. 197, no. 3. Princeton University, pp. 1115–1203, 2023. ista: Browning TD, Boudec PL, Sawin W. 2023. The Hasse principle for random Fano hypersurfaces. Annals of Mathematics. 197(3), 1115–1203. mla: Browning, Timothy D., et al. “The Hasse Principle for Random Fano Hypersurfaces.” Annals of Mathematics, vol. 197, no. 3, Princeton University, 2023, pp. 1115–203, doi:10.4007/annals.2023.197.3.3. short: T.D. Browning, P.L. Boudec, W. Sawin, Annals of Mathematics 197 (2023) 1115–1203. date_created: 2020-10-19T14:28:50Z date_published: 2023-05-01T00:00:00Z date_updated: 2023-10-17T12:47:43Z day: '01' department: - _id: TiBr doi: 10.4007/annals.2023.197.3.3 external_id: arxiv: - '2006.02356' isi: - '000966611000003' intvolume: ' 197' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2006.02356 month: '05' oa: 1 oa_version: Preprint page: 1115-1203 publication: Annals of Mathematics publication_identifier: issn: - 0003-486X publication_status: published publisher: Princeton University quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/when-is-necessary-sufficient/ status: public title: The Hasse principle for random Fano hypersurfaces type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 197 year: '2023' ... --- _id: '12706' abstract: - lang: eng text: Allometric settings of population dynamics models are appealing due to their parsimonious nature and broad utility when studying system level effects. Here, we parameterise the size-scaled Rosenzweig-MacArthur differential equations to eliminate prey-mass dependency, facilitating an in depth analytic study of the equations which incorporates scaling parameters’ contributions to coexistence. We define the functional response term to match empirical findings, and examine situations where metabolic theory derivations and observation diverge. The dynamical properties of the Rosenzweig-MacArthur system, encompassing the distribution of size-abundance equilibria, the scaling of period and amplitude of population cycling, and relationships between predator and prey abundances, are consistent with empirical observation. Our parameterisation is an accurate minimal model across 15+ orders of mass magnitude. acknowledgement: "This research was supported by an Australian Government Research Training Program\r\n(RTP) Scholarship to JCM (https://www.dese.gov.au), and LB is supported by the Centre de\r\nrecherche sur le vieillissement Fellowship Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript." article_processing_charge: No article_type: original author: - first_name: Jody C. full_name: Mckerral, Jody C. last_name: Mckerral - first_name: Maria full_name: Kleshnina, Maria id: 4E21749C-F248-11E8-B48F-1D18A9856A87 last_name: Kleshnina - first_name: Vladimir full_name: Ejov, Vladimir last_name: Ejov - first_name: Louise full_name: Bartle, Louise last_name: Bartle - first_name: James G. full_name: Mitchell, James G. last_name: Mitchell - first_name: Jerzy A. full_name: Filar, Jerzy A. last_name: Filar citation: ama: Mckerral JC, Kleshnina M, Ejov V, Bartle L, Mitchell JG, Filar JA. Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations. PLoS One. 2023;18(2):e0279838. doi:10.1371/journal.pone.0279838 apa: Mckerral, J. C., Kleshnina, M., Ejov, V., Bartle, L., Mitchell, J. G., & Filar, J. A. (2023). Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0279838 chicago: Mckerral, Jody C., Maria Kleshnina, Vladimir Ejov, Louise Bartle, James G. Mitchell, and Jerzy A. Filar. “Empirical Parameterisation and Dynamical Analysis of the Allometric Rosenzweig-MacArthur Equations.” PLoS One. Public Library of Science, 2023. https://doi.org/10.1371/journal.pone.0279838. ieee: J. C. Mckerral, M. Kleshnina, V. Ejov, L. Bartle, J. G. Mitchell, and J. A. Filar, “Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations,” PLoS One, vol. 18, no. 2. Public Library of Science, p. e0279838, 2023. ista: Mckerral JC, Kleshnina M, Ejov V, Bartle L, Mitchell JG, Filar JA. 2023. Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations. PLoS One. 18(2), e0279838. mla: Mckerral, Jody C., et al. “Empirical Parameterisation and Dynamical Analysis of the Allometric Rosenzweig-MacArthur Equations.” PLoS One, vol. 18, no. 2, Public Library of Science, 2023, p. e0279838, doi:10.1371/journal.pone.0279838. short: J.C. Mckerral, M. Kleshnina, V. Ejov, L. Bartle, J.G. Mitchell, J.A. Filar, PLoS One 18 (2023) e0279838. date_created: 2023-03-05T23:01:05Z date_published: 2023-02-27T00:00:00Z date_updated: 2023-10-17T12:53:30Z day: '27' ddc: - '000' department: - _id: KrCh doi: 10.1371/journal.pone.0279838 external_id: isi: - '000996122900022' pmid: - '36848357' file: - access_level: open_access checksum: 798ed5739a4117b03173e5d56e0534c9 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T10:26:45Z date_updated: 2023-03-07T10:26:45Z file_id: '12712' file_name: 2023_PLOSOne_Mckerral.pdf file_size: 1257003 relation: main_file success: 1 file_date_updated: 2023-03-07T10:26:45Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: e0279838 pmid: 1 publication: PLoS One publication_identifier: eissn: - 1932-6203 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 18 year: '2023' ... --- _id: '13202' abstract: - lang: eng text: Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an essential role in neuronal activities through interaction with various proteins involved in signaling at membranes. However, the distribution pattern of PI(4,5)P2 and the association with these proteins on the neuronal cell membranes remain elusive. In this study, we established a method for visualizing PI(4,5)P2 by SDS-digested freeze-fracture replica labeling (SDS-FRL) to investigate the quantitative nanoscale distribution of PI(4,5)P2 in cryo-fixed brain. We demonstrate that PI(4,5)P2 forms tiny clusters with a mean size of ∼1000 nm2 rather than randomly distributed in cerebellar neuronal membranes in male C57BL/6J mice. These clusters show preferential accumulation in specific membrane compartments of different cell types, in particular, in Purkinje cell (PC) spines and granule cell (GC) presynaptic active zones. Furthermore, we revealed extensive association of PI(4,5)P2 with CaV2.1 and GIRK3 across different membrane compartments, whereas its association with mGluR1α was compartment specific. These results suggest that our SDS-FRL method provides valuable insights into the physiological functions of PI(4,5)P2 in neurons. acknowledged_ssus: - _id: EM-Fac acknowledgement: This work was supported by The Institute of Science and Technology (IST) Austria, the European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant Agreement No. 793482 (to K.E.) and by the European Research Council (ERC) Grant Agreement No. 694539 (to R.S.). We thank Nicoleta Condruz (IST Austria, Klosterneuburg, Austria) for technical assistance with sample preparation, the Electron Microscopy Facility of IST Austria (Klosterneuburg, Austria) for technical support with EM works, Natalia Baranova (University of Vienna, Vienna, Austria) and Martin Loose (IST Austria, Klosterneuburg, Austria) for advice on liposome preparation, and Yugo Fukazawa (University of Fukui, Fukui, Japan) for comments. article_processing_charge: No article_type: original author: - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Elodie full_name: Le Monnier, Elodie id: 3B59276A-F248-11E8-B48F-1D18A9856A87 last_name: Le Monnier - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Eguchi K, Le Monnier E, Shigemoto R. Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of Neuroscience. 2023;43(23):4197-4216. doi:10.1523/JNEUROSCI.1514-22.2023 apa: Eguchi, K., Le Monnier, E., & Shigemoto, R. (2023). Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.1514-22.2023 chicago: Eguchi, Kohgaku, Elodie Le Monnier, and Ryuichi Shigemoto. “Nanoscale Phosphoinositide Distribution on Cell Membranes of Mouse Cerebellar Neurons.” The Journal of Neuroscience. Society for Neuroscience, 2023. https://doi.org/10.1523/JNEUROSCI.1514-22.2023. ieee: K. Eguchi, E. Le Monnier, and R. Shigemoto, “Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons,” The Journal of Neuroscience, vol. 43, no. 23. Society for Neuroscience, pp. 4197–4216, 2023. ista: Eguchi K, Le Monnier E, Shigemoto R. 2023. Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of Neuroscience. 43(23), 4197–4216. mla: Eguchi, Kohgaku, et al. “Nanoscale Phosphoinositide Distribution on Cell Membranes of Mouse Cerebellar Neurons.” The Journal of Neuroscience, vol. 43, no. 23, Society for Neuroscience, 2023, pp. 4197–216, doi:10.1523/JNEUROSCI.1514-22.2023. short: K. Eguchi, E. Le Monnier, R. Shigemoto, The Journal of Neuroscience 43 (2023) 4197–4216. date_created: 2023-07-09T22:01:12Z date_published: 2023-06-07T00:00:00Z date_updated: 2023-10-18T07:12:47Z day: '07' ddc: - '570' department: - _id: RySh doi: 10.1523/JNEUROSCI.1514-22.2023 ec_funded: 1 external_id: isi: - '001020132100005' pmid: - '37160366' file: - access_level: open_access checksum: 70b2141870e0bf1c94fd343e18fdbc32 content_type: application/pdf creator: alisjak date_created: 2023-07-10T09:04:58Z date_updated: 2023-07-10T09:04:58Z file_id: '13205' file_name: 2023_JN_Eguchi.pdf file_size: 7794425 relation: main_file success: 1 file_date_updated: 2023-07-10T09:04:58Z has_accepted_license: '1' intvolume: ' 43' isi: 1 issue: '23' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 4197-4216 pmid: 1 project: - _id: 2659CC84-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '793482' name: 'Ultrastructural analysis of phosphoinositides in nerve terminals: distribution, dynamics and physiological roles in synaptic transmission' - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' publication: The Journal of Neuroscience publication_identifier: eissn: - 1529-2401 issn: - 0270-6474 publication_status: published publisher: Society for Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 43 year: '2023' ... --- _id: '12916' abstract: - lang: eng text: "We apply a variant of the square-sieve to produce an upper bound for the number of rational points of bounded height on a family of surfaces that admit a fibration over P1 whose general fibre is a hyperelliptic curve. The implied constant does not depend on the coefficients of the polynomial defining the surface.\r\n" article_processing_charge: No article_type: original author: - first_name: Dante full_name: Bonolis, Dante id: 6A459894-5FDD-11E9-AF35-BB24E6697425 last_name: Bonolis - first_name: Timothy D full_name: Browning, Timothy D id: 35827D50-F248-11E8-B48F-1D18A9856A87 last_name: Browning orcid: 0000-0002-8314-0177 citation: ama: Bonolis D, Browning TD. Uniform bounds for rational points on hyperelliptic fibrations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 2023;24(1):173-204. doi:10.2422/2036-2145.202010_018 apa: Bonolis, D., & Browning, T. D. (2023). Uniform bounds for rational points on hyperelliptic fibrations. Annali Della Scuola Normale Superiore Di Pisa - Classe Di Scienze. Scuola Normale Superiore - Edizioni della Normale. https://doi.org/10.2422/2036-2145.202010_018 chicago: Bonolis, Dante, and Timothy D Browning. “Uniform Bounds for Rational Points on Hyperelliptic Fibrations.” Annali Della Scuola Normale Superiore Di Pisa - Classe Di Scienze. Scuola Normale Superiore - Edizioni della Normale, 2023. https://doi.org/10.2422/2036-2145.202010_018. ieee: D. Bonolis and T. D. Browning, “Uniform bounds for rational points on hyperelliptic fibrations,” Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, vol. 24, no. 1. Scuola Normale Superiore - Edizioni della Normale, pp. 173–204, 2023. ista: Bonolis D, Browning TD. 2023. Uniform bounds for rational points on hyperelliptic fibrations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 24(1), 173–204. mla: Bonolis, Dante, and Timothy D. Browning. “Uniform Bounds for Rational Points on Hyperelliptic Fibrations.” Annali Della Scuola Normale Superiore Di Pisa - Classe Di Scienze, vol. 24, no. 1, Scuola Normale Superiore - Edizioni della Normale, 2023, pp. 173–204, doi:10.2422/2036-2145.202010_018. short: D. Bonolis, T.D. Browning, Annali Della Scuola Normale Superiore Di Pisa - Classe Di Scienze 24 (2023) 173–204. date_created: 2023-05-07T22:01:04Z date_published: 2023-02-16T00:00:00Z date_updated: 2023-10-18T06:54:30Z day: '16' department: - _id: TiBr doi: 10.2422/2036-2145.202010_018 external_id: arxiv: - '2007.14182' intvolume: ' 24' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2007.14182 month: '02' oa: 1 oa_version: Preprint page: 173-204 publication: Annali della Scuola Normale Superiore di Pisa - Classe di Scienze publication_identifier: eissn: - 2036-2145 issn: - 0391-173X publication_status: published publisher: Scuola Normale Superiore - Edizioni della Normale quality_controlled: '1' scopus_import: '1' status: public title: Uniform bounds for rational points on hyperelliptic fibrations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2023' ... --- _id: '14422' abstract: - lang: eng text: "Animals exhibit a remarkable ability to learn and remember new behaviors, skills, and associations throughout their lifetime. These capabilities are made possible thanks to a variety of\r\nchanges in the brain throughout adulthood, regrouped under the term \"plasticity\". Some cells\r\nin the brain —neurons— and specifically changes in the connections between neurons, the\r\nsynapses, were shown to be crucial for the formation, selection, and consolidation of memories\r\nfrom past experiences. These ongoing changes of synapses across time are called synaptic\r\nplasticity. Understanding how a myriad of biochemical processes operating at individual\r\nsynapses can somehow work in concert to give rise to meaningful changes in behavior is a\r\nfascinating problem and an active area of research.\r\nHowever, the experimental search for the precise plasticity mechanisms at play in the brain\r\nis daunting, as it is difficult to control and observe synapses during learning. Theoretical\r\napproaches have thus been the default method to probe the plasticity-behavior connection. Such\r\nstudies attempt to extract unifying principles across synapses and model all observed synaptic\r\nchanges using plasticity rules: equations that govern the evolution of synaptic strengths across\r\ntime in neuronal network models. These rules can use many relevant quantities to determine\r\nthe magnitude of synaptic changes, such as the precise timings of pre- and postsynaptic\r\naction potentials, the recent neuronal activity levels, the state of neighboring synapses, etc.\r\nHowever, analytical studies rely heavily on human intuition and are forced to make simplifying\r\nassumptions about plasticity rules.\r\nIn this thesis, we aim to assist and augment human intuition in this search for plasticity rules.\r\nWe explore whether a numerical approach could automatically discover the plasticity rules\r\nthat elicit desired behaviors in large networks of interconnected neurons. This approach is\r\ndubbed meta-learning synaptic plasticity: learning plasticity rules which themselves will make\r\nneuronal networks learn how to solve a desired task. We first write all the potential plasticity\r\nmechanisms to consider using a single expression with adjustable parameters. We then optimize\r\nthese plasticity parameters using evolutionary strategies or Bayesian inference on tasks known\r\nto involve synaptic plasticity, such as familiarity detection and network stabilization.\r\nWe show that these automated approaches are powerful tools, able to complement established\r\nanalytical methods. By comprehensively screening plasticity rules at all synapse types in\r\nrealistic, spiking neuronal network models, we discover entire sets of degenerate plausible\r\nplasticity rules that reliably elicit memory-related behaviors. Our approaches allow for more\r\nrobust experimental predictions, by abstracting out the idiosyncrasies of individual plasticity\r\nrules, and provide fresh insights on synaptic plasticity in spiking network models.\r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Basile J full_name: Confavreux, Basile J id: C7610134-B532-11EA-BD9F-F5753DDC885E last_name: Confavreux citation: ama: 'Confavreux BJ. Synapseek: Meta-learning synaptic plasticity rules. 2023. doi:10.15479/at:ista:14422' apa: 'Confavreux, B. J. (2023). Synapseek: Meta-learning synaptic plasticity rules. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14422' chicago: 'Confavreux, Basile J. “Synapseek: Meta-Learning Synaptic Plasticity Rules.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14422.' ieee: 'B. J. Confavreux, “Synapseek: Meta-learning synaptic plasticity rules,” Institute of Science and Technology Austria, 2023.' ista: 'Confavreux BJ. 2023. Synapseek: Meta-learning synaptic plasticity rules. Institute of Science and Technology Austria.' mla: 'Confavreux, Basile J. Synapseek: Meta-Learning Synaptic Plasticity Rules. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14422.' short: 'B.J. Confavreux, Synapseek: Meta-Learning Synaptic Plasticity Rules, Institute of Science and Technology Austria, 2023.' date_created: 2023-10-12T14:13:25Z date_published: 2023-10-12T00:00:00Z date_updated: 2023-10-18T09:20:56Z day: '12' ddc: - '610' degree_awarded: PhD department: - _id: GradSch - _id: TiVo doi: 10.15479/at:ista:14422 ec_funded: 1 file: - access_level: closed checksum: 7f636555eae7803323df287672fd13ed content_type: application/pdf creator: cchlebak date_created: 2023-10-12T14:53:50Z date_updated: 2023-10-12T14:54:52Z embargo: 2024-10-12 embargo_to: open_access file_id: '14424' file_name: Confavreux_Thesis_2A.pdf file_size: 30599717 relation: main_file - access_level: closed checksum: 725e85946db92290a4583a0de9779e1b content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-10-18T07:38:34Z date_updated: 2023-10-18T07:56:08Z file_id: '14440' file_name: Confavreux Thesis.zip file_size: 68406739 relation: source_file file_date_updated: 2023-10-18T07:56:08Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '10' oa_version: Published Version page: '148' project: - _id: 0aacfa84-070f-11eb-9043-d7eb2c709234 call_identifier: H2020 grant_number: '819603' name: Learning the shape of synaptic plasticity rules for neuronal architectures and function through machine learning. publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9633' relation: part_of_dissertation status: public status: public supervisor: - first_name: Tim P full_name: Vogels, Tim P id: CB6FF8D2-008F-11EA-8E08-2637E6697425 last_name: Vogels orcid: 0000-0003-3295-6181 title: 'Synapseek: Meta-learning synaptic plasticity rules' tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14374' abstract: - lang: eng text: "Superconductivity has many important applications ranging from levitating trains over qubits to MRI scanners. The phenomenon is successfully modeled by Bardeen-Cooper-Schrieffer (BCS) theory. From a mathematical perspective, BCS theory has been studied extensively for systems without boundary. However, little is known in the presence of boundaries. With the help of numerical methods physicists observed that the critical temperature may increase in the presence of a boundary. The goal of this thesis is to understand the influence of boundaries on the critical temperature in BCS theory and to give a first rigorous justification of these observations. On the way, we also study two-body Schrödinger operators on domains with boundaries and prove additional results for superconductors without boundary.\r\n\r\nBCS theory is based on a non-linear functional, where the minimizer indicates whether the system is superconducting or in the normal, non-superconducting state. By considering the Hessian of the BCS functional at the normal state, one can analyze whether the normal state is possibly a minimum of the BCS functional and estimate the critical temperature. The Hessian turns out to be a linear operator resembling a Schrödinger operator for two interacting particles, but with more complicated kinetic energy. As a first step, we study the two-body Schrödinger operator in the presence of boundaries.\r\nFor Neumann boundary conditions, we prove that the addition of a boundary can create new eigenvalues, which correspond to the two particles forming a bound state close to the boundary.\r\n\r\nSecond, we need to understand superconductivity in the translation invariant setting. While in three dimensions this has been extensively studied, there is no mathematical literature for the one and two dimensional cases. In dimensions one and two, we compute the weak coupling asymptotics of the critical temperature and the energy gap in the translation invariant setting. We also prove that their ratio is independent of the microscopic details of the model in the weak coupling limit; this property is referred to as universality.\r\n\r\nIn the third part, we study the critical temperature of superconductors in the presence of boundaries. We start by considering the one-dimensional case of a half-line with contact interaction. Then, we generalize the results to generic interactions and half-spaces in one, two and three dimensions. Finally, we compare the critical temperature of a quarter space in two dimensions to the critical temperatures of a half-space and of the full space." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Barbara full_name: Roos, Barbara id: 5DA90512-D80F-11E9-8994-2E2EE6697425 last_name: Roos orcid: 0000-0002-9071-5880 citation: ama: Roos B. Boundary superconductivity in BCS theory. 2023. doi:10.15479/at:ista:14374 apa: Roos, B. (2023). Boundary superconductivity in BCS theory. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14374 chicago: Roos, Barbara. “Boundary Superconductivity in BCS Theory.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14374. ieee: B. Roos, “Boundary superconductivity in BCS theory,” Institute of Science and Technology Austria, 2023. ista: Roos B. 2023. Boundary superconductivity in BCS theory. Institute of Science and Technology Austria. mla: Roos, Barbara. Boundary Superconductivity in BCS Theory. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14374. short: B. Roos, Boundary Superconductivity in BCS Theory, Institute of Science and Technology Austria, 2023. date_created: 2023-09-28T14:23:04Z date_published: 2023-09-30T00:00:00Z date_updated: 2023-10-27T10:37:30Z day: '30' ddc: - '515' - '539' degree_awarded: PhD department: - _id: GradSch - _id: RoSe doi: 10.15479/at:ista:14374 ec_funded: 1 file: - access_level: open_access checksum: ef039ffc3de2cb8dee5b14110938e9b6 content_type: application/pdf creator: broos date_created: 2023-10-06T11:35:56Z date_updated: 2023-10-06T11:35:56Z file_id: '14398' file_name: phd-thesis-draft_pdfa_acrobat.pdf file_size: 2365702 relation: main_file - access_level: closed checksum: 81dcac33daeefaf0111db52f41bb1fd0 content_type: application/x-zip-compressed creator: broos date_created: 2023-10-06T11:38:01Z date_updated: 2023-10-06T11:38:01Z file_id: '14399' file_name: Version5.zip file_size: 4691734 relation: source_file file_date_updated: 2023-10-06T11:38:01Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '206' project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: bda63fe5-d553-11ed-ba76-a16e3d2f256b grant_number: I06427 name: Mathematical Challenges in BCS Theory of Superconductivity publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '13207' relation: part_of_dissertation status: public - id: '10850' relation: part_of_dissertation status: public status: public supervisor: - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 title: Boundary superconductivity in BCS theory tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13207' abstract: - lang: eng text: We consider the linear BCS equation, determining the BCS critical temperature, in the presence of a boundary, where Dirichlet boundary conditions are imposed. In the one-dimensional case with point interactions, we prove that the critical temperature is strictly larger than the bulk value, at least at weak coupling. In particular, the Cooper-pair wave function localizes near the boundary, an effect that cannot be modeled by effective Neumann boundary conditions on the order parameter as often imposed in Ginzburg–Landau theory. We also show that the relative shift in critical temperature vanishes if the coupling constant either goes to zero or to infinity. acknowledgement: We thank Egor Babaev for encouraging us to study this problem, and Rupert Frank for many fruitful discussions. scussions. Funding. Funding from the European Union’s Horizon 2020 research and innovation programme under the ERC grant agreement No. 694227 (Barbara Roos and Robert Seiringer) is gratefully acknowledged. article_processing_charge: No article_type: original author: - first_name: Christian full_name: Hainzl, Christian last_name: Hainzl - first_name: Barbara full_name: Roos, Barbara id: 5DA90512-D80F-11E9-8994-2E2EE6697425 last_name: Roos orcid: 0000-0002-9071-5880 - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Hainzl C, Roos B, Seiringer R. Boundary superconductivity in the BCS model. Journal of Spectral Theory. 2023;12(4):1507–1540. doi:10.4171/JST/439 apa: Hainzl, C., Roos, B., & Seiringer, R. (2023). Boundary superconductivity in the BCS model. Journal of Spectral Theory. EMS Press. https://doi.org/10.4171/JST/439 chicago: Hainzl, Christian, Barbara Roos, and Robert Seiringer. “Boundary Superconductivity in the BCS Model.” Journal of Spectral Theory. EMS Press, 2023. https://doi.org/10.4171/JST/439. ieee: C. Hainzl, B. Roos, and R. Seiringer, “Boundary superconductivity in the BCS model,” Journal of Spectral Theory, vol. 12, no. 4. EMS Press, pp. 1507–1540, 2023. ista: Hainzl C, Roos B, Seiringer R. 2023. Boundary superconductivity in the BCS model. Journal of Spectral Theory. 12(4), 1507–1540. mla: Hainzl, Christian, et al. “Boundary Superconductivity in the BCS Model.” Journal of Spectral Theory, vol. 12, no. 4, EMS Press, 2023, pp. 1507–1540, doi:10.4171/JST/439. short: C. Hainzl, B. Roos, R. Seiringer, Journal of Spectral Theory 12 (2023) 1507–1540. date_created: 2023-07-10T16:35:45Z date_published: 2023-05-18T00:00:00Z date_updated: 2023-10-27T10:37:29Z day: '18' ddc: - '530' department: - _id: GradSch - _id: RoSe doi: 10.4171/JST/439 ec_funded: 1 external_id: arxiv: - '2201.08090' isi: - '000997933500008' file: - access_level: open_access checksum: 5501da33be010b5c81440438287584d5 content_type: application/pdf creator: alisjak date_created: 2023-07-11T08:19:15Z date_updated: 2023-07-11T08:19:15Z file_id: '13208' file_name: 2023_EMS_Hainzl.pdf file_size: 304619 relation: main_file success: 1 file_date_updated: 2023-07-11T08:19:15Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '4' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1507–1540 project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Journal of Spectral Theory publication_identifier: eissn: - 1664-0403 issn: - 1664-039X publication_status: published publisher: EMS Press quality_controlled: '1' related_material: record: - id: '14374' relation: dissertation_contains status: public status: public title: Boundary superconductivity in the BCS model tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2023' ... --- _id: '14452' abstract: - lang: eng text: The classical infinitesimal model is a simple and robust model for the inheritance of quantitative traits. In this model, a quantitative trait is expressed as the sum of a genetic and an environmental component, and the genetic component of offspring traits within a family follows a normal distribution around the average of the parents’ trait values, and has a variance that is independent of the parental traits. In previous work, we showed that when trait values are determined by the sum of a large number of additive Mendelian factors, each of small effect, one can justify the infinitesimal model as a limit of Mendelian inheritance. In this paper, we show that this result extends to include dominance. We define the model in terms of classical quantities of quantitative genetics, before justifying it as a limit of Mendelian inheritance as the number, M, of underlying loci tends to infinity. As in the additive case, the multivariate normal distribution of trait values across the pedigree can be expressed in terms of variance components in an ancestral population and probabilities of identity by descent determined by the pedigree. Now, with just first-order dominance effects, we require two-, three-, and four-way identities. We also show that, even if we condition on parental trait values, the “shared” and “residual” components of trait values within each family will be asymptotically normally distributed as the number of loci tends to infinity, with an error of order 1/M−−√⁠. We illustrate our results with some numerical examples. acknowledgement: NHB was supported in part by ERC Grants 250152 and 101055327. AV was partly supported by the chaire Modélisation Mathématique et Biodiversité of Veolia Environment—Ecole Polytechnique—Museum National d’Histoire Naturelle—Fondation X. article_number: iyad133 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Alison M. full_name: Etheridge, Alison M. last_name: Etheridge - first_name: Amandine full_name: Véber, Amandine last_name: Véber citation: ama: Barton NH, Etheridge AM, Véber A. The infinitesimal model with dominance. Genetics. 2023;225(2). doi:10.1093/genetics/iyad133 apa: Barton, N. H., Etheridge, A. M., & Véber, A. (2023). The infinitesimal model with dominance. Genetics. Oxford Academic. https://doi.org/10.1093/genetics/iyad133 chicago: Barton, Nicholas H, Alison M. Etheridge, and Amandine Véber. “The Infinitesimal Model with Dominance.” Genetics. Oxford Academic, 2023. https://doi.org/10.1093/genetics/iyad133. ieee: N. H. Barton, A. M. Etheridge, and A. Véber, “The infinitesimal model with dominance,” Genetics, vol. 225, no. 2. Oxford Academic, 2023. ista: Barton NH, Etheridge AM, Véber A. 2023. The infinitesimal model with dominance. Genetics. 225(2), iyad133. mla: Barton, Nicholas H., et al. “The Infinitesimal Model with Dominance.” Genetics, vol. 225, no. 2, iyad133, Oxford Academic, 2023, doi:10.1093/genetics/iyad133. short: N.H. Barton, A.M. Etheridge, A. Véber, Genetics 225 (2023). date_created: 2023-10-29T23:01:15Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-10-30T13:04:11Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1093/genetics/iyad133 ec_funded: 1 external_id: arxiv: - '2211.03515' file: - access_level: open_access checksum: 3f65b1fbe813e2f4dbb5d2b5e891844a content_type: application/pdf creator: dernst date_created: 2023-10-30T12:57:53Z date_updated: 2023-10-30T12:57:53Z file_id: '14469' file_name: 2023_Genetics_Barton.pdf file_size: 1439032 relation: main_file success: 1 file_date_updated: 2023-10-30T12:57:53Z has_accepted_license: '1' intvolume: ' 225' issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: bd6958e0-d553-11ed-ba76-86eba6a76c00 grant_number: '101055327' name: Understanding the evolution of continuous genomes publication: Genetics publication_identifier: eissn: - 1943-2631 issn: - 0016-6731 publication_status: published publisher: Oxford Academic quality_controlled: '1' related_material: record: - id: '12949' relation: research_data status: public scopus_import: '1' status: public title: The infinitesimal model with dominance tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 225 year: '2023' ... --- _id: '12949' abstract: - lang: eng text: The classical infinitesimal model is a simple and robust model for the inheritance of quantitative traits. In this model, a quantitative trait is expressed as the sum of a genetic and a non-genetic (environmental) component and the genetic component of offspring traits within a family follows a normal distribution around the average of the parents’ trait values, and has a variance that is independent of the trait values of the parents. Although the trait distribution across the whole population can be far from normal, the trait distributions within families are normally distributed with a variance-covariance matrix that is determined entirely by that in the ancestral population and the probabilities of identity determined by the pedigree. Moreover, conditioning on some of the trait values within the pedigree has predictable effects on the mean and variance within and between families. In previous work, Barton et al. (2017), we showed that when trait values are determined by the sum of a large number of Mendelian factors, each of small effect, one can justify the infinitesimal model as limit of Mendelian inheritance. It was also shown that under some forms of epistasis, trait values within a family are still normally distributed. article_processing_charge: No author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Barton NH. The infinitesimal model with dominance. 2023. doi:10.15479/AT:ISTA:12949 apa: Barton, N. H. (2023). The infinitesimal model with dominance. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:12949 chicago: Barton, Nicholas H. “The Infinitesimal Model with Dominance.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:12949. ieee: N. H. Barton, “The infinitesimal model with dominance.” Institute of Science and Technology Austria, 2023. ista: Barton NH. 2023. The infinitesimal model with dominance, Institute of Science and Technology Austria, 10.15479/AT:ISTA:12949. mla: Barton, Nicholas H. The Infinitesimal Model with Dominance. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:12949. short: N.H. Barton, (2023). contributor: - contributor_type: researcher first_name: Amandine last_name: Veber - contributor_type: researcher first_name: Alison last_name: Etheridge date_created: 2023-05-13T09:49:09Z date_published: 2023-05-13T00:00:00Z date_updated: 2023-10-30T13:04:11Z day: '13' ddc: - '576' department: - _id: NiBa doi: 10.15479/AT:ISTA:12949 file: - access_level: open_access checksum: b0ce7d4b1ee7e7265430ceed36fc3336 content_type: application/octet-stream creator: nbarton date_created: 2023-05-13T09:36:33Z date_updated: 2023-05-13T09:36:33Z file_id: '12950' file_name: Neutral identities 16th Jan file_size: 13662 relation: main_file success: 1 - access_level: open_access checksum: ad5035ad4f7d3b150a252c79884f6a83 content_type: application/octet-stream creator: nbarton date_created: 2023-05-13T09:38:17Z date_updated: 2023-05-13T09:38:17Z file_id: '12951' file_name: p, zA, zD, N=30 neutral III file_size: 181619928 relation: main_file success: 1 - access_level: open_access checksum: 62182a1de796256edd6f4223704312ef content_type: application/octet-stream creator: nbarton date_created: 2023-05-13T09:41:59Z date_updated: 2023-05-13T09:41:59Z file_id: '12952' file_name: p, zA, zD, N=30 neutral IV file_size: 605902074 relation: main_file success: 1 - access_level: open_access checksum: af775dda5c4f6859cb1e5a81ec40a667 content_type: application/octet-stream creator: nbarton date_created: 2023-05-13T09:46:52Z date_updated: 2023-05-13T09:46:52Z file_id: '12953' file_name: p, zA, zD, N=30 selected k=5 file_size: 1018238746 relation: main_file success: 1 - access_level: open_access checksum: af26f3394c387d3ada14b434cd68b1e5 content_type: application/octet-stream creator: nbarton date_created: 2023-05-13T09:42:05Z date_updated: 2023-05-13T09:42:05Z file_id: '12954' file_name: Pairwise F N=30 neutral II file_size: 3197160 relation: main_file success: 1 - access_level: open_access checksum: d5da7dc0e7282dd48222e26d12e34220 content_type: application/octet-stream creator: nbarton date_created: 2023-05-13T09:42:06Z date_updated: 2023-05-13T09:42:06Z file_id: '12955' file_name: Pedigrees N=30 neutral II file_size: 55492 relation: main_file success: 1 - access_level: open_access checksum: 00f386d80677590e29f6235d49cba58d content_type: application/octet-stream creator: nbarton date_created: 2023-05-13T09:46:06Z date_updated: 2023-05-13T09:46:06Z file_id: '12956' file_name: selected reps N=30 selected k=1,2 300 reps III file_size: 474003467 relation: main_file success: 1 - access_level: open_access checksum: 658cef3eaea6136a4d24da4f074191d7 content_type: application/octet-stream creator: nbarton date_created: 2023-05-13T09:46:08Z date_updated: 2023-05-13T09:46:08Z file_id: '12957' file_name: Algorithm for caclulating identities.nb file_size: 121209 relation: main_file success: 1 - access_level: open_access checksum: db9b6dddd7a596d974e25f5e78f5c45c content_type: application/octet-stream creator: nbarton date_created: 2023-05-13T09:46:08Z date_updated: 2023-05-13T09:46:08Z file_id: '12958' file_name: Infinitesimal with dominance.nb file_size: 1803898 relation: main_file success: 1 - access_level: open_access checksum: 91f80a9fb58cae8eef2d8bf59fe30189 content_type: text/plain creator: nbarton date_created: 2023-05-16T04:09:08Z date_updated: 2023-05-16T04:09:08Z file_id: '12967' file_name: ReadMe.txt file_size: 990 relation: main_file success: 1 file_date_updated: 2023-05-16T04:09:08Z has_accepted_license: '1' keyword: - Quantitative genetics - infinitesimal model month: '05' oa: 1 oa_version: Published Version project: - _id: bd6958e0-d553-11ed-ba76-86eba6a76c00 grant_number: '101055327' name: Understanding the evolution of continuous genomes publisher: Institute of Science and Technology Austria related_material: record: - id: '14452' relation: used_in_publication status: public status: public title: The infinitesimal model with dominance tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14461' abstract: - lang: eng text: 'Communication-reduction techniques are a popular way to improve scalability in data-parallel training of deep neural networks (DNNs). The recent emergence of large language models such as GPT has created the need for new approaches to exploit data-parallelism. Among these, fully-sharded data parallel (FSDP) training is highly popular, yet it still encounters scalability bottlenecks. One reason is that applying compression techniques to FSDP is challenging: as the vast majority of the communication involves the model’s weights, direct compression alters convergence and leads to accuracy loss. We present QSDP, a variant of FSDP which supports both gradient and weight quantization with theoretical guarantees, is simple to implement and has essentially no overheads. To derive QSDP we prove that a natural modification of SGD achieves convergence even when we only maintain quantized weights, and thus the domain over which we train consists of quantized points and is, therefore, highly non-convex. We validate this approach by training GPT-family models with up to 1.3 billion parameters on a multi-node cluster. Experiments show that QSDP preserves model accuracy, while completely removing the communication bottlenecks of FSDP, providing end-to-end speedups of up to 2.2x.' acknowledged_ssus: - _id: ScienComp acknowledgement: The authors gratefully acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML), as well as experimental support from the IST Austria IT department, in particular Stefano Elefante, Andrei Hornoiu, and Alois Schloegl. AV acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-21-CE48-0016 (project COMCOPT), the support of Fondation Hadamard with a PRMO grant, and the support of CNRS with a CoopIntEER IEA grant (project ALFRED). alternative_title: - PMLR article_processing_charge: No author: - first_name: Ilia full_name: Markov, Ilia id: D0CF4148-C985-11E9-8066-0BDEE5697425 last_name: Markov - first_name: Adrian full_name: Vladu, Adrian last_name: Vladu - first_name: Qi full_name: Guo, Qi last_name: Guo - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Markov I, Vladu A, Guo Q, Alistarh D-A. Quantized distributed training of large models with convergence guarantees. In: Proceedings of the 40th International Conference on Machine Learning. Vol 202. ML Research Press; 2023:24020-24044.' apa: 'Markov, I., Vladu, A., Guo, Q., & Alistarh, D.-A. (2023). Quantized distributed training of large models with convergence guarantees. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 24020–24044). Honolulu, Hawaii, HI, United States: ML Research Press.' chicago: Markov, Ilia, Adrian Vladu, Qi Guo, and Dan-Adrian Alistarh. “Quantized Distributed Training of Large Models with Convergence Guarantees.” In Proceedings of the 40th International Conference on Machine Learning, 202:24020–44. ML Research Press, 2023. ieee: I. Markov, A. Vladu, Q. Guo, and D.-A. Alistarh, “Quantized distributed training of large models with convergence guarantees,” in Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, HI, United States, 2023, vol. 202, pp. 24020–24044. ista: 'Markov I, Vladu A, Guo Q, Alistarh D-A. 2023. Quantized distributed training of large models with convergence guarantees. Proceedings of the 40th International Conference on Machine Learning. ICML: International Conference on Machine Learning, PMLR, vol. 202, 24020–24044.' mla: Markov, Ilia, et al. “Quantized Distributed Training of Large Models with Convergence Guarantees.” Proceedings of the 40th International Conference on Machine Learning, vol. 202, ML Research Press, 2023, pp. 24020–44. short: I. Markov, A. Vladu, Q. Guo, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 24020–24044. conference: end_date: 2023-07-29 location: Honolulu, Hawaii, HI, United States name: 'ICML: International Conference on Machine Learning' start_date: 2023-07-23 date_created: 2023-10-29T23:01:17Z date_published: 2023-07-30T00:00:00Z date_updated: 2023-10-31T09:40:45Z day: '30' department: - _id: DaAl ec_funded: 1 external_id: arxiv: - '2302.02390' intvolume: ' 202' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2302.02390 month: '07' oa: 1 oa_version: Preprint page: 24020-24044 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Proceedings of the 40th International Conference on Machine Learning publication_identifier: eissn: - 2640-3498 publication_status: published publisher: ML Research Press quality_controlled: '1' scopus_import: '1' status: public title: Quantized distributed training of large models with convergence guarantees type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2023' ... --- _id: '14462' abstract: - lang: eng text: "We study fine-grained error bounds for differentially private algorithms for counting under continual observation. Our main insight is that the matrix mechanism when using lower-triangular matrices can be used in the continual observation model. More specifically, we give an explicit factorization for the counting matrix Mcount and upper bound the error explicitly. We also give a fine-grained analysis, specifying the exact constant in the upper bound. Our analysis is based on upper and lower bounds of the completely bounded norm (cb-norm) of Mcount\r\n. Along the way, we improve the best-known bound of 28 years by Mathias (SIAM Journal on Matrix Analysis and Applications, 1993) on the cb-norm of Mcount for a large range of the dimension of Mcount. Furthermore, we are the first to give concrete error bounds for various problems under continual observation such as binary counting, maintaining a histogram, releasing an approximately cut-preserving synthetic graph, many graph-based statistics, and substring and episode counting. Finally, we note that our result can be used to get a fine-grained error bound for non-interactive local learning and the first lower bounds on the additive error for (ϵ,δ)-differentially-private counting under continual observation. Subsequent to this work, Henzinger et al. (SODA, 2023) showed that our factorization also achieves fine-grained mean-squared error." acknowledgement: "This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.\r\n101019564 “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)” and from the Austrian Science Fund (FWF) project Z 422-N, and project “Fast Algorithms for a Reactive Network Layer (ReactNet)”, P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024. 2020–2024. JU’s research was funded by Decanal Research Grant. A part of this work was done when JU was visiting Indian Statistical Institute, Delhi. The authors would like to thank Rajat Bhatia, Aleksandar Nikolov, Shanta Laisharam, Vern Paulsen, Ryan Rogers, Abhradeep Thakurta, and Sarvagya Upadhyay for useful discussions." alternative_title: - PMLR article_processing_charge: No author: - first_name: Hendrik full_name: Fichtenberger, Hendrik last_name: Fichtenberger - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Jalaj full_name: Upadhyay, Jalaj last_name: Upadhyay citation: ama: 'Fichtenberger H, Henzinger MH, Upadhyay J. Constant matters: Fine-grained error bound on differentially private continual observation. In: Proceedings of the 40th International Conference on Machine Learning. Vol 202. ML Research Press; 2023:10072-10092.' apa: 'Fichtenberger, H., Henzinger, M. H., & Upadhyay, J. (2023). Constant matters: Fine-grained error bound on differentially private continual observation. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 10072–10092). Honolulu, Hawaii, HI, United States: ML Research Press.' chicago: 'Fichtenberger, Hendrik, Monika H Henzinger, and Jalaj Upadhyay. “Constant Matters: Fine-Grained Error Bound on Differentially Private Continual Observation.” In Proceedings of the 40th International Conference on Machine Learning, 202:10072–92. ML Research Press, 2023.' ieee: 'H. Fichtenberger, M. H. Henzinger, and J. Upadhyay, “Constant matters: Fine-grained error bound on differentially private continual observation,” in Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, HI, United States, 2023, vol. 202, pp. 10072–10092.' ista: 'Fichtenberger H, Henzinger MH, Upadhyay J. 2023. Constant matters: Fine-grained error bound on differentially private continual observation. Proceedings of the 40th International Conference on Machine Learning. ICML: International Conference on Machine Learning, PMLR, vol. 202, 10072–10092.' mla: 'Fichtenberger, Hendrik, et al. “Constant Matters: Fine-Grained Error Bound on Differentially Private Continual Observation.” Proceedings of the 40th International Conference on Machine Learning, vol. 202, ML Research Press, 2023, pp. 10072–92.' short: H. Fichtenberger, M.H. Henzinger, J. Upadhyay, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 10072–10092. conference: end_date: 2023-07-29 location: Honolulu, Hawaii, HI, United States name: 'ICML: International Conference on Machine Learning' start_date: 2023-07-23 date_created: 2023-10-29T23:01:17Z date_published: 2023-07-30T00:00:00Z date_updated: 2023-10-31T09:54:05Z day: '30' department: - _id: MoHe ec_funded: 1 intvolume: ' 202' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.mlr.press/v202/fichtenberger23a/fichtenberger23a.pdf month: '07' oa: 1 oa_version: Published Version page: 10072-10092 project: - _id: bd9ca328-d553-11ed-ba76-dc4f890cfe62 call_identifier: H2020 grant_number: '101019564' name: The design and evaluation of modern fully dynamic data structures - _id: 34def286-11ca-11ed-8bc3-da5948e1613c grant_number: Z00422 name: Wittgenstein Award - Monika Henzinger - _id: bd9e3a2e-d553-11ed-ba76-8aa684ce17fe grant_number: 'P33775 ' name: Fast Algorithms for a Reactive Network Layer publication: Proceedings of the 40th International Conference on Machine Learning publication_identifier: eissn: - 2640-3498 publication_status: published publisher: ML Research Press quality_controlled: '1' scopus_import: '1' status: public title: 'Constant matters: Fine-grained error bound on differentially private continual observation' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2023' ... --- _id: '14459' abstract: - lang: eng text: Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions. acknowledgement: Aleksandr Shevchenko, Kevin Kogler and Marco Mondelli are supported by the 2019 Lopez-Loreta Prize. Hamed Hassani acknowledges the support by the NSF CIF award (1910056) and the NSF Institute for CORE Emerging Methods in Data Science (EnCORE). alternative_title: - PMLR article_processing_charge: No author: - first_name: Aleksandr full_name: Shevchenko, Aleksandr id: F2B06EC2-C99E-11E9-89F0-752EE6697425 last_name: Shevchenko - first_name: Kevin full_name: Kögler, Kevin id: 94ec913c-dc85-11ea-9058-e5051ab2428b last_name: Kögler - first_name: Hamed full_name: Hassani, Hamed last_name: Hassani - first_name: Marco full_name: Mondelli, Marco id: 27EB676C-8706-11E9-9510-7717E6697425 last_name: Mondelli orcid: 0000-0002-3242-7020 citation: ama: 'Shevchenko A, Kögler K, Hassani H, Mondelli M. Fundamental limits of two-layer autoencoders, and achieving them with gradient methods. In: Proceedings of the 40th International Conference on Machine Learning. Vol 202. ML Research Press; 2023:31151-31209.' apa: 'Shevchenko, A., Kögler, K., Hassani, H., & Mondelli, M. (2023). Fundamental limits of two-layer autoencoders, and achieving them with gradient methods. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 31151–31209). Honolulu, Hawaii, HI, United States: ML Research Press.' chicago: Shevchenko, Aleksandr, Kevin Kögler, Hamed Hassani, and Marco Mondelli. “Fundamental Limits of Two-Layer Autoencoders, and Achieving Them with Gradient Methods.” In Proceedings of the 40th International Conference on Machine Learning, 202:31151–209. ML Research Press, 2023. ieee: A. Shevchenko, K. Kögler, H. Hassani, and M. Mondelli, “Fundamental limits of two-layer autoencoders, and achieving them with gradient methods,” in Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, HI, United States, 2023, vol. 202, pp. 31151–31209. ista: 'Shevchenko A, Kögler K, Hassani H, Mondelli M. 2023. Fundamental limits of two-layer autoencoders, and achieving them with gradient methods. Proceedings of the 40th International Conference on Machine Learning. ICML: International Conference on Machine Learning, PMLR, vol. 202, 31151–31209.' mla: Shevchenko, Aleksandr, et al. “Fundamental Limits of Two-Layer Autoencoders, and Achieving Them with Gradient Methods.” Proceedings of the 40th International Conference on Machine Learning, vol. 202, ML Research Press, 2023, pp. 31151–209. short: A. Shevchenko, K. Kögler, H. Hassani, M. Mondelli, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 31151–31209. conference: end_date: 2023-07-29 location: Honolulu, Hawaii, HI, United States name: 'ICML: International Conference on Machine Learning' start_date: 2023-07-23 date_created: 2023-10-29T23:01:17Z date_published: 2023-07-30T00:00:00Z date_updated: 2023-10-31T08:52:28Z day: '30' department: - _id: MaMo - _id: DaAl external_id: arxiv: - '2212.13468' intvolume: ' 202' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2212.13468 month: '07' oa: 1 oa_version: Preprint page: 31151-31209 project: - _id: 059876FA-7A3F-11EA-A408-12923DDC885E name: Prix Lopez-Loretta 2019 - Marco Mondelli publication: Proceedings of the 40th International Conference on Machine Learning publication_identifier: eissn: - 2640-3498 publication_status: published publisher: ML Research Press quality_controlled: '1' scopus_import: '1' status: public title: Fundamental limits of two-layer autoencoders, and achieving them with gradient methods type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2023' ... --- _id: '14460' abstract: - lang: eng text: We provide an efficient implementation of the backpropagation algorithm, specialized to the case where the weights of the neural network being trained are sparse. Our algorithm is general, as it applies to arbitrary (unstructured) sparsity and common layer types (e.g., convolutional or linear). We provide a fast vectorized implementation on commodity CPUs, and show that it can yield speedups in end-to-end runtime experiments, both in transfer learning using already-sparsified networks, and in training sparse networks from scratch. Thus, our results provide the first support for sparse training on commodity hardware. acknowledgement: 'We would like to thank Elias Frantar for his valuable assistance and support at the outset of this project, and the anonymous ICML and SNN reviewers for very constructive feedback. EI was supported in part by the FWF DK VGSCO, grant agreement number W1260-N35. DA acknowledges generous ERC support, via Starting Grant 805223 ScaleML. ' alternative_title: - PMLR article_processing_charge: No author: - first_name: Mahdi full_name: Nikdan, Mahdi id: 66374281-f394-11eb-9cf6-869147deecc0 last_name: Nikdan - first_name: Tommaso full_name: Pegolotti, Tommaso last_name: Pegolotti - first_name: Eugenia B full_name: Iofinova, Eugenia B id: f9a17499-f6e0-11ea-865d-fdf9a3f77117 last_name: Iofinova orcid: 0000-0002-7778-3221 - first_name: Eldar full_name: Kurtic, Eldar id: 47beb3a5-07b5-11eb-9b87-b108ec578218 last_name: Kurtic - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Nikdan M, Pegolotti T, Iofinova EB, Kurtic E, Alistarh D-A. SparseProp: Efficient sparse backpropagation for faster training of neural networks at the edge. In: Proceedings of the 40th International Conference on Machine Learning. Vol 202. ML Research Press; 2023:26215-26227.' apa: 'Nikdan, M., Pegolotti, T., Iofinova, E. B., Kurtic, E., & Alistarh, D.-A. (2023). SparseProp: Efficient sparse backpropagation for faster training of neural networks at the edge. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 26215–26227). Honolulu, Hawaii, HI, United States: ML Research Press.' chicago: 'Nikdan, Mahdi, Tommaso Pegolotti, Eugenia B Iofinova, Eldar Kurtic, and Dan-Adrian Alistarh. “SparseProp: Efficient Sparse Backpropagation for Faster Training of Neural Networks at the Edge.” In Proceedings of the 40th International Conference on Machine Learning, 202:26215–27. ML Research Press, 2023.' ieee: 'M. Nikdan, T. Pegolotti, E. B. Iofinova, E. Kurtic, and D.-A. Alistarh, “SparseProp: Efficient sparse backpropagation for faster training of neural networks at the edge,” in Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, HI, United States, 2023, vol. 202, pp. 26215–26227.' ista: 'Nikdan M, Pegolotti T, Iofinova EB, Kurtic E, Alistarh D-A. 2023. SparseProp: Efficient sparse backpropagation for faster training of neural networks at the edge. Proceedings of the 40th International Conference on Machine Learning. ICML: International Conference on Machine Learning, PMLR, vol. 202, 26215–26227.' mla: 'Nikdan, Mahdi, et al. “SparseProp: Efficient Sparse Backpropagation for Faster Training of Neural Networks at the Edge.” Proceedings of the 40th International Conference on Machine Learning, vol. 202, ML Research Press, 2023, pp. 26215–27.' short: M. Nikdan, T. Pegolotti, E.B. Iofinova, E. Kurtic, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 26215–26227. conference: end_date: 2023-07-29 location: Honolulu, Hawaii, HI, United States name: 'ICML: International Conference on Machine Learning' start_date: 2023-07-23 date_created: 2023-10-29T23:01:17Z date_published: 2023-07-30T00:00:00Z date_updated: 2023-10-31T09:33:51Z day: '30' department: - _id: DaAl ec_funded: 1 external_id: arxiv: - '2302.04852' intvolume: ' 202' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2302.04852 month: '07' oa: 1 oa_version: Preprint page: 26215-26227 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Proceedings of the 40th International Conference on Machine Learning publication_identifier: eissn: - 2640-3498 publication_status: published publisher: ML Research Press quality_controlled: '1' scopus_import: '1' status: public title: 'SparseProp: Efficient sparse backpropagation for faster training of neural networks at the edge' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2023' ... --- _id: '14457' abstract: - lang: eng text: "Threshold secret sharing allows a dealer to split a secret s into n shares, such that any t shares allow for reconstructing s, but no t-1 shares reveal any information about s. Leakage-resilient secret sharing requires that the secret remains hidden, even when an adversary additionally obtains a limited amount of leakage from every share. Benhamouda et al. (CRYPTO’18) proved that Shamir’s secret sharing scheme is one bit leakage-resilient for reconstruction threshold t≥0.85n and conjectured that the same holds for t = c.n for any constant 0≤c≤1. Nielsen and Simkin (EUROCRYPT’20) showed that this is the best one can hope for by proving that Shamir’s scheme is not secure against one-bit leakage when t0c.n/log(n).\r\nIn this work, we strengthen the lower bound of Nielsen and Simkin. We consider noisy leakage-resilience, where a random subset of leakages is replaced by uniformly random noise. We prove a lower bound for Shamir’s secret sharing, similar to that of Nielsen and Simkin, which holds even when a constant fraction of leakages is replaced by random noise. To this end, we first prove a lower bound on the share size of any noisy-leakage-resilient sharing scheme. We then use this lower bound to show that there exist universal constants c1, c2, such that for sufficiently large n it holds that Shamir’s secret sharing scheme is not noisy-leakage-resilient for t≤c1.n/log(n), even when a c2 fraction of leakages are replaced by random noise.\r\n\r\n\r\n\r\n" alternative_title: - LNCS article_processing_charge: No author: - first_name: Charlotte full_name: Hoffmann, Charlotte id: 0f78d746-dc7d-11ea-9b2f-83f92091afe7 last_name: Hoffmann orcid: 0000-0003-2027-5549 - first_name: Mark full_name: Simkin, Mark last_name: Simkin citation: ama: 'Hoffmann C, Simkin M. Stronger lower bounds for leakage-resilient secret sharing. In: 8th International Conference on Cryptology and Information Security in Latin America. Vol 14168. Springer Nature; 2023:215-228. doi:10.1007/978-3-031-44469-2_11' apa: 'Hoffmann, C., & Simkin, M. (2023). Stronger lower bounds for leakage-resilient secret sharing. In 8th International Conference on Cryptology and Information Security in Latin America (Vol. 14168, pp. 215–228). Quito, Ecuador: Springer Nature. https://doi.org/10.1007/978-3-031-44469-2_11' chicago: Hoffmann, Charlotte, and Mark Simkin. “Stronger Lower Bounds for Leakage-Resilient Secret Sharing.” In 8th International Conference on Cryptology and Information Security in Latin America, 14168:215–28. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-44469-2_11. ieee: C. Hoffmann and M. Simkin, “Stronger lower bounds for leakage-resilient secret sharing,” in 8th International Conference on Cryptology and Information Security in Latin America, Quito, Ecuador, 2023, vol. 14168, pp. 215–228. ista: 'Hoffmann C, Simkin M. 2023. Stronger lower bounds for leakage-resilient secret sharing. 8th International Conference on Cryptology and Information Security in Latin America. LATINCRYPT: Conference on Cryptology and Information Security in Latin America, LNCS, vol. 14168, 215–228.' mla: Hoffmann, Charlotte, and Mark Simkin. “Stronger Lower Bounds for Leakage-Resilient Secret Sharing.” 8th International Conference on Cryptology and Information Security in Latin America, vol. 14168, Springer Nature, 2023, pp. 215–28, doi:10.1007/978-3-031-44469-2_11. short: C. Hoffmann, M. Simkin, in:, 8th International Conference on Cryptology and Information Security in Latin America, Springer Nature, 2023, pp. 215–228. conference: end_date: 2023-10-06 location: Quito, Ecuador name: 'LATINCRYPT: Conference on Cryptology and Information Security in Latin America' start_date: 2023-10-03 date_created: 2023-10-29T23:01:16Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-10-31T11:43:12Z day: '01' department: - _id: KrPi doi: 10.1007/978-3-031-44469-2_11 intvolume: ' 14168' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2023/1017 month: '10' oa: 1 oa_version: Preprint page: 215-228 publication: 8th International Conference on Cryptology and Information Security in Latin America publication_identifier: eissn: - 1611-3349 isbn: - '9783031444685' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Stronger lower bounds for leakage-resilient secret sharing type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14168 year: '2023' ... --- _id: '14458' abstract: - lang: eng text: 'We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. This is achieved via a new pruning method called SparseGPT, specifically designed to work efficiently and accurately on massive GPT-family models. We can execute SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, in under 4.5 hours, and can reach 60% unstructured sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time. SparseGPT generalizes to semi-structured (2:4 and 4:8) patterns, and is compatible with weight quantization approaches. The code is available at: https://github.com/IST-DASLab/sparsegpt.' acknowledged_ssus: - _id: ScienComp acknowledgement: The authors gratefully acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 programme (grant agreement No. 805223 ScaleML), as well as experimental support from Eldar Kurtic, and from the IST Austria IT department, in particular Stefano Elefante, Andrei Hornoiu, and Alois Schloegl. alternative_title: - PMLR article_processing_charge: No author: - first_name: Elias full_name: Frantar, Elias id: 09a8f98d-ec99-11ea-ae11-c063a7b7fe5f last_name: Frantar - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Frantar E, Alistarh D-A. SparseGPT: Massive language models can be accurately pruned in one-shot. In: Proceedings of the 40th International Conference on Machine Learning. Vol 202. ML Research Press; 2023:10323-10337.' apa: 'Frantar, E., & Alistarh, D.-A. (2023). SparseGPT: Massive language models can be accurately pruned in one-shot. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 10323–10337). Honolulu, Hawaii, HI, United States: ML Research Press.' chicago: 'Frantar, Elias, and Dan-Adrian Alistarh. “SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot.” In Proceedings of the 40th International Conference on Machine Learning, 202:10323–37. ML Research Press, 2023.' ieee: 'E. Frantar and D.-A. Alistarh, “SparseGPT: Massive language models can be accurately pruned in one-shot,” in Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, HI, United States, 2023, vol. 202, pp. 10323–10337.' ista: 'Frantar E, Alistarh D-A. 2023. SparseGPT: Massive language models can be accurately pruned in one-shot. Proceedings of the 40th International Conference on Machine Learning. ICML: International Conference on Machine Learning, PMLR, vol. 202, 10323–10337.' mla: 'Frantar, Elias, and Dan-Adrian Alistarh. “SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot.” Proceedings of the 40th International Conference on Machine Learning, vol. 202, ML Research Press, 2023, pp. 10323–37.' short: E. Frantar, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 10323–10337. conference: end_date: 2023-07-29 location: Honolulu, Hawaii, HI, United States name: 'ICML: International Conference on Machine Learning' start_date: 2023-07-23 date_created: 2023-10-29T23:01:16Z date_published: 2023-07-30T00:00:00Z date_updated: 2023-10-31T09:59:42Z day: '30' department: - _id: DaAl ec_funded: 1 external_id: arxiv: - '2301.00774' intvolume: ' 202' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.00774 month: '07' oa: 1 oa_version: Preprint page: 10323-10337 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Proceedings of the 40th International Conference on Machine Learning publication_identifier: eissn: - 2640-3498 publication_status: published publisher: ML Research Press quality_controlled: '1' scopus_import: '1' status: public title: 'SparseGPT: Massive language models can be accurately pruned in one-shot' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2023' ... --- _id: '14451' abstract: - lang: eng text: 'We investigate the potential of Multi-Objective, Deep Reinforcement Learning for stock and cryptocurrency single-asset trading: in particular, we consider a Multi-Objective algorithm which generalizes the reward functions and discount factor (i.e., these components are not specified a priori, but incorporated in the learning process). Firstly, using several important assets (BTCUSD, ETHUSDT, XRPUSDT, AAPL, SPY, NIFTY50), we verify the reward generalization property of the proposed Multi-Objective algorithm, and provide preliminary statistical evidence showing increased predictive stability over the corresponding Single-Objective strategy. Secondly, we show that the Multi-Objective algorithm has a clear edge over the corresponding Single-Objective strategy when the reward mechanism is sparse (i.e., when non-null feedback is infrequent over time). Finally, we discuss the generalization properties with respect to the discount factor. The entirety of our code is provided in open-source format.' acknowledgement: Open access funding provided by Università degli Studi di Trieste within the CRUI-CARE Agreement. Funding was provided by Austrian Science Fund (Grant No. F65), Horizon 2020 (Grant No. 754411) and Österreichische Forschungsförderungsgesellschaft. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Federico full_name: Cornalba, Federico id: 2CEB641C-A400-11E9-A717-D712E6697425 last_name: Cornalba orcid: 0000-0002-6269-5149 - first_name: Constantin full_name: Disselkamp, Constantin last_name: Disselkamp - first_name: Davide full_name: Scassola, Davide last_name: Scassola - first_name: Christopher full_name: Helf, Christopher last_name: Helf citation: ama: 'Cornalba F, Disselkamp C, Scassola D, Helf C. Multi-objective reward generalization: improving performance of Deep Reinforcement Learning for applications in single-asset trading. Neural Computing and Applications. 2023. doi:10.1007/s00521-023-09033-7' apa: 'Cornalba, F., Disselkamp, C., Scassola, D., & Helf, C. (2023). Multi-objective reward generalization: improving performance of Deep Reinforcement Learning for applications in single-asset trading. Neural Computing and Applications. Springer Nature. https://doi.org/10.1007/s00521-023-09033-7' chicago: 'Cornalba, Federico, Constantin Disselkamp, Davide Scassola, and Christopher Helf. “Multi-Objective Reward Generalization: Improving Performance of Deep Reinforcement Learning for Applications in Single-Asset Trading.” Neural Computing and Applications. Springer Nature, 2023. https://doi.org/10.1007/s00521-023-09033-7.' ieee: 'F. Cornalba, C. Disselkamp, D. Scassola, and C. Helf, “Multi-objective reward generalization: improving performance of Deep Reinforcement Learning for applications in single-asset trading,” Neural Computing and Applications. Springer Nature, 2023.' ista: 'Cornalba F, Disselkamp C, Scassola D, Helf C. 2023. Multi-objective reward generalization: improving performance of Deep Reinforcement Learning for applications in single-asset trading. Neural Computing and Applications.' mla: 'Cornalba, Federico, et al. “Multi-Objective Reward Generalization: Improving Performance of Deep Reinforcement Learning for Applications in Single-Asset Trading.” Neural Computing and Applications, Springer Nature, 2023, doi:10.1007/s00521-023-09033-7.' short: F. Cornalba, C. Disselkamp, D. Scassola, C. Helf, Neural Computing and Applications (2023). date_created: 2023-10-22T22:01:16Z date_published: 2023-10-05T00:00:00Z date_updated: 2023-10-31T10:58:28Z day: '05' department: - _id: JuFi doi: 10.1007/s00521-023-09033-7 ec_funded: 1 external_id: arxiv: - '2203.04579' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s00521-023-09033-7 month: '10' oa: 1 oa_version: Published Version project: - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Neural Computing and Applications publication_identifier: eissn: - 1433-3058 issn: - 0941-0643 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Multi-objective reward generalization: improving performance of Deep Reinforcement Learning for applications in single-asset trading' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14442' abstract: - lang: eng text: In the presence of an obstacle, active particles condensate into a surface “wetting” layer due to persistent motion. If the obstacle is asymmetric, a rectification current arises in addition to wetting. Asymmetric geometries are therefore commonly used to concentrate microorganisms like bacteria and sperms. However, most studies neglect the fact that biological active matter is diverse, composed of individuals with distinct self-propulsions. Using simulations, we study a mixture of “fast” and “slow” active Brownian disks in two dimensions interacting with large half-disk obstacles. With this prototypical obstacle geometry, we analyze how the stationary collective behavior depends on the degree of self-propulsion “diversity,” defined as proportional to the difference between the self-propulsion speeds, while keeping the average self-propulsion speed fixed. A wetting layer rich in fast particles arises. The rectification current is amplified by speed diversity due to a superlinear dependence of rectification on self-propulsion speed, which arises from cooperative effects. Thus, the total rectification current cannot be obtained from an effective one-component active fluid with the same average self-propulsion speed, highlighting the importance of considering diversity in active matter. acknowledgement: MR-V and RS are supported by Fondecyt Grant No. 1220536 and Millennium Science Initiative Program NCN19_170D of ANID, Chile. P.d.C. was supported by Scholarships Nos. 2021/10139-2 and 2022/13872-5 and ICTP-SAIFR Grant No. 2021/14335-0, all granted by São Paulo Research Foundation (FAPESP), Brazil. article_number: '95' article_processing_charge: No article_type: original author: - first_name: Mauricio Nicolas full_name: Rojas Vega, Mauricio Nicolas id: 441e7207-f91f-11ec-b67c-9e6fe3d8fd6d last_name: Rojas Vega - first_name: Pablo full_name: De Castro, Pablo last_name: De Castro - first_name: Rodrigo full_name: Soto, Rodrigo last_name: Soto citation: ama: Rojas Vega MN, De Castro P, Soto R. Mixtures of self-propelled particles interacting with asymmetric obstacles. The European Physical Journal E. 2023;46(10). doi:10.1140/epje/s10189-023-00354-y apa: Rojas Vega, M. N., De Castro, P., & Soto, R. (2023). Mixtures of self-propelled particles interacting with asymmetric obstacles. The European Physical Journal E. Springer Nature. https://doi.org/10.1140/epje/s10189-023-00354-y chicago: Rojas Vega, Mauricio Nicolas, Pablo De Castro, and Rodrigo Soto. “Mixtures of Self-Propelled Particles Interacting with Asymmetric Obstacles.” The European Physical Journal E. Springer Nature, 2023. https://doi.org/10.1140/epje/s10189-023-00354-y. ieee: M. N. Rojas Vega, P. De Castro, and R. Soto, “Mixtures of self-propelled particles interacting with asymmetric obstacles,” The European Physical Journal E, vol. 46, no. 10. Springer Nature, 2023. ista: Rojas Vega MN, De Castro P, Soto R. 2023. Mixtures of self-propelled particles interacting with asymmetric obstacles. The European Physical Journal E. 46(10), 95. mla: Rojas Vega, Mauricio Nicolas, et al. “Mixtures of Self-Propelled Particles Interacting with Asymmetric Obstacles.” The European Physical Journal E, vol. 46, no. 10, 95, Springer Nature, 2023, doi:10.1140/epje/s10189-023-00354-y. short: M.N. Rojas Vega, P. De Castro, R. Soto, The European Physical Journal E 46 (2023). date_created: 2023-10-22T22:01:13Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-10-31T11:16:41Z day: '01' department: - _id: AnSa doi: 10.1140/epje/s10189-023-00354-y external_id: pmid: - '37819444' intvolume: ' 46' issue: '10' language: - iso: eng month: '10' oa_version: None pmid: 1 publication: The European Physical Journal E publication_identifier: eissn: - 1292-895X issn: - 1292-8941 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Mixtures of self-propelled particles interacting with asymmetric obstacles type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 46 year: '2023' ... --- _id: '14444' abstract: - lang: eng text: "We prove several results about substructures in Latin squares. First, we explain how to adapt our recent work on high-girth Steiner triple systems to the setting of Latin squares, resolving a conjecture of Linial that there exist Latin squares with arbitrarily high girth. As a consequence, we see that the number of order- n Latin squares with no intercalate (i.e., no 2×2 Latin subsquare) is at least (e−9/4n−o(n))n2. Equivalently, P[N=0]≥e−n2/4−o(n2)=e−(1+o(1))EN\r\n , where N is the number of intercalates in a uniformly random order- n Latin square. \r\nIn fact, extending recent work of Kwan, Sah, and Sawhney, we resolve the general large-deviation problem for intercalates in random Latin squares, up to constant factors in the exponent: for any constant 0<δ≤1 we have P[N≤(1−δ)EN]=exp(−Θ(n2)) and for any constant δ>0 we have P[N≥(1+δ)EN]=exp(−Θ(n4/3logn)). \r\nFinally, as an application of some new general tools for studying substructures in random Latin squares, we show that in almost all order- n Latin squares, the number of cuboctahedra (i.e., the number of pairs of possibly degenerate 2×2 submatrices with the same arrangement of symbols) is of order n4, which is the minimum possible. As observed by Gowers and Long, this number can be interpreted as measuring ``how associative'' the quasigroup associated with the Latin square is." acknowledgement: Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302. Sah was supported by the PD Soros Fellowship. Simkin was supported by the Center of Mathematical Sciences and Applications at Harvard University. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Matthew Alan full_name: Kwan, Matthew Alan id: 5fca0887-a1db-11eb-95d1-ca9d5e0453b3 last_name: Kwan orcid: 0000-0002-4003-7567 - first_name: Ashwin full_name: Sah, Ashwin last_name: Sah - first_name: Mehtaab full_name: Sawhney, Mehtaab last_name: Sawhney - first_name: Michael full_name: Simkin, Michael last_name: Simkin citation: ama: Kwan MA, Sah A, Sawhney M, Simkin M. Substructures in Latin squares. Israel Journal of Mathematics. 2023;256(2):363-416. doi:10.1007/s11856-023-2513-9 apa: Kwan, M. A., Sah, A., Sawhney, M., & Simkin, M. (2023). Substructures in Latin squares. Israel Journal of Mathematics. Springer Nature. https://doi.org/10.1007/s11856-023-2513-9 chicago: Kwan, Matthew Alan, Ashwin Sah, Mehtaab Sawhney, and Michael Simkin. “Substructures in Latin Squares.” Israel Journal of Mathematics. Springer Nature, 2023. https://doi.org/10.1007/s11856-023-2513-9. ieee: M. A. Kwan, A. Sah, M. Sawhney, and M. Simkin, “Substructures in Latin squares,” Israel Journal of Mathematics, vol. 256, no. 2. Springer Nature, pp. 363–416, 2023. ista: Kwan MA, Sah A, Sawhney M, Simkin M. 2023. Substructures in Latin squares. Israel Journal of Mathematics. 256(2), 363–416. mla: Kwan, Matthew Alan, et al. “Substructures in Latin Squares.” Israel Journal of Mathematics, vol. 256, no. 2, Springer Nature, 2023, pp. 363–416, doi:10.1007/s11856-023-2513-9. short: M.A. Kwan, A. Sah, M. Sawhney, M. Simkin, Israel Journal of Mathematics 256 (2023) 363–416. date_created: 2023-10-22T22:01:14Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-10-31T11:27:30Z day: '01' department: - _id: MaKw doi: 10.1007/s11856-023-2513-9 external_id: arxiv: - '2202.05088' intvolume: ' 256' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2202.05088 month: '09' oa: 1 oa_version: Preprint page: 363-416 publication: Israel Journal of Mathematics publication_identifier: eissn: - 1565-8511 issn: - 0021-2172 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Substructures in Latin squares type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 256 year: '2023' ... --- _id: '14454' abstract: - lang: eng text: As AI and machine-learned software are used increasingly for making decisions that affect humans, it is imperative that they remain fair and unbiased in their decisions. To complement design-time bias mitigation measures, runtime verification techniques have been introduced recently to monitor the algorithmic fairness of deployed systems. Previous monitoring techniques assume full observability of the states of the (unknown) monitored system. Moreover, they can monitor only fairness properties that are specified as arithmetic expressions over the probabilities of different events. In this work, we extend fairness monitoring to systems modeled as partially observed Markov chains (POMC), and to specifications containing arithmetic expressions over the expected values of numerical functions on event sequences. The only assumptions we make are that the underlying POMC is aperiodic and starts in the stationary distribution, with a bound on its mixing time being known. These assumptions enable us to estimate a given property for the entire distribution of possible executions of the monitored POMC, by observing only a single execution. Our monitors observe a long run of the system and, after each new observation, output updated PAC-estimates of how fair or biased the system is. The monitors are computationally lightweight and, using a prototype implementation, we demonstrate their effectiveness on several real-world examples. acknowledgement: 'This work is supported by the European Research Council under Grant No.: ERC-2020-AdG 101020093.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 citation: ama: 'Henzinger TA, Kueffner K, Mallik K. Monitoring algorithmic fairness under partial observations. In: 23rd International Conference on Runtime Verification. Vol 14245. Springer Nature; 2023:291-311. doi:10.1007/978-3-031-44267-4_15' apa: 'Henzinger, T. A., Kueffner, K., & Mallik, K. (2023). Monitoring algorithmic fairness under partial observations. In 23rd International Conference on Runtime Verification (Vol. 14245, pp. 291–311). Thessaloniki, Greece: Springer Nature. https://doi.org/10.1007/978-3-031-44267-4_15' chicago: Henzinger, Thomas A, Konstantin Kueffner, and Kaushik Mallik. “Monitoring Algorithmic Fairness under Partial Observations.” In 23rd International Conference on Runtime Verification, 14245:291–311. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-44267-4_15. ieee: T. A. Henzinger, K. Kueffner, and K. Mallik, “Monitoring algorithmic fairness under partial observations,” in 23rd International Conference on Runtime Verification, Thessaloniki, Greece, 2023, vol. 14245, pp. 291–311. ista: 'Henzinger TA, Kueffner K, Mallik K. 2023. Monitoring algorithmic fairness under partial observations. 23rd International Conference on Runtime Verification. RV: Conference on Runtime Verification, LNCS, vol. 14245, 291–311.' mla: Henzinger, Thomas A., et al. “Monitoring Algorithmic Fairness under Partial Observations.” 23rd International Conference on Runtime Verification, vol. 14245, Springer Nature, 2023, pp. 291–311, doi:10.1007/978-3-031-44267-4_15. short: T.A. Henzinger, K. Kueffner, K. Mallik, in:, 23rd International Conference on Runtime Verification, Springer Nature, 2023, pp. 291–311. conference: end_date: 2023-10-06 location: Thessaloniki, Greece name: 'RV: Conference on Runtime Verification' start_date: 2023-10-03 date_created: 2023-10-29T23:01:15Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-10-31T11:48:20Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-031-44267-4_15 ec_funded: 1 external_id: arxiv: - '2308.00341' intvolume: ' 14245' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2308.00341 month: '10' oa: 1 oa_version: Preprint page: 291-311 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 23rd International Conference on Runtime Verification publication_identifier: eissn: - 1611-3349 isbn: - '9783031442667' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Monitoring algorithmic fairness under partial observations type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14245 year: '2023' ... --- _id: '14446' abstract: - lang: eng text: Recent work has paid close attention to the first principle of Granger causality, according to which cause precedes effect. In this context, the question may arise whether the detected direction of causality also reverses after the time reversal of unidirectionally coupled data. Recently, it has been shown that for unidirectionally causally connected autoregressive (AR) processes X → Y, after time reversal of data, the opposite causal direction Y → X is indeed detected, although typically as part of the bidirectional X↔ Y link. As we argue here, the answer is different when the measured data are not from AR processes but from linked deterministic systems. When the goal is the usual forward data analysis, cross-mapping-like approaches correctly detect X → Y, while Granger causality-like approaches, which should not be used for deterministic time series, detect causal independence X → Y. The results of backward causal analysis depend on the predictability of the reversed data. Unlike AR processes, observables from deterministic dynamical systems, even complex nonlinear ones, can be predicted well forward, while backward predictions can be difficult (notably when the time reversal of a function leads to one-to-many relations). To address this problem, we propose an approach based on models that provide multiple candidate predictions for the target, combined with a loss function that consideres only the best candidate. The resulting good forward and backward predictability supports the view that unidirectionally causally linked deterministic dynamical systems X → Y can be expected to detect the same link both before and after time reversal. acknowledgement: The work was supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, projects APVV-21-0216, VEGA2-0096-21 and VEGA 2-0023-22. article_processing_charge: Yes article_type: original author: - first_name: Jozef full_name: Jakubík, Jozef last_name: Jakubík - first_name: Phuong full_name: Bui Thi Mai, Phuong id: 3EC6EE64-F248-11E8-B48F-1D18A9856A87 last_name: Bui Thi Mai - first_name: Martina full_name: Chvosteková, Martina last_name: Chvosteková - first_name: Anna full_name: Krakovská, Anna last_name: Krakovská citation: ama: Jakubík J, Phuong M, Chvosteková M, Krakovská A. Against the flow of time with multi-output models. Measurement Science Review. 2023;23(4):175-183. doi:10.2478/msr-2023-0023 apa: Jakubík, J., Phuong, M., Chvosteková, M., & Krakovská, A. (2023). Against the flow of time with multi-output models. Measurement Science Review. Sciendo. https://doi.org/10.2478/msr-2023-0023 chicago: Jakubík, Jozef, Mary Phuong, Martina Chvosteková, and Anna Krakovská. “Against the Flow of Time with Multi-Output Models.” Measurement Science Review. Sciendo, 2023. https://doi.org/10.2478/msr-2023-0023. ieee: J. Jakubík, M. Phuong, M. Chvosteková, and A. Krakovská, “Against the flow of time with multi-output models,” Measurement Science Review, vol. 23, no. 4. Sciendo, pp. 175–183, 2023. ista: Jakubík J, Phuong M, Chvosteková M, Krakovská A. 2023. Against the flow of time with multi-output models. Measurement Science Review. 23(4), 175–183. mla: Jakubík, Jozef, et al. “Against the Flow of Time with Multi-Output Models.” Measurement Science Review, vol. 23, no. 4, Sciendo, 2023, pp. 175–83, doi:10.2478/msr-2023-0023. short: J. Jakubík, M. Phuong, M. Chvosteková, A. Krakovská, Measurement Science Review 23 (2023) 175–183. date_created: 2023-10-22T22:01:15Z date_published: 2023-08-01T00:00:00Z date_updated: 2023-10-31T12:12:47Z day: '01' ddc: - '510' department: - _id: ChLa doi: 10.2478/msr-2023-0023 file: - access_level: open_access checksum: b069cc10fa6a7c96b2bc9f728165f9e6 content_type: application/pdf creator: dernst date_created: 2023-10-31T12:07:23Z date_updated: 2023-10-31T12:07:23Z file_id: '14476' file_name: 2023_MeasurementScienceRev_Jakubik.pdf file_size: 2639783 relation: main_file success: 1 file_date_updated: 2023-10-31T12:07:23Z has_accepted_license: '1' intvolume: ' 23' issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 175-183 publication: Measurement Science Review publication_identifier: eissn: - 1335-8871 publication_status: published publisher: Sciendo quality_controlled: '1' scopus_import: '1' status: public title: Against the flow of time with multi-output models tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2023' ... --- _id: '14443' abstract: - lang: eng text: "Importance Climate change, pollution, urbanization, socioeconomic inequality, and psychosocial effects of the COVID-19 pandemic have caused massive changes in environmental conditions that affect brain health during the life span, both on a population level as well as on the level of the individual. How these environmental factors influence the brain, behavior, and mental illness is not well known.\r\nObservations \ A research strategy enabling population neuroscience to contribute to identify brain mechanisms underlying environment-related mental illness by leveraging innovative enrichment tools for data federation, geospatial observation, climate and pollution measures, digital health, and novel data integration techniques is described. This strategy can inform innovative treatments that target causal cognitive and molecular mechanisms of mental illness related to the environment. An example is presented of the environMENTAL Project that is leveraging federated cohort data of over 1.5 million European citizens and patients enriched with deep phenotyping data from large-scale behavioral neuroimaging cohorts to identify brain mechanisms related to environmental adversity underlying symptoms of depression, anxiety, stress, and substance misuse.\r\nConclusions and Relevance This research will lead to the development of objective biomarkers and evidence-based interventions that will significantly improve outcomes of environment-related mental illness." article_processing_charge: No article_type: review author: - first_name: Gunter full_name: Schumann, Gunter last_name: Schumann - first_name: Ole A. full_name: Andreassen, Ole A. last_name: Andreassen - first_name: Tobias full_name: Banaschewski, Tobias last_name: Banaschewski - first_name: Vince D. full_name: Calhoun, Vince D. last_name: Calhoun - first_name: Nicholas full_name: Clinton, Nicholas last_name: Clinton - first_name: Sylvane full_name: Desrivieres, Sylvane last_name: Desrivieres - first_name: Ragnhild Eek full_name: Brandlistuen, Ragnhild Eek last_name: Brandlistuen - first_name: Jianfeng full_name: Feng, Jianfeng last_name: Feng - first_name: Soeren full_name: Hese, Soeren last_name: Hese - first_name: Esther full_name: Hitchen, Esther last_name: Hitchen - first_name: Per full_name: Hoffmann, Per last_name: Hoffmann - first_name: Tianye full_name: Jia, Tianye last_name: Jia - first_name: Viktor full_name: Jirsa, Viktor last_name: Jirsa - first_name: Andre F. full_name: Marquand, Andre F. last_name: Marquand - first_name: Frauke full_name: Nees, Frauke last_name: Nees - first_name: Markus M. full_name: Nöthen, Markus M. last_name: Nöthen - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 - first_name: Elli full_name: Polemiti, Elli last_name: Polemiti - first_name: Markus full_name: Ralser, Markus last_name: Ralser - first_name: Michael full_name: Rapp, Michael last_name: Rapp - first_name: Kerstin full_name: Schepanski, Kerstin last_name: Schepanski - first_name: Tamara full_name: Schikowski, Tamara last_name: Schikowski - first_name: Mel full_name: Slater, Mel last_name: Slater - first_name: Peter full_name: Sommer, Peter last_name: Sommer - first_name: Bernd Carsten full_name: Stahl, Bernd Carsten last_name: Stahl - first_name: Paul M. full_name: Thompson, Paul M. last_name: Thompson - first_name: Sven full_name: Twardziok, Sven last_name: Twardziok - first_name: Dennis full_name: Van Der Meer, Dennis last_name: Van Der Meer - first_name: Henrik full_name: Walter, Henrik last_name: Walter - first_name: Lars full_name: Westlye, Lars last_name: Westlye citation: ama: 'Schumann G, Andreassen OA, Banaschewski T, et al. Addressing global environmental challenges to mental health using population neuroscience: A review. JAMA Psychiatry. 2023;80(10):1066-1074. doi:10.1001/jamapsychiatry.2023.2996' apa: 'Schumann, G., Andreassen, O. A., Banaschewski, T., Calhoun, V. D., Clinton, N., Desrivieres, S., … Westlye, L. (2023). Addressing global environmental challenges to mental health using population neuroscience: A review. JAMA Psychiatry. American Medical Association. https://doi.org/10.1001/jamapsychiatry.2023.2996' chicago: 'Schumann, Gunter, Ole A. Andreassen, Tobias Banaschewski, Vince D. Calhoun, Nicholas Clinton, Sylvane Desrivieres, Ragnhild Eek Brandlistuen, et al. “Addressing Global Environmental Challenges to Mental Health Using Population Neuroscience: A Review.” JAMA Psychiatry. American Medical Association, 2023. https://doi.org/10.1001/jamapsychiatry.2023.2996.' ieee: 'G. Schumann et al., “Addressing global environmental challenges to mental health using population neuroscience: A review,” JAMA Psychiatry, vol. 80, no. 10. American Medical Association, pp. 1066–1074, 2023.' ista: 'Schumann G, Andreassen OA, Banaschewski T, Calhoun VD, Clinton N, Desrivieres S, Brandlistuen RE, Feng J, Hese S, Hitchen E, Hoffmann P, Jia T, Jirsa V, Marquand AF, Nees F, Nöthen MM, Novarino G, Polemiti E, Ralser M, Rapp M, Schepanski K, Schikowski T, Slater M, Sommer P, Stahl BC, Thompson PM, Twardziok S, Van Der Meer D, Walter H, Westlye L. 2023. Addressing global environmental challenges to mental health using population neuroscience: A review. JAMA Psychiatry. 80(10), 1066–1074.' mla: 'Schumann, Gunter, et al. “Addressing Global Environmental Challenges to Mental Health Using Population Neuroscience: A Review.” JAMA Psychiatry, vol. 80, no. 10, American Medical Association, 2023, pp. 1066–74, doi:10.1001/jamapsychiatry.2023.2996.' short: G. Schumann, O.A. Andreassen, T. Banaschewski, V.D. Calhoun, N. Clinton, S. Desrivieres, R.E. Brandlistuen, J. Feng, S. Hese, E. Hitchen, P. Hoffmann, T. Jia, V. Jirsa, A.F. Marquand, F. Nees, M.M. Nöthen, G. Novarino, E. Polemiti, M. Ralser, M. Rapp, K. Schepanski, T. Schikowski, M. Slater, P. Sommer, B.C. Stahl, P.M. Thompson, S. Twardziok, D. Van Der Meer, H. Walter, L. Westlye, JAMA Psychiatry 80 (2023) 1066–1074. date_created: 2023-10-22T22:01:14Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-10-31T12:17:20Z day: '01' department: - _id: GaNo doi: 10.1001/jamapsychiatry.2023.2996 external_id: pmid: - '37610741' intvolume: ' 80' issue: '10' language: - iso: eng month: '10' oa_version: None page: 1066-1074 pmid: 1 publication: JAMA Psychiatry publication_identifier: eissn: - 2168-6238 publication_status: published publisher: American Medical Association quality_controlled: '1' scopus_import: '1' status: public title: 'Addressing global environmental challenges to mental health using population neuroscience: A review' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 80 year: '2023' ... --- _id: '14441' abstract: - lang: eng text: We study the Fröhlich polaron model in R3, and establish the subleading term in the strong coupling asymptotics of its ground state energy, corresponding to the quantum corrections to the classical energy determined by the Pekar approximation. acknowledgement: Funding from the European Union’s Horizon 2020 research and innovation programme under the ERC grant agreement No 694227 is acknowledged. Open access funding provided by Institute of Science and Technology (IST Austria). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Morris full_name: Brooks, Morris id: B7ECF9FC-AA38-11E9-AC9A-0930E6697425 last_name: Brooks orcid: 0000-0002-6249-0928 - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: 'Brooks M, Seiringer R. The Fröhlich Polaron at strong coupling: Part I - The quantum correction to the classical energy. Communications in Mathematical Physics. 2023;404:287-337. doi:10.1007/s00220-023-04841-3' apa: 'Brooks, M., & Seiringer, R. (2023). The Fröhlich Polaron at strong coupling: Part I - The quantum correction to the classical energy. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-023-04841-3' chicago: 'Brooks, Morris, and Robert Seiringer. “The Fröhlich Polaron at Strong Coupling: Part I - The Quantum Correction to the Classical Energy.” Communications in Mathematical Physics. Springer Nature, 2023. https://doi.org/10.1007/s00220-023-04841-3.' ieee: 'M. Brooks and R. Seiringer, “The Fröhlich Polaron at strong coupling: Part I - The quantum correction to the classical energy,” Communications in Mathematical Physics, vol. 404. Springer Nature, pp. 287–337, 2023.' ista: 'Brooks M, Seiringer R. 2023. The Fröhlich Polaron at strong coupling: Part I - The quantum correction to the classical energy. Communications in Mathematical Physics. 404, 287–337.' mla: 'Brooks, Morris, and Robert Seiringer. “The Fröhlich Polaron at Strong Coupling: Part I - The Quantum Correction to the Classical Energy.” Communications in Mathematical Physics, vol. 404, Springer Nature, 2023, pp. 287–337, doi:10.1007/s00220-023-04841-3.' short: M. Brooks, R. Seiringer, Communications in Mathematical Physics 404 (2023) 287–337. date_created: 2023-10-22T22:01:13Z date_published: 2023-11-01T00:00:00Z date_updated: 2023-10-31T12:22:51Z day: '01' ddc: - '510' department: - _id: RoSe doi: 10.1007/s00220-023-04841-3 ec_funded: 1 external_id: arxiv: - '2207.03156' file: - access_level: open_access checksum: 1ae49b39247cb6b40ff75997381581b8 content_type: application/pdf creator: dernst date_created: 2023-10-31T12:21:39Z date_updated: 2023-10-31T12:21:39Z file_id: '14477' file_name: 2023_CommMathPhysics_Brooks.pdf file_size: 832375 relation: main_file success: 1 file_date_updated: 2023-10-31T12:21:39Z has_accepted_license: '1' intvolume: ' 404' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 287-337 project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Communications in Mathematical Physics publication_identifier: eissn: - 1432-0916 issn: - 0010-3616 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'The Fröhlich Polaron at strong coupling: Part I - The quantum correction to the classical energy' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 404 year: '2023' ... --- _id: '14448' abstract: - lang: eng text: We consider the problem of solving LP relaxations of MAP-MRF inference problems, and in particular the method proposed recently in [16], [35]. As a key computational subroutine, it uses a variant of the Frank-Wolfe (FW) method to minimize a smooth convex function over a combinatorial polytope. We propose an efficient implementation of this subroutine based on in-face Frank-Wolfe directions, introduced in [4] in a different context. More generally, we define an abstract data structure for a combinatorial subproblem that enables in-face FW directions, and describe its specialization for tree-structured MAP-MRF inference subproblems. Experimental results indicate that the resulting method is the current state-of-art LP solver for some classes of problems. Our code is available at pub.ist.ac.at/~vnk/papers/IN-FACE-FW.html. article_processing_charge: No author: - first_name: Vladimir full_name: Kolmogorov, Vladimir id: 3D50B0BA-F248-11E8-B48F-1D18A9856A87 last_name: Kolmogorov citation: ama: 'Kolmogorov V. Solving relaxations of MAP-MRF problems: Combinatorial in-face Frank-Wolfe directions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol 2023. IEEE; 2023:11980-11989. doi:10.1109/CVPR52729.2023.01153' apa: 'Kolmogorov, V. (2023). Solving relaxations of MAP-MRF problems: Combinatorial in-face Frank-Wolfe directions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 2023, pp. 11980–11989). Vancouver, Canada: IEEE. https://doi.org/10.1109/CVPR52729.2023.01153' chicago: 'Kolmogorov, Vladimir. “Solving Relaxations of MAP-MRF Problems: Combinatorial in-Face Frank-Wolfe Directions.” In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2023:11980–89. IEEE, 2023. https://doi.org/10.1109/CVPR52729.2023.01153.' ieee: 'V. Kolmogorov, “Solving relaxations of MAP-MRF problems: Combinatorial in-face Frank-Wolfe directions,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023, vol. 2023, pp. 11980–11989.' ista: 'Kolmogorov V. 2023. Solving relaxations of MAP-MRF problems: Combinatorial in-face Frank-Wolfe directions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR: Conference on Computer Vision and Pattern Recognition vol. 2023, 11980–11989.' mla: 'Kolmogorov, Vladimir. “Solving Relaxations of MAP-MRF Problems: Combinatorial in-Face Frank-Wolfe Directions.” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2023, IEEE, 2023, pp. 11980–89, doi:10.1109/CVPR52729.2023.01153.' short: V. Kolmogorov, in:, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2023, pp. 11980–11989. conference: end_date: 2023-06-24 location: Vancouver, Canada name: 'CVPR: Conference on Computer Vision and Pattern Recognition' start_date: 2023-06-17 date_created: 2023-10-22T22:01:16Z date_published: 2023-08-22T00:00:00Z date_updated: 2023-10-31T12:01:24Z day: '22' department: - _id: VlKo doi: 10.1109/CVPR52729.2023.01153 external_id: arxiv: - '2010.09567' intvolume: ' 2023' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2010.09567' month: '08' oa: 1 oa_version: Preprint page: 11980-11989 publication: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition publication_identifier: isbn: - '9798350301298' issn: - 1063-6919 publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: 'Solving relaxations of MAP-MRF problems: Combinatorial in-face Frank-Wolfe directions' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2023 year: '2023' ... --- _id: '12672' abstract: - lang: eng text: Cytosine methylation within CG dinucleotides (mCG) can be epigenetically inherited over many generations. Such inheritance is thought to be mediated by a semiconservative mechanism that produces binary present/absent methylation patterns. However, we show here that in Arabidopsis thaliana h1ddm1 mutants, intermediate heterochromatic mCG is stably inherited across many generations and is quantitatively associated with transposon expression. We develop a mathematical model that estimates the rates of semiconservative maintenance failure and de novo methylation at each transposon, demonstrating that mCG can be stably inherited at any level via a dynamic balance of these activities. We find that DRM2 – the core methyltransferase of the RNA-directed DNA methylation pathway – catalyzes most of the heterochromatic de novo mCG, with de novo rates orders of magnitude higher than previously thought, whereas chromomethylases make smaller contributions. Our results demonstrate that stable epigenetic inheritance of mCG in plant heterochromatin is enabled by extensive de novo methylation. acknowledgement: The authors would like to thank Jasper Rine for advice and mentorship to D.B.L., Lesley Philips, Timothy Wells, Sophie Able, and Christina Wistrom for support with plant growth, and Bhagyshree Jamge and Frédéric Berger for help with analysis of ddm1 × WT RNA-sequencing data. This work was supported by BBSRC Institute Strategic Program GEN (BB/P013511/1) to X.F., M.H., and D.Z., a European Research Council grant MaintainMeth (725746) to D.Z., and a postdoctoral fellowship from the Helen Hay Whitney Foundation to D.B.L. article_number: '112132' article_processing_charge: Yes article_type: original author: - first_name: David B. full_name: Lyons, David B. last_name: Lyons - first_name: Amy full_name: Briffa, Amy last_name: Briffa - first_name: Shengbo full_name: He, Shengbo last_name: He - first_name: Jaemyung full_name: Choi, Jaemyung last_name: Choi - first_name: Elizabeth full_name: Hollwey, Elizabeth id: b8c4f54b-e484-11eb-8fdc-a54df64ef6dd last_name: Hollwey - first_name: Jack full_name: Colicchio, Jack last_name: Colicchio - first_name: Ian full_name: Anderson, Ian last_name: Anderson - first_name: Xiaoqi full_name: Feng, Xiaoqi id: e0164712-22ee-11ed-b12a-d80fcdf35958 last_name: Feng orcid: 0000-0002-4008-1234 - first_name: Martin full_name: Howard, Martin last_name: Howard - first_name: Daniel full_name: Zilberman, Daniel id: 6973db13-dd5f-11ea-814e-b3e5455e9ed1 last_name: Zilberman orcid: 0000-0002-0123-8649 citation: ama: Lyons DB, Briffa A, He S, et al. Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons. Cell Reports. 2023;42(3). doi:10.1016/j.celrep.2023.112132 apa: Lyons, D. B., Briffa, A., He, S., Choi, J., Hollwey, E., Colicchio, J., … Zilberman, D. (2023). Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons. Cell Reports. Elsevier. https://doi.org/10.1016/j.celrep.2023.112132 chicago: Lyons, David B., Amy Briffa, Shengbo He, Jaemyung Choi, Elizabeth Hollwey, Jack Colicchio, Ian Anderson, Xiaoqi Feng, Martin Howard, and Daniel Zilberman. “Extensive de Novo Activity Stabilizes Epigenetic Inheritance of CG Methylation in Arabidopsis Transposons.” Cell Reports. Elsevier, 2023. https://doi.org/10.1016/j.celrep.2023.112132. ieee: D. B. Lyons et al., “Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons,” Cell Reports, vol. 42, no. 3. Elsevier, 2023. ista: Lyons DB, Briffa A, He S, Choi J, Hollwey E, Colicchio J, Anderson I, Feng X, Howard M, Zilberman D. 2023. Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons. Cell Reports. 42(3), 112132. mla: Lyons, David B., et al. “Extensive de Novo Activity Stabilizes Epigenetic Inheritance of CG Methylation in Arabidopsis Transposons.” Cell Reports, vol. 42, no. 3, 112132, Elsevier, 2023, doi:10.1016/j.celrep.2023.112132. short: D.B. Lyons, A. Briffa, S. He, J. Choi, E. Hollwey, J. Colicchio, I. Anderson, X. Feng, M. Howard, D. Zilberman, Cell Reports 42 (2023). date_created: 2023-02-23T09:17:44Z date_published: 2023-03-28T00:00:00Z date_updated: 2023-11-02T12:23:45Z day: '28' ddc: - '580' department: - _id: DaZi - _id: XiFe doi: 10.1016/j.celrep.2023.112132 ec_funded: 1 external_id: isi: - '000944921600001' file: - access_level: open_access checksum: 6cbc44fdb18bf18834c9e2a5b9c67123 content_type: application/pdf creator: kschuh date_created: 2023-05-11T10:41:42Z date_updated: 2023-05-11T10:41:42Z file_id: '12941' file_name: 2023_CellReports_Lyons.pdf file_size: 8401261 relation: main_file success: 1 file_date_updated: 2023-05-11T10:41:42Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 62935a00-2b32-11ec-9570-eff30fa39068 call_identifier: H2020 grant_number: '725746' name: Quantitative analysis of DNA methylation maintenance with chromatin publication: Cell Reports publication_identifier: eissn: - 2211-1247 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '13178' abstract: - lang: eng text: We consider the large polaron described by the Fröhlich Hamiltonian and study its energy-momentum relation defined as the lowest possible energy as a function of the total momentum. Using a suitable family of trial states, we derive an optimal parabolic upper bound for the energy-momentum relation in the limit of strong coupling. The upper bound consists of a momentum independent term that agrees with the predicted two-term expansion for the ground state energy of the strongly coupled polaron at rest and a term that is quadratic in the momentum with coefficient given by the inverse of twice the classical effective mass introduced by Landau and Pekar. acknowledgement: This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme grant agreement No. 694227 (R.S.) and the Maria Skłodowska-Curie grant agreement No. 665386 (K.M.). article_processing_charge: Yes article_type: original author: - first_name: David Johannes full_name: Mitrouskas, David Johannes id: cbddacee-2b11-11eb-a02e-a2e14d04e52d last_name: Mitrouskas - first_name: Krzysztof full_name: Mysliwy, Krzysztof id: 316457FC-F248-11E8-B48F-1D18A9856A87 last_name: Mysliwy - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Mitrouskas DJ, Mysliwy K, Seiringer R. Optimal parabolic upper bound for the energy-momentum relation of a strongly coupled polaron. Forum of Mathematics. 2023;11:1-52. doi:10.1017/fms.2023.45 apa: Mitrouskas, D. J., Mysliwy, K., & Seiringer, R. (2023). Optimal parabolic upper bound for the energy-momentum relation of a strongly coupled polaron. Forum of Mathematics. Cambridge University Press. https://doi.org/10.1017/fms.2023.45 chicago: Mitrouskas, David Johannes, Krzysztof Mysliwy, and Robert Seiringer. “Optimal Parabolic Upper Bound for the Energy-Momentum Relation of a Strongly Coupled Polaron.” Forum of Mathematics. Cambridge University Press, 2023. https://doi.org/10.1017/fms.2023.45. ieee: D. J. Mitrouskas, K. Mysliwy, and R. Seiringer, “Optimal parabolic upper bound for the energy-momentum relation of a strongly coupled polaron,” Forum of Mathematics, vol. 11. Cambridge University Press, pp. 1–52, 2023. ista: Mitrouskas DJ, Mysliwy K, Seiringer R. 2023. Optimal parabolic upper bound for the energy-momentum relation of a strongly coupled polaron. Forum of Mathematics. 11, 1–52. mla: Mitrouskas, David Johannes, et al. “Optimal Parabolic Upper Bound for the Energy-Momentum Relation of a Strongly Coupled Polaron.” Forum of Mathematics, vol. 11, Cambridge University Press, 2023, pp. 1–52, doi:10.1017/fms.2023.45. short: D.J. Mitrouskas, K. Mysliwy, R. Seiringer, Forum of Mathematics 11 (2023) 1–52. date_created: 2023-07-02T22:00:43Z date_published: 2023-06-13T00:00:00Z date_updated: 2023-11-02T12:30:50Z day: '13' ddc: - '500' department: - _id: RoSe doi: 10.1017/fms.2023.45 ec_funded: 1 external_id: arxiv: - '2203.02454' isi: - '001005008800001' file: - access_level: open_access checksum: f672eb7dd015c472c9a04f1b9bf9df7d content_type: application/pdf creator: alisjak date_created: 2023-07-03T10:36:25Z date_updated: 2023-07-03T10:36:25Z file_id: '13186' file_name: 2023_ForumofMathematics.Sigma_Mitrouskas.pdf file_size: 943192 relation: main_file success: 1 file_date_updated: 2023-07-03T10:36:25Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1-52 project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Forum of Mathematics publication_identifier: eissn: - 2050-5094 publication_status: published publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Optimal parabolic upper bound for the energy-momentum relation of a strongly coupled polaron tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2023' ... --- _id: '14484' abstract: - lang: eng text: Intercellular signaling molecules, known as morphogens, act at a long range in developing tissues to provide spatial information and control properties such as cell fate and tissue growth. The production, transport, and removal of morphogens shape their concentration profiles in time and space. Downstream signaling cascades and gene regulatory networks within cells then convert the spatiotemporal morphogen profiles into distinct cellular responses. Current challenges are to understand the diverse molecular and cellular mechanisms underlying morphogen gradient formation, as well as the logic of downstream regulatory circuits involved in morphogen interpretation. This knowledge, combining experimental and theoretical results, is essential to understand emerging properties of morphogen-controlled systems, such as robustness and scaling. acknowledgement: We are grateful to Zena Hadjivasiliou for comments on this article. A.K. is supported by grants from the European Research Council under the European Union (EU) Horizon 2020 research and innovation program (680037) and Horizon Europe (101044579), and the Austrian Science Fund (F78) (Stem Cell Modulation). J.B. is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (CC001051), the UK Medical Research Council (CC001051), and the Wellcome Trust (CC001051), and by a grant from the European Research Council under the EU Horizon 2020 research and innovation program (742138). article_processing_charge: Yes (in subscription journal) article_type: review author: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: James full_name: Briscoe, James last_name: Briscoe citation: ama: Kicheva A, Briscoe J. Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology. 2023;39:91-121. doi:10.1146/annurev-cellbio-020823-011522 apa: Kicheva, A., & Briscoe, J. (2023). Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology. Annual Reviews. https://doi.org/10.1146/annurev-cellbio-020823-011522 chicago: Kicheva, Anna, and James Briscoe. “Control of Tissue Development by Morphogens.” Annual Review of Cell and Developmental Biology. Annual Reviews, 2023. https://doi.org/10.1146/annurev-cellbio-020823-011522. ieee: A. Kicheva and J. Briscoe, “Control of tissue development by morphogens,” Annual Review of Cell and Developmental Biology, vol. 39. Annual Reviews, pp. 91–121, 2023. ista: Kicheva A, Briscoe J. 2023. Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology. 39, 91–121. mla: Kicheva, Anna, and James Briscoe. “Control of Tissue Development by Morphogens.” Annual Review of Cell and Developmental Biology, vol. 39, Annual Reviews, 2023, pp. 91–121, doi:10.1146/annurev-cellbio-020823-011522. short: A. Kicheva, J. Briscoe, Annual Review of Cell and Developmental Biology 39 (2023) 91–121. date_created: 2023-11-05T23:00:53Z date_published: 2023-10-16T00:00:00Z date_updated: 2023-11-06T09:56:24Z day: '16' ddc: - '570' department: - _id: AnKi doi: 10.1146/annurev-cellbio-020823-011522 ec_funded: 1 external_id: pmid: - '37418774' file: - access_level: open_access checksum: 461726014cf5907010afbd418d3c13ec content_type: application/pdf creator: dernst date_created: 2023-11-06T09:47:50Z date_updated: 2023-11-06T09:47:50Z file_id: '14491' file_name: 2023_AnnualReviews_Kicheva.pdf file_size: 434819 relation: main_file success: 1 file_date_updated: 2023-11-06T09:47:50Z has_accepted_license: '1' intvolume: ' 39' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 91-121 pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: bd7e737f-d553-11ed-ba76-d69ffb5ee3aa grant_number: '101044579' name: Mechanisms of tissue size regulation in spinal cord development - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord publication: Annual Review of Cell and Developmental Biology publication_identifier: eissn: - 1530-8995 issn: - 1081-0706 publication_status: published publisher: Annual Reviews quality_controlled: '1' scopus_import: '1' status: public title: Control of tissue development by morphogens tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2023' ... --- _id: '14488' abstract: - lang: eng text: 'Portrait viewpoint and illumination editing is an important problem with several applications in VR/AR, movies, and photography. Comprehensive knowledge of geometry and illumination is critical for obtaining photorealistic results. Current methods are unable to explicitly model in 3D while handling both viewpoint and illumination editing from a single image. In this paper, we propose VoRF, a novel approach that can take even a single portrait image as input and relight human heads under novel illuminations that can be viewed from arbitrary viewpoints. VoRF represents a human head as a continuous volumetric field and learns a prior model of human heads using a coordinate-based MLP with individual latent spaces for identity and illumination. The prior model is learned in an auto-decoder manner over a diverse class of head shapes and appearances, allowing VoRF to generalize to novel test identities from a single input image. Additionally, VoRF has a reflectance MLP that uses the intermediate features of the prior model for rendering One-Light-at-A-Time (OLAT) images under novel views. We synthesize novel illuminations by combining these OLAT images with target environment maps. Qualitative and quantitative evaluations demonstrate the effectiveness of VoRF for relighting and novel view synthesis, even when applied to unseen subjects under uncontrolled illumination. This work is an extension of Rao et al. (VoRF: Volumetric Relightable Faces 2022). We provide extensive evaluation and ablative studies of our model and also provide an application, where any face can be relighted using textual input.' acknowledgement: Open Access funding enabled and organized by Projekt DEAL. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Pramod full_name: Rao, Pramod last_name: Rao - first_name: B. R. full_name: Mallikarjun, B. R. last_name: Mallikarjun - first_name: Gereon full_name: Fox, Gereon last_name: Fox - first_name: Tim full_name: Weyrich, Tim last_name: Weyrich - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Hanspeter full_name: Pfister, Hanspeter last_name: Pfister - first_name: Wojciech full_name: Matusik, Wojciech last_name: Matusik - first_name: Fangneng full_name: Zhan, Fangneng last_name: Zhan - first_name: Ayush full_name: Tewari, Ayush last_name: Tewari - first_name: Christian full_name: Theobalt, Christian last_name: Theobalt - first_name: Mohamed full_name: Elgharib, Mohamed last_name: Elgharib citation: ama: Rao P, Mallikarjun BR, Fox G, et al. A deeper analysis of volumetric relightiable faces. International Journal of Computer Vision. 2023. doi:10.1007/s11263-023-01899-3 apa: Rao, P., Mallikarjun, B. R., Fox, G., Weyrich, T., Bickel, B., Pfister, H., … Elgharib, M. (2023). A deeper analysis of volumetric relightiable faces. International Journal of Computer Vision. Springer Nature. https://doi.org/10.1007/s11263-023-01899-3 chicago: Rao, Pramod, B. R. Mallikarjun, Gereon Fox, Tim Weyrich, Bernd Bickel, Hanspeter Pfister, Wojciech Matusik, et al. “A Deeper Analysis of Volumetric Relightiable Faces.” International Journal of Computer Vision. Springer Nature, 2023. https://doi.org/10.1007/s11263-023-01899-3. ieee: P. Rao et al., “A deeper analysis of volumetric relightiable faces,” International Journal of Computer Vision. Springer Nature, 2023. ista: Rao P, Mallikarjun BR, Fox G, Weyrich T, Bickel B, Pfister H, Matusik W, Zhan F, Tewari A, Theobalt C, Elgharib M. 2023. A deeper analysis of volumetric relightiable faces. International Journal of Computer Vision. mla: Rao, Pramod, et al. “A Deeper Analysis of Volumetric Relightiable Faces.” International Journal of Computer Vision, Springer Nature, 2023, doi:10.1007/s11263-023-01899-3. short: P. Rao, B.R. Mallikarjun, G. Fox, T. Weyrich, B. Bickel, H. Pfister, W. Matusik, F. Zhan, A. Tewari, C. Theobalt, M. Elgharib, International Journal of Computer Vision (2023). date_created: 2023-11-05T23:00:54Z date_published: 2023-10-31T00:00:00Z date_updated: 2023-11-06T08:52:30Z day: '31' department: - _id: BeBi doi: 10.1007/s11263-023-01899-3 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s11263-023-01899-3 month: '10' oa: 1 oa_version: Published Version publication: International Journal of Computer Vision publication_identifier: eissn: - 1573-1405 issn: - 0920-5691 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A deeper analysis of volumetric relightiable faces type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14487' abstract: - lang: eng text: High Mountain Asia (HMA) is among the most vulnerable water towers globally and yet future projections of water availability in and from its high-mountain catchments remain uncertain, as their hydrologic response to ongoing environmental changes is complex. Mechanistic modeling approaches incorporating cryospheric, hydrological, and vegetation processes in high spatial, temporal, and physical detail have never been applied for high-elevation catchments of HMA. We use a land surface model at high spatial and temporal resolution (100 m and hourly) to simulate the coupled dynamics of energy, water, and vegetation for the 350 km2 Langtang catchment (Nepal). We compare our model outputs for one hydrological year against a large set of observations to gain insight into the partitioning of the water balance at the subseasonal scale and across elevation bands. During the simulated hydrological year, we find that evapotranspiration is a key component of the total water balance, as it causes about the equivalent of 20% of all the available precipitation or 154% of the water production from glacier melt in the basin to return directly to the atmosphere. The depletion of the cryospheric water budget is dominated by snow melt, but at high elevations is primarily dictated by snow and ice sublimation. Snow sublimation is the dominant vapor flux (49%) at the catchment scale, accounting for the equivalent of 11% of snowfall, 17% of snowmelt, and 75% of ice melt, respectively. We conclude that simulations should consider sublimation and other evaporative fluxes explicitly, as otherwise water balance estimates can be ill-quantified. acknowledgement: This project has received funding from the JSPS-SNSF (Japan Society for the Promotion of Science and Swiss National Science Foundation) Bilateral Programmes project (HOPE, High-ele-vation precipitation in High Mountain Asia; Grant 183633), and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (RAVEN, Rapid mass losses of debris-covered glaciers in High Mountain Asia; Grant 772751). We want to thank in particular T. Gurung, S. Joshi, J. Shea, W. Immerzeel, and others involved, as well as ICIMOD, for their efforts over the past years in observing the meteorology of the Langtang catchment, collecting and organizing the data and making them publicly available. We also thank the National Geographic Society (Grant NGS-61784R-19) and the Mount Everest Foundation (reference 19-24) for providing fieldwork funding for C. L. Fyffe. We thank T. Kramer for help with the WSL Hyperion cluster. We are grate-ful for comments by three anonymous reviewers and the Associate Editor, who greatly helped to improve the manuscript further. Open access funding provided by ETH-Bereich Forschungsanstalten. article_number: e2022WR033841 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Pascal full_name: Buri, Pascal last_name: Buri - first_name: Simone full_name: Fatichi, Simone last_name: Fatichi - first_name: Thomas full_name: Shaw, Thomas id: 3caa3f91-1f03-11ee-96ce-e0e553054d6e last_name: Shaw - first_name: Evan S. full_name: Miles, Evan S. last_name: Miles - first_name: Michael full_name: Mccarthy, Michael id: 22a2674a-61ce-11ee-94b5-d18813baf16f last_name: Mccarthy - first_name: Catriona Louise full_name: Fyffe, Catriona Louise id: 001b0422-8d15-11ed-bc51-cab6c037a228 last_name: Fyffe - first_name: Stefan full_name: Fugger, Stefan last_name: Fugger - first_name: Shaoting full_name: Ren, Shaoting last_name: Ren - first_name: Marin full_name: Kneib, Marin last_name: Kneib - first_name: Achille full_name: Jouberton, Achille last_name: Jouberton - first_name: Jakob full_name: Steiner, Jakob last_name: Steiner - first_name: Koji full_name: Fujita, Koji last_name: Fujita - first_name: Francesca full_name: Pellicciotti, Francesca id: b28f055a-81ea-11ed-b70c-a9fe7f7b0e70 last_name: Pellicciotti orcid: 0000-0002-5554-8087 citation: ama: 'Buri P, Fatichi S, Shaw T, et al. Land surface modeling in the Himalayas: On the importance of evaporative fluxes for the water balance of a high-elevation catchment. Water Resources Research. 2023;59(10). doi:10.1029/2022WR033841' apa: 'Buri, P., Fatichi, S., Shaw, T., Miles, E. S., McCarthy, M., Fyffe, C. L., … Pellicciotti, F. (2023). Land surface modeling in the Himalayas: On the importance of evaporative fluxes for the water balance of a high-elevation catchment. Water Resources Research. Wiley. https://doi.org/10.1029/2022WR033841' chicago: 'Buri, Pascal, Simone Fatichi, Thomas Shaw, Evan S. Miles, Michael McCarthy, Catriona Louise Fyffe, Stefan Fugger, et al. “Land Surface Modeling in the Himalayas: On the Importance of Evaporative Fluxes for the Water Balance of a High-Elevation Catchment.” Water Resources Research. Wiley, 2023. https://doi.org/10.1029/2022WR033841.' ieee: 'P. Buri et al., “Land surface modeling in the Himalayas: On the importance of evaporative fluxes for the water balance of a high-elevation catchment,” Water Resources Research, vol. 59, no. 10. Wiley, 2023.' ista: 'Buri P, Fatichi S, Shaw T, Miles ES, McCarthy M, Fyffe CL, Fugger S, Ren S, Kneib M, Jouberton A, Steiner J, Fujita K, Pellicciotti F. 2023. Land surface modeling in the Himalayas: On the importance of evaporative fluxes for the water balance of a high-elevation catchment. Water Resources Research. 59(10), e2022WR033841.' mla: 'Buri, Pascal, et al. “Land Surface Modeling in the Himalayas: On the Importance of Evaporative Fluxes for the Water Balance of a High-Elevation Catchment.” Water Resources Research, vol. 59, no. 10, e2022WR033841, Wiley, 2023, doi:10.1029/2022WR033841.' short: P. Buri, S. Fatichi, T. Shaw, E.S. Miles, M. McCarthy, C.L. Fyffe, S. Fugger, S. Ren, M. Kneib, A. Jouberton, J. Steiner, K. Fujita, F. Pellicciotti, Water Resources Research 59 (2023). date_created: 2023-11-05T23:00:53Z date_published: 2023-10-25T00:00:00Z date_updated: 2023-11-07T08:12:34Z day: '25' ddc: - '550' department: - _id: FrPe doi: 10.1029/2022WR033841 file: - access_level: open_access checksum: 7ba9c87228dc09029b16bc800a0ef1a1 content_type: application/pdf creator: dernst date_created: 2023-11-07T08:10:44Z date_updated: 2023-11-07T08:10:44Z file_id: '14495' file_name: 2023_WaterResourcesResearch_Buri.pdf file_size: 5554901 relation: main_file success: 1 file_date_updated: 2023-11-07T08:10:44Z has_accepted_license: '1' intvolume: ' 59' issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: Water Resources Research publication_identifier: eissn: - 1944-7973 issn: - 0043-1397 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '14494' relation: research_data status: public scopus_import: '1' status: public title: 'Land surface modeling in the Himalayas: On the importance of evaporative fluxes for the water balance of a high-elevation catchment' tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 59 year: '2023' ... --- _id: '14485' abstract: - lang: eng text: "Batching is a technique that stores multiple keys/values in each node of a data structure. In sequential search data structures, batching reduces latency by reducing the number of cache misses and shortening the chain of pointers to dereference. Applying batching to concurrent data structures is challenging, because it is difficult to maintain the search property and keep contention low in the presence of batching.\r\nIn this paper, we present a general methodology for leveraging batching in concurrent search data structures, called BatchBoost. BatchBoost builds a search data structure from distinct \"data\" and \"index\" layers. The data layer’s purpose is to store a batch of key/value pairs in each of its nodes. The index layer uses an unmodified concurrent search data structure to route operations to a position in the data layer that is \"close\" to where the corresponding key should exist. The requirements on the index and data layers are low: with minimal effort, we were able to compose three highly scalable concurrent search data structures based on three original data structures as the index layers with a batched version of the Lazy List as the data layer. The resulting BatchBoost data structures provide significant performance improvements over their original counterparts." alternative_title: - LIPIcs article_number: '35' article_processing_charge: Yes author: - first_name: Vitaly full_name: Aksenov, Vitaly last_name: Aksenov - first_name: Michael full_name: Anoprenko, Michael last_name: Anoprenko - first_name: Alexander full_name: Fedorov, Alexander id: 2e711909-896a-11ed-bdf8-eb0f5a2984c6 last_name: Fedorov - first_name: Michael full_name: Spear, Michael last_name: Spear citation: ama: 'Aksenov V, Anoprenko M, Fedorov A, Spear M. Brief announcement: BatchBoost: Universal batching for concurrent data structures. In: 37th International Symposium on Distributed Computing. Vol 281. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.DISC.2023.35' apa: 'Aksenov, V., Anoprenko, M., Fedorov, A., & Spear, M. (2023). Brief announcement: BatchBoost: Universal batching for concurrent data structures. In 37th International Symposium on Distributed Computing (Vol. 281). L’Aquila, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2023.35' chicago: 'Aksenov, Vitaly, Michael Anoprenko, Alexander Fedorov, and Michael Spear. “Brief Announcement: BatchBoost: Universal Batching for Concurrent Data Structures.” In 37th International Symposium on Distributed Computing, Vol. 281. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.DISC.2023.35.' ieee: 'V. Aksenov, M. Anoprenko, A. Fedorov, and M. Spear, “Brief announcement: BatchBoost: Universal batching for concurrent data structures,” in 37th International Symposium on Distributed Computing, L’Aquila, Italy, 2023, vol. 281.' ista: 'Aksenov V, Anoprenko M, Fedorov A, Spear M. 2023. Brief announcement: BatchBoost: Universal batching for concurrent data structures. 37th International Symposium on Distributed Computing. DISC: Symposium on Distributed Computing, LIPIcs, vol. 281, 35.' mla: 'Aksenov, Vitaly, et al. “Brief Announcement: BatchBoost: Universal Batching for Concurrent Data Structures.” 37th International Symposium on Distributed Computing, vol. 281, 35, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.DISC.2023.35.' short: V. Aksenov, M. Anoprenko, A. Fedorov, M. Spear, in:, 37th International Symposium on Distributed Computing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-10-13 location: L'Aquila, Italy name: 'DISC: Symposium on Distributed Computing' start_date: 2023-10-09 date_created: 2023-11-05T23:00:53Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-11-07T07:48:01Z day: '01' ddc: - '000' department: - _id: GradSch doi: 10.4230/LIPIcs.DISC.2023.35 file: - access_level: open_access checksum: d9f8d2915cccdf2df5905b7cd1b4a560 content_type: application/pdf creator: dernst date_created: 2023-11-06T11:45:21Z date_updated: 2023-11-06T11:45:21Z file_id: '14492' file_name: 2023_LIPIcs_Aksenov.pdf file_size: 646665 relation: main_file success: 1 file_date_updated: 2023-11-06T11:45:21Z has_accepted_license: '1' intvolume: ' 281' language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: 37th International Symposium on Distributed Computing publication_identifier: isbn: - '9783959773010' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: 'Brief announcement: BatchBoost: Universal batching for concurrent data structures' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 281 year: '2023' ... --- _id: '14486' abstract: - lang: eng text: We present a minimal model of ferroelectric large polarons, which are suggested as one of the mechanisms responsible for the unique charge transport properties of hybrid perovskites. We demonstrate that short-ranged charge–rotor interactions lead to long-range ferroelectric ordering of rotors, which strongly affects the carrier mobility. In the nonperturbative regime, where our theory cannot be reduced to any of the earlier models, we reveal that the polaron is characterized by large coherence length and a roughly tenfold increase of the effective mass as compared to the bare mass. These results are in good agreement with other theoretical predictions for ferroelectric polarons. Our model establishes a general phenomenological framework for ferroelectric polarons providing the starting point for future studies of their role in the transport properties of hybrid organic-inorganic perovskites. acknowledgement: We thank Zh. Alpichshev, A. Volosniev, and A. V. Zampetaki for fruitful discussions and comments. This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413. M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). article_number: '043016' article_processing_charge: Yes article_type: original author: - first_name: Georgios full_name: Koutentakis, Georgios id: d7b23d3a-9e21-11ec-b482-f76739596b95 last_name: Koutentakis - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Koutentakis G, Ghazaryan A, Lemeshko M. Rotor lattice model of ferroelectric large polarons. Physical Review Research. 2023;5(4). doi:10.1103/PhysRevResearch.5.043016 apa: Koutentakis, G., Ghazaryan, A., & Lemeshko, M. (2023). Rotor lattice model of ferroelectric large polarons. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.5.043016 chicago: Koutentakis, Georgios, Areg Ghazaryan, and Mikhail Lemeshko. “Rotor Lattice Model of Ferroelectric Large Polarons.” Physical Review Research. American Physical Society, 2023. https://doi.org/10.1103/PhysRevResearch.5.043016. ieee: G. Koutentakis, A. Ghazaryan, and M. Lemeshko, “Rotor lattice model of ferroelectric large polarons,” Physical Review Research, vol. 5, no. 4. American Physical Society, 2023. ista: Koutentakis G, Ghazaryan A, Lemeshko M. 2023. Rotor lattice model of ferroelectric large polarons. Physical Review Research. 5(4), 043016. mla: Koutentakis, Georgios, et al. “Rotor Lattice Model of Ferroelectric Large Polarons.” Physical Review Research, vol. 5, no. 4, 043016, American Physical Society, 2023, doi:10.1103/PhysRevResearch.5.043016. short: G. Koutentakis, A. Ghazaryan, M. Lemeshko, Physical Review Research 5 (2023). date_created: 2023-11-05T23:00:53Z date_published: 2023-10-05T00:00:00Z date_updated: 2023-11-07T07:53:39Z day: '05' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevResearch.5.043016 ec_funded: 1 external_id: arxiv: - '2301.09875' file: - access_level: open_access checksum: cb8de8fed6e09df1a18bd5a5aec5c55c content_type: application/pdf creator: dernst date_created: 2023-11-07T07:52:46Z date_updated: 2023-11-07T07:52:46Z file_id: '14493' file_name: 2023_PhysReviewResearch_Koutentakis.pdf file_size: 1127522 relation: main_file success: 1 file_date_updated: 2023-11-07T07:52:46Z has_accepted_license: '1' intvolume: ' 5' issue: '4' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Rotor lattice model of ferroelectric large polarons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2023' ... --- _id: '14313' abstract: - lang: eng text: To respond to auxin, the chief orchestrator of their multicellularity, plants evolved multiple receptor systems and signal transduction cascades. Despite decades of research, however, we are still lacking a satisfactory synthesis of various auxin signaling mechanisms. The chief discrepancy and historical controversy of the field is that of rapid and slow auxin effects on plant physiology and development. How is it possible that ions begin to trickle across the plasma membrane as soon as auxin enters the cell, even though the best-characterized transcriptional auxin pathway can take effect only after tens of minutes? Recently, unexpected progress has been made in understanding this and other unknowns of auxin signaling. We provide a perspective on these exciting developments and concepts whose general applicability might have ramifications beyond auxin signaling. acknowledgement: The opening quote is not intended to reflect any political views of the authors. The authors by no means endorse the rhetoric of Donald Rumsfeld or the 2003 invasion of Iraq by the United States. Nevertheless, Rumsfeld's quote led to both public and academic debates on the concept of known and unknown unknowns, which can be applied to the recent unexpected developments in the auxin signaling field. We thank Linlin Qi and Huihuang Chen for their suggestions on figure presentation and inspiring discussions of TIR1/AFB signaling. Finally, we thank Aroosa Hussain for discussion of Greek mythology. article_number: '102443' article_processing_charge: No article_type: review author: - first_name: Lukas full_name: Fiedler, Lukas id: 7c417475-8972-11ed-ae7b-8b674ca26986 last_name: Fiedler - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Fiedler L, Friml J. Rapid auxin signaling: Unknowns old and new. Current Opinion in Plant Biology. 2023;75(10). doi:10.1016/j.pbi.2023.102443' apa: 'Fiedler, L., & Friml, J. (2023). Rapid auxin signaling: Unknowns old and new. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2023.102443' chicago: 'Fiedler, Lukas, and Jiří Friml. “Rapid Auxin Signaling: Unknowns Old and New.” Current Opinion in Plant Biology. Elsevier, 2023. https://doi.org/10.1016/j.pbi.2023.102443.' ieee: 'L. Fiedler and J. Friml, “Rapid auxin signaling: Unknowns old and new,” Current Opinion in Plant Biology, vol. 75, no. 10. Elsevier, 2023.' ista: 'Fiedler L, Friml J. 2023. Rapid auxin signaling: Unknowns old and new. Current Opinion in Plant Biology. 75(10), 102443.' mla: 'Fiedler, Lukas, and Jiří Friml. “Rapid Auxin Signaling: Unknowns Old and New.” Current Opinion in Plant Biology, vol. 75, no. 10, 102443, Elsevier, 2023, doi:10.1016/j.pbi.2023.102443.' short: L. Fiedler, J. Friml, Current Opinion in Plant Biology 75 (2023). date_created: 2023-09-10T22:01:11Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-11-07T08:17:13Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.pbi.2023.102443 external_id: pmid: - '37666097' file: - access_level: open_access checksum: 1c476c3414d2dfb0c85db0cb6cfd8a28 content_type: application/pdf creator: amally date_created: 2023-11-02T17:03:20Z date_updated: 2023-11-02T17:03:20Z file_id: '14482' file_name: Fiedler CurrOpinOlantBiol 2023_revised.pdf file_size: 737872 relation: main_file success: 1 file_date_updated: 2023-11-02T17:03:20Z has_accepted_license: '1' intvolume: ' 75' issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version pmid: 1 publication: Current Opinion in Plant Biology publication_identifier: issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Rapid auxin signaling: Unknowns old and new' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 75 year: '2023' ...