--- _id: '13042' abstract: - lang: eng text: Let Lc,n denote the size of the longest cycle in G(n, c/n),c >1 constant. We show that there exists a continuous function f(c) such that Lc,n/n→f(c) a.s. for c>20, thus extending a result of Frieze and the author to smaller values of c. Thereafter, for c>20, we determine the limit of the probability that G(n, c/n)contains cycles of every length between the length of its shortest and its longest cycles as n→∞. acknowledgement: We would like to thank the reviewers for their helpful comments and remarks. article_number: P2.21 article_processing_charge: No article_type: original author: - first_name: Michael full_name: Anastos, Michael id: 0b2a4358-bb35-11ec-b7b9-e3279b593dbb last_name: Anastos citation: ama: Anastos M. A note on long cycles in sparse random graphs. Electronic Journal of Combinatorics. 2023;30(2). doi:10.37236/11471 apa: Anastos, M. (2023). A note on long cycles in sparse random graphs. Electronic Journal of Combinatorics. Electronic Journal of Combinatorics. https://doi.org/10.37236/11471 chicago: Anastos, Michael. “A Note on Long Cycles in Sparse Random Graphs.” Electronic Journal of Combinatorics. Electronic Journal of Combinatorics, 2023. https://doi.org/10.37236/11471. ieee: M. Anastos, “A note on long cycles in sparse random graphs,” Electronic Journal of Combinatorics, vol. 30, no. 2. Electronic Journal of Combinatorics, 2023. ista: Anastos M. 2023. A note on long cycles in sparse random graphs. Electronic Journal of Combinatorics. 30(2), P2.21. mla: Anastos, Michael. “A Note on Long Cycles in Sparse Random Graphs.” Electronic Journal of Combinatorics, vol. 30, no. 2, P2.21, Electronic Journal of Combinatorics, 2023, doi:10.37236/11471. short: M. Anastos, Electronic Journal of Combinatorics 30 (2023). date_created: 2023-05-21T22:01:05Z date_published: 2023-05-05T00:00:00Z date_updated: 2023-08-01T14:44:52Z day: '05' ddc: - '510' department: - _id: MaKw doi: 10.37236/11471 external_id: arxiv: - '2105.13828' isi: - '000988285500001' file: - access_level: open_access checksum: 6269ed3b3eded6536d3d9d6baad2d5b9 content_type: application/pdf creator: dernst date_created: 2023-05-22T07:43:19Z date_updated: 2023-05-22T07:43:19Z file_id: '13046' file_name: 2023_JourCombinatorics_Anastos.pdf file_size: 448736 relation: main_file success: 1 file_date_updated: 2023-05-22T07:43:19Z has_accepted_license: '1' intvolume: ' 30' isi: 1 issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Published Version publication: Electronic Journal of Combinatorics publication_identifier: eissn: - 1077-8926 publication_status: published publisher: Electronic Journal of Combinatorics quality_controlled: '1' scopus_import: '1' status: public title: A note on long cycles in sparse random graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 30 year: '2023' ... --- _id: '12820' abstract: - lang: eng text: "Disulfide bond formation is fundamentally important for protein structure, and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive microsecond time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfil other favorable contacts. \r\n\r\nThis data repository contains NMR data presented in the associated manuscript" article_processing_charge: No author: - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 citation: ama: Schanda P. Research data of the publication “Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR.” 2023. doi:10.15479/AT:ISTA:12820 apa: Schanda, P. (2023). Research data of the publication “Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:12820 chicago: Schanda, Paul. “Research Data of the Publication ‘Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR.’” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:12820. ieee: P. Schanda, “Research data of the publication ‘Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR.’” Institute of Science and Technology Austria, 2023. ista: Schanda P. 2023. Research data of the publication ‘Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:12820. mla: Schanda, Paul. Research Data of the Publication “Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR.” Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:12820. short: P. Schanda, (2023). contributor: - contributor_type: researcher first_name: Laura last_name: Troussicot - contributor_type: researcher first_name: Björn M. last_name: Burmann date_created: 2023-04-10T05:55:56Z date_published: 2023-04-18T00:00:00Z date_updated: 2023-08-01T14:48:08Z day: '18' ddc: - '570' department: - _id: PaSc doi: 10.15479/AT:ISTA:12820 file: - access_level: open_access checksum: 54a619605e44c871214fb0e07b05c6bf content_type: application/zip creator: pschanda date_created: 2023-04-14T09:39:33Z date_updated: 2023-04-14T09:39:33Z file_id: '12823' file_name: data_deposition.zip file_size: 54184807 relation: main_file success: 1 - access_level: open_access checksum: 8dede9fc78399d13144eb05c62bf5750 content_type: application/octet-stream creator: pschanda date_created: 2023-04-14T09:39:58Z date_updated: 2023-04-14T09:39:58Z file_id: '12824' file_name: README file_size: 4978 relation: main_file success: 1 file_date_updated: 2023-04-14T09:39:58Z has_accepted_license: '1' month: '04' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '13095' relation: used_in_publication status: public status: public title: Research data of the publication "Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR" tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13039' abstract: - lang: eng text: We calculate reflectivities of dynamically compressed water, water-ethanol mixtures, and ammonia at infrared and optical wavelengths with density functional theory and molecular dynamics simulations. The influence of the exchange-correlation functional on the results is examined in detail. Our findings indicate that the consistent use of the HSE hybrid functional reproduces experimental results much better than the commonly used PBE functional. The HSE functional offers not only a more accurate description of the electronic band gap but also shifts the onset of molecular dissociation in the molecular dynamics simulations to significantly higher pressures. We also highlight the importance of using accurate reference standards in reflectivity experiments and reanalyze infrared and optical reflectivity data from recent experiments. Thus, our combined theoretical and experimental work explains and resolves lingering discrepancies between calculations and measurements for the investigated molecular substances under shock compression. acknowledgement: 'We thank R. Redmer for helpful discussions. M.F. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) within the FOR 2440. M.B. gratefully acknowledges support by the European Horizon 2020 programme within the Marie Skłodowska-Curie actions (xICE Grant No. 894725) and the NOMIS foundation. A.R. and J.-A.H. acknowledge support form the French National Research Agency (ANR) through the projects POMPEI (Grant No. ANR-16-CE31-0008) and SUPER-ICES (Grant No. ANR-15-CE30-008-01). The ab initio calculations were performed at the NorthGerman Supercomputing Alliance (HLRN) facilities. ' article_number: '134109' article_processing_charge: No article_type: original author: - first_name: Martin full_name: French, Martin last_name: French - first_name: Mandy full_name: Bethkenhagen, Mandy id: 201939f4-803f-11ed-ab7e-d8da4bd1517f last_name: Bethkenhagen orcid: 0000-0002-1838-2129 - first_name: Alessandra full_name: Ravasio, Alessandra last_name: Ravasio - first_name: Jean Alexis full_name: Hernandez, Jean Alexis last_name: Hernandez citation: ama: French M, Bethkenhagen M, Ravasio A, Hernandez JA. Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. 2023;107(13). doi:10.1103/PhysRevB.107.134109 apa: French, M., Bethkenhagen, M., Ravasio, A., & Hernandez, J. A. (2023). Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.134109 chicago: French, Martin, Mandy Bethkenhagen, Alessandra Ravasio, and Jean Alexis Hernandez. “Ab Initio Calculation of the Reflectivity of Molecular Fluids under Shock Compression.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.134109. ieee: M. French, M. Bethkenhagen, A. Ravasio, and J. A. Hernandez, “Ab initio calculation of the reflectivity of molecular fluids under shock compression,” Physical Review B, vol. 107, no. 13. American Physical Society, 2023. ista: French M, Bethkenhagen M, Ravasio A, Hernandez JA. 2023. Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. 107(13), 134109. mla: French, Martin, et al. “Ab Initio Calculation of the Reflectivity of Molecular Fluids under Shock Compression.” Physical Review B, vol. 107, no. 13, 134109, American Physical Society, 2023, doi:10.1103/PhysRevB.107.134109. short: M. French, M. Bethkenhagen, A. Ravasio, J.A. Hernandez, Physical Review B 107 (2023). date_created: 2023-05-21T22:01:04Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-01T14:45:25Z day: '01' department: - _id: BiCh doi: 10.1103/PhysRevB.107.134109 external_id: isi: - '000974672600001' intvolume: ' 107' isi: 1 issue: '13' language: - iso: eng month: '04' oa_version: None publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Ab initio calculation of the reflectivity of molecular fluids under shock compression type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13092' abstract: - lang: eng text: There is a need for the development of lead-free thermoelectric materials for medium-/high-temperature applications. Here, we report a thiol-free tin telluride (SnTe) precursor that can be thermally decomposed to produce SnTe crystals with sizes ranging from tens to several hundreds of nanometers. We further engineer SnTe–Cu2SnTe3 nanocomposites with a homogeneous phase distribution by decomposing the liquid SnTe precursor containing a dispersion of Cu1.5Te colloidal nanoparticles. The presence of Cu within the SnTe and the segregated semimetallic Cu2SnTe3 phase effectively improves the electrical conductivity of SnTe while simultaneously reducing the lattice thermal conductivity without compromising the Seebeck coefficient. Overall, power factors up to 3.63 mW m–1 K–2 and thermoelectric figures of merit up to 1.04 are obtained at 823 K, which represent a 167% enhancement compared with pristine SnTe. acknowledgement: Open Access is funded by the Austrian Science Fund (FWF). We thank Generalitat de Catalunya AGAUR─2021 SGR 01581 for financial support. B.F.N., K.X., and L.L.Y. thank the China Scholarship Council (CSC) for the scholarship support. C.C. acknowledges funding from the FWF “Lise Meitner Fellowship” grant agreement M 2889-N. J.S.L is grateful to the Science and Technology Department of Sichuan Province for the project no. 22NSFSC0966. K.H.L. was supported by the Institute of Zhejiang University-Quzhou (IZQ2021RCZX003). M.I. acknowledges the financial support from IST Austria. article_processing_charge: No article_type: original author: - first_name: Bingfei full_name: Nan, Bingfei last_name: 'Nan' - first_name: Xuan full_name: Song, Xuan last_name: Song - first_name: Cheng full_name: Chang, Cheng id: 9E331C2E-9F27-11E9-AE48-5033E6697425 last_name: Chang orcid: 0000-0002-9515-4277 - first_name: Ke full_name: Xiao, Ke last_name: Xiao - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Linlin full_name: Yang, Linlin last_name: Yang - first_name: Sharona full_name: Horta, Sharona id: 03a7e858-01b1-11ec-8b71-99ae6c4a05bc last_name: Horta - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Khak Ho full_name: Lim, Khak Ho last_name: Lim - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Nan B, Song X, Chang C, et al. Bottom-up synthesis of SnTe-based thermoelectric composites. ACS Applied Materials and Interfaces. 2023;15(19):23380–23389. doi:10.1021/acsami.3c00625 apa: Nan, B., Song, X., Chang, C., Xiao, K., Zhang, Y., Yang, L., … Cabot, A. (2023). Bottom-up synthesis of SnTe-based thermoelectric composites. ACS Applied Materials and Interfaces. American Chemical Society. https://doi.org/10.1021/acsami.3c00625 chicago: Nan, Bingfei, Xuan Song, Cheng Chang, Ke Xiao, Yu Zhang, Linlin Yang, Sharona Horta, et al. “Bottom-up Synthesis of SnTe-Based Thermoelectric Composites.” ACS Applied Materials and Interfaces. American Chemical Society, 2023. https://doi.org/10.1021/acsami.3c00625. ieee: B. Nan et al., “Bottom-up synthesis of SnTe-based thermoelectric composites,” ACS Applied Materials and Interfaces, vol. 15, no. 19. American Chemical Society, pp. 23380–23389, 2023. ista: Nan B, Song X, Chang C, Xiao K, Zhang Y, Yang L, Horta S, Li J, Lim KH, Ibáñez M, Cabot A. 2023. Bottom-up synthesis of SnTe-based thermoelectric composites. ACS Applied Materials and Interfaces. 15(19), 23380–23389. mla: Nan, Bingfei, et al. “Bottom-up Synthesis of SnTe-Based Thermoelectric Composites.” ACS Applied Materials and Interfaces, vol. 15, no. 19, American Chemical Society, 2023, pp. 23380–23389, doi:10.1021/acsami.3c00625. short: B. Nan, X. Song, C. Chang, K. Xiao, Y. Zhang, L. Yang, S. Horta, J. Li, K.H. Lim, M. Ibáñez, A. Cabot, ACS Applied Materials and Interfaces 15 (2023) 23380–23389. date_created: 2023-05-28T22:01:03Z date_published: 2023-05-04T00:00:00Z date_updated: 2023-08-01T14:50:09Z day: '04' ddc: - '540' department: - _id: MaIb doi: 10.1021/acsami.3c00625 external_id: isi: - '000985497900001' pmid: - '37141543' file: - access_level: open_access checksum: 23893be46763c4c78daacddd019de821 content_type: application/pdf creator: dernst date_created: 2023-05-30T07:38:44Z date_updated: 2023-05-30T07:38:44Z file_id: '13099' file_name: 2023_ACSAppliedMaterials_Nan.pdf file_size: 5640829 relation: main_file success: 1 file_date_updated: 2023-05-30T07:38:44Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '19' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 23380–23389 pmid: 1 project: - _id: 9B8804FC-BA93-11EA-9121-9846C619BF3A grant_number: M02889 name: Bottom-up Engineering for Thermoelectric Applications publication: ACS Applied Materials and Interfaces publication_identifier: eissn: - 1944-8252 issn: - 1944-8244 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Bottom-up synthesis of SnTe-based thermoelectric composites tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2023' ... --- _id: '13094' abstract: - lang: eng text: 'Endocytosis is a key cellular process involved in the uptake of nutrients, pathogens, or the therapy of diseases. Most studies have focused on spherical objects, whereas biologically relevant shapes can be highly anisotropic. In this letter, we use an experimental model system based on Giant Unilamellar Vesicles (GUVs) and dumbbell-shaped colloidal particles to mimic and investigate the first stage of the passive endocytic process: engulfment of an anisotropic object by the membrane. Our model has specific ligand–receptor interactions realized by mobile receptors on the vesicles and immobile ligands on the particles. Through a series of experiments, theory, and molecular dynamics simulations, we quantify the wrapping process of anisotropic dumbbells by GUVs and identify distinct stages of the wrapping pathway. We find that the strong curvature variation in the neck of the dumbbell as well as membrane tension are crucial in determining both the speed of wrapping and the final states.' acknowledgement: We sincerely thank Casper van der Wel for providing open-source packages for tracking, as well as Yogesh Shelke for his assistance with PAA coverslip preparation and Rachel Doherty for her assistance with particle functionalization. We are grateful to Felix Frey for useful discussions on the theory of membrane wrapping. B.M. and A.Š. acknowledge funding by the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant No. 802960). article_processing_charge: No article_type: letter_note author: - first_name: Ali full_name: Azadbakht, Ali last_name: Azadbakht - first_name: Billie full_name: Meadowcroft, Billie id: a4725fd6-932b-11ed-81e2-c098c7f37ae1 last_name: Meadowcroft - first_name: Thijs full_name: Varkevisser, Thijs last_name: Varkevisser - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Daniela J. full_name: Kraft, Daniela J. last_name: Kraft citation: ama: Azadbakht A, Meadowcroft B, Varkevisser T, Šarić A, Kraft DJ. Wrapping pathways of anisotropic dumbbell particles by Giant Unilamellar Vesicles. Nano Letters. 2023;23(10):4267–4273. doi:10.1021/acs.nanolett.3c00375 apa: Azadbakht, A., Meadowcroft, B., Varkevisser, T., Šarić, A., & Kraft, D. J. (2023). Wrapping pathways of anisotropic dumbbell particles by Giant Unilamellar Vesicles. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.3c00375 chicago: Azadbakht, Ali, Billie Meadowcroft, Thijs Varkevisser, Anđela Šarić, and Daniela J. Kraft. “Wrapping Pathways of Anisotropic Dumbbell Particles by Giant Unilamellar Vesicles.” Nano Letters. American Chemical Society, 2023. https://doi.org/10.1021/acs.nanolett.3c00375. ieee: A. Azadbakht, B. Meadowcroft, T. Varkevisser, A. Šarić, and D. J. Kraft, “Wrapping pathways of anisotropic dumbbell particles by Giant Unilamellar Vesicles,” Nano Letters, vol. 23, no. 10. American Chemical Society, pp. 4267–4273, 2023. ista: Azadbakht A, Meadowcroft B, Varkevisser T, Šarić A, Kraft DJ. 2023. Wrapping pathways of anisotropic dumbbell particles by Giant Unilamellar Vesicles. Nano Letters. 23(10), 4267–4273. mla: Azadbakht, Ali, et al. “Wrapping Pathways of Anisotropic Dumbbell Particles by Giant Unilamellar Vesicles.” Nano Letters, vol. 23, no. 10, American Chemical Society, 2023, pp. 4267–4273, doi:10.1021/acs.nanolett.3c00375. short: A. Azadbakht, B. Meadowcroft, T. Varkevisser, A. Šarić, D.J. Kraft, Nano Letters 23 (2023) 4267–4273. date_created: 2023-05-28T22:01:03Z date_published: 2023-05-04T00:00:00Z date_updated: 2023-08-01T14:51:25Z day: '04' ddc: - '540' department: - _id: AnSa doi: 10.1021/acs.nanolett.3c00375 ec_funded: 1 external_id: isi: - '000985481400001' pmid: - '37141427' file: - access_level: open_access checksum: 9734d4c617bab3578ef62916b764547a content_type: application/pdf creator: dernst date_created: 2023-05-30T07:55:31Z date_updated: 2023-05-30T07:55:31Z file_id: '13100' file_name: 2023_NanoLetters_Azadbakht.pdf file_size: 3654910 relation: main_file success: 1 file_date_updated: 2023-05-30T07:55:31Z has_accepted_license: '1' intvolume: ' 23' isi: 1 issue: '10' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 4267–4273 pmid: 1 project: - _id: eba2549b-77a9-11ec-83b8-a81e493eae4e call_identifier: H2020 grant_number: '802960' name: 'Non-Equilibrium Protein Assembly: from Building Blocks to Biological Machines' publication: Nano Letters publication_identifier: eissn: - 1530-6992 issn: - 1530-6984 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Wrapping pathways of anisotropic dumbbell particles by Giant Unilamellar Vesicles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2023' ... --- _id: '13093' abstract: - lang: eng text: The direct, solid state, and reversible conversion between heat and electricity using thermoelectric devices finds numerous potential uses, especially around room temperature. However, the relatively high material processing cost limits their real applications. Silver selenide (Ag2Se) is one of the very few n-type thermoelectric (TE) materials for room-temperature applications. Herein, we report a room temperature, fast, and aqueous-phase synthesis approach to produce Ag2Se, which can be extended to other metal chalcogenides. These materials reach TE figures of merit (zT) of up to 0.76 at 380 K. To improve these values, bismuth sulfide (Bi2S3) particles also prepared in an aqueous solution are incorporated into the Ag2Se matrix. In this way, a series of Ag2Se/Bi2S3 composites with Bi2S3 wt % of 0.5, 1.0, and 1.5 are prepared by solution blending and hot-press sintering. The presence of Bi2S3 significantly improves the Seebeck coefficient and power factor while at the same time decreasing the thermal conductivity with no apparent drop in electrical conductivity. Thus, a maximum zT value of 0.96 is achieved in the composites with 1.0 wt % Bi2S3 at 370 K. Furthermore, a high average zT value (zTave) of 0.93 in the 300–390 K range is demonstrated. acknowledgement: 'Open Access is funded by the Austrian Science Fund (FWF). B.N., M.L., Y.Z., K.X., and X.H. thank the China Scholarship Council (CSC) for the scholarship support. C.C. received funding from the FWF “Lise Meitner Fellowship” grant agreement M 2889-N. M.I. acknowledges the financial support from ISTA and the Werner Siemens Foundation. ICN2 acknowledges funding from Generalitat de Catalunya 2021SGR00457 and project NANOGEN (PID2020-116093RB-C43) funded by MCIN/AEI/10.13039/501100011033/. ICN2 was supported by the Severo Ochoa program from Spanish MCIN/AEI (Grant No.: CEX2021-001214-S) and was funded by the CERCA Programme/Generalitat de Catalunya. J.L. is a Serra Húnter Fellow and is grateful to the ICREA Academia program and projects MICINN/FEDER PID2021-124572OB-C31 and 2021 SGR 01061. K.H.L. acknowledges support from the National Natural Science Foundation of China (22208293). This study is part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat de Catalunya.' article_processing_charge: No article_type: original author: - first_name: Bingfei full_name: Nan, Bingfei last_name: 'Nan' - first_name: Mengyao full_name: Li, Mengyao last_name: Li - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Ke full_name: Xiao, Ke last_name: Xiao - first_name: Khak Ho full_name: Lim, Khak Ho last_name: Lim - first_name: Cheng full_name: Chang, Cheng id: 9E331C2E-9F27-11E9-AE48-5033E6697425 last_name: Chang orcid: 0000-0002-9515-4277 - first_name: Xu full_name: Han, Xu last_name: Han - first_name: Yong full_name: Zuo, Yong last_name: Zuo - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Jordi full_name: Llorca, Jordi last_name: Llorca - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Nan B, Li M, Zhang Y, et al. Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature. ACS Applied Electronic Materials. 2023. doi:10.1021/acsaelm.3c00055 apa: Nan, B., Li, M., Zhang, Y., Xiao, K., Lim, K. H., Chang, C., … Cabot, A. (2023). Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature. ACS Applied Electronic Materials. American Chemical Society. https://doi.org/10.1021/acsaelm.3c00055 chicago: Nan, Bingfei, Mengyao Li, Yu Zhang, Ke Xiao, Khak Ho Lim, Cheng Chang, Xu Han, et al. “Engineering of Thermoelectric Composites Based on Silver Selenide in Aqueous Solution and Ambient Temperature.” ACS Applied Electronic Materials. American Chemical Society, 2023. https://doi.org/10.1021/acsaelm.3c00055. ieee: B. Nan et al., “Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature,” ACS Applied Electronic Materials. American Chemical Society, 2023. ista: Nan B, Li M, Zhang Y, Xiao K, Lim KH, Chang C, Han X, Zuo Y, Li J, Arbiol J, Llorca J, Ibáñez M, Cabot A. 2023. Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature. ACS Applied Electronic Materials. mla: Nan, Bingfei, et al. “Engineering of Thermoelectric Composites Based on Silver Selenide in Aqueous Solution and Ambient Temperature.” ACS Applied Electronic Materials, American Chemical Society, 2023, doi:10.1021/acsaelm.3c00055. short: B. Nan, M. Li, Y. Zhang, K. Xiao, K.H. Lim, C. Chang, X. Han, Y. Zuo, J. Li, J. Arbiol, J. Llorca, M. Ibáñez, A. Cabot, ACS Applied Electronic Materials (2023). date_created: 2023-05-28T22:01:03Z date_published: 2023-05-05T00:00:00Z date_updated: 2023-08-01T14:50:48Z day: '05' department: - _id: MaIb doi: 10.1021/acsaelm.3c00055 external_id: isi: - '000986859000001' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/acsaelm.3c00055 month: '05' oa: 1 oa_version: Published Version project: - _id: 9B8804FC-BA93-11EA-9121-9846C619BF3A grant_number: M02889 name: Bottom-up Engineering for Thermoelectric Applications - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: ACS Applied Electronic Materials publication_identifier: eissn: - 2637-6113 publication_status: epub_ahead publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2023' ... --- _id: '13091' abstract: - lang: eng text: We use a function field version of the Hardy–Littlewood circle method to study the locus of free rational curves on an arbitrary smooth projective hypersurface of sufficiently low degree. On the one hand this allows us to bound the dimension of the singular locus of the moduli space of rational curves on such hypersurfaces and, on the other hand, it sheds light on Peyre’s reformulation of the Batyrev–Manin conjecture in terms of slopes with respect to the tangent bundle. acknowledgement: The authors are grateful to Paul Nelson, Per Salberger and Jason Starr for useful comments. While working on this paper the first author was supported by EPRSC grant EP/P026710/1. The research was partially conducted during the period the second author served as a Clay Research Fellow, and partially conducted during the period he was supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zurich Foundation. article_processing_charge: No article_type: original author: - first_name: Timothy D full_name: Browning, Timothy D id: 35827D50-F248-11E8-B48F-1D18A9856A87 last_name: Browning orcid: 0000-0002-8314-0177 - first_name: Will full_name: Sawin, Will last_name: Sawin citation: ama: Browning TD, Sawin W. Free rational curves on low degree hypersurfaces and the circle method. Algebra and Number Theory. 2023;17(3):719-748. doi:10.2140/ant.2023.17.719 apa: Browning, T. D., & Sawin, W. (2023). Free rational curves on low degree hypersurfaces and the circle method. Algebra and Number Theory. Mathematical Sciences Publishers. https://doi.org/10.2140/ant.2023.17.719 chicago: Browning, Timothy D, and Will Sawin. “Free Rational Curves on Low Degree Hypersurfaces and the Circle Method.” Algebra and Number Theory. Mathematical Sciences Publishers, 2023. https://doi.org/10.2140/ant.2023.17.719. ieee: T. D. Browning and W. Sawin, “Free rational curves on low degree hypersurfaces and the circle method,” Algebra and Number Theory, vol. 17, no. 3. Mathematical Sciences Publishers, pp. 719–748, 2023. ista: Browning TD, Sawin W. 2023. Free rational curves on low degree hypersurfaces and the circle method. Algebra and Number Theory. 17(3), 719–748. mla: Browning, Timothy D., and Will Sawin. “Free Rational Curves on Low Degree Hypersurfaces and the Circle Method.” Algebra and Number Theory, vol. 17, no. 3, Mathematical Sciences Publishers, 2023, pp. 719–48, doi:10.2140/ant.2023.17.719. short: T.D. Browning, W. Sawin, Algebra and Number Theory 17 (2023) 719–748. date_created: 2023-05-28T22:01:02Z date_published: 2023-04-12T00:00:00Z date_updated: 2023-08-01T14:51:57Z day: '12' ddc: - '510' department: - _id: TiBr doi: 10.2140/ant.2023.17.719 external_id: arxiv: - '1810.06882' isi: - '000996014700004' file: - access_level: open_access checksum: 5d5d67b235905650e33cf7065d7583b4 content_type: application/pdf creator: dernst date_created: 2023-05-30T08:05:22Z date_updated: 2023-05-30T08:05:22Z file_id: '13101' file_name: 2023_AlgebraNumberTheory_Browning.pdf file_size: 1430719 relation: main_file success: 1 file_date_updated: 2023-05-30T08:05:22Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '3' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 719-748 project: - _id: 26A8D266-B435-11E9-9278-68D0E5697425 grant_number: EP-P026710-2 name: Between rational and integral points publication: Algebra and Number Theory publication_identifier: eissn: - 1944-7833 issn: - 1937-0652 publication_status: published publisher: Mathematical Sciences Publishers quality_controlled: '1' scopus_import: '1' status: public title: Free rational curves on low degree hypersurfaces and the circle method tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2023' ... --- _id: '13117' abstract: - lang: eng text: The ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices. Here, we demonstrate on-demand tunable directional scattering based on two periodically modulated transmon qubits coupled to a transmission line at a fixed distance. By changing the relative phase between the modulation tones, we realize unidirectional forward or backward photon scattering. Such an in-situ switchable mirror represents a versatile tool for intra- and inter-chip microwave photonic processors. In the future, a lattice of qubits can be used to realize topological circuits that exhibit strong nonreciprocity or chirality. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: The authors thank W.D. Oliver for discussions, L. Drmic and P. Zielinski for software development, and the MIBA workshop and the IST nanofabrication facility for technical support. This work was supported by the Austrian Science Fund (FWF) through BeyondC (F7105) and IST Austria. E.R. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. and M.Z. acknowledge support from the European Research Council under grant agreement No 758053 (ERC StG QUNNECT) and a NOMIS foundation research grant. The work of A.N.P. and A.V.P. has been supported by the Russian Science Foundation under the grant No 20-12-00194. article_number: '2998' article_processing_charge: No article_type: original author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alexander V. full_name: Poshakinskiy, Alexander V. last_name: Poshakinskiy - first_name: Riya full_name: Sett, Riya id: 2E6D040E-F248-11E8-B48F-1D18A9856A87 last_name: Sett - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Alexander N. full_name: Poddubny, Alexander N. last_name: Poddubny - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 2023;14. doi:10.1038/s41467-023-38761-6 apa: Redchenko, E., Poshakinskiy, A. V., Sett, R., Zemlicka, M., Poddubny, A. N., & Fink, J. M. (2023). Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-38761-6 chicago: Redchenko, Elena, Alexander V. Poshakinskiy, Riya Sett, Martin Zemlicka, Alexander N. Poddubny, and Johannes M Fink. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-38761-6. ieee: E. Redchenko, A. V. Poshakinskiy, R. Sett, M. Zemlicka, A. N. Poddubny, and J. M. Fink, “Tunable directional photon scattering from a pair of superconducting qubits,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 14, 2998. mla: Redchenko, Elena, et al. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications, vol. 14, 2998, Springer Nature, 2023, doi:10.1038/s41467-023-38761-6. short: E. Redchenko, A.V. Poshakinskiy, R. Sett, M. Zemlicka, A.N. Poddubny, J.M. Fink, Nature Communications 14 (2023). date_created: 2023-06-04T22:01:02Z date_published: 2023-05-24T00:00:00Z date_updated: 2023-08-02T06:10:26Z day: '24' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-023-38761-6 ec_funded: 1 external_id: arxiv: - '2205.03293' isi: - '001001099700002' file: - access_level: open_access checksum: a857df40f0882859c48a1ff1e2001ec2 content_type: application/pdf creator: dernst date_created: 2023-06-06T07:31:20Z date_updated: 2023-06-06T07:31:20Z file_id: '13123' file_name: 2023_NaturePhysics_Redchenko.pdf file_size: 1654389 relation: main_file success: 1 file_date_updated: 2023-06-06T07:31:20Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 26B354CA-B435-11E9-9278-68D0E5697425 name: Controllable Collective States of Superconducting Qubit Ensembles - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13124' relation: research_data status: public scopus_import: '1' status: public title: Tunable directional photon scattering from a pair of superconducting qubits tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '13106' abstract: - lang: eng text: Quantum entanglement is a key resource in currently developed quantum technologies. Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new functionalities, but this has been hindered by an energy scale mismatch of >104 and the resulting mutually imposed loss and noise. In this work, we created and verified entanglement between microwave and optical fields in a millikelvin environment. Using an optically pulsed superconducting electro-optical device, we show entanglement between propagating microwave and optical fields in the continuous variable domain. This achievement not only paves the way for entanglement between superconducting circuits and telecom wavelength light, but also has wide-ranging implications for hybrid quantum networks in the context of modularization, scaling, sensing, and cross-platform verification. acknowledgement: This work was supported by the European Research Council (grant no. 758053, ERC StG QUNNECT) and the European Union’s Horizon 2020 Research and Innovation Program (grant no. 899354, FETopen SuperQuLAN). L.Q. acknowledges generous support from the ISTFELLOW program. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 Research and Innovation Program (Marie Sklodowska-Curie grant no. 754411). G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. acknowledges support from the Austrian Science Fund (FWF) through BeyondC (grant no. F7105) and the European Union’s Horizon 2020 Research and Innovation Program (grant no. 862644, FETopen QUARTET). article_processing_charge: No article_type: original author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold - first_name: Y. full_name: Minoguchi, Y. last_name: Minoguchi - first_name: P. full_name: Rabl, P. last_name: Rabl - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Sahu R, Qiu L, Hease WJ, et al. Entangling microwaves with light. Science. 2023;380(6646):718-721. doi:10.1126/science.adg3812 apa: Sahu, R., Qiu, L., Hease, W. J., Arnold, G. M., Minoguchi, Y., Rabl, P., & Fink, J. M. (2023). Entangling microwaves with light. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.adg3812 chicago: Sahu, Rishabh, Liu Qiu, William J Hease, Georg M Arnold, Y. Minoguchi, P. Rabl, and Johannes M Fink. “Entangling Microwaves with Light.” Science. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/science.adg3812. ieee: R. Sahu et al., “Entangling microwaves with light,” Science, vol. 380, no. 6646. American Association for the Advancement of Science, pp. 718–721, 2023. ista: Sahu R, Qiu L, Hease WJ, Arnold GM, Minoguchi Y, Rabl P, Fink JM. 2023. Entangling microwaves with light. Science. 380(6646), 718–721. mla: Sahu, Rishabh, et al. “Entangling Microwaves with Light.” Science, vol. 380, no. 6646, American Association for the Advancement of Science, 2023, pp. 718–21, doi:10.1126/science.adg3812. short: R. Sahu, L. Qiu, W.J. Hease, G.M. Arnold, Y. Minoguchi, P. Rabl, J.M. Fink, Science 380 (2023) 718–721. date_created: 2023-05-31T11:39:24Z date_published: 2023-05-18T00:00:00Z date_updated: 2023-08-02T06:08:57Z day: '18' department: - _id: JoFi doi: 10.1126/science.adg3812 ec_funded: 1 external_id: arxiv: - '2301.03315' isi: - '000996515200004' intvolume: ' 380' isi: 1 issue: '6646' keyword: - Multidisciplinary language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.03315 month: '05' oa: 1 oa_version: Preprint page: 718-721 project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/wiring-up-quantum-circuits-with-light/ record: - id: '13122' relation: research_data status: public status: public title: Entangling microwaves with light type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 380 year: '2023' ... --- _id: '13129' abstract: - lang: eng text: "We study the representative volume element (RVE) method, which is a method to approximately infer the effective behavior ahom of a stationary random medium. The latter is described by a coefficient field a(x) generated from a given ensemble ⟨⋅⟩ and the corresponding linear elliptic operator −∇⋅a∇. In line with the theory of homogenization, the method proceeds by computing d=3 correctors (d denoting the space dimension). To be numerically tractable, this computation has to be done on a finite domain: the so-called representative volume element, i.e., a large box with, say, periodic boundary conditions. The main message of this article is: Periodize the ensemble instead of its realizations. By this, we mean that it is better to sample from a suitably periodized ensemble than to periodically extend the restriction of a realization a(x) from the whole-space ensemble ⟨⋅⟩. We make this point by investigating the bias (or systematic error), i.e., the difference between ahom and the expected value of the RVE method, in terms of its scaling w.r.t. the lateral size L of the box. In case of periodizing a(x), we heuristically argue that this error is generically O(L−1). In case of a suitable periodization of ⟨⋅⟩\r\n, we rigorously show that it is O(L−d). In fact, we give a characterization of the leading-order error term for both strategies and argue that even in the isotropic case it is generically non-degenerate. We carry out the rigorous analysis in the convenient setting of ensembles ⟨⋅⟩\r\n of Gaussian type, which allow for a straightforward periodization, passing via the (integrable) covariance function. This setting has also the advantage of making the Price theorem and the Malliavin calculus available for optimal stochastic estimates of correctors. We actually need control of second-order correctors to capture the leading-order error term. This is due to inversion symmetry when applying the two-scale expansion to the Green function. As a bonus, we present a stream-lined strategy to estimate the error in a higher-order two-scale expansion of the Green function." acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Nicolas full_name: Clozeau, Nicolas id: fea1b376-906f-11eb-847d-b2c0cf46455b last_name: Clozeau - first_name: Marc full_name: Josien, Marc last_name: Josien - first_name: Felix full_name: Otto, Felix last_name: Otto - first_name: Qiang full_name: Xu, Qiang last_name: Xu citation: ama: 'Clozeau N, Josien M, Otto F, Xu Q. Bias in the representative volume element method: Periodize the ensemble instead of its realizations. Foundations of Computational Mathematics. 2023. doi:10.1007/s10208-023-09613-y' apa: 'Clozeau, N., Josien, M., Otto, F., & Xu, Q. (2023). Bias in the representative volume element method: Periodize the ensemble instead of its realizations. Foundations of Computational Mathematics. Springer Nature. https://doi.org/10.1007/s10208-023-09613-y' chicago: 'Clozeau, Nicolas, Marc Josien, Felix Otto, and Qiang Xu. “Bias in the Representative Volume Element Method: Periodize the Ensemble Instead of Its Realizations.” Foundations of Computational Mathematics. Springer Nature, 2023. https://doi.org/10.1007/s10208-023-09613-y.' ieee: 'N. Clozeau, M. Josien, F. Otto, and Q. Xu, “Bias in the representative volume element method: Periodize the ensemble instead of its realizations,” Foundations of Computational Mathematics. Springer Nature, 2023.' ista: 'Clozeau N, Josien M, Otto F, Xu Q. 2023. Bias in the representative volume element method: Periodize the ensemble instead of its realizations. Foundations of Computational Mathematics.' mla: 'Clozeau, Nicolas, et al. “Bias in the Representative Volume Element Method: Periodize the Ensemble Instead of Its Realizations.” Foundations of Computational Mathematics, Springer Nature, 2023, doi:10.1007/s10208-023-09613-y.' short: N. Clozeau, M. Josien, F. Otto, Q. Xu, Foundations of Computational Mathematics (2023). date_created: 2023-06-11T22:00:40Z date_published: 2023-05-30T00:00:00Z date_updated: 2023-08-02T06:12:39Z day: '30' ddc: - '510' department: - _id: JuFi doi: 10.1007/s10208-023-09613-y external_id: isi: - '000999623100001' has_accepted_license: '1' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s10208-023-09613-y month: '05' oa: 1 oa_version: Published Version publication: Foundations of Computational Mathematics publication_identifier: eissn: - 1615-3383 issn: - 1615-3375 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Bias in the representative volume element method: Periodize the ensemble instead of its realizations' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2023' ... --- _id: '13124' abstract: - lang: eng text: This dataset comprises all data shown in the figures of the submitted article "Tunable directional photon scattering from a pair of superconducting qubits" at arXiv:2205.03293. Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alexander full_name: Poshakinskiy, Alexander last_name: Poshakinskiy - first_name: Riya full_name: Sett, Riya id: 2E6D040E-F248-11E8-B48F-1D18A9856A87 last_name: Sett - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Alexander full_name: Poddubny, Alexander last_name: Poddubny - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Redchenko E, Poshakinskiy A, Sett R, Zemlicka M, Poddubny A, Fink JM. Tunable directional photon scattering from a pair of superconducting qubits. 2023. doi:10.5281/ZENODO.7858567 apa: Redchenko, E., Poshakinskiy, A., Sett, R., Zemlicka, M., Poddubny, A., & Fink, J. M. (2023). Tunable directional photon scattering from a pair of superconducting qubits. Zenodo. https://doi.org/10.5281/ZENODO.7858567 chicago: Redchenko, Elena, Alexander Poshakinskiy, Riya Sett, Martin Zemlicka, Alexander Poddubny, and Johannes M Fink. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.7858567. ieee: E. Redchenko, A. Poshakinskiy, R. Sett, M. Zemlicka, A. Poddubny, and J. M. Fink, “Tunable directional photon scattering from a pair of superconducting qubits.” Zenodo, 2023. ista: Redchenko E, Poshakinskiy A, Sett R, Zemlicka M, Poddubny A, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits, Zenodo, 10.5281/ZENODO.7858567. mla: Redchenko, Elena, et al. Tunable Directional Photon Scattering from a Pair of Superconducting Qubits. Zenodo, 2023, doi:10.5281/ZENODO.7858567. short: E. Redchenko, A. Poshakinskiy, R. Sett, M. Zemlicka, A. Poddubny, J.M. Fink, (2023). date_created: 2023-06-06T07:36:50Z date_published: 2023-04-28T00:00:00Z date_updated: 2023-08-02T06:10:25Z day: '28' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.7858567 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.7858567 month: '04' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '13117' relation: used_in_publication status: public status: public title: Tunable directional photon scattering from a pair of superconducting qubits tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13122' abstract: - lang: eng text: Data for submitted article "Entangling microwaves with light" at arXiv:2301.03315v1 article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 citation: ama: Sahu R. Entangling microwaves with light. 2023. doi:10.5281/ZENODO.7789417 apa: Sahu, R. (2023). Entangling microwaves with light. Zenodo. https://doi.org/10.5281/ZENODO.7789417 chicago: Sahu, Rishabh. “Entangling Microwaves with Light.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.7789417. ieee: R. Sahu, “Entangling microwaves with light.” Zenodo, 2023. ista: Sahu R. 2023. Entangling microwaves with light, Zenodo, 10.5281/ZENODO.7789417. mla: Sahu, Rishabh. Entangling Microwaves with Light. Zenodo, 2023, doi:10.5281/ZENODO.7789417. short: R. Sahu, (2023). date_created: 2023-06-06T06:46:16Z date_published: 2023-03-31T00:00:00Z date_updated: 2023-08-02T06:08:56Z day: '31' department: - _id: JoFi doi: 10.5281/ZENODO.7789417 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.7789418 month: '03' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '13106' relation: used_in_publication status: public status: public title: Entangling microwaves with light tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13166' abstract: - lang: eng text: Brachyury, a member of T-box gene family, is widely known for its major role in mesoderm specification in bilaterians. It is also present in non-bilaterian metazoans, such as cnidarians, where it acts as a component of an axial patterning system. In this study, we present a phylogenetic analysis of Brachyury genes within phylum Cnidaria, investigate differential expression and address a functional framework of Brachyury paralogs in hydrozoan Dynamena pumila. Our analysis indicates two duplication events of Brachyury within the cnidarian lineage. The first duplication likely appeared in the medusozoan ancestor, resulting in two copies in medusozoans, while the second duplication arose in the hydrozoan ancestor, resulting in three copies in hydrozoans. Brachyury1 and 2 display a conservative expression pattern marking the oral pole of the body axis in D. pumila. On the contrary, Brachyury3 expression was detected in scattered presumably nerve cells of the D. pumila larva. Pharmacological modulations indicated that Brachyury3 is not under regulation of cWnt signaling in contrast to the other two Brachyury genes. Divergence in expression patterns and regulation suggest neofunctionalization of Brachyury3 in hydrozoans. acknowledgement: "We thank N.A. Pertsov White Sea Biological Station of Moscow State University for the help and support in obtaining samples and providing access to all required facilities and equipment of the “Center of Microscopy WSBS MSU”. We are grateful to Dr. Amro Hamdoun for pCS2+8 plasmid (Addgene plasmid # 34931).\r\nWork in the Walentek lab is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Emmy Noether Programme (grant WA3365/2-2) and under Germany’s Excellence Strategy (CIBSS-EXC-2189-Project ID 390939984). SK is supported by the project No. 0088-2021-0009 of the Koltzov Institute of Developmental Biology of the RAS. The study of molecular patterning of D. pumila colony was funded by RFBR, project number 20-04-00978a (to S.K.)." article_number: '9382' article_processing_charge: No article_type: original author: - first_name: Alexandra A. full_name: Vetrova, Alexandra A. last_name: Vetrova - first_name: Daria M. full_name: Kupaeva, Daria M. last_name: Kupaeva - first_name: Alena full_name: Kizenko, Alena id: a521c60b-0815-11ed-9b02-b8bd522477c8 last_name: Kizenko - first_name: Tatiana S. full_name: Lebedeva, Tatiana S. last_name: Lebedeva - first_name: Peter full_name: Walentek, Peter last_name: Walentek - first_name: Nikoloz full_name: Tsikolia, Nikoloz last_name: Tsikolia - first_name: Stanislav V. full_name: Kremnyov, Stanislav V. last_name: Kremnyov citation: ama: Vetrova AA, Kupaeva DM, Kizenko A, et al. The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Scientific Reports. 2023;13. doi:10.1038/s41598-023-35979-8 apa: Vetrova, A. A., Kupaeva, D. M., Kizenko, A., Lebedeva, T. S., Walentek, P., Tsikolia, N., & Kremnyov, S. V. (2023). The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-023-35979-8 chicago: Vetrova, Alexandra A., Daria M. Kupaeva, Alena Kizenko, Tatiana S. Lebedeva, Peter Walentek, Nikoloz Tsikolia, and Stanislav V. Kremnyov. “The Evolutionary History of Brachyury Genes in Hydrozoa Involves Duplications, Divergence, and Neofunctionalization.” Scientific Reports. Springer Nature, 2023. https://doi.org/10.1038/s41598-023-35979-8. ieee: A. A. Vetrova et al., “The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization,” Scientific Reports, vol. 13. Springer Nature, 2023. ista: Vetrova AA, Kupaeva DM, Kizenko A, Lebedeva TS, Walentek P, Tsikolia N, Kremnyov SV. 2023. The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Scientific Reports. 13, 9382. mla: Vetrova, Alexandra A., et al. “The Evolutionary History of Brachyury Genes in Hydrozoa Involves Duplications, Divergence, and Neofunctionalization.” Scientific Reports, vol. 13, 9382, Springer Nature, 2023, doi:10.1038/s41598-023-35979-8. short: A.A. Vetrova, D.M. Kupaeva, A. Kizenko, T.S. Lebedeva, P. Walentek, N. Tsikolia, S.V. Kremnyov, Scientific Reports 13 (2023). date_created: 2023-06-25T22:00:46Z date_published: 2023-06-09T00:00:00Z date_updated: 2023-08-02T06:17:18Z day: '09' ddc: - '570' department: - _id: GradSch doi: 10.1038/s41598-023-35979-8 external_id: isi: - '001006690200045' pmid: - '37296138' file: - access_level: open_access checksum: baddf6b2fa9adf88263d4a3b0998f0f2 content_type: application/pdf creator: dernst date_created: 2023-06-26T09:58:53Z date_updated: 2023-06-26T09:58:53Z file_id: '13170' file_name: 2023_ScientificReports_Vetrova.pdf file_size: 4844149 relation: main_file success: 1 file_date_updated: 2023-06-26T09:58:53Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Scientific Reports publication_identifier: eissn: - 2045-2322 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2023' ... --- _id: '13138' abstract: - lang: eng text: "We consider the spin-\r\n1\r\n2\r\n Heisenberg chain (XXX model) weakly perturbed away from integrability by an isotropic next-to-nearest neighbor exchange interaction. Recently, it was conjectured that this model possesses an infinite tower of quasiconserved integrals of motion (charges) [D. Kurlov et al., Phys. Rev. B 105, 104302 (2022)]. In this work we first test this conjecture by investigating how the norm of the adiabatic gauge potential (AGP) scales with the system size, which is known to be a remarkably accurate measure of chaos. We find that for the perturbed XXX chain the behavior of the AGP norm corresponds to neither an integrable nor a chaotic regime, which supports the conjectured quasi-integrability of the model. We then prove the conjecture and explicitly construct the infinite set of quasiconserved charges. Our proof relies on the fact that the XXX chain perturbed by next-to-nearest exchange interaction can be viewed as a truncation of an integrable long-range deformation of the Heisenberg spin chain." acknowledgement: "The numerical computations in this work were performed using QuSpin [83, 84]. We acknowledge useful discussions with Igor Aleiner, Boris Altshuler, Jacopo de Nardis, Anatoli Polkovnikov, and Gora Shlyapnikov. We thank Piotr Sierant and Dario Rosa for drawing our attention to Refs. [31, 42, 46] and Ref. [47], respectively. We are grateful to an anonymous referee for very useful comments and for drawing our attention to Refs. [80, 81]. The work of VG is part of the DeltaITP consortium, a program of the Netherlands Organization for Scientific\r\nResearch (NWO) funded by the Dutch Ministry of Education, Culture and Science (OCW). VG is also partially supported by RSF 19-71-10092. The work of AT was supported by the ERC Starting Grant 101042293 (HEPIQ). RS acknowledges support from Slovenian Research Agency (ARRS) - research programme P1-0402. " article_number: '184312' article_processing_charge: No article_type: original author: - first_name: Pavel full_name: Orlov, Pavel last_name: Orlov - first_name: Anastasiia full_name: Tiutiakina, Anastasiia last_name: Tiutiakina - first_name: Rustem full_name: Sharipov, Rustem last_name: Sharipov - first_name: Elena full_name: Petrova, Elena id: 0ac84990-897b-11ed-a09c-f5abb56a4ede last_name: Petrova - first_name: Vladimir full_name: Gritsev, Vladimir last_name: Gritsev - first_name: Denis V. full_name: Kurlov, Denis V. last_name: Kurlov citation: ama: Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 2023;107(18). doi:10.1103/PhysRevB.107.184312 apa: Orlov, P., Tiutiakina, A., Sharipov, R., Petrova, E., Gritsev, V., & Kurlov, D. V. (2023). Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.184312 chicago: Orlov, Pavel, Anastasiia Tiutiakina, Rustem Sharipov, Elena Petrova, Vladimir Gritsev, and Denis V. Kurlov. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.184312. ieee: P. Orlov, A. Tiutiakina, R. Sharipov, E. Petrova, V. Gritsev, and D. V. Kurlov, “Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain,” Physical Review B, vol. 107, no. 18. American Physical Society, 2023. ista: Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. 2023. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 107(18), 184312. mla: Orlov, Pavel, et al. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B, vol. 107, no. 18, 184312, American Physical Society, 2023, doi:10.1103/PhysRevB.107.184312. short: P. Orlov, A. Tiutiakina, R. Sharipov, E. Petrova, V. Gritsev, D.V. Kurlov, Physical Review B 107 (2023). date_created: 2023-06-18T22:00:46Z date_published: 2023-05-01T00:00:00Z date_updated: 2023-08-02T06:16:02Z day: '01' department: - _id: GradSch doi: 10.1103/PhysRevB.107.184312 external_id: arxiv: - '2303.00729' isi: - '001003686900004' intvolume: ' 107' isi: 1 issue: '18' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2303.00729 month: '05' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13213' abstract: - lang: eng text: The primary cell wall is a fundamental plant constituent that is flexible but sufficiently rigid to support the plant cell shape. Although many studies have demonstrated that reactive oxygen species (ROS) serve as important signaling messengers to modify the cell wall structure and affect cellular growth, the regulatory mechanism underlying the spatial-temporal regulation of ROS activity for cell wall maintenance remains largely unclear. Here, we demonstrate the role of the Arabidopsis (Arabidopsis thaliana) multicopper oxidase-like protein skewed 5 (SKU5) and its homolog SKU5-similar 1 (SKS1) in root cell wall formation through modulating ROS homeostasis. Loss of SKU5 and SKS1 function resulted in aberrant division planes, protruding cell walls, ectopic deposition of iron, and reduced nicotinamide adeninedinucleotide phosphate (NADPH) oxidase-dependent ROS overproduction in the root epidermis–cortex and cortex–endodermis junctions. A decrease in ROS level or inhibition of NADPH oxidase activity rescued the cell wall defects of sku5 sks1 double mutants. SKU5 and SKS1 proteins were activated by iron treatment, and iron over-accumulated in the walls between the root epidermis and cortex cell layers of sku5 sks1. The glycosylphosphatidylinositol-anchored motif was crucial for membrane association and functionality of SKU5 and SKS1. Overall, our results identified SKU5 and SKS1 as regulators of ROS at the cell surface for regulation of cell wall structure and root cell growth. acknowledgement: We thank Dong liu for offering iron staining technique; ZhiChang Chen and Zhenbiao Yang for discussion; Dandan Zheng for earlier attempt; Liwen Jiang and Dingquan Huang for initial tests of the TEM experiment; John C. Sedbrook for a donation of sku5 and pSKU5::SKU5-GFP seeds; Catherine Perrot-Rechenmann and Ke Zhou for the donation of sks1, sks2, and sku5 sks1 seeds; Zengyu Liu and Zhongquan Lin for live-imaging microscopy assistance. We are grateful to Can Peng, and Xixia Li for helping with sample preparation, and taking TEM images, at the Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science. article_processing_charge: No article_type: original author: - first_name: C full_name: Chen, C last_name: Chen - first_name: Y full_name: Zhang, Y last_name: Zhang - first_name: J full_name: Cai, J last_name: Cai - first_name: Y full_name: Qiu, Y last_name: Qiu - first_name: L full_name: Li, L last_name: Li - first_name: C full_name: Gao, C last_name: Gao - first_name: Y full_name: Gao, Y last_name: Gao - first_name: M full_name: Ke, M last_name: Ke - first_name: S full_name: Wu, S last_name: Wu - first_name: C full_name: Wei, C last_name: Wei - first_name: J full_name: Chen, J last_name: Chen - first_name: T full_name: Xu, T last_name: Xu - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: J full_name: Wang, J last_name: Wang - first_name: R full_name: Li, R last_name: Li - first_name: D full_name: Chao, D last_name: Chao - first_name: B full_name: Zhang, B last_name: Zhang - first_name: X full_name: Chen, X last_name: Chen - first_name: Z full_name: Gao, Z last_name: Gao citation: ama: Chen C, Zhang Y, Cai J, et al. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 2023;192(3):2243-2260. doi:10.1093/plphys/kiad207 apa: Chen, C., Zhang, Y., Cai, J., Qiu, Y., Li, L., Gao, C., … Gao, Z. (2023). Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1093/plphys/kiad207 chicago: Chen, C, Y Zhang, J Cai, Y Qiu, L Li, C Gao, Y Gao, et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology. American Society of Plant Biologists, 2023. https://doi.org/10.1093/plphys/kiad207. ieee: C. Chen et al., “Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots,” Plant Physiology, vol. 192, no. 3. American Society of Plant Biologists, pp. 2243–2260, 2023. ista: Chen C, Zhang Y, Cai J, Qiu Y, Li L, Gao C, Gao Y, Ke M, Wu S, Wei C, Chen J, Xu T, Friml J, Wang J, Li R, Chao D, Zhang B, Chen X, Gao Z. 2023. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 192(3), 2243–2260. mla: Chen, C., et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology, vol. 192, no. 3, American Society of Plant Biologists, 2023, pp. 2243–60, doi:10.1093/plphys/kiad207. short: C. Chen, Y. Zhang, J. Cai, Y. Qiu, L. Li, C. Gao, Y. Gao, M. Ke, S. Wu, C. Wei, J. Chen, T. Xu, J. Friml, J. Wang, R. Li, D. Chao, B. Zhang, X. Chen, Z. Gao, Plant Physiology 192 (2023) 2243–2260. date_created: 2023-07-12T07:32:58Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-02T06:27:55Z day: '01' ddc: - '575' department: - _id: JiFr doi: 10.1093/plphys/kiad207 external_id: isi: - '000971795800001' pmid: - '37010107' file: - access_level: open_access checksum: 5492e1d18ac3eaf202633d210fa0fb75 content_type: application/pdf creator: cchlebak date_created: 2023-07-13T13:26:33Z date_updated: 2023-07-13T13:26:33Z file_id: '13220' file_name: 2023_PlantPhys_Chen.pdf file_size: 2076977 relation: main_file success: 1 file_date_updated: 2023-07-13T13:26:33Z has_accepted_license: '1' intvolume: ' 192' isi: 1 issue: '3' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2243-2260 pmid: 1 publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' status: public title: Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 192 year: '2023' ... --- _id: '12478' abstract: - lang: eng text: In Gram negative bacteria, the multiple antibiotic resistance or mar operon, is known to control the expression of multi-drug efflux genes that protect bacteria from a wide range of drugs. As many different chemical compounds can induce this operon, identifying the parameters that govern the dynamics of its induction is crucial to better characterize the processes of tolerance and resistance. Most experiments have assumed that the properties of the mar transcriptional network can be inferred from population measurements. However, measurements from an asynchronous population of cells can mask underlying phenotypic variations of single cells. We monitored the activity of the mar promoter in single Escherichia coli cells in linear micro-colonies and established that the response to a steady level of inducer was most heterogeneous within individual colonies for an intermediate value of inducer. Specifically, sub-lineages defined by contiguous daughter-cells exhibited similar promoter activity, whereas activity was greatly variable between different sub-lineages. Specific sub-trees of uniform promoter activity persisted over several generations. Statistical analyses of the lineages suggest that the presence of these sub-trees is the signature of an inducible memory of the promoter state that is transmitted from mother to daughter cells. This single-cell study reveals that the degree of epigenetic inheritance changes as a function of inducer concentration, suggesting that phenotypic inheritance may be an inducible phenotype. acknowledgement: This work was supported by NIH P50 award P50GM081892-02 to the University of Chicago, a catalyst grant from the Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust to PC, and a Yen Fellowship to CCG. MA was partially supported by PAPIIT-UNAM grant IN-11322. article_number: '1049255' article_processing_charge: Yes article_type: original author: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: L full_name: Bruneaux, L last_name: Bruneaux - first_name: P full_name: Oikonomou, P last_name: Oikonomou - first_name: M full_name: Aldana, M last_name: Aldana - first_name: P full_name: Cluzel, P last_name: Cluzel citation: ama: Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. 2023;14. doi:10.3389/fmicb.2023.1049255 apa: Guet, C. C., Bruneaux, L., Oikonomou, P., Aldana, M., & Cluzel, P. (2023). Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. Frontiers. https://doi.org/10.3389/fmicb.2023.1049255 chicago: Guet, Calin C, L Bruneaux, P Oikonomou, M Aldana, and P Cluzel. “Monitoring Lineages of Growing and Dividing Bacteria Reveals an Inducible Memory of Mar Operon Expression.” Frontiers in Microbiology. Frontiers, 2023. https://doi.org/10.3389/fmicb.2023.1049255. ieee: C. C. Guet, L. Bruneaux, P. Oikonomou, M. Aldana, and P. Cluzel, “Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression,” Frontiers in Microbiology, vol. 14. Frontiers, 2023. ista: Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. 2023. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. 14, 1049255. mla: Guet, Calin C., et al. “Monitoring Lineages of Growing and Dividing Bacteria Reveals an Inducible Memory of Mar Operon Expression.” Frontiers in Microbiology, vol. 14, 1049255, Frontiers, 2023, doi:10.3389/fmicb.2023.1049255. short: C.C. Guet, L. Bruneaux, P. Oikonomou, M. Aldana, P. Cluzel, Frontiers in Microbiology 14 (2023). date_created: 2023-02-02T08:13:28Z date_published: 2023-06-20T00:00:00Z date_updated: 2023-08-02T06:25:04Z day: '20' ddc: - '570' department: - _id: CaGu doi: 10.3389/fmicb.2023.1049255 external_id: isi: - '001030002600001' pmid: - '37485524' file: - access_level: open_access checksum: 7dd322347512afaa5daf72a0154f2f07 content_type: application/pdf creator: dernst date_created: 2023-07-31T07:16:34Z date_updated: 2023-07-31T07:16:34Z file_id: '13322' file_name: 2023_FrontiersMicrobiology_Guet.pdf file_size: 6452841 relation: main_file success: 1 file_date_updated: 2023-07-31T07:16:34Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Frontiers in Microbiology publication_identifier: eissn: - 1664-302X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '13237' abstract: - lang: eng text: The formation of amyloid fibrils is a general class of protein self-assembly behaviour, which is associated with both functional biology and the development of a number of disorders, such as Alzheimer and Parkinson diseases. In this Review, we discuss how general physical concepts from the study of phase transitions can be used to illuminate the fundamental mechanisms of amyloid self-assembly. We summarize progress in the efforts to describe the essential biophysical features of amyloid self-assembly as a nucleation-and-growth process and discuss how master equation approaches can reveal the key molecular pathways underlying this process, including the role of secondary nucleation. Additionally, we outline how non-classical aspects of aggregate formation involving oligomers or biomolecular condensates have emerged, inspiring developments in understanding, modelling and modulating complex protein assembly pathways. Finally, we consider how these concepts can be applied to kinetics-based drug discovery and therapeutic design to develop treatments for protein aggregation diseases. acknowledgement: The authors acknowledge support from the Institute for the Physics of Living Systems, University College London (T.C.T.M.), the Swedish Research Council (2015-00143) (S.L.), the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the ERC grant PhysProt (agreement no. 337969) (T.P.J.K.), the BBSRC (T.P.J.K.), the Newman Foundation (T.P.J.K.) and the Wellcome Trust Collaborative Award 203249/Z/16/Z (T.P.J.K.). The authors thank C. Flandoli for help with illustrations. article_processing_charge: No article_type: original author: - first_name: Thomas C.T. full_name: Michaels, Thomas C.T. last_name: Michaels - first_name: Daoyuan full_name: Qian, Daoyuan last_name: Qian - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Michele full_name: Vendruscolo, Michele last_name: Vendruscolo - first_name: Sara full_name: Linse, Sara last_name: Linse - first_name: Tuomas P.J. full_name: Knowles, Tuomas P.J. last_name: Knowles citation: ama: Michaels TCT, Qian D, Šarić A, Vendruscolo M, Linse S, Knowles TPJ. Amyloid formation as a protein phase transition. Nature Reviews Physics. 2023;5:379–397. doi:10.1038/s42254-023-00598-9 apa: Michaels, T. C. T., Qian, D., Šarić, A., Vendruscolo, M., Linse, S., & Knowles, T. P. J. (2023). Amyloid formation as a protein phase transition. Nature Reviews Physics. Springer Nature. https://doi.org/10.1038/s42254-023-00598-9 chicago: Michaels, Thomas C.T., Daoyuan Qian, Anđela Šarić, Michele Vendruscolo, Sara Linse, and Tuomas P.J. Knowles. “Amyloid Formation as a Protein Phase Transition.” Nature Reviews Physics. Springer Nature, 2023. https://doi.org/10.1038/s42254-023-00598-9. ieee: T. C. T. Michaels, D. Qian, A. Šarić, M. Vendruscolo, S. Linse, and T. P. J. Knowles, “Amyloid formation as a protein phase transition,” Nature Reviews Physics, vol. 5. Springer Nature, pp. 379–397, 2023. ista: Michaels TCT, Qian D, Šarić A, Vendruscolo M, Linse S, Knowles TPJ. 2023. Amyloid formation as a protein phase transition. Nature Reviews Physics. 5, 379–397. mla: Michaels, Thomas C. T., et al. “Amyloid Formation as a Protein Phase Transition.” Nature Reviews Physics, vol. 5, Springer Nature, 2023, pp. 379–397, doi:10.1038/s42254-023-00598-9. short: T.C.T. Michaels, D. Qian, A. Šarić, M. Vendruscolo, S. Linse, T.P.J. Knowles, Nature Reviews Physics 5 (2023) 379–397. date_created: 2023-07-16T22:01:12Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-02T06:28:38Z day: '01' department: - _id: AnSa doi: 10.1038/s42254-023-00598-9 external_id: isi: - '001017539800001' intvolume: ' 5' isi: 1 language: - iso: eng month: '07' oa_version: None page: 379–397 publication: Nature Reviews Physics publication_identifier: eissn: - 2522-5820 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Amyloid formation as a protein phase transition type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2023' ... --- _id: '13229' abstract: - lang: eng text: Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation. acknowledgement: This work was supported by funding from the European Union (European Research Council Advanced grant 742573) to C.-P.H. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. article_processing_charge: No article_type: original author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Laura full_name: Hofmann, Laura id: b88d43f2-dc74-11ea-a0a7-e41b7912e031 last_name: Hofmann - first_name: Irene full_name: Steccari, Irene id: 2705C766-9FE2-11EA-B224-C6773DDC885E last_name: Steccari - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg C-PJ. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biology. 2023;21(6):e3002146. doi:10.1371/journal.pbio.3002146 apa: Shamipour, S., Hofmann, L., Steccari, I., Kardos, R., & Heisenberg, C.-P. J. (2023). Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.3002146 chicago: Shamipour, Shayan, Laura Hofmann, Irene Steccari, Roland Kardos, and Carl-Philipp J Heisenberg. “Yolk Granule Fusion and Microtubule Aster Formation Regulate Cortical Granule Translocation and Exocytosis in Zebrafish Oocytes.” PLoS Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pbio.3002146. ieee: S. Shamipour, L. Hofmann, I. Steccari, R. Kardos, and C.-P. J. Heisenberg, “Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes,” PLoS Biology, vol. 21, no. 6. Public Library of Science, p. e3002146, 2023. ista: Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg C-PJ. 2023. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biology. 21(6), e3002146. mla: Shamipour, Shayan, et al. “Yolk Granule Fusion and Microtubule Aster Formation Regulate Cortical Granule Translocation and Exocytosis in Zebrafish Oocytes.” PLoS Biology, vol. 21, no. 6, Public Library of Science, 2023, p. e3002146, doi:10.1371/journal.pbio.3002146. short: S. Shamipour, L. Hofmann, I. Steccari, R. Kardos, C.-P.J. Heisenberg, PLoS Biology 21 (2023) e3002146. date_created: 2023-07-16T22:01:09Z date_published: 2023-06-08T00:00:00Z date_updated: 2023-08-02T06:33:14Z day: '08' ddc: - '570' department: - _id: CaHe doi: 10.1371/journal.pbio.3002146 ec_funded: 1 external_id: isi: - '001003199100005' pmid: - '37289834' file: - access_level: open_access checksum: 8e88cb0e5a6433a2f1939a9030bed384 content_type: application/pdf creator: dernst date_created: 2023-07-18T07:59:58Z date_updated: 2023-07-18T07:59:58Z file_id: '13246' file_name: 2023_PloSBiology_Shamipour.pdf file_size: 4431723 relation: main_file success: 1 file_date_updated: 2023-07-18T07:59:58Z has_accepted_license: '1' intvolume: ' 21' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: e3002146 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: PLoS Biology publication_identifier: eissn: - 1545-7885 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2023' ... --- _id: '13197' abstract: - lang: eng text: "Nominally identical materials exchange net electric charge during contact through a mechanism that is still debated. ‘Mosaic models’, in which surfaces are presumed to consist of a random patchwork of microscopic donor/acceptor sites, offer an appealing explanation for this phenomenon. However, recent experiments have shown that global differences persist even between same-material samples, which the standard mosaic framework does not account for. Here, we expand the mosaic framework by incorporating global differences in the densities of donor/acceptor sites. We develop\r\nan analytical model, backed by numerical simulations, that smoothly connects the global and deterministic charge transfer of different materials to the local and stochastic mosaic picture normally associated with identical materials. Going further, we extend our model to explain the effect of contact asymmetries during sliding, providing a plausible explanation for reversal of charging sign that has been observed experimentally." acknowledgement: "This project has received funding from the European Research Council Grant Agreement No. 949120 and from\r\nthe European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant\r\nAgreement No. 754411. " article_number: '065601' article_processing_charge: No article_type: original author: - first_name: Galien M full_name: Grosjean, Galien M id: 0C5FDA4A-9CF6-11E9-8939-FF05E6697425 last_name: Grosjean orcid: 0000-0001-5154-417X - first_name: Scott R full_name: Waitukaitis, Scott R id: 3A1FFC16-F248-11E8-B48F-1D18A9856A87 last_name: Waitukaitis orcid: 0000-0002-2299-3176 citation: ama: 'Grosjean GM, Waitukaitis SR. Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials. 2023;7(6). doi:10.1103/physrevmaterials.7.065601' apa: 'Grosjean, G. M., & Waitukaitis, S. R. (2023). Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials. American Physical Society. https://doi.org/10.1103/physrevmaterials.7.065601' chicago: 'Grosjean, Galien M, and Scott R Waitukaitis. “Asymmetries in Triboelectric Charging: Generalizing Mosaic Models to Different-Material Samples and Sliding Contacts.” Physical Review Materials. American Physical Society, 2023. https://doi.org/10.1103/physrevmaterials.7.065601.' ieee: 'G. M. Grosjean and S. R. Waitukaitis, “Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts,” Physical Review Materials, vol. 7, no. 6. American Physical Society, 2023.' ista: 'Grosjean GM, Waitukaitis SR. 2023. Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials. 7(6), 065601.' mla: 'Grosjean, Galien M., and Scott R. Waitukaitis. “Asymmetries in Triboelectric Charging: Generalizing Mosaic Models to Different-Material Samples and Sliding Contacts.” Physical Review Materials, vol. 7, no. 6, 065601, American Physical Society, 2023, doi:10.1103/physrevmaterials.7.065601.' short: G.M. Grosjean, S.R. Waitukaitis, Physical Review Materials 7 (2023). date_created: 2023-07-07T12:48:01Z date_published: 2023-06-13T00:00:00Z date_updated: 2023-08-02T06:34:47Z day: '13' ddc: - '537' department: - _id: ScWa doi: 10.1103/physrevmaterials.7.065601 ec_funded: 1 external_id: arxiv: - '2304.12861' isi: - '001019565900002' file: - access_level: open_access checksum: 75584730d9cdd50eeccb4c52c509776d content_type: application/pdf creator: ggrosjea date_created: 2023-07-07T12:49:51Z date_updated: 2023-07-07T12:49:51Z file_id: '13198' file_name: Mosaic_asymmetries.pdf file_size: 1127040 relation: main_file success: 1 file_date_updated: 2023-07-07T12:49:51Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '6' keyword: - Physics and Astronomy (miscellaneous) - General Materials Science language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version project: - _id: 0aa60e99-070f-11eb-9043-a6de6bdc3afa call_identifier: H2020 grant_number: '949120' name: 'Tribocharge: a multi-scale approach to an enduring problem in physics' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Materials publication_identifier: issn: - 2475-9953 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: 'Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2023' ... --- _id: '13230' abstract: - lang: eng text: 'To interpret the sensory environment, the brain combines ambiguous sensory measurements with knowledge that reflects context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages knowledge about the statistical structure of the task to maximize decision accuracy, including knowledge about the dynamics of the environment. We show that its decisions are biased by the dynamically changing task context. The magnitude of this decision bias depends on the observer’s continually evolving belief about the current context. The model therefore not only predicts that decision bias will grow as the context is indicated more reliably, but also as the stability of the environment increases, and as the number of trials since the last context switch grows. Analysis of human choice data validates all three predictions, suggesting that the brain leverages knowledge of the statistical structure of environmental change when interpreting ambiguous sensory signals.' acknowledgement: The authors thank Corey Ziemba and Zoe Boundy-Singer for valuable discussion and feedback. article_number: e1011104 article_processing_charge: No article_type: original author: - first_name: Julie A. full_name: Charlton, Julie A. last_name: Charlton - first_name: Wiktor F full_name: Mlynarski, Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - first_name: Yoon H. full_name: Bai, Yoon H. last_name: Bai - first_name: Ann M. full_name: Hermundstad, Ann M. last_name: Hermundstad - first_name: Robbe L.T. full_name: Goris, Robbe L.T. last_name: Goris citation: ama: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 2023;19(6). doi:10.1371/journal.pcbi.1011104 apa: Charlton, J. A., Mlynarski, W. F., Bai, Y. H., Hermundstad, A. M., & Goris, R. L. T. (2023). Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1011104 chicago: Charlton, Julie A., Wiktor F Mlynarski, Yoon H. Bai, Ann M. Hermundstad, and Robbe L.T. Goris. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pcbi.1011104. ieee: J. A. Charlton, W. F. Mlynarski, Y. H. Bai, A. M. Hermundstad, and R. L. T. Goris, “Environmental dynamics shape perceptual decision bias,” PLoS Computational Biology, vol. 19, no. 6. Public Library of Science, 2023. ista: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. 2023. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 19(6), e1011104. mla: Charlton, Julie A., et al. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology, vol. 19, no. 6, e1011104, Public Library of Science, 2023, doi:10.1371/journal.pcbi.1011104. short: J.A. Charlton, W.F. Mlynarski, Y.H. Bai, A.M. Hermundstad, R.L.T. Goris, PLoS Computational Biology 19 (2023). date_created: 2023-07-16T22:01:09Z date_published: 2023-06-08T00:00:00Z date_updated: 2023-08-02T06:33:50Z day: '08' ddc: - '570' department: - _id: MaJö doi: 10.1371/journal.pcbi.1011104 external_id: isi: - '001003410200003' pmid: - '37289753' file: - access_level: open_access checksum: 800761fa2c647fabd6ad034589bc526e content_type: application/pdf creator: dernst date_created: 2023-07-18T08:07:59Z date_updated: 2023-07-18T08:07:59Z file_id: '13247' file_name: 2023_PloSCompBio_Charlton.pdf file_size: 2281868 relation: main_file success: 1 file_date_updated: 2023-07-18T08:07:59Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Environmental dynamics shape perceptual decision bias tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '13232' abstract: - lang: eng text: The potential of immune-evasive mutation accumulation in the SARS-CoV-2 virus has led to its rapid spread, causing over 600 million confirmed cases and more than 6.5 million confirmed deaths. The huge demand for the rapid development and deployment of low-cost and effective vaccines against emerging variants has renewed interest in DNA vaccine technology. Here, we report the rapid generation and immunological evaluation of novel DNA vaccine candidates against the Wuhan-Hu-1 and Omicron variants based on the RBD protein fused with the Potato virus X coat protein (PVXCP). The delivery of DNA vaccines using electroporation in a two-dose regimen induced high-antibody titers and profound cellular responses in mice. The antibody titers induced against the Omicron variant of the vaccine were sufficient for effective protection against both Omicron and Wuhan-Hu-1 virus infections. The PVXCP protein in the vaccine construct shifted the immune response to the favorable Th1-like type and provided the oligomerization of RBD-PVXCP protein. Naked DNA delivery by needle-free injection allowed us to achieve antibody titers comparable with mRNA-LNP delivery in rabbits. These data identify the RBD-PVXCP DNA vaccine platform as a promising solution for robust and effective SARS-CoV-2 protection, supporting further translational study. acknowledgement: The authors declare that this study received funding from Immunofusion. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article, or the decision to submit it for publication. The authors express their gratitude to the Institute of Physiology of the National Academy of Sciences of Belarus for providing assistance in keeping laboratory animals. article_number: '1014' article_processing_charge: No article_type: original author: - first_name: Dmitri full_name: Dormeshkin, Dmitri last_name: Dormeshkin - first_name: Mikalai full_name: Katsin, Mikalai last_name: Katsin - first_name: Maria full_name: Stegantseva, Maria last_name: Stegantseva - first_name: Sergey full_name: Golenchenko, Sergey last_name: Golenchenko - first_name: Michail full_name: Shapira, Michail last_name: Shapira - first_name: Simon full_name: Dubovik, Simon last_name: Dubovik - first_name: Dzmitry full_name: Lutskovich, Dzmitry last_name: Lutskovich - first_name: Anton full_name: Kavaleuski, Anton id: 62304f89-eb97-11eb-a6c2-8903dd183976 last_name: Kavaleuski orcid: 0000-0003-2091-526X - first_name: Alexander full_name: Meleshko, Alexander last_name: Meleshko citation: ama: Dormeshkin D, Katsin M, Stegantseva M, et al. Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. 2023;11(6). doi:10.3390/vaccines11061014 apa: Dormeshkin, D., Katsin, M., Stegantseva, M., Golenchenko, S., Shapira, M., Dubovik, S., … Meleshko, A. (2023). Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. MDPI. https://doi.org/10.3390/vaccines11061014 chicago: Dormeshkin, Dmitri, Mikalai Katsin, Maria Stegantseva, Sergey Golenchenko, Michail Shapira, Simon Dubovik, Dzmitry Lutskovich, Anton Kavaleuski, and Alexander Meleshko. “Design and Immunogenicity of SARS-CoV-2 DNA Vaccine Encoding RBD-PVXCP Fusion Protein.” Vaccines. MDPI, 2023. https://doi.org/10.3390/vaccines11061014. ieee: D. Dormeshkin et al., “Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein,” Vaccines, vol. 11, no. 6. MDPI, 2023. ista: Dormeshkin D, Katsin M, Stegantseva M, Golenchenko S, Shapira M, Dubovik S, Lutskovich D, Kavaleuski A, Meleshko A. 2023. Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. 11(6), 1014. mla: Dormeshkin, Dmitri, et al. “Design and Immunogenicity of SARS-CoV-2 DNA Vaccine Encoding RBD-PVXCP Fusion Protein.” Vaccines, vol. 11, no. 6, 1014, MDPI, 2023, doi:10.3390/vaccines11061014. short: D. Dormeshkin, M. Katsin, M. Stegantseva, S. Golenchenko, M. Shapira, S. Dubovik, D. Lutskovich, A. Kavaleuski, A. Meleshko, Vaccines 11 (2023). date_created: 2023-07-16T22:01:10Z date_published: 2023-06-01T00:00:00Z date_updated: 2023-08-02T06:31:19Z day: '01' ddc: - '570' department: - _id: LeSa doi: 10.3390/vaccines11061014 external_id: isi: - '001017740000001' file: - access_level: open_access checksum: 8f484c0f30f8699c589b1c29a0fd7d7f content_type: application/pdf creator: dernst date_created: 2023-07-18T07:25:43Z date_updated: 2023-07-18T07:25:43Z file_id: '13244' file_name: 2023_Vaccines_Dormeshkin.pdf file_size: 2339746 relation: main_file success: 1 file_date_updated: 2023-07-18T07:25:43Z has_accepted_license: '1' intvolume: ' 11' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Vaccines publication_identifier: eissn: - 2076-393X publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2023' ... --- _id: '13235' abstract: - lang: eng text: AgSbSe2 is a promising thermoelectric (TE) p-type material for applications in the middle-temperature range. AgSbSe2 is characterized by relatively low thermal conductivities and high Seebeck coefficients, but its main limitation is moderate electrical conductivity. Herein, we detail an efficient and scalable hot-injection synthesis route to produce AgSbSe2 nanocrystals (NCs). To increase the carrier concentration and improve the electrical conductivity, these NCs are doped with Sn2+ on Sb3+ sites. Upon processing, the Sn2+ chemical state is conserved using a reducing NaBH4 solution to displace the organic ligand and anneal the material under a forming gas flow. The TE properties of the dense materials obtained from the consolidation of the NCs using a hot pressing are then characterized. The presence of Sn2+ ions replacing Sb3+ significantly increases the charge carrier concentration and, consequently, the electrical conductivity. Opportunely, the measured Seebeck coefficient varied within a small range upon Sn doping. The excellent performance obtained when Sn2+ ions are prevented from oxidation is rationalized by modeling the system. Calculated band structures disclosed that Sn doping induces convergence of the AgSbSe2 valence bands, accounting for an enhanced electronic effective mass. The dramatically enhanced carrier transport leads to a maximized power factor for AgSb0.98Sn0.02Se2 of 0.63 mW m–1 K–2 at 640 K. Thermally, phonon scattering is significantly enhanced in the NC-based materials, yielding an ultralow thermal conductivity of 0.3 W mK–1 at 666 K. Overall, a record-high figure of merit (zT) is obtained at 666 K for AgSb0.98Sn0.02Se2 at zT = 1.37, well above the values obtained for undoped AgSbSe2, at zT = 0.58 and state-of-art Pb- and Te-free materials, which makes AgSb0.98Sn0.02Se2 an excellent p-type candidate for medium-temperature TE applications. acknowledgement: Y.L. acknowledges funding from the National Natural Science Foundation of China (NSFC) (Grants No. 22209034), the Innovation and Entrepreneurship Project of Overseas Returnees in Anhui Province (Grant No. 2022LCX002). K.H.L. acknowledges financial support from the National Natural Science Foundation of China (Grant No. 22208293). Y.Z. acknowledges support from the SBIR program NanoOhmics. J.L. is grateful for the project supported by the Natural Science Foundation of Sichuan (2022NSFSC1229). M.I. acknowledges financial support from ISTA and the Werner Siemens Foundation. article_processing_charge: No article_type: original author: - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Mingquan full_name: Li, Mingquan last_name: Li - first_name: Shanhong full_name: Wan, Shanhong last_name: Wan - first_name: Khak Ho full_name: Lim, Khak Ho last_name: Lim - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Mengyao full_name: Li, Mengyao last_name: Li - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Min full_name: Hong, Min last_name: Hong - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: 'Liu Y, Li M, Wan S, et al. Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance. ACS Nano. 2023;17(12):11923–11934. doi:10.1021/acsnano.3c03541' apa: 'Liu, Y., Li, M., Wan, S., Lim, K. H., Zhang, Y., Li, M., … Cabot, A. (2023). Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance. ACS Nano. American Chemical Society. https://doi.org/10.1021/acsnano.3c03541' chicago: 'Liu, Yu, Mingquan Li, Shanhong Wan, Khak Ho Lim, Yu Zhang, Mengyao Li, Junshan Li, Maria Ibáñez, Min Hong, and Andreu Cabot. “Surface Chemistry and Band Engineering in AgSbSe₂: Toward High Thermoelectric Performance.” ACS Nano. American Chemical Society, 2023. https://doi.org/10.1021/acsnano.3c03541.' ieee: 'Y. Liu et al., “Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance,” ACS Nano, vol. 17, no. 12. American Chemical Society, pp. 11923–11934, 2023.' ista: 'Liu Y, Li M, Wan S, Lim KH, Zhang Y, Li M, Li J, Ibáñez M, Hong M, Cabot A. 2023. Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance. ACS Nano. 17(12), 11923–11934.' mla: 'Liu, Yu, et al. “Surface Chemistry and Band Engineering in AgSbSe₂: Toward High Thermoelectric Performance.” ACS Nano, vol. 17, no. 12, American Chemical Society, 2023, pp. 11923–11934, doi:10.1021/acsnano.3c03541.' short: Y. Liu, M. Li, S. Wan, K.H. Lim, Y. Zhang, M. Li, J. Li, M. Ibáñez, M. Hong, A. Cabot, ACS Nano 17 (2023) 11923–11934. date_created: 2023-07-16T22:01:11Z date_published: 2023-06-13T00:00:00Z date_updated: 2023-08-02T06:29:55Z day: '13' department: - _id: MaIb doi: 10.1021/acsnano.3c03541 external_id: isi: - '001008564800001' pmid: - '37310395' intvolume: ' 17' isi: 1 issue: '12' language: - iso: eng month: '06' oa_version: None page: 11923–11934 pmid: 1 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: ACS Nano publication_identifier: eissn: - 1936-086X issn: - 1936-0851 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2023' ... --- _id: '13231' abstract: - lang: eng text: We study ab initio approaches for calculating x-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula that expresses the inelastic contribution in terms of the dielectric function. We study the electronic dynamic structure factor computed from the Mermin dielectric function using an ab initio electron-ion collision frequency in comparison to computations using a linear-response time-dependent density functional theory (LR-TDDFT) framework for hydrogen and beryllium and investigate the dispersion of free-free and bound-free contributions to the scattering signal. A separate treatment of these contributions, where only the free-free part follows the Mermin dispersion, shows good agreement with LR-TDDFT results for ambient-density beryllium, but breaks down for highly compressed matter where the bound states become pressure ionized. LR-TDDFT is used to reanalyze x-ray Thomson scattering experiments on beryllium demonstrating strong deviations from the plasma conditions inferred with traditional analytic models at small scattering angles. acknowledgement: "We want to thank P. Sperling, B. Witte, M. French, G. Röpke, H. J. Lee and A. Cangi for many helpful discussions. M. S. and R. R. acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) within the Research Unit FOR 2440. All simulations and analyses were performed at the North-German Supercomputing Alliance (HLRN) and the ITMZ of the University of Rostock. M. B. gratefully acknowledges support by the European Horizon 2020 programme within the Marie Sklodowska-Curie actions (xICE grant 894725) and the\r\nNOMIS foundation. The work of T. D. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344." article_number: '065207' article_processing_charge: No article_type: original author: - first_name: Maximilian full_name: Schörner, Maximilian last_name: Schörner - first_name: Mandy full_name: Bethkenhagen, Mandy id: 201939f4-803f-11ed-ab7e-d8da4bd1517f last_name: Bethkenhagen orcid: 0000-0002-1838-2129 - first_name: Tilo full_name: Döppner, Tilo last_name: Döppner - first_name: Dominik full_name: Kraus, Dominik last_name: Kraus - first_name: Luke B. full_name: Fletcher, Luke B. last_name: Fletcher - first_name: Siegfried H. full_name: Glenzer, Siegfried H. last_name: Glenzer - first_name: Ronald full_name: Redmer, Ronald last_name: Redmer citation: ama: Schörner M, Bethkenhagen M, Döppner T, et al. X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Physical Review E. 2023;107(6). doi:10.1103/PhysRevE.107.065207 apa: Schörner, M., Bethkenhagen, M., Döppner, T., Kraus, D., Fletcher, L. B., Glenzer, S. H., & Redmer, R. (2023). X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.107.065207 chicago: Schörner, Maximilian, Mandy Bethkenhagen, Tilo Döppner, Dominik Kraus, Luke B. Fletcher, Siegfried H. Glenzer, and Ronald Redmer. “X-Ray Thomson Scattering Spectra from Density Functional Theory Molecular Dynamics Simulations Based on a Modified Chihara Formula.” Physical Review E. American Physical Society, 2023. https://doi.org/10.1103/PhysRevE.107.065207. ieee: M. Schörner et al., “X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula,” Physical Review E, vol. 107, no. 6. American Physical Society, 2023. ista: Schörner M, Bethkenhagen M, Döppner T, Kraus D, Fletcher LB, Glenzer SH, Redmer R. 2023. X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Physical Review E. 107(6), 065207. mla: Schörner, Maximilian, et al. “X-Ray Thomson Scattering Spectra from Density Functional Theory Molecular Dynamics Simulations Based on a Modified Chihara Formula.” Physical Review E, vol. 107, no. 6, 065207, American Physical Society, 2023, doi:10.1103/PhysRevE.107.065207. short: M. Schörner, M. Bethkenhagen, T. Döppner, D. Kraus, L.B. Fletcher, S.H. Glenzer, R. Redmer, Physical Review E 107 (2023). date_created: 2023-07-16T22:01:10Z date_published: 2023-06-14T00:00:00Z date_updated: 2023-08-02T06:30:46Z day: '14' department: - _id: BiCh doi: 10.1103/PhysRevE.107.065207 external_id: arxiv: - '2301.01545' isi: - '001020265000002' intvolume: ' 107' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.01545 month: '06' oa: 1 oa_version: Preprint publication: Physical Review E publication_identifier: eissn: - 2470-0053 issn: - 2470-0045 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13233' abstract: - lang: eng text: We study the impact of finite-range physics on the zero-range-model analysis of three-body recombination in ultracold atoms. We find that temperature dependence of the zero-range parameters can vary from one set of measurements to another as it may be driven by the distribution of error bars in the experiment, and not by the underlying three-body physics. To study finite-temperature effects in three-body recombination beyond the zero-range physics, we introduce and examine a finite-range model based upon a hyperspherical formalism. The systematic error discussed in this Letter may provide a significant contribution to the error bars of measured three-body parameters. acknowledgement: We thank Jan Arlt, Hans-Werner Hammer, and Karsten Riisager for useful discussions. M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). article_number: L061304 article_processing_charge: No article_type: letter_note author: - first_name: Sofya full_name: Agafonova, Sofya id: 09501ff6-dca7-11ea-a8ae-b3e0b9166e80 last_name: Agafonova - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Agafonova S, Lemeshko M, Volosniev A. Finite-range bias in fitting three-body loss to the zero-range model. Physical Review A. 2023;107(6). doi:10.1103/PhysRevA.107.L061304 apa: Agafonova, S., Lemeshko, M., & Volosniev, A. (2023). Finite-range bias in fitting three-body loss to the zero-range model. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.107.L061304 chicago: Agafonova, Sofya, Mikhail Lemeshko, and Artem Volosniev. “Finite-Range Bias in Fitting Three-Body Loss to the Zero-Range Model.” Physical Review A. American Physical Society, 2023. https://doi.org/10.1103/PhysRevA.107.L061304. ieee: S. Agafonova, M. Lemeshko, and A. Volosniev, “Finite-range bias in fitting three-body loss to the zero-range model,” Physical Review A, vol. 107, no. 6. American Physical Society, 2023. ista: Agafonova S, Lemeshko M, Volosniev A. 2023. Finite-range bias in fitting three-body loss to the zero-range model. Physical Review A. 107(6), L061304. mla: Agafonova, Sofya, et al. “Finite-Range Bias in Fitting Three-Body Loss to the Zero-Range Model.” Physical Review A, vol. 107, no. 6, L061304, American Physical Society, 2023, doi:10.1103/PhysRevA.107.L061304. short: S. Agafonova, M. Lemeshko, A. Volosniev, Physical Review A 107 (2023). date_created: 2023-07-16T22:01:10Z date_published: 2023-06-20T00:00:00Z date_updated: 2023-08-02T06:31:52Z day: '20' department: - _id: MiLe - _id: OnHo doi: 10.1103/PhysRevA.107.L061304 ec_funded: 1 external_id: arxiv: - '2302.01022' isi: - '001019748000005' intvolume: ' 107' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2302.01022 month: '06' oa: 1 oa_version: Preprint project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Finite-range bias in fitting three-body loss to the zero-range model type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13256' abstract: - lang: eng text: The El Niño-Southern Oscillation (ENSO) and the Indian summer monsoon (ISM, or monsoon) are two giants of tropical climate. Here we assess the future evolution of the ENSO-monsoon teleconnection in climate simulations with idealized forcing of CO2 increment at a rate of 1% year-1 starting from a present-day condition (367 p.p.m.) until quadrupling. We find a monotonous weakening of the ENSO-monsoon teleconnection with the increase in CO2. Increased co-occurrences of El Niño and positive Indian Ocean Dipoles (pIODs) in a warmer climate weaken the teleconnection. Co-occurrences of El Niño and pIOD are attributable to mean sea surface temperature (SST) warming that resembles a pIOD-type warming pattern in the Indian Ocean and an El Niño-type warming in the Pacific. Since ENSO is a critical precursor of the strength of the Indian monsoon, a weakening of this relation may mean a less predictable Indian monsoon in a warmer climate. acknowledgement: This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (NRF-2018R1A5A1024958, RS-2023-00208000). Model simulation and data transfer were supported by the National Supercomputing Center with supercomputing resources including technical support (KSC-2019-CHA-0005), the National Center for Meteorological Supercomputer of the Korea Meteorological Administration (KMA), and by the Korea Research Environment Open NETwork (KREONET), respectively. We sincerely thank Dr. Jongsoo Shin of Pohang University of Science and Technology, Pohang, South Korea for the model simulations. article_number: '82' article_processing_charge: Yes article_type: original author: - first_name: Bidyut B full_name: Goswami, Bidyut B id: 3a4ac09c-6d61-11ec-bf66-884cde66b64b last_name: Goswami - first_name: Soon Il full_name: An, Soon Il last_name: An citation: ama: GOSWAMI BB, An SI. An assessment of the ENSO-monsoon teleconnection in a warming climate. npj Climate and Atmospheric Science. 2023;6. doi:10.1038/s41612-023-00411-5 apa: GOSWAMI, B. B., & An, S. I. (2023). An assessment of the ENSO-monsoon teleconnection in a warming climate. Npj Climate and Atmospheric Science. Springer Nature. https://doi.org/10.1038/s41612-023-00411-5 chicago: GOSWAMI, BIDYUT B, and Soon Il An. “An Assessment of the ENSO-Monsoon Teleconnection in a Warming Climate.” Npj Climate and Atmospheric Science. Springer Nature, 2023. https://doi.org/10.1038/s41612-023-00411-5. ieee: B. B. GOSWAMI and S. I. An, “An assessment of the ENSO-monsoon teleconnection in a warming climate,” npj Climate and Atmospheric Science, vol. 6. Springer Nature, 2023. ista: GOSWAMI BB, An SI. 2023. An assessment of the ENSO-monsoon teleconnection in a warming climate. npj Climate and Atmospheric Science. 6, 82. mla: GOSWAMI, BIDYUT B., and Soon Il An. “An Assessment of the ENSO-Monsoon Teleconnection in a Warming Climate.” Npj Climate and Atmospheric Science, vol. 6, 82, Springer Nature, 2023, doi:10.1038/s41612-023-00411-5. short: B.B. GOSWAMI, S.I. An, Npj Climate and Atmospheric Science 6 (2023). date_created: 2023-07-23T22:01:10Z date_published: 2023-07-08T00:00:00Z date_updated: 2023-08-02T06:38:07Z day: '08' ddc: - '550' department: - _id: CaMu doi: 10.1038/s41612-023-00411-5 external_id: isi: - '001024920300002' file: - access_level: open_access checksum: e9967d436a83b8ffcc6f58782e1f7500 content_type: application/pdf creator: dernst date_created: 2023-07-31T08:00:01Z date_updated: 2023-07-31T08:00:01Z file_id: '13326' file_name: 2023_npjclimate_Goswami.pdf file_size: 1750712 relation: main_file success: 1 file_date_updated: 2023-07-31T08:00:01Z has_accepted_license: '1' intvolume: ' 6' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: npj Climate and Atmospheric Science publication_identifier: eissn: - 2397-3722 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: An assessment of the ENSO-monsoon teleconnection in a warming climate tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2023' ... --- _id: '13260' abstract: - lang: eng text: Experimental evolution studies are powerful approaches to examine the evolutionary history of lab populations. Such studies have shed light on how selection changes phenotypes and genotypes. Most of these studies have not examined the time course of adaptation under sexual selection manipulation, by resequencing the populations’ genomes at multiple time points. Here, we analyze allele frequency trajectories in Drosophila pseudoobscura where we altered their sexual selection regime for 200 generations and sequenced pooled populations at 5 time points. The intensity of sexual selection was either relaxed in monogamous populations (M) or elevated in polyandrous lines (E). We present a comprehensive study of how selection alters population genetics parameters at the chromosome and gene level. We investigate differences in the effective population size—Ne—between the treatments, and perform a genome-wide scan to identify signatures of selection from the time-series data. We found genomic signatures of adaptation to both regimes in D. pseudoobscura. There are more significant variants in E lines as expected from stronger sexual selection. However, we found that the response on the X chromosome was substantial in both treatments, more pronounced in E and restricted to the more recently sex-linked chromosome arm XR in M. In the first generations of experimental evolution, we estimate Ne to be lower on the X in E lines, which might indicate a swift adaptive response at the onset of selection. Additionally, the third chromosome was affected by elevated polyandry whereby its distal end harbors a region showing a strong signal of adaptive evolution especially in E lines. acknowledgement: This work was supported by the Vienna Science and Technology Fund (WWTF)(10.47379/MA16061). C.K. received funding from the Royal Society (RG170315) and the Carnegie Trust (RIG007474). M.G.R. and R.R.S. have been supported by NERC (UK) grants NE/I014632/1 and NE/V001566/1. Bioinformatics analyses were performed on the computer cluster at the University of St Andrews Bioinformatics Unit, which is funded by Wellcome Trust ISSF awards 105621/Z/14/Z. Complementary data parsing was carried out with the computational resources provided by the Research/Scientific Computing teams at The James Hutton Institute and the National Institute of Agricultural Botany (NIAB)—UK’s Crop Diversity Bioinformatics HPC, BBSRC grant BB/S019669/1. We are thankful to Paris Veltsos and R. Axel W. Wiberg for useful discussions about the project as well as providing us with the resequencing data they had produced as a result of previous work on this experiment. We are especially grateful to Tanya Sneddon for her help with the DNA extraction process and shipping. article_number: evad113 article_processing_charge: Yes article_type: original author: - first_name: Carolina full_name: De Castro Barbosa Rodrigues Barata, Carolina id: 20565186-803f-11ed-ab7e-96a4ff7694ef last_name: De Castro Barbosa Rodrigues Barata - first_name: Rhonda R. full_name: Snook, Rhonda R. last_name: Snook - first_name: Michael G. full_name: Ritchie, Michael G. last_name: Ritchie - first_name: Carolin full_name: Kosiol, Carolin last_name: Kosiol citation: ama: 'de Castro Barbosa Rodrigues Barata C, Snook RR, Ritchie MG, Kosiol C. Selection on the fly: Short-term adaptation to an altered sexual selection regime in Drosophila pseudoobscura. Genome biology and evolution. 2023;15(7). doi:10.1093/gbe/evad113' apa: 'de Castro Barbosa Rodrigues Barata, C., Snook, R. R., Ritchie, M. G., & Kosiol, C. (2023). Selection on the fly: Short-term adaptation to an altered sexual selection regime in Drosophila pseudoobscura. Genome Biology and Evolution. Oxford Academic. https://doi.org/10.1093/gbe/evad113' chicago: 'Castro Barbosa Rodrigues Barata, Carolina de, Rhonda R. Snook, Michael G. Ritchie, and Carolin Kosiol. “Selection on the Fly: Short-Term Adaptation to an Altered Sexual Selection Regime in Drosophila Pseudoobscura.” Genome Biology and Evolution. Oxford Academic, 2023. https://doi.org/10.1093/gbe/evad113.' ieee: 'C. de Castro Barbosa Rodrigues Barata, R. R. Snook, M. G. Ritchie, and C. Kosiol, “Selection on the fly: Short-term adaptation to an altered sexual selection regime in Drosophila pseudoobscura,” Genome biology and evolution, vol. 15, no. 7. Oxford Academic, 2023.' ista: 'de Castro Barbosa Rodrigues Barata C, Snook RR, Ritchie MG, Kosiol C. 2023. Selection on the fly: Short-term adaptation to an altered sexual selection regime in Drosophila pseudoobscura. Genome biology and evolution. 15(7), evad113.' mla: 'de Castro Barbosa Rodrigues Barata, Carolina, et al. “Selection on the Fly: Short-Term Adaptation to an Altered Sexual Selection Regime in Drosophila Pseudoobscura.” Genome Biology and Evolution, vol. 15, no. 7, evad113, Oxford Academic, 2023, doi:10.1093/gbe/evad113.' short: C. de Castro Barbosa Rodrigues Barata, R.R. Snook, M.G. Ritchie, C. Kosiol, Genome Biology and Evolution 15 (2023). date_created: 2023-07-23T22:01:11Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-02T06:42:35Z day: '01' ddc: - '570' department: - _id: BeVi doi: 10.1093/gbe/evad113 external_id: isi: - '001023444700003' pmid: - '37341535' file: - access_level: open_access checksum: 70de3c4878de6efe00dc56de2df8812f content_type: application/pdf creator: dernst date_created: 2023-08-01T06:58:34Z date_updated: 2023-08-01T06:58:34Z file_id: '13339' file_name: 2023_GBE_Barata.pdf file_size: 2382587 relation: main_file success: 1 file_date_updated: 2023-08-01T06:58:34Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 publication: Genome biology and evolution publication_identifier: eissn: - 1759-6653 publication_status: published publisher: Oxford Academic quality_controlled: '1' related_material: link: - relation: software url: https://github.com/carolbarata/dpseudo-n-beyond scopus_import: '1' status: public title: 'Selection on the fly: Short-term adaptation to an altered sexual selection regime in Drosophila pseudoobscura' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2023' ... --- _id: '13346' abstract: - lang: eng text: The self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with features and properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice. As a case study, we focus on gold nanoparticles bearing positively charged groups that self-assemble into FCC crystals via mediation by citrate counterions. In silico ohmic experiments show how the dynamically diverse behavior of the ions in different superlattice domains allows the opening of conductive ionic gates above certain levels of applied electric fields. The observed binary conductive/nonconductive behavior is reminiscent of that of conventional semiconductors, while, at a supramolecular level, crossing the “band gap” requires a sufficient electrostatic stimulus to break the intermolecular interactions and make ions diffuse throughout the superlattice’s cavities. article_processing_charge: No article_type: original author: - first_name: Chiara full_name: Lionello, Chiara last_name: Lionello - first_name: Claudio full_name: Perego, Claudio last_name: Perego - first_name: Andrea full_name: Gardin, Andrea last_name: Gardin - first_name: Rafal full_name: Klajn, Rafal id: 8e84690e-1e48-11ed-a02b-a1e6fb8bb53b last_name: Klajn - first_name: Giovanni M. full_name: Pavan, Giovanni M. last_name: Pavan citation: ama: Lionello C, Perego C, Gardin A, Klajn R, Pavan GM. Supramolecular semiconductivity through emerging ionic gates in ion–nanoparticle superlattices. ACS Nano. 2023;17(1):275-287. doi:10.1021/acsnano.2c07558 apa: Lionello, C., Perego, C., Gardin, A., Klajn, R., & Pavan, G. M. (2023). Supramolecular semiconductivity through emerging ionic gates in ion–nanoparticle superlattices. ACS Nano. American Chemical Society. https://doi.org/10.1021/acsnano.2c07558 chicago: Lionello, Chiara, Claudio Perego, Andrea Gardin, Rafal Klajn, and Giovanni M. Pavan. “Supramolecular Semiconductivity through Emerging Ionic Gates in Ion–Nanoparticle Superlattices.” ACS Nano. American Chemical Society, 2023. https://doi.org/10.1021/acsnano.2c07558. ieee: C. Lionello, C. Perego, A. Gardin, R. Klajn, and G. M. Pavan, “Supramolecular semiconductivity through emerging ionic gates in ion–nanoparticle superlattices,” ACS Nano, vol. 17, no. 1. American Chemical Society, pp. 275–287, 2023. ista: Lionello C, Perego C, Gardin A, Klajn R, Pavan GM. 2023. Supramolecular semiconductivity through emerging ionic gates in ion–nanoparticle superlattices. ACS Nano. 17(1), 275–287. mla: Lionello, Chiara, et al. “Supramolecular Semiconductivity through Emerging Ionic Gates in Ion–Nanoparticle Superlattices.” ACS Nano, vol. 17, no. 1, American Chemical Society, 2023, pp. 275–87, doi:10.1021/acsnano.2c07558. short: C. Lionello, C. Perego, A. Gardin, R. Klajn, G.M. Pavan, ACS Nano 17 (2023) 275–287. date_created: 2023-08-01T09:30:29Z date_published: 2023-01-10T00:00:00Z date_updated: 2023-08-02T06:51:15Z day: '10' doi: 10.1021/acsnano.2c07558 extern: '1' intvolume: ' 17' issue: '1' keyword: - General Physics and Astronomy - General Engineering - General Materials Science language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/acsnano.2c07558 month: '01' oa: 1 oa_version: Published Version page: 275-287 publication: ACS Nano publication_identifier: eissn: - 1936-086X issn: - 1936-0851 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Supramolecular semiconductivity through emerging ionic gates in ion–nanoparticle superlattices type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2023' ... --- _id: '13447' abstract: - lang: eng text: Asteroseismology has transformed stellar astrophysics. Red giant asteroseismology is a prime example, with oscillation periods and amplitudes that are readily detectable with time-domain space-based telescopes. These oscillations can be used to infer masses, ages and radii for large numbers of stars, providing unique constraints on stellar populations in our galaxy. The cadence, duration, and spatial resolution of the Roman galactic bulge time-domain survey (GBTDS) are well-suited for asteroseismology and will probe an important population not studied by prior missions. We identify photometric precision as a key requirement for realizing the potential of asteroseismology with Roman. A precision of 1 mmag per 15-min cadence or better for saturated stars will enable detections of the populous red clump star population in the Galactic bulge. If the survey efficiency is better than expected, we argue for repeat observations of the same fields to improve photometric precision, or covering additional fields to expand the stellar population reach if the photometric precision for saturated stars is better than 1 mmag. Asteroseismology is relatively insensitive to the timing of the observations during the mission, and the prime red clump targets can be observed in a single 70 day campaign in any given field. Complementary stellar characterization, particularly astrometry tied to the Gaia system, will also dramatically expand the diagnostic power of asteroseismology. We also highlight synergies to Roman GBTDS exoplanet science using transits and microlensing. article_number: '2307.03237' article_processing_charge: No author: - first_name: Daniel full_name: Huber, Daniel last_name: Huber - first_name: Marc full_name: Pinsonneault, Marc last_name: Pinsonneault - first_name: Paul full_name: Beck, Paul last_name: Beck - first_name: Timothy R. full_name: Bedding, Timothy R. last_name: Bedding - first_name: Joss Bland-Hawthorn full_name: Joss Bland-Hawthorn, Joss Bland-Hawthorn last_name: Joss Bland-Hawthorn - first_name: Sylvain N. full_name: Breton, Sylvain N. last_name: Breton - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: William J. full_name: Chaplin, William J. last_name: Chaplin - first_name: Rafael A. full_name: Garcia, Rafael A. last_name: Garcia - first_name: Samuel K. full_name: Grunblatt, Samuel K. last_name: Grunblatt - first_name: Joyce A. full_name: Guzik, Joyce A. last_name: Guzik - first_name: Saskia full_name: Hekker, Saskia last_name: Hekker - first_name: Steven D. full_name: Kawaler, Steven D. last_name: Kawaler - first_name: Stephane full_name: Mathis, Stephane last_name: Mathis - first_name: Savita full_name: Mathur, Savita last_name: Mathur - first_name: Travis full_name: Metcalfe, Travis last_name: Metcalfe - first_name: Benoit full_name: Mosser, Benoit last_name: Mosser - first_name: Melissa K. full_name: Ness, Melissa K. last_name: Ness - first_name: Anthony L. full_name: Piro, Anthony L. last_name: Piro - first_name: Aldo full_name: Serenelli, Aldo last_name: Serenelli - first_name: Sanjib full_name: Sharma, Sanjib last_name: Sharma - first_name: David R. full_name: Soderblom, David R. last_name: Soderblom - first_name: Keivan G. full_name: Stassun, Keivan G. last_name: Stassun - first_name: Dennis full_name: Stello, Dennis last_name: Stello - first_name: Jamie full_name: Tayar, Jamie last_name: Tayar - first_name: Gerard T. van full_name: Belle, Gerard T. van last_name: Belle - first_name: Joel C. full_name: Zinn, Joel C. last_name: Zinn citation: ama: Huber D, Pinsonneault M, Beck P, et al. Asteroseismology with the Roman galactic bulge time-domain survey. arXiv. doi:10.48550/arXiv.2307.03237 apa: Huber, D., Pinsonneault, M., Beck, P., Bedding, T. R., Joss Bland-Hawthorn, J. B.-H., Breton, S. N., … Zinn, J. C. (n.d.). Asteroseismology with the Roman galactic bulge time-domain survey. arXiv. https://doi.org/10.48550/arXiv.2307.03237 chicago: Huber, Daniel, Marc Pinsonneault, Paul Beck, Timothy R. Bedding, Joss Bland-Hawthorn Joss Bland-Hawthorn, Sylvain N. Breton, Lisa Annabelle Bugnet, et al. “Asteroseismology with the Roman Galactic Bulge Time-Domain Survey.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2307.03237. ieee: D. Huber et al., “Asteroseismology with the Roman galactic bulge time-domain survey,” arXiv. . ista: Huber D, Pinsonneault M, Beck P, Bedding TR, Joss Bland-Hawthorn JB-H, Breton SN, Bugnet LA, Chaplin WJ, Garcia RA, Grunblatt SK, Guzik JA, Hekker S, Kawaler SD, Mathis S, Mathur S, Metcalfe T, Mosser B, Ness MK, Piro AL, Serenelli A, Sharma S, Soderblom DR, Stassun KG, Stello D, Tayar J, Belle GT van, Zinn JC. Asteroseismology with the Roman galactic bulge time-domain survey. arXiv, 2307.03237. mla: Huber, Daniel, et al. “Asteroseismology with the Roman Galactic Bulge Time-Domain Survey.” ArXiv, 2307.03237, doi:10.48550/arXiv.2307.03237. short: D. Huber, M. Pinsonneault, P. Beck, T.R. Bedding, J.B.-H. Joss Bland-Hawthorn, S.N. Breton, L.A. Bugnet, W.J. Chaplin, R.A. Garcia, S.K. Grunblatt, J.A. Guzik, S. Hekker, S.D. Kawaler, S. Mathis, S. Mathur, T. Metcalfe, B. Mosser, M.K. Ness, A.L. Piro, A. Serenelli, S. Sharma, D.R. Soderblom, K.G. Stassun, D. Stello, J. Tayar, G.T. van Belle, J.C. Zinn, ArXiv (n.d.). date_created: 2023-08-02T07:30:43Z date_published: 2023-07-06T00:00:00Z date_updated: 2023-08-02T07:36:00Z day: '06' department: - _id: LiBu doi: 10.48550/arXiv.2307.03237 external_id: arxiv: - '2307.03237' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2307.03237 month: '07' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted status: public title: Asteroseismology with the Roman galactic bulge time-domain survey type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13354' abstract: - lang: eng text: 'Integrating light-sensitive molecules within nanoparticle (NP) assemblies is an attractive approach to fabricate new photoresponsive nanomaterials. Here, we describe the concept of photocleavable anionic glue (PAG): small trianions capable of mediating interactions between (and inducing the aggregation of) cationic NPs by means of electrostatic interactions. Exposure to light converts PAGs into dianionic products incapable of maintaining the NPs in an assembled state, resulting in light-triggered disassembly of NP aggregates. To demonstrate the proof-of-concept, we work with an organic PAG incorporating the UV-cleavable o-nitrobenzyl moiety and an inorganic PAG, the photosensitive trioxalatocobaltate(III) complex, which absorbs light across the entire visible spectrum. Both PAGs were used to prepare either amorphous NP assemblies or regular superlattices with a long-range NP order. These NP aggregates disassembled rapidly upon light exposure for a specific time, which could be tuned by the incident light wavelength or the amount of PAG used. Selective excitation of the inorganic PAG in a system combining the two PAGs results in a photodecomposition product that deactivates the organic PAG, enabling nontrivial disassembly profiles under a single type of external stimulus.' article_processing_charge: No article_type: original author: - first_name: Jinhua full_name: Wang, Jinhua last_name: Wang - first_name: Tzuf Shay full_name: Peled, Tzuf Shay last_name: Peled - first_name: Rafal full_name: Klajn, Rafal id: 8e84690e-1e48-11ed-a02b-a1e6fb8bb53b last_name: Klajn citation: ama: Wang J, Peled TS, Klajn R. Photocleavable anionic glues for light-responsive nanoparticle aggregates. Journal of the American Chemical Society. 2023;145(7):4098-4108. doi:10.1021/jacs.2c11973 apa: Wang, J., Peled, T. S., & Klajn, R. (2023). Photocleavable anionic glues for light-responsive nanoparticle aggregates. Journal of the American Chemical Society. American Chemical Society. https://doi.org/10.1021/jacs.2c11973 chicago: Wang, Jinhua, Tzuf Shay Peled, and Rafal Klajn. “Photocleavable Anionic Glues for Light-Responsive Nanoparticle Aggregates.” Journal of the American Chemical Society. American Chemical Society, 2023. https://doi.org/10.1021/jacs.2c11973. ieee: J. Wang, T. S. Peled, and R. Klajn, “Photocleavable anionic glues for light-responsive nanoparticle aggregates,” Journal of the American Chemical Society, vol. 145, no. 7. American Chemical Society, pp. 4098–4108, 2023. ista: Wang J, Peled TS, Klajn R. 2023. Photocleavable anionic glues for light-responsive nanoparticle aggregates. Journal of the American Chemical Society. 145(7), 4098–4108. mla: Wang, Jinhua, et al. “Photocleavable Anionic Glues for Light-Responsive Nanoparticle Aggregates.” Journal of the American Chemical Society, vol. 145, no. 7, American Chemical Society, 2023, pp. 4098–108, doi:10.1021/jacs.2c11973. short: J. Wang, T.S. Peled, R. Klajn, Journal of the American Chemical Society 145 (2023) 4098–4108. date_created: 2023-08-01T09:33:08Z date_published: 2023-02-09T00:00:00Z date_updated: 2023-08-02T10:44:22Z day: '09' doi: 10.1021/jacs.2c11973 extern: '1' external_id: pmid: - '36757850' intvolume: ' 145' issue: '7' keyword: - Colloid and Surface Chemistry - Biochemistry - General Chemistry - Catalysis language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/jacs.2c11973 month: '02' oa: 1 oa_version: Published Version page: 4098-4108 pmid: 1 publication: Journal of the American Chemical Society publication_identifier: eissn: - 1520-5126 issn: - 0002-7863 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Photocleavable anionic glues for light-responsive nanoparticle aggregates type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 145 year: '2023' ... --- _id: '12781' abstract: - lang: eng text: "Most energy in humans is produced in form of ATP by the mitochondrial respiratory chain consisting of several protein assemblies embedded into lipid membrane (complexes I-V). Complex I is the first and the largest enzyme of the respiratory chain which is essential for energy production. It couples the transfer of two electrons from NADH to ubiquinone with proton translocation across bacterial or inner mitochondrial membrane. The coupling mechanism between electron transfer and proton translocation is one of the biggest enigma in bioenergetics and structural biology. Even though the enzyme has been studied for decades, only recent technological advances in cryo-EM allowed its extensive structural investigation. \r\n\r\nComplex I from E.coli appears to be of special importance because it is a perfect model system with a rich mutant library, however the structure of the entire complex was unknown. In this thesis I have resolved structures of the minimal complex I version from E. coli in different states including reduced, inhibited, under reaction turnover and several others. Extensive structural analyses of these structures and comparison to structures from other species allowed to derive general features of conformational dynamics and propose a universal coupling mechanism. The mechanism is straightforward, robust and consistent with decades of experimental data available for complex I from different species. \r\n\r\nCyanobacterial NDH (cyanobacterial complex I) is a part of broad complex I superfamily and was studied as well in this thesis. It plays an important role in cyclic electron transfer (CET), during which electrons are cycled within PSI through ferredoxin and plastoquinone to generate proton gradient without NADPH production. Here, I solved structure of NDH and revealed additional state, which was not observed before. The novel “resting” state allowed to propose the mechanism of CET regulation. Moreover, conformational dynamics of NDH resembles one in complex I which suggest more broad universality of the proposed coupling mechanism.\r\n\r\nIn summary, results presented here helped to interpret decades of experimental data for complex I and contributed to fundamental mechanistic understanding of protein function.\r\n" acknowledged_ssus: - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Vladyslav full_name: Kravchuk, Vladyslav id: 4D62F2A6-F248-11E8-B48F-1D18A9856A87 last_name: Kravchuk citation: ama: Kravchuk V. Structural and mechanistic study of bacterial complex I and its cyanobacterial ortholog. 2023. doi:10.15479/at:ista:12781 apa: Kravchuk, V. (2023). Structural and mechanistic study of bacterial complex I and its cyanobacterial ortholog. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12781 chicago: Kravchuk, Vladyslav. “Structural and Mechanistic Study of Bacterial Complex I and Its Cyanobacterial Ortholog.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12781. ieee: V. Kravchuk, “Structural and mechanistic study of bacterial complex I and its cyanobacterial ortholog,” Institute of Science and Technology Austria, 2023. ista: Kravchuk V. 2023. Structural and mechanistic study of bacterial complex I and its cyanobacterial ortholog. Institute of Science and Technology Austria. mla: Kravchuk, Vladyslav. Structural and Mechanistic Study of Bacterial Complex I and Its Cyanobacterial Ortholog. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12781. short: V. Kravchuk, Structural and Mechanistic Study of Bacterial Complex I and Its Cyanobacterial Ortholog, Institute of Science and Technology Austria, 2023. date_created: 2023-03-31T12:24:42Z date_published: 2023-03-23T00:00:00Z date_updated: 2023-08-04T08:54:51Z day: '23' ddc: - '570' - '572' degree_awarded: PhD department: - _id: GradSch - _id: LeSa doi: 10.15479/at:ista:12781 ec_funded: 1 file: - access_level: closed checksum: 5ebb6345cb4119f93460c81310265a6d content_type: application/pdf creator: vkravchu date_created: 2023-04-19T14:33:41Z date_updated: 2023-04-19T14:33:41Z embargo: 2024-04-20 embargo_to: local file_id: '12852' file_name: VladyslavKravchuk_PhD_Thesis_PostSub_Final_1.pdf file_size: 6071553 relation: main_file - access_level: closed checksum: c12055c48411d030d2afa51de2166221 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: vkravchu date_created: 2023-04-19T14:33:52Z date_updated: 2023-04-20T07:02:59Z embargo: 2024-04-20 embargo_to: local file_id: '12853' file_name: VladyslavKravchuk_PhD_Thesis_PostSub_Final.docx file_size: 19468766 relation: source_file file_date_updated: 2023-04-20T07:02:59Z has_accepted_license: '1' language: - iso: eng month: '03' oa_version: Published Version page: '127' project: - _id: 238A0A5A-32DE-11EA-91FC-C7463DDC885E grant_number: '25541' name: 'Structural characterization of E. coli complex I: an important mechanistic model' - _id: 627abdeb-2b32-11ec-9570-ec31a97243d3 call_identifier: H2020 grant_number: '101020697' name: Structure and mechanism of respiratory chain molecular machines publication_identifier: isbn: - 978-3-99078-029-9 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '12138' relation: part_of_dissertation status: public status: public supervisor: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 title: Structural and mechanistic study of bacterial complex I and its cyanobacterial ortholog type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13074' abstract: - lang: eng text: "Deep learning has become an integral part of a large number of important applications, and many of the recent breakthroughs have been enabled by the ability to train very large models, capable to capture complex patterns and relationships from the data. At the same time, the massive sizes of modern deep learning models have made their deployment to smaller devices more challenging; this is particularly important, as in many applications the users rely on accurate deep learning predictions, but they only have access to devices with limited memory and compute power. One solution to this problem is to prune neural networks, by setting as many of their parameters as possible to zero, to obtain accurate sparse models with lower memory footprint. Despite the great research progress in obtaining sparse models that preserve accuracy, while satisfying memory and computational constraints, there are still many challenges associated with efficiently training sparse models, as well as understanding their generalization properties.\r\n\r\nThe focus of this thesis is to investigate how the training process of sparse models can be made more efficient, and to understand the differences between sparse and dense models in terms of how well they can generalize to changes in the data distribution. We first study a method for co-training sparse and dense models, at a lower cost compared to regular training. With our method we can obtain very accurate sparse networks, and dense models that can recover the baseline accuracy. Furthermore, we are able to more easily analyze the differences, at prediction level, between the sparse-dense model pairs. Next, we investigate the generalization properties of sparse neural networks in more detail, by studying how well different sparse models trained on a larger task can adapt to smaller, more specialized tasks, in a transfer learning scenario. Our analysis across multiple pruning methods and sparsity levels reveals that sparse models provide features that can transfer similarly to or better than the dense baseline. However, the choice of the pruning method plays an important role, and can influence the results when the features are fixed (linear finetuning), or when they are allowed to adapt to the new task (full finetuning). Using sparse models with fixed masks for finetuning on new tasks has an important practical advantage, as it enables training neural networks on smaller devices. However, one drawback of current pruning methods is that the entire training cycle has to be repeated to obtain the initial sparse model, for every sparsity target; in consequence, the entire training process is costly and also multiple models need to be stored. In the last part of the thesis we propose a method that can train accurate dense models that are compressible in a single step, to multiple sparsity levels, without additional finetuning. Our method results in sparse models that can be competitive with existing pruning methods, and which can also successfully generalize to new tasks." acknowledged_ssus: - _id: ScienComp alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Elena-Alexandra full_name: Peste, Elena-Alexandra id: 32D78294-F248-11E8-B48F-1D18A9856A87 last_name: Peste citation: ama: Peste E-A. Efficiency and generalization of sparse neural networks. 2023. doi:10.15479/at:ista:13074 apa: Peste, E.-A. (2023). Efficiency and generalization of sparse neural networks. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:13074 chicago: Peste, Elena-Alexandra. “Efficiency and Generalization of Sparse Neural Networks.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:13074. ieee: E.-A. Peste, “Efficiency and generalization of sparse neural networks,” Institute of Science and Technology Austria, 2023. ista: Peste E-A. 2023. Efficiency and generalization of sparse neural networks. Institute of Science and Technology Austria. mla: Peste, Elena-Alexandra. Efficiency and Generalization of Sparse Neural Networks. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:13074. short: E.-A. Peste, Efficiency and Generalization of Sparse Neural Networks, Institute of Science and Technology Austria, 2023. date_created: 2023-05-23T17:07:53Z date_published: 2023-05-23T00:00:00Z date_updated: 2023-08-04T10:33:27Z day: '23' ddc: - '000' degree_awarded: PhD department: - _id: GradSch - _id: DaAl - _id: ChLa doi: 10.15479/at:ista:13074 ec_funded: 1 file: - access_level: open_access checksum: 6b3354968403cb9d48cc5a83611fb571 content_type: application/pdf creator: epeste date_created: 2023-05-24T16:11:16Z date_updated: 2023-05-24T16:11:16Z file_id: '13087' file_name: PhD_Thesis_Alexandra_Peste_final.pdf file_size: 2152072 relation: main_file success: 1 - access_level: closed checksum: 8d0df94bbcf4db72c991f22503b3fd60 content_type: application/zip creator: epeste date_created: 2023-05-24T16:12:59Z date_updated: 2023-05-24T16:12:59Z file_id: '13088' file_name: PhD_Thesis_APeste.zip file_size: 1658293 relation: source_file file_date_updated: 2023-05-24T16:12:59Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '147' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11458' relation: part_of_dissertation status: public - id: '13053' relation: part_of_dissertation status: public - id: '12299' relation: part_of_dissertation status: public status: public supervisor: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X title: Efficiency and generalization of sparse neural networks type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12964' abstract: - lang: eng text: "Pattern formation is of great importance for its contribution across different biological behaviours. During developmental processes for example, patterns of chemical gradients are\r\nestablished to determine cell fate and complex tissue patterns emerge to define structures such\r\nas limbs and vascular networks. Patterns are also seen in collectively migrating groups, for\r\ninstance traveling waves of density emerging in moving animal flocks as well as collectively migrating cells and tissues. To what extent these biological patterns arise spontaneously through\r\nthe local interaction of individual constituents or are dictated by higher level instructions is\r\nstill an open question however there is evidence for the involvement of both types of process.\r\nWhere patterns arise spontaneously there is a long standing interest in how far the interplay\r\nof mechanics, e.g. force generation and deformation, and chemistry, e.g. gene regulation\r\nand signaling, contributes to the behaviour. This is because many systems are able to both\r\nchemically regulate mechanical force production and chemically sense mechanical deformation,\r\nforming mechano-chemical feedback loops which can potentially become unstable towards\r\nspatio and/or temporal patterning.\r\nWe work with experimental collaborators to investigate the possibility that this type of\r\ninteraction drives pattern formation in biological systems at different scales. We focus first on\r\ntissue-level ERK-density waves observed during the wound healing response across different\r\nsystems where many previous studies have proposed that patterns depend on polarized cell\r\nmigration and arise from a mechanical flocking-like mechanism. By combining theory with\r\nmechanical and optogenetic perturbation experiments on in vitro monolayers we instead find\r\nevidence for mechanochemical pattern formation involving only scalar bilateral feedbacks\r\nbetween ERK signaling and cell contraction. We perform further modeling and experiment\r\nto study how this instability couples with polar cell migration in order to produce a robust\r\nand efficient wound healing response. In a following chapter we implement ERK-density\r\ncoupling and cell migration in a 2D active vertex model to investigate the interaction of\r\nERK-density patterning with different tissue rheologies and find that the spatio-temporal\r\ndynamics are able to both locally and globally fluidize a tissue across the solid-fluid glass\r\ntransition. In a last chapter we move towards lower spatial scales in the context of subcellular\r\npatterning of the cell cytoskeleton where we investigate the transition between phases of\r\nspatially homogeneous temporal oscillations and chaotic spatio-temporal patterning in the\r\ndynamics of myosin and ROCK activities (a motor component of the actomyosin cytoskeleton\r\nand its activator). Experimental evidence supports an intrinsic chemical oscillator which we\r\nencode in a reaction model and couple to a contractile active gel description of the cell cortex.\r\nThe model exhibits phases of chemical oscillations and contractile spatial patterning which\r\nreproduce many features of the dynamics seen in Drosophila oocyte epithelia in vivo. However,\r\nadditional pharmacological perturbations to inhibit myosin contractility leaves the role of\r\ncontractile instability unclear. We discuss alternative hypotheses and investigate the possibility\r\nof reaction-diffusion instability." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Daniel R full_name: Boocock, Daniel R id: 453AF628-F248-11E8-B48F-1D18A9856A87 last_name: Boocock orcid: 0000-0002-1585-2631 citation: ama: Boocock DR. Mechanochemical pattern formation across biological scales. 2023. doi:10.15479/at:ista:12964 apa: Boocock, D. R. (2023). Mechanochemical pattern formation across biological scales. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12964 chicago: Boocock, Daniel R. “Mechanochemical Pattern Formation across Biological Scales.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12964. ieee: D. R. Boocock, “Mechanochemical pattern formation across biological scales,” Institute of Science and Technology Austria, 2023. ista: Boocock DR. 2023. Mechanochemical pattern formation across biological scales. Institute of Science and Technology Austria. mla: Boocock, Daniel R. Mechanochemical Pattern Formation across Biological Scales. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12964. short: D.R. Boocock, Mechanochemical Pattern Formation across Biological Scales, Institute of Science and Technology Austria, 2023. date_created: 2023-05-15T14:52:36Z date_published: 2023-05-17T00:00:00Z date_updated: 2023-08-04T11:02:40Z day: '17' ddc: - '530' degree_awarded: PhD department: - _id: GradSch - _id: EdHa doi: 10.15479/at:ista:12964 ec_funded: 1 file: - access_level: closed checksum: d51240675fc6dc0e3f5dc0c902695d3a content_type: application/pdf creator: dboocock date_created: 2023-05-17T13:39:54Z date_updated: 2023-05-19T07:04:25Z embargo: 2024-05-17 embargo_to: open_access file_id: '12988' file_name: thesis_boocock.pdf file_size: 40414730 relation: main_file - access_level: closed checksum: 581a2313ffeb40fe77e8a122a25a7795 content_type: application/zip creator: dboocock date_created: 2023-05-17T13:39:53Z date_updated: 2023-05-17T14:35:13Z file_id: '12989' file_name: thesis_boocock.zip file_size: 34338567 relation: source_file file_date_updated: 2023-05-19T07:04:25Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '05' oa_version: Published Version page: '146' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-032-9 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8602' relation: part_of_dissertation status: public status: public supervisor: - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 title: Mechanochemical pattern formation across biological scales tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13963' abstract: - lang: eng text: The many-body localization (MBL) proximity effect is an intriguing phenomenon where a thermal bath localizes due to the interaction with a disordered system. The interplay of thermal and nonergodic behavior in these systems gives rise to a rich phase diagram, whose exploration is an active field of research. In this paper, we study a bosonic Hubbard model featuring two particle species representing the bath and the disordered system. Using state-of-the-art numerical techniques, we investigate the dynamics of the model in different regimes, based on which we obtain a tentative phase diagram as a function of coupling strength and bath size. When the bath is composed of a single particle, we observe clear signatures of a transition from an MBL proximity effect to a delocalized phase. Increasing the bath size, however, its thermalizing effect becomes stronger and eventually the whole system delocalizes in the range of moderate interaction strengths studied. In this regime, we characterize particle transport, revealing diffusive behavior of the originally localized bosons. acknowledgement: "We thank A. A. Michailidis and A. Mirlin for insightful discussions. P.B., M.L., and M.S. acknowledge support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 850899). D.A. was\r\nsupported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 864597) and by the Swiss National Science Foundation. P.B., M.L., and M.S. acknowledge PRACE for awarding us access to Joliot-Curie at GENCI@CEA, France, where the TEBD simulations were performed. The TEBD simulations were performed using the ITensor library [60]." article_number: '054201' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Pietro full_name: Brighi, Pietro id: 4115AF5C-F248-11E8-B48F-1D18A9856A87 last_name: Brighi orcid: 0000-0002-7969-2729 - first_name: Marko full_name: Ljubotina, Marko id: F75EE9BE-5C90-11EA-905D-16643DDC885E last_name: Ljubotina - first_name: Dmitry A. full_name: Abanin, Dmitry A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Brighi P, Ljubotina M, Abanin DA, Serbyn M. Many-body localization proximity effect in a two-species bosonic Hubbard model. Physical Review B. 2023;108(5). doi:10.1103/physrevb.108.054201 apa: Brighi, P., Ljubotina, M., Abanin, D. A., & Serbyn, M. (2023). Many-body localization proximity effect in a two-species bosonic Hubbard model. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.108.054201 chicago: Brighi, Pietro, Marko Ljubotina, Dmitry A. Abanin, and Maksym Serbyn. “Many-Body Localization Proximity Effect in a Two-Species Bosonic Hubbard Model.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/physrevb.108.054201. ieee: P. Brighi, M. Ljubotina, D. A. Abanin, and M. Serbyn, “Many-body localization proximity effect in a two-species bosonic Hubbard model,” Physical Review B, vol. 108, no. 5. American Physical Society, 2023. ista: Brighi P, Ljubotina M, Abanin DA, Serbyn M. 2023. Many-body localization proximity effect in a two-species bosonic Hubbard model. Physical Review B. 108(5), 054201. mla: Brighi, Pietro, et al. “Many-Body Localization Proximity Effect in a Two-Species Bosonic Hubbard Model.” Physical Review B, vol. 108, no. 5, 054201, American Physical Society, 2023, doi:10.1103/physrevb.108.054201. short: P. Brighi, M. Ljubotina, D.A. Abanin, M. Serbyn, Physical Review B 108 (2023). date_created: 2023-08-05T18:25:22Z date_published: 2023-08-01T00:00:00Z date_updated: 2023-08-07T09:51:39Z day: '01' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevb.108.054201 ec_funded: 1 external_id: arxiv: - '2303.16876' file: - access_level: open_access checksum: f763000339b5fd543c14377109920690 content_type: application/pdf creator: dernst date_created: 2023-08-07T09:48:08Z date_updated: 2023-08-07T09:48:08Z file_id: '13981' file_name: 2023_PhysRevB_Brighi.pdf file_size: 3051398 relation: main_file success: 1 file_date_updated: 2023-08-07T09:48:08Z has_accepted_license: '1' intvolume: ' 108' issue: '5' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Many-body localization proximity effect in a two-species bosonic Hubbard model tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ... --- _id: '13966' abstract: - lang: eng text: We present a low-scaling diagrammatic Monte Carlo approach to molecular correlation energies. Using combinatorial graph theory to encode many-body Hugenholtz diagrams, we sample the Møller-Plesset (MPn) perturbation series, obtaining accurate correlation energies up to n=5, with quadratic scaling in the number of basis functions. Our technique reduces the computational complexity of the molecular many-fermion correlation problem, opening up the possibility of low-scaling, accurate stochastic computations for a wide class of many-body systems described by Hugenholtz diagrams. acknowledgement: We acknowledge stimulating discussions with Sergey Varganov, Artur Izmaylov, Jacek Kłos, Piotr Żuchowski, Dominika Zgid, Nikolay Prokof'ev, Boris Svistunov, Robert Parrish, and Andreas Heßelmann. G.B. and Q.P.H. acknowledge support from the Austrian Science Fund (FWF) under Projects No. M2641-N27 and No. M2751. M.L. acknowledges support by the FWF under Project No. P29902-N27, and by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). T.V.T. was supported by the NSF CAREER award No. PHY-2045681. This work is supported by the German Research Foundation (DFG) under Germany's Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). The authors acknowledge support by the state of Baden-Württemberg through bwHPC. article_number: '045115' article_processing_charge: No article_type: original author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Quoc P full_name: Ho, Quoc P id: 3DD82E3C-F248-11E8-B48F-1D18A9856A87 last_name: Ho - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: T. V. full_name: Tscherbul, T. V. last_name: Tscherbul citation: ama: 'Bighin G, Ho QP, Lemeshko M, Tscherbul TV. Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. 2023;108(4). doi:10.1103/PhysRevB.108.045115' apa: 'Bighin, G., Ho, Q. P., Lemeshko, M., & Tscherbul, T. V. (2023). Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.108.045115' chicago: 'Bighin, Giacomo, Quoc P Ho, Mikhail Lemeshko, and T. V. Tscherbul. “Diagrammatic Monte Carlo for Electronic Correlation in Molecules: High-Order Many-Body Perturbation Theory with Low Scaling.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.108.045115.' ieee: 'G. Bighin, Q. P. Ho, M. Lemeshko, and T. V. Tscherbul, “Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling,” Physical Review B, vol. 108, no. 4. American Physical Society, 2023.' ista: 'Bighin G, Ho QP, Lemeshko M, Tscherbul TV. 2023. Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. 108(4), 045115.' mla: 'Bighin, Giacomo, et al. “Diagrammatic Monte Carlo for Electronic Correlation in Molecules: High-Order Many-Body Perturbation Theory with Low Scaling.” Physical Review B, vol. 108, no. 4, 045115, American Physical Society, 2023, doi:10.1103/PhysRevB.108.045115.' short: G. Bighin, Q.P. Ho, M. Lemeshko, T.V. Tscherbul, Physical Review B 108 (2023). date_created: 2023-08-06T22:01:10Z date_published: 2023-07-15T00:00:00Z date_updated: 2023-08-07T08:41:29Z day: '15' department: - _id: MiLe - _id: TaHa doi: 10.1103/PhysRevB.108.045115 ec_funded: 1 external_id: arxiv: - '2203.12666' intvolume: ' 108' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2203.12666 month: '07' oa: 1 oa_version: Preprint project: - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 26B96266-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02751 name: Algebro-Geometric Applications of Factorization Homology - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ... --- _id: '13970' article_processing_charge: No article_type: original author: - first_name: Amiera full_name: Madani, Amiera last_name: Madani - first_name: Eric T. full_name: Sletten, Eric T. last_name: Sletten - first_name: Cristian full_name: Cavedon, Cristian last_name: Cavedon - first_name: Peter H. full_name: Seeberger, Peter H. last_name: Seeberger - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X citation: ama: Madani A, Sletten ET, Cavedon C, Seeberger PH, Pieber B. Visible-light-mediated oxidative debenzylation of 3-O-Benzyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose. Organic Syntheses. 2023;100:271-286. doi:10.15227/orgsyn.100.0271 apa: Madani, A., Sletten, E. T., Cavedon, C., Seeberger, P. H., & Pieber, B. (2023). Visible-light-mediated oxidative debenzylation of 3-O-Benzyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose. Organic Syntheses. Organic Syntheses. https://doi.org/10.15227/orgsyn.100.0271 chicago: Madani, Amiera, Eric T. Sletten, Cristian Cavedon, Peter H. Seeberger, and Bartholomäus Pieber. “Visible-Light-Mediated Oxidative Debenzylation of 3-O-Benzyl-1,2:5,6-Di-O-Isopropylidene-α-D-Glucofuranose.” Organic Syntheses. Organic Syntheses, 2023. https://doi.org/10.15227/orgsyn.100.0271. ieee: A. Madani, E. T. Sletten, C. Cavedon, P. H. Seeberger, and B. Pieber, “Visible-light-mediated oxidative debenzylation of 3-O-Benzyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose,” Organic Syntheses, vol. 100. Organic Syntheses, pp. 271–286, 2023. ista: Madani A, Sletten ET, Cavedon C, Seeberger PH, Pieber B. 2023. Visible-light-mediated oxidative debenzylation of 3-O-Benzyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose. Organic Syntheses. 100, 271–286. mla: Madani, Amiera, et al. “Visible-Light-Mediated Oxidative Debenzylation of 3-O-Benzyl-1,2:5,6-Di-O-Isopropylidene-α-D-Glucofuranose.” Organic Syntheses, vol. 100, Organic Syntheses, 2023, pp. 271–86, doi:10.15227/orgsyn.100.0271. short: A. Madani, E.T. Sletten, C. Cavedon, P.H. Seeberger, B. Pieber, Organic Syntheses 100 (2023) 271–286. date_created: 2023-08-06T22:01:11Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-07T08:21:45Z day: '01' department: - _id: BaPi doi: 10.15227/orgsyn.100.0271 intvolume: ' 100' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.15227/orgsyn.100.0271 month: '07' oa: 1 oa_version: Published Version page: 271-286 publication: Organic Syntheses publication_identifier: eissn: - 2333-3553 issn: - 0078-6209 publication_status: published publisher: Organic Syntheses quality_controlled: '1' scopus_import: '1' status: public title: Visible-light-mediated oxidative debenzylation of 3-O-Benzyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 100 year: '2023' ... --- _id: '13127' abstract: - lang: eng text: Cooperative disease defense emerges as group-level collective behavior, yet how group members make the underlying individual decisions is poorly understood. Using garden ants and fungal pathogens as an experimental model, we derive the rules governing individual ant grooming choices and show how they produce colony-level hygiene. Time-resolved behavioral analysis, pathogen quantification, and probabilistic modeling reveal that ants increase grooming and preferentially target highly-infectious individuals when perceiving high pathogen load, but transiently suppress grooming after having been groomed by nestmates. Ants thus react to both, the infectivity of others and the social feedback they receive on their own contagiousness. While inferred solely from momentary ant decisions, these behavioral rules quantitatively predict hour-long experimental dynamics, and synergistically combine into efficient colony-wide pathogen removal. Our analyses show that noisy individual decisions based on only local, incomplete, yet dynamically-updated information on pathogen threat and social feedback can lead to potent collective disease defense. acknowledged_ssus: - _id: LifeSc acknowledgement: We thank Mike Bidochka for the fungal strains, the ISTA Social Immunity Team for ant collection, Hanna Leitner for experimental and molecular support, Jennifer Robb and Lukas Lindorfer for microscopy, and the LabSupport Facility at ISTA for general laboratory support. We further thank Victor Mireles, Iain Couzin, Fabian Theis and the Social Immunity Team for continued feedback throughout, and Michael Sixt, Yuko Ulrich, Koos Boomsma, Erika Dawson, Megan Kutzer and Hinrich Schulenburg for comments on the manuscript. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant No. 771402; EPIDEMICSonCHIP) to SC, from the Scientific Grant Agency of the Slovak Republic (Grant No. 1/0521/20) to KB, and the Human Frontier Science Program (Grant No. RGP0065/2012) to GT. article_number: '3232' article_processing_charge: Yes article_type: original author: - first_name: Barbara E full_name: Casillas Perez, Barbara E id: 351ED2AA-F248-11E8-B48F-1D18A9856A87 last_name: Casillas Perez - first_name: Katarína full_name: Bod'Ová, Katarína id: 2BA24EA0-F248-11E8-B48F-1D18A9856A87 last_name: Bod'Ová orcid: 0000-0002-7214-0171 - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Casillas Perez BE, Bodova K, Grasse AV, Tkačik G, Cremer S. Dynamic pathogen detection and social feedback shape collective hygiene in ants. Nature Communications. 2023;14. doi:10.1038/s41467-023-38947-y apa: Casillas Perez, B. E., Bodova, K., Grasse, A. V., Tkačik, G., & Cremer, S. (2023). Dynamic pathogen detection and social feedback shape collective hygiene in ants. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-38947-y chicago: Casillas Perez, Barbara E, Katarina Bodova, Anna V Grasse, Gašper Tkačik, and Sylvia Cremer. “Dynamic Pathogen Detection and Social Feedback Shape Collective Hygiene in Ants.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-38947-y. ieee: B. E. Casillas Perez, K. Bodova, A. V. Grasse, G. Tkačik, and S. Cremer, “Dynamic pathogen detection and social feedback shape collective hygiene in ants,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Casillas Perez BE, Bodova K, Grasse AV, Tkačik G, Cremer S. 2023. Dynamic pathogen detection and social feedback shape collective hygiene in ants. Nature Communications. 14, 3232. mla: Casillas Perez, Barbara E., et al. “Dynamic Pathogen Detection and Social Feedback Shape Collective Hygiene in Ants.” Nature Communications, vol. 14, 3232, Springer Nature, 2023, doi:10.1038/s41467-023-38947-y. short: B.E. Casillas Perez, K. Bodova, A.V. Grasse, G. Tkačik, S. Cremer, Nature Communications 14 (2023). date_created: 2023-06-11T22:00:40Z date_published: 2023-06-03T00:00:00Z date_updated: 2023-08-07T13:09:09Z day: '03' ddc: - '570' department: - _id: SyCr - _id: GaTk doi: 10.1038/s41467-023-38947-y ec_funded: 1 external_id: isi: - '001002562700005' pmid: - '37270641' file: - access_level: open_access checksum: 4af0393e3ed47b3fc46e68b81c3c1007 content_type: application/pdf creator: dernst date_created: 2023-06-13T08:05:46Z date_updated: 2023-06-13T08:05:46Z file_id: '13132' file_name: 2023_NatureComm_CasillasPerez.pdf file_size: 2358167 relation: main_file success: 1 file_date_updated: 2023-06-13T08:05:46Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip - _id: 255008E4-B435-11E9-9278-68D0E5697425 grant_number: RGP0065/2012 name: Information processing and computation in fish groups publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12945' relation: research_data status: public scopus_import: '1' status: public title: Dynamic pathogen detection and social feedback shape collective hygiene in ants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '12945' abstract: - lang: eng text: "basic data for use in code for experimental data analysis for manuscript under revision: \r\nDynamic pathogen detection and social feedback shape collective hygiene in ants\r\nCasillas-Pérez B, Boďová K, Grasse AV, Tkačik G, Cremer S" acknowledged_ssus: - _id: LifeSc acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant No. 771402; EPIDEMICSonCHIP) to SC, from the Scientific Grant Agency of the Slovak Republic (Grant No. 1/0521/20) to KB, and the Human Frontier Science Program (Grant No. RGP0065/2012) to GT. article_processing_charge: No author: - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: 'Cremer S. Data from: “Dynamic pathogen detection and social feedback shape collective hygiene in ants” . 2023. doi:10.15479/AT:ISTA:12945' apa: 'Cremer, S. (2023). Data from: “Dynamic pathogen detection and social feedback shape collective hygiene in ants” . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:12945' chicago: 'Cremer, Sylvia. “Data from: ‘Dynamic Pathogen Detection and Social Feedback Shape Collective Hygiene in Ants’ .” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:12945.' ieee: 'S. Cremer, “Data from: ‘Dynamic pathogen detection and social feedback shape collective hygiene in ants’ .” Institute of Science and Technology Austria, 2023.' ista: 'Cremer S. 2023. Data from: ‘Dynamic pathogen detection and social feedback shape collective hygiene in ants’ , Institute of Science and Technology Austria, 10.15479/AT:ISTA:12945.' mla: 'Cremer, Sylvia. Data from: “Dynamic Pathogen Detection and Social Feedback Shape Collective Hygiene in Ants” . Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:12945.' short: S. Cremer, (2023). contributor: - contributor_type: data_collector first_name: Barbara E id: 351ED2AA-F248-11E8-B48F-1D18A9856A87 last_name: Casillas Perez - contributor_type: data_collector first_name: Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - contributor_type: researcher first_name: Katarina last_name: Bodova - contributor_type: supervisor first_name: Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 date_created: 2023-05-11T21:35:17Z date_published: 2023-05-12T00:00:00Z date_updated: 2023-08-07T13:09:09Z day: '12' ddc: - '570' department: - _id: SyCr doi: 10.15479/AT:ISTA:12945 file: - access_level: open_access checksum: 3eadf17fd59ad8c98bf10bf63061863c content_type: application/zip creator: scremer date_created: 2023-05-12T08:04:04Z date_updated: 2023-05-12T08:04:04Z file_id: '12947' file_name: Experimental_data.zip file_size: 3414674 relation: main_file success: 1 - access_level: open_access checksum: 1b5e8e01a0989154a76b44e6d8d68f89 content_type: application/octet-stream creator: scremer date_created: 2023-05-12T08:04:08Z date_updated: 2023-05-12T08:04:08Z file_id: '12948' file_name: README_Experimental_Data.md file_size: 2113 relation: main_file success: 1 file_date_updated: 2023-05-12T08:04:08Z has_accepted_license: '1' keyword: - collective behavior - host-pathogen interactions - social immunity - epidemiology - social insects - probabilistic modeling month: '05' oa: 1 oa_version: None publisher: Institute of Science and Technology Austria related_material: record: - id: '13127' relation: used_in_publication status: public status: public title: 'Data from: "Dynamic pathogen detection and social feedback shape collective hygiene in ants" ' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12885' abstract: - lang: eng text: 'High-performance semiconductors rely upon precise control of heat and charge transport. This can be achieved by precisely engineering defects in polycrystalline solids. There are multiple approaches to preparing such polycrystalline semiconductors, and the transformation of solution-processed colloidal nanoparticles is appealing because colloidal nanoparticles combine low cost with structural and compositional tunability along with rich surface chemistry. However, the multiple processes from nanoparticle synthesis to the final bulk nanocomposites are very complex. They involve nanoparticle purification, post-synthetic modifications, and finally consolidation (thermal treatments and densification). All these properties dictate the final material’s composition and microstructure, ultimately affecting its functional properties. This thesis explores the synthesis, surface chemistry and consolidation of colloidal semiconductor nanoparticles into dense solids. In particular, the transformations that take place during these processes, and their effect on the material’s transport properties are evaluated. ' acknowledged_ssus: - _id: EM-Fac - _id: NanoFab alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mariano full_name: Calcabrini, Mariano id: 45D7531A-F248-11E8-B48F-1D18A9856A87 last_name: Calcabrini orcid: 0000-0003-4566-5877 citation: ama: 'Calcabrini M. Nanoparticle-based semiconductor solids: From synthesis to consolidation. 2023. doi:10.15479/at:ista:12885' apa: 'Calcabrini, M. (2023). Nanoparticle-based semiconductor solids: From synthesis to consolidation. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12885' chicago: 'Calcabrini, Mariano. “Nanoparticle-Based Semiconductor Solids: From Synthesis to Consolidation.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12885.' ieee: 'M. Calcabrini, “Nanoparticle-based semiconductor solids: From synthesis to consolidation,” Institute of Science and Technology Austria, 2023.' ista: 'Calcabrini M. 2023. Nanoparticle-based semiconductor solids: From synthesis to consolidation. Institute of Science and Technology Austria.' mla: 'Calcabrini, Mariano. Nanoparticle-Based Semiconductor Solids: From Synthesis to Consolidation. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12885.' short: 'M. Calcabrini, Nanoparticle-Based Semiconductor Solids: From Synthesis to Consolidation, Institute of Science and Technology Austria, 2023.' date_created: 2023-05-02T07:58:57Z date_published: 2023-04-28T00:00:00Z date_updated: 2023-08-14T07:25:26Z day: '28' ddc: - '546' - '541' degree_awarded: PhD department: - _id: GradSch - _id: MaIb doi: 10.15479/at:ista:12885 ec_funded: 1 file: - access_level: closed checksum: 9347b0e09425f56fdcede5d3528404dc content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: mcalcabr date_created: 2023-05-02T07:43:18Z date_updated: 2023-05-02T07:43:18Z file_id: '12887' file_name: Thesis_Calcabrini.docx file_size: 99627036 relation: source_file - access_level: open_access checksum: 2d188b76621086cd384f0b9264b0a576 content_type: application/pdf creator: mcalcabr date_created: 2023-05-02T07:42:45Z date_updated: 2023-05-02T07:42:45Z file_id: '12888' file_name: Thesis_Calcabrini_pdfa.pdf file_size: 8742220 relation: main_file success: 1 file_date_updated: 2023-05-02T07:43:18Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '82' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-028-2 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10806' relation: part_of_dissertation status: public - id: '10042' relation: part_of_dissertation status: public - id: '12237' relation: part_of_dissertation status: public - id: '9118' relation: part_of_dissertation status: public - id: '10123' relation: part_of_dissertation status: public status: public supervisor: - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 title: 'Nanoparticle-based semiconductor solids: From synthesis to consolidation' type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12087' abstract: - lang: eng text: Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups. acknowledgement: H.Z. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411 and the Lise Meitner fellowship, Austrian Science Fund (FWF) M3337. M.W. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 716117) and from the Austrian Science Fund (FWF) through grant number F65. Both authors would like to thank Jan Maas for fruitful discussions and helpful comments. Open access funding provided by Austrian Science Fund (FWF). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Melchior full_name: Wirth, Melchior id: 88644358-0A0E-11EA-8FA5-49A33DDC885E last_name: Wirth orcid: 0000-0002-0519-4241 - first_name: Haonan full_name: Zhang, Haonan id: D8F41E38-9E66-11E9-A9E2-65C2E5697425 last_name: Zhang citation: ama: Wirth M, Zhang H. Curvature-dimension conditions for symmetric quantum Markov semigroups. Annales Henri Poincare. 2023;24:717-750. doi:10.1007/s00023-022-01220-x apa: Wirth, M., & Zhang, H. (2023). Curvature-dimension conditions for symmetric quantum Markov semigroups. Annales Henri Poincare. Springer Nature. https://doi.org/10.1007/s00023-022-01220-x chicago: Wirth, Melchior, and Haonan Zhang. “Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups.” Annales Henri Poincare. Springer Nature, 2023. https://doi.org/10.1007/s00023-022-01220-x. ieee: M. Wirth and H. Zhang, “Curvature-dimension conditions for symmetric quantum Markov semigroups,” Annales Henri Poincare, vol. 24. Springer Nature, pp. 717–750, 2023. ista: Wirth M, Zhang H. 2023. Curvature-dimension conditions for symmetric quantum Markov semigroups. Annales Henri Poincare. 24, 717–750. mla: Wirth, Melchior, and Haonan Zhang. “Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups.” Annales Henri Poincare, vol. 24, Springer Nature, 2023, pp. 717–50, doi:10.1007/s00023-022-01220-x. short: M. Wirth, H. Zhang, Annales Henri Poincare 24 (2023) 717–750. date_created: 2022-09-11T22:01:57Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-14T11:39:28Z day: '01' ddc: - '510' department: - _id: JaMa doi: 10.1007/s00023-022-01220-x ec_funded: 1 external_id: arxiv: - '2105.08303' isi: - '000837499800002' file: - access_level: open_access checksum: 8c7b185eba5ccd92ef55c120f654222c content_type: application/pdf creator: dernst date_created: 2023-08-14T11:38:28Z date_updated: 2023-08-14T11:38:28Z file_id: '14051' file_name: 2023_AnnalesHenriPoincare_Wirth.pdf file_size: 554871 relation: main_file success: 1 file_date_updated: 2023-08-14T11:38:28Z has_accepted_license: '1' intvolume: ' 24' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 717-750 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: eb958bca-77a9-11ec-83b8-c565cb50d8d6 grant_number: M03337 name: Curvature-dimension in noncommutative analysis - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems publication: Annales Henri Poincare publication_identifier: issn: - 1424-0637 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Curvature-dimension conditions for symmetric quantum Markov semigroups tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2023' ... --- _id: '9652' abstract: - lang: eng text: In 1998 Burago and Kleiner and (independently) McMullen gave examples of separated nets in Euclidean space which are non-bilipschitz equivalent to the integer lattice. We study weaker notions of equivalence of separated nets and demonstrate that such notions also give rise to distinct equivalence classes. Put differently, we find occurrences of particularly strong divergence of separated nets from the integer lattice. Our approach generalises that of Burago and Kleiner and McMullen which takes place largely in a continuous setting. Existence of irregular separated nets is verified via the existence of non-realisable density functions ρ:[0,1]d→(0,∞). In the present work we obtain stronger types of non-realisable densities. acknowledgement: 'This work was done while both authors were employed at the University of Innsbruck and enjoyed the full support of Austrian Science Fund (FWF): P 30902-N35.' article_processing_charge: No article_type: original author: - first_name: Michael full_name: Dymond, Michael last_name: Dymond - first_name: Vojtech full_name: Kaluza, Vojtech id: 21AE5134-9EAC-11EA-BEA2-D7BD3DDC885E last_name: Kaluza orcid: 0000-0002-2512-8698 citation: ama: Dymond M, Kaluza V. Highly irregular separated nets. Israel Journal of Mathematics. 2023;253:501-554. doi:10.1007/s11856-022-2448-6 apa: Dymond, M., & Kaluza, V. (2023). Highly irregular separated nets. Israel Journal of Mathematics. Springer Nature. https://doi.org/10.1007/s11856-022-2448-6 chicago: Dymond, Michael, and Vojtech Kaluza. “Highly Irregular Separated Nets.” Israel Journal of Mathematics. Springer Nature, 2023. https://doi.org/10.1007/s11856-022-2448-6. ieee: M. Dymond and V. Kaluza, “Highly irregular separated nets,” Israel Journal of Mathematics, vol. 253. Springer Nature, pp. 501–554, 2023. ista: Dymond M, Kaluza V. 2023. Highly irregular separated nets. Israel Journal of Mathematics. 253, 501–554. mla: Dymond, Michael, and Vojtech Kaluza. “Highly Irregular Separated Nets.” Israel Journal of Mathematics, vol. 253, Springer Nature, 2023, pp. 501–54, doi:10.1007/s11856-022-2448-6. short: M. Dymond, V. Kaluza, Israel Journal of Mathematics 253 (2023) 501–554. date_created: 2021-07-14T07:01:28Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-14T11:26:34Z day: '01' ddc: - '515' - '516' department: - _id: UlWa doi: 10.1007/s11856-022-2448-6 external_id: arxiv: - '1903.05923' isi: - '000904950300003' file: - access_level: open_access checksum: 6fa0a3207dd1d6467c309fd1bcc867d1 content_type: application/pdf creator: vkaluza date_created: 2021-07-14T07:41:50Z date_updated: 2021-07-14T07:41:50Z file_id: '9653' file_name: separated_nets.pdf file_size: 900422 relation: main_file file_date_updated: 2021-07-14T07:41:50Z has_accepted_license: '1' intvolume: ' 253' isi: 1 keyword: - Lipschitz - bilipschitz - bounded displacement - modulus of continuity - separated net - non-realisable density - Burago--Kleiner construction language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version page: 501-554 publication: Israel Journal of Mathematics publication_identifier: eissn: - 1565-8511 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Highly irregular separated nets type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 253 year: '2023' ... --- _id: '12113' abstract: - lang: eng text: The power factor of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film can be significantly improved by optimizing the oxidation level of the film in oxidation and reduction processes. However, precise control over the oxidation and reduction effects in PEDOT:PSS remains a challenge, which greatly sacrifices both S and σ. Here, we propose a two-step post-treatment using a mixture of ethylene glycol (EG) and Arginine (Arg) and sulfuric acid (H2SO4) in sequence to engineer high-performance PEDOT:PSS thermoelectric films. The high-polarity EG dopant removes the excess non-ionized PSS and induces benzenoid-to-quinoid conformational change in the PEDOT:PSS films. In particular, basic amino acid Arg tunes the oxidation level of PEDOT:PSS and prevents the films from over-oxidation during H2SO4 post-treatment, leading to increased S. The following H2SO4 post-treatment further induces highly orientated lamellar stacking microstructures to increase σ, yielding a maximum power factor of 170.6 μW m−1 K−2 at 460 K. Moreover, a novel trigonal-shape thermoelectric device is designed and assembled by the as-prepared PEDOT:PSS films in order to harvest heat via a vertical temperature gradient. An output power density of 33 μW cm−2 is generated at a temperature difference of 40 K, showing the potential application for low-grade wearable electronic devices. acknowledgement: Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No.22JY012), Natural Science Basic Research Program of Shaanxi (Grant No.2022JZ-31), Young Talent fund of University Association for Science and Technology in Shaanxi, China (Grant No.20210411), China Postdoctoral Science Foundation (Grant No. 2021M692621), the Foundation of Shaanxi University of Science & Technology (Grant No. 2017GBJ-03), Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology (Grant No. KFKT2022-15), and Open Foundation of Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology (Grant No. KFKT2022-15). article_number: '156101' article_processing_charge: No article_type: original author: - first_name: Li full_name: Zhang, Li last_name: Zhang - first_name: Xingyu full_name: Liu, Xingyu last_name: Liu - first_name: Ting full_name: Wu, Ting last_name: Wu - first_name: Shengduo full_name: Xu, Shengduo id: 12ab8624-4c8a-11ec-9e11-e1ac2438f22f last_name: Xu - first_name: Guoquan full_name: Suo, Guoquan last_name: Suo - first_name: Xiaohui full_name: Ye, Xiaohui last_name: Ye - first_name: Xiaojiang full_name: Hou, Xiaojiang last_name: Hou - first_name: Yanling full_name: Yang, Yanling last_name: Yang - first_name: Qingfeng full_name: Liu, Qingfeng last_name: Liu - first_name: Hongqiang full_name: Wang, Hongqiang last_name: Wang citation: ama: Zhang L, Liu X, Wu T, et al. Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. 2023;613. doi:10.1016/j.apsusc.2022.156101 apa: Zhang, L., Liu, X., Wu, T., Xu, S., Suo, G., Ye, X., … Wang, H. (2023). Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. Elsevier. https://doi.org/10.1016/j.apsusc.2022.156101 chicago: Zhang, Li, Xingyu Liu, Ting Wu, Shengduo Xu, Guoquan Suo, Xiaohui Ye, Xiaojiang Hou, Yanling Yang, Qingfeng Liu, and Hongqiang Wang. “Two-Step Post-Treatment to Deliver High Performance Thermoelectric Device with Vertical Temperature Gradient.” Applied Surface Science. Elsevier, 2023. https://doi.org/10.1016/j.apsusc.2022.156101. ieee: L. Zhang et al., “Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient,” Applied Surface Science, vol. 613. Elsevier, 2023. ista: Zhang L, Liu X, Wu T, Xu S, Suo G, Ye X, Hou X, Yang Y, Liu Q, Wang H. 2023. Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. 613, 156101. mla: Zhang, Li, et al. “Two-Step Post-Treatment to Deliver High Performance Thermoelectric Device with Vertical Temperature Gradient.” Applied Surface Science, vol. 613, 156101, Elsevier, 2023, doi:10.1016/j.apsusc.2022.156101. short: L. Zhang, X. Liu, T. Wu, S. Xu, G. Suo, X. Ye, X. Hou, Y. Yang, Q. Liu, H. Wang, Applied Surface Science 613 (2023). date_created: 2023-01-12T11:55:02Z date_published: 2023-03-15T00:00:00Z date_updated: 2023-08-14T11:47:06Z day: '15' department: - _id: MaIb doi: 10.1016/j.apsusc.2022.156101 external_id: isi: - '000911497000001' intvolume: ' 613' isi: 1 keyword: - Surfaces - Coatings and Films - Condensed Matter Physics - Surfaces and Interfaces - General Physics and Astronomy - General Chemistry language: - iso: eng month: '03' oa_version: None publication: Applied Surface Science publication_identifier: issn: - 0169-4332 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 613 year: '2023' ... --- _id: '10173' abstract: - lang: eng text: We study the large scale behavior of elliptic systems with stationary random coefficient that have only slowly decaying correlations. To this aim we analyze the so-called corrector equation, a degenerate elliptic equation posed in the probability space. In this contribution, we use a parabolic approach and optimally quantify the time decay of the semigroup. For the theoretical point of view, we prove an optimal decay estimate of the gradient and flux of the corrector when spatially averaged over a scale R larger than 1. For the numerical point of view, our results provide convenient tools for the analysis of various numerical methods. acknowledgement: "I would like to thank my advisor Antoine Gloria for suggesting this problem to me, as well for many interesting discussions and suggestions.\r\nOpen access funding provided by Institute of Science and Technology (IST Austria)." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Nicolas full_name: Clozeau, Nicolas id: fea1b376-906f-11eb-847d-b2c0cf46455b last_name: Clozeau citation: ama: 'Clozeau N. Optimal decay of the parabolic semigroup in stochastic homogenization  for correlated coefficient fields. Stochastics and Partial Differential Equations: Analysis and Computations. 2023;11:1254–1378. doi:10.1007/s40072-022-00254-w' apa: 'Clozeau, N. (2023). Optimal decay of the parabolic semigroup in stochastic homogenization  for correlated coefficient fields. Stochastics and Partial Differential Equations: Analysis and Computations. Springer Nature. https://doi.org/10.1007/s40072-022-00254-w' chicago: 'Clozeau, Nicolas. “Optimal Decay of the Parabolic Semigroup in Stochastic Homogenization  for Correlated Coefficient Fields.” Stochastics and Partial Differential Equations: Analysis and Computations. Springer Nature, 2023. https://doi.org/10.1007/s40072-022-00254-w.' ieee: 'N. Clozeau, “Optimal decay of the parabolic semigroup in stochastic homogenization  for correlated coefficient fields,” Stochastics and Partial Differential Equations: Analysis and Computations, vol. 11. Springer Nature, pp. 1254–1378, 2023.' ista: 'Clozeau N. 2023. Optimal decay of the parabolic semigroup in stochastic homogenization  for correlated coefficient fields. Stochastics and Partial Differential Equations: Analysis and Computations. 11, 1254–1378.' mla: 'Clozeau, Nicolas. “Optimal Decay of the Parabolic Semigroup in Stochastic Homogenization  for Correlated Coefficient Fields.” Stochastics and Partial Differential Equations: Analysis and Computations, vol. 11, Springer Nature, 2023, pp. 1254–1378, doi:10.1007/s40072-022-00254-w.' short: 'N. Clozeau, Stochastics and Partial Differential Equations: Analysis and Computations 11 (2023) 1254–1378.' date_created: 2021-10-23T10:50:22Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-08-14T11:51:47Z day: '01' ddc: - '510' department: - _id: JuFi doi: 10.1007/s40072-022-00254-w external_id: arxiv: - '2102.07452' isi: - '000799715600001' file: - access_level: open_access checksum: f83dcaecdbd3ace862c4ed97a20e8501 content_type: application/pdf creator: dernst date_created: 2023-08-14T11:51:04Z date_updated: 2023-08-14T11:51:04Z file_id: '14052' file_name: 2023_StochPartialDiffEquations_Clozeau.pdf file_size: 1635193 relation: main_file success: 1 file_date_updated: 2023-08-14T11:51:04Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1254–1378 publication: 'Stochastics and Partial Differential Equations: Analysis and Computations' publication_identifier: issn: - 2194-0401 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Optimal decay of the parabolic semigroup in stochastic homogenization for correlated coefficient fields tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2023' ... --- _id: '11741' abstract: - lang: eng text: Following E. Wigner’s original vision, we prove that sampling the eigenvalue gaps within the bulk spectrum of a fixed (deformed) Wigner matrix H yields the celebrated Wigner-Dyson-Mehta universal statistics with high probability. Similarly, we prove universality for a monoparametric family of deformed Wigner matrices H+xA with a deterministic Hermitian matrix A and a fixed Wigner matrix H, just using the randomness of a single scalar real random variable x. Both results constitute quenched versions of bulk universality that has so far only been proven in annealed sense with respect to the probability space of the matrix ensemble. acknowledgement: "The authors are indebted to Sourav Chatterjee for forwarding the very inspiring question that Stephen Shenker originally addressed to him which initiated the current paper. They are also grateful that the authors of [23] kindly shared their preliminary numerical results in June 2021.\r\nOpen access funding provided by Institute of Science and Technology (IST Austria)." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Giorgio full_name: Cipolloni, Giorgio id: 42198EFA-F248-11E8-B48F-1D18A9856A87 last_name: Cipolloni orcid: 0000-0002-4901-7992 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Dominik J full_name: Schröder, Dominik J id: 408ED176-F248-11E8-B48F-1D18A9856A87 last_name: Schröder orcid: 0000-0002-2904-1856 citation: ama: Cipolloni G, Erdös L, Schröder DJ. Quenched universality for deformed Wigner matrices. Probability Theory and Related Fields. 2023;185:1183–1218. doi:10.1007/s00440-022-01156-7 apa: Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Quenched universality for deformed Wigner matrices. Probability Theory and Related Fields. Springer Nature. https://doi.org/10.1007/s00440-022-01156-7 chicago: Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Quenched Universality for Deformed Wigner Matrices.” Probability Theory and Related Fields. Springer Nature, 2023. https://doi.org/10.1007/s00440-022-01156-7. ieee: G. Cipolloni, L. Erdös, and D. J. Schröder, “Quenched universality for deformed Wigner matrices,” Probability Theory and Related Fields, vol. 185. Springer Nature, pp. 1183–1218, 2023. ista: Cipolloni G, Erdös L, Schröder DJ. 2023. Quenched universality for deformed Wigner matrices. Probability Theory and Related Fields. 185, 1183–1218. mla: Cipolloni, Giorgio, et al. “Quenched Universality for Deformed Wigner Matrices.” Probability Theory and Related Fields, vol. 185, Springer Nature, 2023, pp. 1183–1218, doi:10.1007/s00440-022-01156-7. short: G. Cipolloni, L. Erdös, D.J. Schröder, Probability Theory and Related Fields 185 (2023) 1183–1218. date_created: 2022-08-07T22:02:00Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-14T12:48:09Z day: '01' ddc: - '510' department: - _id: LaEr doi: 10.1007/s00440-022-01156-7 external_id: arxiv: - '2106.10200' isi: - '000830344500001' file: - access_level: open_access checksum: b9247827dae5544d1d19c37abe547abc content_type: application/pdf creator: dernst date_created: 2023-08-14T12:47:32Z date_updated: 2023-08-14T12:47:32Z file_id: '14054' file_name: 2023_ProbabilityTheory_Cipolloni.pdf file_size: 782278 relation: main_file success: 1 file_date_updated: 2023-08-14T12:47:32Z has_accepted_license: '1' intvolume: ' 185' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 1183–1218 publication: Probability Theory and Related Fields publication_identifier: eissn: - 1432-2064 issn: - 0178-8051 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Quenched universality for deformed Wigner matrices tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 185 year: '2023' ... --- _id: '12331' abstract: - lang: eng text: High carrier mobility is critical to improving thermoelectric performance over a broad temperature range. However, traditional doping inevitably deteriorates carrier mobility. Herein, we develop a strategy for fine tuning of defects to improve carrier mobility. To begin, n-type PbTe is created by compensating for the intrinsic Pb vacancy in bare PbTe. Excess Pb2+ reduces vacancy scattering, resulting in a high carrier mobility of ∼3400 cm2 V–1 s–1. Then, excess Ag is introduced to compensate for the remaining intrinsic Pb vacancies. We find that excess Ag exhibits a dynamic doping process with increasing temperatures, increasing both the carrier concentration and carrier mobility throughout a wide temperature range; specifically, an ultrahigh carrier mobility ∼7300 cm2 V–1 s–1 is obtained for Pb1.01Te + 0.002Ag at 300 K. Moreover, the dynamic doping-induced high carrier concentration suppresses the bipolar thermal conductivity at high temperatures. The final step is using iodine to optimize the carrier concentration to ∼1019 cm–3. Ultimately, a maximum ZT value of ∼1.5 and a large average ZTave value of ∼1.0 at 300–773 K are obtained for Pb1.01Te0.998I0.002 + 0.002Ag. These findings demonstrate that fine tuning of defects with <0.5% impurities can remarkably enhance carrier mobility and improve thermoelectric performance. acknowledgement: The National Key Research and Development Program of China (2018YFA0702100), the Basic Science Center Project of the National Natural Science Foundation of China (51788104), the National Natural Science Foundation of China (51571007 and 51772012), the Beijing Natural Science Foundation (JQ18004), the 111 Project (B17002), the National Science Fund for Distinguished Young Scholars (51925101), and the FWF “Lise Meitner Fellowship” (grant agreement M2889-N). Open Access is funded by the Austrian Science Fund (FWF). article_processing_charge: No article_type: original author: - first_name: Siqi full_name: Wang, Siqi last_name: Wang - first_name: Cheng full_name: Chang, Cheng id: 9E331C2E-9F27-11E9-AE48-5033E6697425 last_name: Chang orcid: 0000-0002-9515-4277 - first_name: Shulin full_name: Bai, Shulin last_name: Bai - first_name: Bingchao full_name: Qin, Bingchao last_name: Qin - first_name: Yingcai full_name: Zhu, Yingcai last_name: Zhu - first_name: Shaoping full_name: Zhan, Shaoping last_name: Zhan - first_name: Junqing full_name: Zheng, Junqing last_name: Zheng - first_name: Shuwei full_name: Tang, Shuwei last_name: Tang - first_name: Li Dong full_name: Zhao, Li Dong last_name: Zhao citation: ama: Wang S, Chang C, Bai S, et al. Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe. Chemistry of Materials. 2023;35(2):755-763. doi:10.1021/acs.chemmater.2c03542 apa: Wang, S., Chang, C., Bai, S., Qin, B., Zhu, Y., Zhan, S., … Zhao, L. D. (2023). Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe. Chemistry of Materials. American Chemical Society. https://doi.org/10.1021/acs.chemmater.2c03542 chicago: Wang, Siqi, Cheng Chang, Shulin Bai, Bingchao Qin, Yingcai Zhu, Shaoping Zhan, Junqing Zheng, Shuwei Tang, and Li Dong Zhao. “Fine Tuning of Defects Enables High Carrier Mobility and Enhanced Thermoelectric Performance of N-Type PbTe.” Chemistry of Materials. American Chemical Society, 2023. https://doi.org/10.1021/acs.chemmater.2c03542. ieee: S. Wang et al., “Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe,” Chemistry of Materials, vol. 35, no. 2. American Chemical Society, pp. 755–763, 2023. ista: Wang S, Chang C, Bai S, Qin B, Zhu Y, Zhan S, Zheng J, Tang S, Zhao LD. 2023. Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe. Chemistry of Materials. 35(2), 755–763. mla: Wang, Siqi, et al. “Fine Tuning of Defects Enables High Carrier Mobility and Enhanced Thermoelectric Performance of N-Type PbTe.” Chemistry of Materials, vol. 35, no. 2, American Chemical Society, 2023, pp. 755–63, doi:10.1021/acs.chemmater.2c03542. short: S. Wang, C. Chang, S. Bai, B. Qin, Y. Zhu, S. Zhan, J. Zheng, S. Tang, L.D. Zhao, Chemistry of Materials 35 (2023) 755–763. date_created: 2023-01-22T23:00:55Z date_published: 2023-01-24T00:00:00Z date_updated: 2023-08-14T12:57:44Z day: '24' ddc: - '540' department: - _id: MaIb doi: 10.1021/acs.chemmater.2c03542 external_id: isi: - '000914749700001' file: - access_level: open_access checksum: b21dca2aa7a80c068bc256bdd1fea9df content_type: application/pdf creator: dernst date_created: 2023-08-14T12:57:25Z date_updated: 2023-08-14T12:57:25Z file_id: '14055' file_name: 2023_ChemistryMaterials_Wang.pdf file_size: 2961043 relation: main_file success: 1 file_date_updated: 2023-08-14T12:57:25Z has_accepted_license: '1' intvolume: ' 35' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 755-763 project: - _id: 9B8804FC-BA93-11EA-9121-9846C619BF3A grant_number: M02889 name: Bottom-up Engineering for Thermoelectric Applications publication: Chemistry of Materials publication_identifier: eissn: - 1520-5002 issn: - 0897-4756 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2023' ... --- _id: '11999' abstract: - lang: eng text: 'A simple drawing D(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of G+e extending D(G). As a result of Levi’s Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a pseudosegment σ, it can be decided in polynomial time whether there exists a pseudocircle Φσ extending σ for which A∪{Φσ} is again an arrangement of pseudocircles.' acknowledgement: 'This work was started during the 6th Austrian–Japanese–Mexican–Spanish Workshop on Discrete Geometry in June 2019 in Austria. We thank all the participants for the good atmosphere as well as discussions on the topic. Also, we thank Jan Kynčl for sending us remarks on a preliminary version of this work and an anonymous referee for further helpful comments.Alan Arroyo was funded by the Marie Skłodowska-Curie grant agreement No 754411. Fabian Klute was partially supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.001.651 and by the Austrian Science Fund (FWF): J-4510. Irene Parada and Birgit Vogtenhuber were partially supported by the Austrian Science Fund (FWF): W1230 and within the collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35. Irene Parada was also partially supported by the Independent Research Fund Denmark grant 2020-2023 (9131-00044B) Dynamic Network Analysis and by the Margarita Salas Fellowship funded by the Ministry of Universities of Spain and the European Union (NextGenerationEU). Tilo Wiedera was supported by the German Research Foundation (DFG) grant CH 897/2-2.' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: Fabian full_name: Klute, Fabian last_name: Klute - first_name: Irene full_name: Parada, Irene last_name: Parada - first_name: Birgit full_name: Vogtenhuber, Birgit last_name: Vogtenhuber - first_name: Raimund full_name: Seidel, Raimund last_name: Seidel - first_name: Tilo full_name: Wiedera, Tilo last_name: Wiedera citation: ama: Arroyo Guevara AM, Klute F, Parada I, Vogtenhuber B, Seidel R, Wiedera T. Inserting one edge into a simple drawing is hard. Discrete and Computational Geometry. 2023;69:745–770. doi:10.1007/s00454-022-00394-9 apa: Arroyo Guevara, A. M., Klute, F., Parada, I., Vogtenhuber, B., Seidel, R., & Wiedera, T. (2023). Inserting one edge into a simple drawing is hard. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00394-9 chicago: Arroyo Guevara, Alan M, Fabian Klute, Irene Parada, Birgit Vogtenhuber, Raimund Seidel, and Tilo Wiedera. “Inserting One Edge into a Simple Drawing Is Hard.” Discrete and Computational Geometry. Springer Nature, 2023. https://doi.org/10.1007/s00454-022-00394-9. ieee: A. M. Arroyo Guevara, F. Klute, I. Parada, B. Vogtenhuber, R. Seidel, and T. Wiedera, “Inserting one edge into a simple drawing is hard,” Discrete and Computational Geometry, vol. 69. Springer Nature, pp. 745–770, 2023. ista: Arroyo Guevara AM, Klute F, Parada I, Vogtenhuber B, Seidel R, Wiedera T. 2023. Inserting one edge into a simple drawing is hard. Discrete and Computational Geometry. 69, 745–770. mla: Arroyo Guevara, Alan M., et al. “Inserting One Edge into a Simple Drawing Is Hard.” Discrete and Computational Geometry, vol. 69, Springer Nature, 2023, pp. 745–770, doi:10.1007/s00454-022-00394-9. short: A.M. Arroyo Guevara, F. Klute, I. Parada, B. Vogtenhuber, R. Seidel, T. Wiedera, Discrete and Computational Geometry 69 (2023) 745–770. date_created: 2022-08-28T22:02:01Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-14T12:51:25Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.1007/s00454-022-00394-9 ec_funded: 1 external_id: arxiv: - '1909.07347' isi: - '000840292800001' file: - access_level: open_access checksum: def7ae3b28d9fd6aec16450e40090302 content_type: application/pdf creator: alisjak date_created: 2022-08-29T11:23:15Z date_updated: 2022-08-29T11:23:15Z file_id: '12006' file_name: 2022_DiscreteandComputionalGeometry_Arroyo.pdf file_size: 1002218 relation: main_file success: 1 file_date_updated: 2022-08-29T11:23:15Z has_accepted_license: '1' intvolume: ' 69' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 745–770 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Discrete and Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Inserting one edge into a simple drawing is hard tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 69 year: '2023' ... --- _id: '12330' abstract: - lang: eng text: 'The design and implementation of efficient concurrent data structures has seen significant attention. However, most of this work has focused on concurrent data structures providing good worst-case guarantees, although, in real workloads, objects are often accessed at different rates. Efficient distribution-adaptive data structures, such as splay-trees, are known in the sequential case; however, they often are hard to translate efficiently to the concurrent case. We investigate distribution-adaptive concurrent data structures, and propose a new design called the splay-list. At a high level, the splay-list is similar to a standard skip-list, with the key distinction that the height of each element adapts dynamically to its access rate: popular elements “move up,” whereas rarely-accessed elements decrease in height. We show that the splay-list provides order-optimal amortized complexity bounds for a subset of operations, while being amenable to efficient concurrent implementation. Experiments show that the splay-list can leverage distribution-adaptivity for performance, and can outperform the only previously-known distribution-adaptive concurrent design in certain workloads.' article_processing_charge: No article_type: original author: - first_name: Vitalii full_name: Aksenov, Vitalii id: 2980135A-F248-11E8-B48F-1D18A9856A87 last_name: Aksenov - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Alexandra full_name: Drozdova, Alexandra last_name: Drozdova - first_name: Amirkeivan full_name: Mohtashami, Amirkeivan last_name: Mohtashami citation: ama: 'Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. The splay-list: A distribution-adaptive concurrent skip-list. Distributed Computing. 2023;36:395-418. doi:10.1007/s00446-022-00441-x' apa: 'Aksenov, V., Alistarh, D.-A., Drozdova, A., & Mohtashami, A. (2023). The splay-list: A distribution-adaptive concurrent skip-list. Distributed Computing. Springer Nature. https://doi.org/10.1007/s00446-022-00441-x' chicago: 'Aksenov, Vitalii, Dan-Adrian Alistarh, Alexandra Drozdova, and Amirkeivan Mohtashami. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” Distributed Computing. Springer Nature, 2023. https://doi.org/10.1007/s00446-022-00441-x.' ieee: 'V. Aksenov, D.-A. Alistarh, A. Drozdova, and A. Mohtashami, “The splay-list: A distribution-adaptive concurrent skip-list,” Distributed Computing, vol. 36. Springer Nature, pp. 395–418, 2023.' ista: 'Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. 2023. The splay-list: A distribution-adaptive concurrent skip-list. Distributed Computing. 36, 395–418.' mla: 'Aksenov, Vitalii, et al. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” Distributed Computing, vol. 36, Springer Nature, 2023, pp. 395–418, doi:10.1007/s00446-022-00441-x.' short: V. Aksenov, D.-A. Alistarh, A. Drozdova, A. Mohtashami, Distributed Computing 36 (2023) 395–418. date_created: 2023-01-22T23:00:55Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-08-14T12:54:32Z day: '01' department: - _id: DaAl doi: 10.1007/s00446-022-00441-x external_id: arxiv: - '2008.01009' isi: - '000913424000001' intvolume: ' 36' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2008.01009 month: '09' oa: 1 oa_version: Preprint page: 395-418 publication: Distributed Computing publication_identifier: eissn: - 1432-0452 issn: - 0178-2770 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'The splay-list: A distribution-adaptive concurrent skip-list' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2023' ... --- _id: '12159' abstract: - lang: eng text: The term “haplotype block” is commonly used in the developing field of haplotype-based inference methods. We argue that the term should be defined based on the structure of the Ancestral Recombination Graph (ARG), which contains complete information on the ancestry of a sample. We use simulated examples to demonstrate key features of the relationship between haplotype blocks and ancestral structure, emphasizing the stochasticity of the processes that generate them. Even the simplest cases of neutrality or of a “hard” selective sweep produce a rich structure, often missed by commonly used statistics. We highlight a number of novel methods for inferring haplotype structure, based on the full ARG, or on a sequence of trees, and illustrate how they can be used to define haplotype blocks using an empirical data set. While the advent of new, computationally efficient methods makes it possible to apply these concepts broadly, they (and additional new methods) could benefit from adding features to explore haplotype blocks, as we define them. Understanding and applying the concept of the haplotype block will be essential to fully exploit long and linked-read sequencing technologies. acknowledgement: 'We thank the Barton group for useful discussion and feedback during the writing of this article. Comments from Roger Butlin, Molly Schumer''s Group, the tskit development team, editors and three reviewers greatly improved the manuscript. Funding was provided by SCAS (Natural Sciences Programme, Knut and Alice Wallenberg Foundation), an FWF Wittgenstein grant (PT1001Z211), an FWF standalone grant (grant P 32166), and an ERC Advanced Grant. YFC was supported by the Max Planck Society and an ERC Proof of Concept Grant #101069216 (HAPLOTAGGING).' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Daria full_name: Shipilina, Daria id: 428A94B0-F248-11E8-B48F-1D18A9856A87 last_name: Shipilina orcid: 0000-0002-1145-9226 - first_name: Arka full_name: Pal, Arka id: 6AAB2240-CA9A-11E9-9C1A-D9D1E5697425 last_name: Pal orcid: 0000-0002-4530-8469 - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Yingguang Frank full_name: Chan, Yingguang Frank last_name: Chan - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Shipilina D, Pal A, Stankowski S, Chan YF, Barton NH. On the origin and structure of haplotype blocks. Molecular Ecology. 2023;32(6):1441-1457. doi:10.1111/mec.16793 apa: Shipilina, D., Pal, A., Stankowski, S., Chan, Y. F., & Barton, N. H. (2023). On the origin and structure of haplotype blocks. Molecular Ecology. Wiley. https://doi.org/10.1111/mec.16793 chicago: Shipilina, Daria, Arka Pal, Sean Stankowski, Yingguang Frank Chan, and Nicholas H Barton. “On the Origin and Structure of Haplotype Blocks.” Molecular Ecology. Wiley, 2023. https://doi.org/10.1111/mec.16793. ieee: D. Shipilina, A. Pal, S. Stankowski, Y. F. Chan, and N. H. Barton, “On the origin and structure of haplotype blocks,” Molecular Ecology, vol. 32, no. 6. Wiley, pp. 1441–1457, 2023. ista: Shipilina D, Pal A, Stankowski S, Chan YF, Barton NH. 2023. On the origin and structure of haplotype blocks. Molecular Ecology. 32(6), 1441–1457. mla: Shipilina, Daria, et al. “On the Origin and Structure of Haplotype Blocks.” Molecular Ecology, vol. 32, no. 6, Wiley, 2023, pp. 1441–57, doi:10.1111/mec.16793. short: D. Shipilina, A. Pal, S. Stankowski, Y.F. Chan, N.H. Barton, Molecular Ecology 32 (2023) 1441–1457. date_created: 2023-01-12T12:09:17Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-16T08:18:47Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/mec.16793 external_id: isi: - '000900762000001' pmid: - '36433653' file: - access_level: open_access checksum: b10e0f8fa3dc4d72aaf77a557200978a content_type: application/pdf creator: dernst date_created: 2023-08-16T08:15:41Z date_updated: 2023-08-16T08:15:41Z file_id: '14062' file_name: 2023_MolecularEcology_Shipilina.pdf file_size: 7144607 relation: main_file success: 1 file_date_updated: 2023-08-16T08:15:41Z has_accepted_license: '1' intvolume: ' 32' isi: 1 issue: '6' keyword: - Genetics - Ecology - Evolution - Behavior and Systematics language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 1441-1457 pmid: 1 project: - _id: 05959E1C-7A3F-11EA-A408-12923DDC885E grant_number: P32166 name: The maintenance of alternative adaptive peaks in snapdragons - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: bd6958e0-d553-11ed-ba76-86eba6a76c00 grant_number: '101055327' name: Understanding the evolution of continuous genomes publication: Molecular Ecology publication_identifier: eissn: - 1365-294X issn: - 0962-1083 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: On the origin and structure of haplotype blocks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2023' ... --- _id: '12114' abstract: - lang: eng text: 'Probing the dynamics of aromatic side chains provides important insights into the behavior of a protein because flips of aromatic rings in a protein’s hydrophobic core report on breathing motion involving a large part of the protein. Inherently invisible to crystallography, aromatic motions have been primarily studied by solution NMR. The question how packing of proteins in crystals affects ring flips has, thus, remained largely unexplored. Here we apply magic-angle spinning NMR, advanced phenylalanine 1H-13C/2H isotope labeling and MD simulation to a protein in three different crystal packing environments to shed light onto possible impact of packing on ring flips. The flips of the two Phe residues in ubiquitin, both surface exposed, appear remarkably conserved in the different crystal forms, even though the intermolecular packing is quite different: Phe4 flips on a ca. 10–20 ns time scale, and Phe45 are broadened in all crystals, presumably due to µs motion. Our findings suggest that intramolecular influences are more important for ring flips than intermolecular (packing) effects.' acknowledgement: The NMR platform in Grenoble is part of the Grenoble Instruct-ERIC center (ISBG; UAR 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology (PSB), supported by FRISBI (ANR-10-INBS-0005-02) and GRAL, financed within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003). This work was supported by the European Research Council (StG-2012-311318-ProtDyn2Function to P.S.) and used the platforms of the Grenoble Instruct Center (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from FRISBI (ANR-10-INSB-05–02) and GRAL (ANR-10-LABX-49–01) within the Grenoble Partnership for Structural Biology (PSB). We would like to thank Sergei Izmailov for developing and maintaining the pyxmolpp2 library. N.R.S. acknowledges support from St. Petersburg State University in a form of the grant 92425251 and the access to the MRR, MCT and CAMR resource centers. P.S. thanks Malcolm Levitt for pointing out the fact that “tensor asymmetry” is better called “tensor biaxiality”. article_number: '100079' article_processing_charge: No article_type: original author: - first_name: Diego F. full_name: Gauto, Diego F. last_name: Gauto - first_name: Olga O. full_name: Lebedenko, Olga O. last_name: Lebedenko - first_name: Lea Marie full_name: Becker, Lea Marie id: 36336939-eb97-11eb-a6c2-c83f1214ca79 last_name: Becker orcid: 0000-0002-6401-5151 - first_name: Isabel full_name: Ayala, Isabel last_name: Ayala - first_name: Roman full_name: Lichtenecker, Roman last_name: Lichtenecker - first_name: Nikolai R. full_name: Skrynnikov, Nikolai R. last_name: Skrynnikov - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 citation: ama: 'Gauto DF, Lebedenko OO, Becker LM, et al. Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD. Journal of Structural Biology: X. 2023;7. doi:10.1016/j.yjsbx.2022.100079' apa: 'Gauto, D. F., Lebedenko, O. O., Becker, L. M., Ayala, I., Lichtenecker, R., Skrynnikov, N. R., & Schanda, P. (2023). Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD. Journal of Structural Biology: X. Elsevier. https://doi.org/10.1016/j.yjsbx.2022.100079' chicago: 'Gauto, Diego F., Olga O. Lebedenko, Lea Marie Becker, Isabel Ayala, Roman Lichtenecker, Nikolai R. Skrynnikov, and Paul Schanda. “Aromatic Ring Flips in Differently Packed Ubiquitin Protein Crystals from MAS NMR and MD.” Journal of Structural Biology: X. Elsevier, 2023. https://doi.org/10.1016/j.yjsbx.2022.100079.' ieee: 'D. F. Gauto et al., “Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD,” Journal of Structural Biology: X, vol. 7. Elsevier, 2023.' ista: 'Gauto DF, Lebedenko OO, Becker LM, Ayala I, Lichtenecker R, Skrynnikov NR, Schanda P. 2023. Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD. Journal of Structural Biology: X. 7, 100079.' mla: 'Gauto, Diego F., et al. “Aromatic Ring Flips in Differently Packed Ubiquitin Protein Crystals from MAS NMR and MD.” Journal of Structural Biology: X, vol. 7, 100079, Elsevier, 2023, doi:10.1016/j.yjsbx.2022.100079.' short: 'D.F. Gauto, O.O. Lebedenko, L.M. Becker, I. Ayala, R. Lichtenecker, N.R. Skrynnikov, P. Schanda, Journal of Structural Biology: X 7 (2023).' date_created: 2023-01-12T11:55:38Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-16T09:37:25Z day: '01' ddc: - '570' department: - _id: PaSc doi: 10.1016/j.yjsbx.2022.100079 external_id: pmid: - '36578472' file: - access_level: open_access checksum: b4b1c10a31018aafe053b7d55a470e54 content_type: application/pdf creator: dernst date_created: 2023-08-16T09:36:28Z date_updated: 2023-08-16T09:36:28Z file_id: '14064' file_name: 2023_JourStrucBiologyX_Gauto.pdf file_size: 5132322 relation: main_file success: 1 file_date_updated: 2023-08-16T09:36:28Z has_accepted_license: '1' intvolume: ' 7' keyword: - Structural Biology language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '01' oa: 1 oa_version: Published Version pmid: 1 publication: 'Journal of Structural Biology: X' publication_identifier: issn: - 2590-1524 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2023' ... --- _id: '12163' abstract: - lang: eng text: Small GTPases play essential roles in the organization of eukaryotic cells. In recent years, it has become clear that their intracellular functions result from intricate biochemical networks of the GTPase and their regulators that dynamically bind to a membrane surface. Due to the inherent complexities of their interactions, however, revealing the underlying mechanisms of action is often difficult to achieve from in vivo studies. This review summarizes in vitro reconstitution approaches developed to obtain a better mechanistic understanding of how small GTPase activities are regulated in space and time. acknowledgement: The authors acknowledge support from IST Austria and helpful comments from the anonymous reviewers that helped to improve this manuscript. We apologize to the authors of primary literature and outstanding research not cited here due to space restraints. article_processing_charge: Yes (via OA deal) article_type: review author: - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Albert full_name: Auer, Albert id: 3018E8C2-F248-11E8-B48F-1D18A9856A87 last_name: Auer orcid: 0000-0002-3580-2906 - first_name: Gabriel full_name: Brognara, Gabriel id: D96FFDA0-A884-11E9-9968-DC26E6697425 last_name: Brognara - first_name: Hanifatul R full_name: Budiman, Hanifatul R id: 55380f95-15b2-11ec-abd3-aff8e230696b last_name: Budiman - first_name: Lukasz M full_name: Kowalski, Lukasz M id: e3a512e2-4bbe-11eb-a68a-e3857a7844c2 last_name: Kowalski - first_name: Ivana full_name: Matijevic, Ivana id: 83c17ce3-15b2-11ec-abd3-f486545870bd last_name: Matijevic citation: ama: Loose M, Auer A, Brognara G, Budiman HR, Kowalski LM, Matijevic I. In vitro reconstitution of small GTPase regulation. FEBS Letters. 2023;597(6):762-777. doi:10.1002/1873-3468.14540 apa: Loose, M., Auer, A., Brognara, G., Budiman, H. R., Kowalski, L. M., & Matijevic, I. (2023). In vitro reconstitution of small GTPase regulation. FEBS Letters. Wiley. https://doi.org/10.1002/1873-3468.14540 chicago: Loose, Martin, Albert Auer, Gabriel Brognara, Hanifatul R Budiman, Lukasz M Kowalski, and Ivana Matijevic. “In Vitro Reconstitution of Small GTPase Regulation.” FEBS Letters. Wiley, 2023. https://doi.org/10.1002/1873-3468.14540. ieee: M. Loose, A. Auer, G. Brognara, H. R. Budiman, L. M. Kowalski, and I. Matijevic, “In vitro reconstitution of small GTPase regulation,” FEBS Letters, vol. 597, no. 6. Wiley, pp. 762–777, 2023. ista: Loose M, Auer A, Brognara G, Budiman HR, Kowalski LM, Matijevic I. 2023. In vitro reconstitution of small GTPase regulation. FEBS Letters. 597(6), 762–777. mla: Loose, Martin, et al. “In Vitro Reconstitution of Small GTPase Regulation.” FEBS Letters, vol. 597, no. 6, Wiley, 2023, pp. 762–77, doi:10.1002/1873-3468.14540. short: M. Loose, A. Auer, G. Brognara, H.R. Budiman, L.M. Kowalski, I. Matijevic, FEBS Letters 597 (2023) 762–777. date_created: 2023-01-12T12:09:58Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-16T08:32:29Z day: '01' ddc: - '570' department: - _id: MaLo doi: 10.1002/1873-3468.14540 external_id: isi: - '000891573000001' pmid: - '36448231' file: - access_level: open_access checksum: 7492244d3f9c5faa1347ef03f6e5bc84 content_type: application/pdf creator: dernst date_created: 2023-08-16T08:31:04Z date_updated: 2023-08-16T08:31:04Z file_id: '14063' file_name: 2023_FEBSLetters_Loose.pdf file_size: 3148143 relation: main_file success: 1 file_date_updated: 2023-08-16T08:31:04Z has_accepted_license: '1' intvolume: ' 597' isi: 1 issue: '6' keyword: - Cell Biology - Genetics - Molecular Biology - Biochemistry - Structural Biology - Biophysics language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 762-777 pmid: 1 publication: FEBS Letters publication_identifier: eissn: - 1873-3468 issn: - 0014-5793 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: In vitro reconstitution of small GTPase regulation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 597 year: '2023' ... --- _id: '12164' abstract: - lang: eng text: 'A shared-memory counter is a widely-used and well-studied concurrent object. It supports two operations: An Inc operation that increases its value by 1 and a Read operation that returns its current value. In Jayanti et al (SIAM J Comput, 30(2), 2000), Jayanti, Tan and Toueg proved a linear lower bound on the worst-case step complexity of obstruction-free implementations, from read-write registers, of a large class of shared objects that includes counters. The lower bound leaves open the question of finding counter implementations with sub-linear amortized step complexity. In this work, we address this gap. We show that n-process, wait-free and linearizable counters can be implemented from read-write registers with O(log2n) amortized step complexity. This is the first counter algorithm from read-write registers that provides sub-linear amortized step complexity in executions of arbitrary length. Since a logarithmic lower bound on the amortized step complexity of obstruction-free counter implementations exists, our upper bound is within a logarithmic factor of the optimal. The worst-case step complexity of the construction remains linear, which is optimal. This is obtained thanks to a new max register construction with O(logn) amortized step complexity in executions of arbitrary length in which the value stored in the register does not grow too quickly. We then leverage an existing counter algorithm by Aspnes, Attiya and Censor-Hillel [1] in which we “plug” our max register implementation to show that it remains linearizable while achieving O(log2n) amortized step complexity.' acknowledgement: A preliminary version of this work appeared in DISC’19. Mirza Ahad Baig, Alessia Milani and Corentin Travers are supported by ANR projects Descartes and FREDDA. Mirza Ahad Baig is supported by UMI Relax. Danny Hendler is supported by the Israel Science Foundation (Grants 380/18 and 1425/22). article_processing_charge: No article_type: original author: - first_name: Mirza Ahad full_name: Baig, Mirza Ahad id: 3EDE6DE4-AA5A-11E9-986D-341CE6697425 last_name: Baig - first_name: Danny full_name: Hendler, Danny last_name: Hendler - first_name: Alessia full_name: Milani, Alessia last_name: Milani - first_name: Corentin full_name: Travers, Corentin last_name: Travers citation: ama: Baig MA, Hendler D, Milani A, Travers C. Long-lived counters with polylogarithmic amortized step complexity. Distributed Computing. 2023;36:29-43. doi:10.1007/s00446-022-00439-5 apa: Baig, M. A., Hendler, D., Milani, A., & Travers, C. (2023). Long-lived counters with polylogarithmic amortized step complexity. Distributed Computing. Springer Nature. https://doi.org/10.1007/s00446-022-00439-5 chicago: Baig, Mirza Ahad, Danny Hendler, Alessia Milani, and Corentin Travers. “Long-Lived Counters with Polylogarithmic Amortized Step Complexity.” Distributed Computing. Springer Nature, 2023. https://doi.org/10.1007/s00446-022-00439-5. ieee: M. A. Baig, D. Hendler, A. Milani, and C. Travers, “Long-lived counters with polylogarithmic amortized step complexity,” Distributed Computing, vol. 36. Springer Nature, pp. 29–43, 2023. ista: Baig MA, Hendler D, Milani A, Travers C. 2023. Long-lived counters with polylogarithmic amortized step complexity. Distributed Computing. 36, 29–43. mla: Baig, Mirza Ahad, et al. “Long-Lived Counters with Polylogarithmic Amortized Step Complexity.” Distributed Computing, vol. 36, Springer Nature, 2023, pp. 29–43, doi:10.1007/s00446-022-00439-5. short: M.A. Baig, D. Hendler, A. Milani, C. Travers, Distributed Computing 36 (2023) 29–43. date_created: 2023-01-12T12:10:08Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-16T08:39:36Z day: '01' department: - _id: KrPi doi: 10.1007/s00446-022-00439-5 external_id: isi: - '000890138700001' intvolume: ' 36' isi: 1 keyword: - Computational Theory and Mathematics - Computer Networks and Communications - Hardware and Architecture - Theoretical Computer Science language: - iso: eng main_file_link: - open_access: '1' url: https://drops.dagstuhl.de/opus/volltexte/2019/11310/ month: '03' oa: 1 oa_version: Preprint page: 29-43 publication: Distributed Computing publication_identifier: eissn: - 1432-0452 issn: - 0178-2770 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Long-lived counters with polylogarithmic amortized step complexity type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2023' ...