--- _id: '9336' abstract: - lang: eng text: Mentorship is experience and/or knowledge‐based guidance. Mentors support, sponsor and advocate for mentees. Having one or more mentors when you seek advice can significantly influence and improve your research endeavours, well‐being and career development. Positive mentee–mentor relationships are vital for maintaining work–life balance and success in careers. Early‐career researchers (ECRs), in particular, can benefit from mentorship to navigate challenges in academic and nonacademic life and careers. Yet, strategies for selecting mentors and maintaining interactions with them are often underdiscussed within research environments. In this Words of Advice, we provide recommendations for ECRs to seek and manage mentorship interactions. Our article draws from our experiences as ECRs and published work, to provide suggestions for mentees to proactively promote beneficial mentorship interactions. The recommended practices highlight the importance of identifying mentorship needs, planning and selecting multiple and diverse mentors, setting goals, and maintaining constructive, and mutually beneficial working relationships with mentors. acknowledgement: The authors thank Nicholas Asby of the University of Chicago for valuable comments on an earlier version of this work. A.P.S. was partially supported by the NARSAD Young Investigator Grant 27705. S.J.H was supported by the National Institutes of Health grant R35GM133732. alternative_title: - Words of Advice article_processing_charge: No article_type: original author: - first_name: Sarvenaz full_name: Sarabipour, Sarvenaz last_name: Sarabipour - first_name: Sarah J. full_name: Hainer, Sarah J. last_name: Hainer - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Charlotte M. full_name: De Winde, Charlotte M. last_name: De Winde - first_name: Emily full_name: Furlong, Emily last_name: Furlong - first_name: Natalia full_name: Bielczyk, Natalia last_name: Bielczyk - first_name: Nafisa M. full_name: Jadavji, Nafisa M. last_name: Jadavji - first_name: Aparna P. full_name: Shah, Aparna P. last_name: Shah - first_name: Sejal full_name: Davla, Sejal last_name: Davla citation: ama: Sarabipour S, Hainer SJ, Arslan FN, et al. Building and sustaining mentor interactions as a mentee. FEBS Journal. 2021. doi:10.1111/febs.15823 apa: Sarabipour, S., Hainer, S. J., Arslan, F. N., De Winde, C. M., Furlong, E., Bielczyk, N., … Davla, S. (2021). Building and sustaining mentor interactions as a mentee. FEBS Journal. Wiley. https://doi.org/10.1111/febs.15823 chicago: Sarabipour, Sarvenaz, Sarah J. Hainer, Feyza N Arslan, Charlotte M. De Winde, Emily Furlong, Natalia Bielczyk, Nafisa M. Jadavji, Aparna P. Shah, and Sejal Davla. “Building and Sustaining Mentor Interactions as a Mentee.” FEBS Journal. Wiley, 2021. https://doi.org/10.1111/febs.15823. ieee: S. Sarabipour et al., “Building and sustaining mentor interactions as a mentee,” FEBS Journal. Wiley, 2021. ista: Sarabipour S, Hainer SJ, Arslan FN, De Winde CM, Furlong E, Bielczyk N, Jadavji NM, Shah AP, Davla S. 2021. Building and sustaining mentor interactions as a mentee. FEBS Journal. mla: Sarabipour, Sarvenaz, et al. “Building and Sustaining Mentor Interactions as a Mentee.” FEBS Journal, Wiley, 2021, doi:10.1111/febs.15823. short: S. Sarabipour, S.J. Hainer, F.N. Arslan, C.M. De Winde, E. Furlong, N. Bielczyk, N.M. Jadavji, A.P. Shah, S. Davla, FEBS Journal (2021). date_created: 2021-04-18T22:01:43Z date_published: 2021-04-05T00:00:00Z date_updated: 2023-08-08T13:12:55Z day: '05' department: - _id: CaHe doi: 10.1111/febs.15823 external_id: isi: - '000636678800001' pmid: - '33818917' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/febs.15823 month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: FEBS Journal publication_identifier: eissn: - 1742-4658 issn: - 1742-464X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Building and sustaining mentor interactions as a mentee type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9350' abstract: - lang: eng text: Intercellular adhesion is the key to multicellularity, and its malfunction plays an important role in various developmental and disease-related processes. Although it has been intensively studied by both biologists and physicists, a commonly accepted definition of cell-cell adhesion is still being debated. Cell-cell adhesion has been described at the molecular scale as a function of adhesion receptors controlling binding affinity, at the cellular scale as resistance to detachment forces or modulation of surface tension, and at the tissue scale as a regulator of cellular rearrangements and morphogenesis. In this review, we aim to summarize and discuss recent advances in the molecular, cellular, and theoretical description of cell-cell adhesion, ranging from biomimetic models to the complexity of cells and tissues in an organismal context. In particular, we will focus on cadherin-mediated cell-cell adhesion and the role of adhesion signaling and mechanosensation therein, two processes central for understanding the biological and physical basis of cell-cell adhesion. acknowledgement: T.S. acknowledges funding by the research program “The Active Matter Physics of Collective Metastasis,” which is financed by the Dutch Research Council (NWO). article_processing_charge: No article_type: original author: - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Julia full_name: Eckert, Julia last_name: Eckert - first_name: Thomas full_name: Schmidt, Thomas last_name: Schmidt - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Arslan FN, Eckert J, Schmidt T, Heisenberg C-PJ. Holding it together: when cadherin meets cadherin. Biophysical Journal. 2021;120:4182-4192. doi:10.1016/j.bpj.2021.03.025' apa: 'Arslan, F. N., Eckert, J., Schmidt, T., & Heisenberg, C.-P. J. (2021). Holding it together: when cadherin meets cadherin. Biophysical Journal. Biophysical Society. https://doi.org/10.1016/j.bpj.2021.03.025' chicago: 'Arslan, Feyza N, Julia Eckert, Thomas Schmidt, and Carl-Philipp J Heisenberg. “Holding It Together: When Cadherin Meets Cadherin.” Biophysical Journal. Biophysical Society, 2021. https://doi.org/10.1016/j.bpj.2021.03.025.' ieee: 'F. N. Arslan, J. Eckert, T. Schmidt, and C.-P. J. Heisenberg, “Holding it together: when cadherin meets cadherin,” Biophysical Journal, vol. 120. Biophysical Society, pp. 4182–4192, 2021.' ista: 'Arslan FN, Eckert J, Schmidt T, Heisenberg C-PJ. 2021. Holding it together: when cadherin meets cadherin. Biophysical Journal. 120, 4182–4192.' mla: 'Arslan, Feyza N., et al. “Holding It Together: When Cadherin Meets Cadherin.” Biophysical Journal, vol. 120, Biophysical Society, 2021, pp. 4182–92, doi:10.1016/j.bpj.2021.03.025.' short: F.N. Arslan, J. Eckert, T. Schmidt, C.-P.J. Heisenberg, Biophysical Journal 120 (2021) 4182–4192. date_created: 2021-04-25T22:01:30Z date_published: 2021-10-05T00:00:00Z date_updated: 2023-08-08T13:14:10Z day: '05' department: - _id: CaHe doi: 10.1016/j.bpj.2021.03.025 external_id: isi: - '000704646900006' pmid: - '33794149' intvolume: ' 120' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://scholarlypublications.universiteitleiden.nl/access/item%3A3251048/view month: '10' oa: 1 oa_version: Published Version page: 4182-4192 pmid: 1 publication: Biophysical Journal publication_identifier: eissn: - 1542-0086 issn: - 0006-3495 publication_status: published publisher: Biophysical Society quality_controlled: '1' related_material: record: - id: '12368' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Holding it together: when cadherin meets cadherin' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 120 year: '2021' ... --- _id: '9348' abstract: - lang: eng text: We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known in finite dimensions for semiclassical Witten Laplacians in degree zero. From a stochastic point of view it proves that the L2 spectral gap of the stochastic one-dimensional Allen-Cahn equation in finite volume satisfies a Kramers-type formula in the limit of vanishing noise. We work with finite-dimensional lattice approximations and establish semiclassical estimates which are uniform in the dimension. Our key estimate shows that the constant separating the two exponentially small eigenvalues from the rest of the spectrum can be taken independently of the dimension. acknowledgement: GDG gratefully acknowledges the financial support of HIM Bonn in the framework of the 2019 Junior Trimester Programs “Kinetic Theory” and “Randomness, PDEs and Nonlinear Fluctuations” and the hospitality at the University of Rome La Sapienza during his frequent visits. article_number: '109029' article_processing_charge: No article_type: original author: - first_name: Morris full_name: Brooks, Morris id: B7ECF9FC-AA38-11E9-AC9A-0930E6697425 last_name: Brooks orcid: 0000-0002-6249-0928 - first_name: Giacomo full_name: Di Gesù, Giacomo last_name: Di Gesù citation: ama: Brooks M, Di Gesù G. Sharp tunneling estimates for a double-well model in infinite dimension. Journal of Functional Analysis. 2021;281(3). doi:10.1016/j.jfa.2021.109029 apa: Brooks, M., & Di Gesù, G. (2021). Sharp tunneling estimates for a double-well model in infinite dimension. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2021.109029 chicago: Brooks, Morris, and Giacomo Di Gesù. “Sharp Tunneling Estimates for a Double-Well Model in Infinite Dimension.” Journal of Functional Analysis. Elsevier, 2021. https://doi.org/10.1016/j.jfa.2021.109029. ieee: M. Brooks and G. Di Gesù, “Sharp tunneling estimates for a double-well model in infinite dimension,” Journal of Functional Analysis, vol. 281, no. 3. Elsevier, 2021. ista: Brooks M, Di Gesù G. 2021. Sharp tunneling estimates for a double-well model in infinite dimension. Journal of Functional Analysis. 281(3), 109029. mla: Brooks, Morris, and Giacomo Di Gesù. “Sharp Tunneling Estimates for a Double-Well Model in Infinite Dimension.” Journal of Functional Analysis, vol. 281, no. 3, 109029, Elsevier, 2021, doi:10.1016/j.jfa.2021.109029. short: M. Brooks, G. Di Gesù, Journal of Functional Analysis 281 (2021). date_created: 2021-04-25T22:01:29Z date_published: 2021-04-07T00:00:00Z date_updated: 2023-08-08T13:15:11Z day: '07' department: - _id: RoSe doi: 10.1016/j.jfa.2021.109029 external_id: arxiv: - '1911.03187' isi: - '000644702800005' intvolume: ' 281' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1911.03187 month: '04' oa: 1 oa_version: Preprint publication: Journal of Functional Analysis publication_identifier: eissn: - 1096-0783 issn: - 0022-1236 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Sharp tunneling estimates for a double-well model in infinite dimension type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 281 year: '2021' ... --- _id: '9352' abstract: - lang: eng text: This paper provides an a priori error analysis of a localized orthogonal decomposition method for the numerical stochastic homogenization of a model random diffusion problem. If the uniformly elliptic and bounded random coefficient field of the model problem is stationary and satisfies a quantitative decorrelation assumption in the form of the spectral gap inequality, then the expected $L^2$ error of the method can be estimated, up to logarithmic factors, by $H+(\varepsilon/H)^{d/2}$, $\varepsilon$ being the small correlation length of the random coefficient and $H$ the width of the coarse finite element mesh that determines the spatial resolution. The proof bridges recent results of numerical homogenization and quantitative stochastic homogenization. acknowledgement: 'This work was initiated while the authors enjoyed the kind hospitality of the Hausdorff Institute for Mathematics in Bonn during the trimester program Multiscale Problems: Algorithms, Numerical Analysis, and Computation. D. Peterseim would like to acknowledge the kind hospitality of the Erwin Schrödinger International Institute for Mathematics and Physics (ESI), where parts of this research were developed under the frame of the thematic program Numerical Analysis of Complex PDE Models in the Sciences.' article_processing_charge: No article_type: original author: - first_name: Julian L full_name: Fischer, Julian L id: 2C12A0B0-F248-11E8-B48F-1D18A9856A87 last_name: Fischer orcid: 0000-0002-0479-558X - first_name: Dietmar full_name: Gallistl, Dietmar last_name: Gallistl - first_name: Dietmar full_name: Peterseim, Dietmar last_name: Peterseim citation: ama: Fischer JL, Gallistl D, Peterseim D. A priori error analysis of a numerical stochastic homogenization method. SIAM Journal on Numerical Analysis. 2021;59(2):660-674. doi:10.1137/19M1308992 apa: Fischer, J. L., Gallistl, D., & Peterseim, D. (2021). A priori error analysis of a numerical stochastic homogenization method. SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/19M1308992 chicago: Fischer, Julian L, Dietmar Gallistl, and Dietmar Peterseim. “A Priori Error Analysis of a Numerical Stochastic Homogenization Method.” SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics, 2021. https://doi.org/10.1137/19M1308992. ieee: J. L. Fischer, D. Gallistl, and D. Peterseim, “A priori error analysis of a numerical stochastic homogenization method,” SIAM Journal on Numerical Analysis, vol. 59, no. 2. Society for Industrial and Applied Mathematics, pp. 660–674, 2021. ista: Fischer JL, Gallistl D, Peterseim D. 2021. A priori error analysis of a numerical stochastic homogenization method. SIAM Journal on Numerical Analysis. 59(2), 660–674. mla: Fischer, Julian L., et al. “A Priori Error Analysis of a Numerical Stochastic Homogenization Method.” SIAM Journal on Numerical Analysis, vol. 59, no. 2, Society for Industrial and Applied Mathematics, 2021, pp. 660–74, doi:10.1137/19M1308992. short: J.L. Fischer, D. Gallistl, D. Peterseim, SIAM Journal on Numerical Analysis 59 (2021) 660–674. date_created: 2021-04-25T22:01:31Z date_published: 2021-03-09T00:00:00Z date_updated: 2023-08-08T13:13:37Z day: '09' department: - _id: JuFi doi: 10.1137/19M1308992 external_id: arxiv: - '1912.11646' isi: - '000646030400003' intvolume: ' 59' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.11646 month: '03' oa: 1 oa_version: Preprint page: 660-674 publication: SIAM Journal on Numerical Analysis publication_identifier: issn: - 0036-1429 publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: A priori error analysis of a numerical stochastic homogenization method type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 59 year: '2021' ... --- _id: '9363' abstract: - lang: eng text: Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair. acknowledgement: We thank R. Cagan, A. Whitworth and J. Nagpal for fly lines and advice, S. Herlitze for provision of a tissue culture illuminator, and Verian Bader for help with statistical analysis. article_processing_charge: No author: - first_name: Álvaro full_name: Inglés Prieto, Álvaro id: 2A9DB292-F248-11E8-B48F-1D18A9856A87 last_name: Inglés Prieto orcid: 0000-0002-5409-8571 - first_name: Nikolas full_name: Furthmann, Nikolas last_name: Furthmann - first_name: Samuel H. full_name: Crossman, Samuel H. last_name: Crossman - first_name: Alexandra Madelaine full_name: Tichy, Alexandra Madelaine last_name: Tichy - first_name: Nina full_name: Hoyer, Nina last_name: Hoyer - first_name: Meike full_name: Petersen, Meike last_name: Petersen - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden - first_name: Julia full_name: Bicher, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Bicher - first_name: Eva full_name: Gschaider-Reichhart, Eva id: 3FEE232A-F248-11E8-B48F-1D18A9856A87 last_name: Gschaider-Reichhart orcid: 0000-0002-7218-7738 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Peter full_name: Soba, Peter last_name: Soba - first_name: Konstanze F. full_name: Winklhofer, Konstanze F. last_name: Winklhofer - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 citation: ama: Inglés Prieto Á, Furthmann N, Crossman SH, et al. Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease. PLoS genetics. 2021;17(4):e1009479. doi:10.1371/journal.pgen.1009479 apa: Inglés Prieto, Á., Furthmann, N., Crossman, S. H., Tichy, A. M., Hoyer, N., Petersen, M., … Janovjak, H. L. (2021). Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease. PLoS Genetics. Public Library of Science. https://doi.org/10.1371/journal.pgen.1009479 chicago: Inglés Prieto, Álvaro, Nikolas Furthmann, Samuel H. Crossman, Alexandra Madelaine Tichy, Nina Hoyer, Meike Petersen, Vanessa Zheden, et al. “Optogenetic Delivery of Trophic Signals in a Genetic Model of Parkinson’s Disease.” PLoS Genetics. Public Library of Science, 2021. https://doi.org/10.1371/journal.pgen.1009479. ieee: Á. Inglés Prieto et al., “Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease,” PLoS genetics, vol. 17, no. 4. Public Library of Science, p. e1009479, 2021. ista: Inglés Prieto Á, Furthmann N, Crossman SH, Tichy AM, Hoyer N, Petersen M, Zheden V, Bicher J, Gschaider-Reichhart E, György A, Siekhaus DE, Soba P, Winklhofer KF, Janovjak HL. 2021. Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease. PLoS genetics. 17(4), e1009479. mla: Inglés Prieto, Álvaro, et al. “Optogenetic Delivery of Trophic Signals in a Genetic Model of Parkinson’s Disease.” PLoS Genetics, vol. 17, no. 4, Public Library of Science, 2021, p. e1009479, doi:10.1371/journal.pgen.1009479. short: Á. Inglés Prieto, N. Furthmann, S.H. Crossman, A.M. Tichy, N. Hoyer, M. Petersen, V. Zheden, J. Bicher, E. Gschaider-Reichhart, A. György, D.E. Siekhaus, P. Soba, K.F. Winklhofer, H.L. Janovjak, PLoS Genetics 17 (2021) e1009479. date_created: 2021-05-02T22:01:29Z date_published: 2021-04-01T00:00:00Z date_updated: 2023-08-08T13:17:47Z day: '01' ddc: - '570' department: - _id: EM-Fac - _id: LoSw - _id: DaSi doi: 10.1371/journal.pgen.1009479 external_id: isi: - '000640606700001' file: - access_level: open_access checksum: 82a74668f863e8dfb22fdd4f845c92ce content_type: application/pdf creator: kschuh date_created: 2021-05-04T09:05:27Z date_updated: 2021-05-04T09:05:27Z file_id: '9369' file_name: 2021_PLOS_Ingles-Prieto.pdf file_size: 3072764 relation: main_file success: 1 file_date_updated: 2021-05-04T09:05:27Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: e1009479 publication: PLoS genetics publication_identifier: eissn: - '15537404' publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ... --- _id: '9380' abstract: - lang: eng text: Shigella are pathogens originating within the Escherichia lineage but frequently classified as a separate genus. Shigella genomes contain numerous insertion sequences (ISs) that lead to pseudogenisation of affected genes and an increase of non-homologous recombination. Here, we study 414 genomes of E. coli and Shigella strains to assess the contribution of genomic rearrangements to Shigella evolution. We found that Shigella experienced exceptionally high rates of intragenomic rearrangements and had a decreased rate of homologous recombination compared to pathogenic and non-pathogenic E. coli. The high rearrangement rate resulted in independent disruption of syntenic regions and parallel rearrangements in different Shigella lineages. Specifically, we identified two types of chromosomally encoded E3 ubiquitin-protein ligases acquired independently by all Shigella strains that also showed a high level of sequence conservation in the promoter and further in the 5′-intergenic region. In the only available enteroinvasive E. coli (EIEC) strain, which is a pathogenic E. coli with a phenotype intermediate between Shigella and non-pathogenic E. coli, we found a rate of genome rearrangements comparable to those in other E. coli and no functional copies of the two Shigella-specific E3 ubiquitin ligases. These data indicate that the accumulation of ISs influenced many aspects of genome evolution and played an important role in the evolution of intracellular pathogens. Our research demonstrates the power of comparative genomics-based on synteny block composition and an important role of non-coding regions in the evolution of genomic islands. acknowledgement: We thank Fyodor Kondrashov for valuable advice and manuscript proofreading. We also thank Alla Mikheenko for assistance with Circos. article_number: '628622' article_processing_charge: No article_type: original author: - first_name: Zaira full_name: Seferbekova, Zaira last_name: Seferbekova - first_name: Alexey full_name: Zabelkin, Alexey last_name: Zabelkin - first_name: Yulia full_name: Yakovleva, Yulia last_name: Yakovleva - first_name: Robert full_name: Afasizhev, Robert last_name: Afasizhev - first_name: Natalia O. full_name: Dranenko, Natalia O. last_name: Dranenko - first_name: Nikita full_name: Alexeev, Nikita last_name: Alexeev - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 citation: ama: Seferbekova Z, Zabelkin A, Yakovleva Y, et al. High rates of genome rearrangements and pathogenicity of Shigella spp. Frontiers in Microbiology. 2021;12. doi:10.3389/fmicb.2021.628622 apa: Seferbekova, Z., Zabelkin, A., Yakovleva, Y., Afasizhev, R., Dranenko, N. O., Alexeev, N., … Bochkareva, O. (2021). High rates of genome rearrangements and pathogenicity of Shigella spp. Frontiers in Microbiology. Frontiers. https://doi.org/10.3389/fmicb.2021.628622 chicago: Seferbekova, Zaira, Alexey Zabelkin, Yulia Yakovleva, Robert Afasizhev, Natalia O. Dranenko, Nikita Alexeev, Mikhail S. Gelfand, and Olga Bochkareva. “High Rates of Genome Rearrangements and Pathogenicity of Shigella Spp.” Frontiers in Microbiology. Frontiers, 2021. https://doi.org/10.3389/fmicb.2021.628622. ieee: Z. Seferbekova et al., “High rates of genome rearrangements and pathogenicity of Shigella spp,” Frontiers in Microbiology, vol. 12. Frontiers, 2021. ista: Seferbekova Z, Zabelkin A, Yakovleva Y, Afasizhev R, Dranenko NO, Alexeev N, Gelfand MS, Bochkareva O. 2021. High rates of genome rearrangements and pathogenicity of Shigella spp. Frontiers in Microbiology. 12, 628622. mla: Seferbekova, Zaira, et al. “High Rates of Genome Rearrangements and Pathogenicity of Shigella Spp.” Frontiers in Microbiology, vol. 12, 628622, Frontiers, 2021, doi:10.3389/fmicb.2021.628622. short: Z. Seferbekova, A. Zabelkin, Y. Yakovleva, R. Afasizhev, N.O. Dranenko, N. Alexeev, M.S. Gelfand, O. Bochkareva, Frontiers in Microbiology 12 (2021). date_created: 2021-05-09T22:01:38Z date_published: 2021-04-12T00:00:00Z date_updated: 2023-08-08T13:30:39Z day: '12' ddc: - '570' department: - _id: FyKo doi: 10.3389/fmicb.2021.628622 ec_funded: 1 external_id: isi: - '000643713300001' file: - access_level: open_access checksum: 2f856543add59273a482a7f326fc0400 content_type: application/pdf creator: kschuh date_created: 2021-05-11T13:05:52Z date_updated: 2021-05-11T13:05:52Z file_id: '9384' file_name: 2021_Frontiers_Microbiology_Seferbekova.pdf file_size: 14362316 relation: main_file success: 1 file_date_updated: 2021-05-11T13:05:52Z has_accepted_license: '1' intvolume: ' 12' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Frontiers in Microbiology publication_identifier: eissn: - 1664-302X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: High rates of genome rearrangements and pathogenicity of Shigella spp tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '9359' abstract: - lang: eng text: "We prove that the factorization homologies of a scheme with coefficients in truncated polynomial algebras compute the cohomologies of its generalized configuration spaces. Using Koszul duality between commutative algebras and Lie algebras, we obtain new expressions for the cohomologies of the latter. As a consequence, we obtain a uniform and conceptual approach for treating homological stability, homological densities, and arithmetic densities of generalized configuration spaces. Our results categorify, generalize, and in fact provide a conceptual understanding of the coincidences appearing in the work of Farb--Wolfson--Wood. Our computation of the stable homological densities also yields rational homotopy types, answering a question posed by Vakil--Wood. Our approach hinges on the study of homological stability of cohomological Chevalley complexes, which is of independent interest.\r\n" acknowledgement: "This paper owes an obvious intellectual debt to the illuminating treatments of factorization homology by J.\r\nFrancis, D. Gaitsgory, and J. Lurie in [GL,G1, FG]. The author would like to thank B. Farb and J. Wolfson for\r\nbringing the question of explaining coincidences in homological densities to his attention. Moreover, the author\r\nthanks J. Wolfson for many helpful conversations on the subject, O. Randal-Williams for many comments which\r\ngreatly help improve the exposition, and G. C. Drummond-Cole for many useful conversations on L∞-algebras.\r\nFinally, the author is grateful to the anonymous referee for carefully reading the manuscript and for providing\r\nnumerous comments which greatly helped improve the clarity and precision of the exposition.\r\nThis work is supported by the Advanced Grant “Arithmetic and Physics of Higgs moduli spaces” No. 320593 of\r\nthe European Research Council and the Lise Meitner fellowship “Algebro-Geometric Applications of Factorization\r\nHomology,” Austrian Science Fund (FWF): M 2751." article_processing_charge: No article_type: original author: - first_name: Quoc P full_name: Ho, Quoc P id: 3DD82E3C-F248-11E8-B48F-1D18A9856A87 last_name: Ho citation: ama: Ho QP. Homological stability and densities of generalized configuration spaces. Geometry & Topology. 2021;25(2):813-912. doi:10.2140/gt.2021.25.813 apa: Ho, Q. P. (2021). Homological stability and densities of generalized configuration spaces. Geometry & Topology. Mathematical Sciences Publishers. https://doi.org/10.2140/gt.2021.25.813 chicago: Ho, Quoc P. “Homological Stability and Densities of Generalized Configuration Spaces.” Geometry & Topology. Mathematical Sciences Publishers, 2021. https://doi.org/10.2140/gt.2021.25.813. ieee: Q. P. Ho, “Homological stability and densities of generalized configuration spaces,” Geometry & Topology, vol. 25, no. 2. Mathematical Sciences Publishers, pp. 813–912, 2021. ista: Ho QP. 2021. Homological stability and densities of generalized configuration spaces. Geometry & Topology. 25(2), 813–912. mla: Ho, Quoc P. “Homological Stability and Densities of Generalized Configuration Spaces.” Geometry & Topology, vol. 25, no. 2, Mathematical Sciences Publishers, 2021, pp. 813–912, doi:10.2140/gt.2021.25.813. short: Q.P. Ho, Geometry & Topology 25 (2021) 813–912. date_created: 2021-05-02T06:59:33Z date_published: 2021-04-27T00:00:00Z date_updated: 2023-08-08T13:28:59Z day: '27' ddc: - '514' - '516' - '512' department: - _id: TaHa doi: 10.2140/gt.2021.25.813 ec_funded: 1 external_id: arxiv: - '1802.07948' isi: - '000682738600005' file: - access_level: open_access checksum: 643a8d2d6f06f0888dcd7503f55d0920 content_type: application/pdf creator: qho date_created: 2021-05-03T06:54:06Z date_updated: 2021-05-03T06:54:06Z file_id: '9366' file_name: densities.pdf file_size: 479268 relation: main_file success: 1 file_date_updated: 2021-05-03T06:54:06Z has_accepted_license: '1' intvolume: ' 25' isi: 1 issue: '2' keyword: - Generalized configuration spaces - homological stability - homological densities - chiral algebras - chiral homology - factorization algebras - Koszul duality - Ran space language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version page: 813-912 project: - _id: 25E549F4-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '320593' name: Arithmetic and physics of Higgs moduli spaces - _id: 26B96266-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02751 name: Algebro-Geometric Applications of Factorization Homology publication: Geometry & Topology publication_identifier: issn: - 1364-0380 publication_status: published publisher: Mathematical Sciences Publishers quality_controlled: '1' status: public title: Homological stability and densities of generalized configuration spaces type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 25 year: '2021' ... --- _id: '9361' abstract: - lang: eng text: The multimeric matrix (M) protein of clinically relevant paramyxoviruses orchestrates assembly and budding activity of viral particles at the plasma membrane (PM). We identified within the canine distemper virus (CDV) M protein two microdomains, potentially assuming α-helix structures, which are essential for membrane budding activity. Remarkably, while two rationally designed microdomain M mutants (E89R, microdomain 1 and L239D, microdomain 2) preserved proper folding, dimerization, interaction with the nucleocapsid protein, localization at and deformation of the PM, the virus-like particle formation, as well as production of infectious virions (as monitored using a membrane budding-complementation system), were, in sharp contrast, strongly impaired. Of major importance, raster image correlation spectroscopy (RICS) revealed that both microdomains contributed to finely tune M protein mobility specifically at the PM. Collectively, our data highlighted the cornerstone membrane budding-priming activity of two spatially discrete M microdomains, potentially by coordinating the assembly of productive higher oligomers at the PM. acknowledgement: This work was supported by the Swiss National Science Foundation (referencenumber 310030_173185 to P. P.). article_number: e01024-20 article_processing_charge: No author: - first_name: Matthieu full_name: Gast, Matthieu last_name: Gast - first_name: Nicole P. full_name: Kadzioch, Nicole P. last_name: Kadzioch - first_name: Doreen full_name: Milius, Doreen id: 384050BC-F248-11E8-B48F-1D18A9856A87 last_name: Milius - first_name: Francesco full_name: Origgi, Francesco last_name: Origgi - first_name: Philippe full_name: Plattet, Philippe last_name: Plattet citation: ama: Gast M, Kadzioch NP, Milius D, Origgi F, Plattet P. Oligomerization and cell egress controlled by two microdomains of canine distemper virus matrix protein. mSphere. 2021;6(2). doi:10.1128/mSphere.01024-20 apa: Gast, M., Kadzioch, N. P., Milius, D., Origgi, F., & Plattet, P. (2021). Oligomerization and cell egress controlled by two microdomains of canine distemper virus matrix protein. MSphere. American Society for Microbiology. https://doi.org/10.1128/mSphere.01024-20 chicago: Gast, Matthieu, Nicole P. Kadzioch, Doreen Milius, Francesco Origgi, and Philippe Plattet. “Oligomerization and Cell Egress Controlled by Two Microdomains of Canine Distemper Virus Matrix Protein.” MSphere. American Society for Microbiology, 2021. https://doi.org/10.1128/mSphere.01024-20. ieee: M. Gast, N. P. Kadzioch, D. Milius, F. Origgi, and P. Plattet, “Oligomerization and cell egress controlled by two microdomains of canine distemper virus matrix protein,” mSphere, vol. 6, no. 2. American Society for Microbiology, 2021. ista: Gast M, Kadzioch NP, Milius D, Origgi F, Plattet P. 2021. Oligomerization and cell egress controlled by two microdomains of canine distemper virus matrix protein. mSphere. 6(2), e01024-20. mla: Gast, Matthieu, et al. “Oligomerization and Cell Egress Controlled by Two Microdomains of Canine Distemper Virus Matrix Protein.” MSphere, vol. 6, no. 2, e01024-20, American Society for Microbiology, 2021, doi:10.1128/mSphere.01024-20. short: M. Gast, N.P. Kadzioch, D. Milius, F. Origgi, P. Plattet, MSphere 6 (2021). date_created: 2021-05-02T22:01:28Z date_published: 2021-04-14T00:00:00Z date_updated: 2023-08-08T13:26:12Z day: '14' ddc: - '570' department: - _id: Bio doi: 10.1128/mSphere.01024-20 external_id: isi: - '000663823400025' pmid: - '33853875' file: - access_level: open_access checksum: 310748d140c8838335c1314431095898 content_type: application/pdf creator: kschuh date_created: 2021-05-04T12:41:38Z date_updated: 2021-05-04T12:41:38Z file_id: '9370' file_name: 2021_mSphere_Gast.pdf file_size: 3379349 relation: main_file success: 1 file_date_updated: 2021-05-04T12:41:38Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '2' language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: mSphere publication_identifier: eissn: - '23795042' publication_status: published publisher: American Society for Microbiology quality_controlled: '1' scopus_import: '1' status: public title: Oligomerization and cell egress controlled by two microdomains of canine distemper virus matrix protein tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2021' ... --- _id: '9376' abstract: - lang: eng text: This paper presents a method for designing planar multistable compliant structures. Given a sequence of desired stable states and the corresponding poses of the structure, we identify the topology and geometric realization of a mechanism—consisting of bars and joints—that is able to physically reproduce the desired multistable behavior. In order to solve this problem efficiently, we build on insights from minimally rigid graph theory to identify simple but effective topologies for the mechanism. We then optimize its geometric parameters, such as joint positions and bar lengths, to obtain correct transitions between the given poses. Simultaneously, we ensure adequate stability of each pose based on an effective approximate error metric related to the elastic energy Hessian of the bars in the mechanism. As demonstrated by our results, we obtain functional multistable mechanisms of manageable complexity that can be fabricated using 3D printing. Further, we evaluated the effectiveness of our method on a large number of examples in the simulation and fabricated several physical prototypes. acknowledged_ssus: - _id: M-Shop acknowledgement: 'We would like to thank everyone who contributed to this paper, the authors of artworks for all the examples, including @macrovec-tor_official and Wikimedia for the FLAG semaphore, and @pikisuper-star for the FIGURINE. The photos of iconic poses in the teaser were supplied by (from left to right): Mike Hewitt/Olympics Day 8 - Athletics/Gettty Images, Oneinchpunch/Basketball player training on acourt in New york city/Shutterstock, and Andrew Redington/TigerWoods/Getty Images. We also want to express our gratitude to Christian Hafner for insightful discussions, the IST Austria machine shop SSU, all proof-readers, and anonymous reviewers. This project has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement No 642841 (DISTRO), and under the European Research Council grant agreement No 715767 (MATERIALIZABLE).' article_number: '186' article_processing_charge: No article_type: original author: - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Zhang R, Auzinger T, Bickel B. Computational design of planar multistable compliant structures. ACM Transactions on Graphics. 2021;40(5). doi:10.1145/3453477 apa: Zhang, R., Auzinger, T., & Bickel, B. (2021). Computational design of planar multistable compliant structures. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3453477 chicago: Zhang, Ran, Thomas Auzinger, and Bernd Bickel. “Computational Design of Planar Multistable Compliant Structures.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3453477. ieee: R. Zhang, T. Auzinger, and B. Bickel, “Computational design of planar multistable compliant structures,” ACM Transactions on Graphics, vol. 40, no. 5. Association for Computing Machinery, 2021. ista: Zhang R, Auzinger T, Bickel B. 2021. Computational design of planar multistable compliant structures. ACM Transactions on Graphics. 40(5), 186. mla: Zhang, Ran, et al. “Computational Design of Planar Multistable Compliant Structures.” ACM Transactions on Graphics, vol. 40, no. 5, 186, Association for Computing Machinery, 2021, doi:10.1145/3453477. short: R. Zhang, T. Auzinger, B. Bickel, ACM Transactions on Graphics 40 (2021). date_created: 2021-05-08T17:37:08Z date_published: 2021-10-08T00:00:00Z date_updated: 2023-08-08T13:31:38Z day: '08' ddc: - '000' department: - _id: BeBi doi: 10.1145/3453477 ec_funded: 1 external_id: isi: - '000752079300003' file: - access_level: open_access checksum: 8564b3118457d4c8939a8ef2b1a2f16c content_type: application/pdf creator: bbickel date_created: 2021-05-08T17:36:59Z date_updated: 2021-05-08T17:36:59Z file_id: '9377' file_name: Multistable-authorversion.pdf file_size: 18926557 relation: main_file - access_level: open_access checksum: 3b6e874e30bfa1bfc3ad3498710145a1 content_type: video/mp4 creator: bbickel date_created: 2021-05-08T17:38:22Z date_updated: 2021-05-08T17:38:22Z file_id: '9378' file_name: multistable-video.mp4 file_size: 76542901 relation: main_file success: 1 - access_level: open_access checksum: 20dc3bc42e1a912a5b0247c116772098 content_type: application/pdf creator: bbickel date_created: 2021-12-17T08:13:51Z date_updated: 2021-12-17T08:13:51Z description: This document provides additional results and analyzes the robustness and limitations of our approach. file_id: '10562' file_name: multistable-supplementary material.pdf file_size: 3367072 relation: supplementary_material title: Supplementary Material for “Computational Design of Planar Multistable Compliant Structures” file_date_updated: 2021-12-17T08:13:51Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '5' keyword: - multistability - mechanism - computational design - rigidity language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Computational design of planar multistable compliant structures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '9375' abstract: - lang: eng text: Genetic variation segregates as linked sets of variants, or haplotypes. Haplotypes and linkage are central to genetics and underpin virtually all genetic and selection analysis. And yet, genomic data often lack haplotype information, due to constraints in sequencing technologies. Here we present “haplotagging”, a simple, low-cost linked-read sequencing technique that allows sequencing of hundreds of individuals while retaining linkage information. We apply haplotagging to construct megabase-size haplotypes for over 600 individual butterflies (Heliconius erato and H. melpomene), which form overlapping hybrid zones across an elevational gradient in Ecuador. Haplotagging identifies loci controlling distinctive high- and lowland wing color patterns. Divergent haplotypes are found at the same major loci in both species, while chromosome rearrangements show no parallelism. Remarkably, in both species the geographic clines for the major wing pattern loci are displaced by 18 km, leading to the rise of a novel hybrid morph in the centre of the hybrid zone. We propose that shared warning signalling (Müllerian mimicry) may couple the cline shifts seen in both species, and facilitate the parallel co-emergence of a novel hybrid morph in both co-mimetic species. Our results show the power of efficient haplotyping methods when combined with large-scale sequencing data from natural populations. acknowledgement: 'We thank Felicity Jones for input into experimental design, helpful discussion and improving the manuscript. We thank the Rolian, Jiggins, Chan and Jones Labs members for support, insightful scientific discussion and improving the manuscript. We thank the Rolian lab members, the Animal Resource Centre staff at the University of Calgary, and Caroline Schmid and Ann-Katrin Geysel at the Friedrich Miescher Laboratory for animal husbandry. We thank Christa Lanz, Rebecca Schwab and Ilja Bezrukov for assistance with high-throughput sequencing and associated data processing; Andre Noll and the MPI Tübingen IT team for computational support. We thank Ben Haller and Richard Durbin for helpful discussions. We thank David M. Kingsley for thoughtful input that has greatly improved our manuscript. J.I.M. is supported by a Research Fellowship from St. John’s College, Cambridge. A.D. was supported by a European Research Council Consolidator Grant (No. 617279 “EvolRecombAdapt”, P/I Felicity Jones). C.R. is supported by Discovery Grant #4181932 from the Natural Sciences and Engineering Research Council of Canada and by the Faculty of Veterinary Medicine at the University of Calgary. C.D.J. is supported by a BBSRC grant BB/R007500 and a European Research Council Advanced Grant (No. 339873 “SpeciationGenetics”). M.K. and Y.F.C. are supported by the Max Planck Society and a European Research Council Starting Grant (No. 639096 “HybridMiX”).' article_number: e2015005118 article_processing_charge: No article_type: original author: - first_name: Joana I. full_name: Meier, Joana I. last_name: Meier - first_name: Patricio A. full_name: Salazar, Patricio A. last_name: Salazar - first_name: Marek full_name: Kučka, Marek last_name: Kučka - first_name: Robert William full_name: Davies, Robert William last_name: Davies - first_name: Andreea full_name: Dréau, Andreea last_name: Dréau - first_name: Ismael full_name: Aldás, Ismael last_name: Aldás - first_name: Olivia Box full_name: Power, Olivia Box last_name: Power - first_name: Nicola J. full_name: Nadeau, Nicola J. last_name: Nadeau - first_name: Jon R. full_name: Bridle, Jon R. last_name: Bridle - first_name: Campbell full_name: Rolian, Campbell last_name: Rolian - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: W. Owen full_name: McMillan, W. Owen last_name: McMillan - first_name: Chris D. full_name: Jiggins, Chris D. last_name: Jiggins - first_name: Yingguang Frank full_name: Chan, Yingguang Frank last_name: Chan citation: ama: Meier JI, Salazar PA, Kučka M, et al. Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. PNAS. 2021;118(25). doi:10.1073/pnas.2015005118 apa: Meier, J. I., Salazar, P. A., Kučka, M., Davies, R. W., Dréau, A., Aldás, I., … Chan, Y. F. (2021). Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. PNAS. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2015005118 chicago: Meier, Joana I., Patricio A. Salazar, Marek Kučka, Robert William Davies, Andreea Dréau, Ismael Aldás, Olivia Box Power, et al. “Haplotype Tagging Reveals Parallel Formation of Hybrid Races in Two Butterfly Species.” PNAS. Proceedings of the National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.2015005118. ieee: J. I. Meier et al., “Haplotype tagging reveals parallel formation of hybrid races in two butterfly species,” PNAS, vol. 118, no. 25. Proceedings of the National Academy of Sciences, 2021. ista: Meier JI, Salazar PA, Kučka M, Davies RW, Dréau A, Aldás I, Power OB, Nadeau NJ, Bridle JR, Rolian C, Barton NH, McMillan WO, Jiggins CD, Chan YF. 2021. Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. PNAS. 118(25), e2015005118. mla: Meier, Joana I., et al. “Haplotype Tagging Reveals Parallel Formation of Hybrid Races in Two Butterfly Species.” PNAS, vol. 118, no. 25, e2015005118, Proceedings of the National Academy of Sciences, 2021, doi:10.1073/pnas.2015005118. short: J.I. Meier, P.A. Salazar, M. Kučka, R.W. Davies, A. Dréau, I. Aldás, O.B. Power, N.J. Nadeau, J.R. Bridle, C. Rolian, N.H. Barton, W.O. McMillan, C.D. Jiggins, Y.F. Chan, PNAS 118 (2021). date_created: 2021-05-07T17:10:21Z date_published: 2021-06-21T00:00:00Z date_updated: 2023-08-08T13:33:09Z day: '21' ddc: - '570' department: - _id: NiBa doi: 10.1073/pnas.2015005118 external_id: isi: - '000671755600001' pmid: - '34155138' file: - access_level: open_access checksum: cb30c6166b2132ee60d616b31a1a7c29 content_type: application/pdf creator: dernst date_created: 2022-03-08T08:18:16Z date_updated: 2022-03-08T08:18:16Z file_id: '10835' file_name: 2021_PNAS_Meier.pdf file_size: 20592929 relation: main_file success: 1 file_date_updated: 2022-03-08T08:18:16Z has_accepted_license: '1' intvolume: ' 118' isi: 1 issue: '25' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: PNAS publication_identifier: eissn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Haplotype tagging reveals parallel formation of hybrid races in two butterfly species tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '9394' abstract: - lang: eng text: 'Chromosomal inversions have long been recognized for their role in local adaptation. By suppressing recombination in heterozygous individuals, they can maintain coadapted gene complexes and protect them from homogenizing effects of gene flow. However, to fully understand their importance for local adaptation we need to know their influence on phenotypes under divergent selection. For this, the marine snail Littorina saxatilis provides an ideal study system. Divergent ecotypes adapted to wave action and crab predation occur in close proximity on intertidal shores with gene flow between them. Here, we used F2 individuals obtained from crosses between the ecotypes to test for associations between genomic regions and traits distinguishing the Crab‐/Wave‐adapted ecotypes including size, shape, shell thickness, and behavior. We show that most of these traits are influenced by two previously detected inversion regions that are divergent between ecotypes. We thus gain a better understanding of one important underlying mechanism responsible for the rapid and repeated formation of ecotypes: divergent selection acting on inversions. We also found that some inversions contributed to more than one trait suggesting that they may contain several loci involved in adaptation, consistent with the hypothesis that suppression of recombination within inversions facilitates differentiation in the presence of gene flow.' acknowledgement: 'We are very grateful to Irena Senčić for technical assistance and to Michelle Kortyna and Sean Holland at the Center for Anchored Phylogenomics for assistance with data collection. RKB was funded by the Natural Environment Research Council and by the European Research Council. KJ was funded by the Swedish Research Councils VR and Formas (Linnaeus Grant: 217‐2008‐1719). JL was funded by a studentship from the Leverhulme Centre for Advanced Biological Modelling. AMW was funded by the European Union''s Horizon 2020 research and innovation program under Marie Skłodowska‐Curie Grant agreement no. 797747. RF was funded by the European Union''s Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie Grant agreement No. 706376 and by FEDER Funds through the Operational Competitiveness Factors Program—COMPETE and by National Funds through FCT—Foundation for Science and Technology within the scope of the project “Hybrabbid” (PTDC/BIA‐EVL/30628/2017‐ POCI‐01‐0145‐FEDER‐030628). We are grateful to other members of the Littorina research group for helpful discussions. We thank Claire Mérot and an anonymous referee for insightful comments on an earlier version. ' article_processing_charge: No article_type: original author: - first_name: Eva L. full_name: Koch, Eva L. last_name: Koch - first_name: Hernán E. full_name: Morales, Hernán E. last_name: Morales - first_name: Jenny full_name: Larsson, Jenny last_name: Larsson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Alan R. full_name: Lemmon, Alan R. last_name: Lemmon - first_name: E. Moriarty full_name: Lemmon, E. Moriarty last_name: Lemmon - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Koch EL, Morales HE, Larsson J, et al. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evolution Letters. 2021;5(3):196-213. doi:10.1002/evl3.227 apa: Koch, E. L., Morales, H. E., Larsson, J., Westram, A. M., Faria, R., Lemmon, A. R., … Butlin, R. K. (2021). Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evolution Letters. Wiley. https://doi.org/10.1002/evl3.227 chicago: Koch, Eva L., Hernán E. Morales, Jenny Larsson, Anja M Westram, Rui Faria, Alan R. Lemmon, E. Moriarty Lemmon, Kerstin Johannesson, and Roger K. Butlin. “Genetic Variation for Adaptive Traits Is Associated with Polymorphic Inversions in Littorina Saxatilis.” Evolution Letters. Wiley, 2021. https://doi.org/10.1002/evl3.227. ieee: E. L. Koch et al., “Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis,” Evolution Letters, vol. 5, no. 3. Wiley, pp. 196–213, 2021. ista: Koch EL, Morales HE, Larsson J, Westram AM, Faria R, Lemmon AR, Lemmon EM, Johannesson K, Butlin RK. 2021. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evolution Letters. 5(3), 196–213. mla: Koch, Eva L., et al. “Genetic Variation for Adaptive Traits Is Associated with Polymorphic Inversions in Littorina Saxatilis.” Evolution Letters, vol. 5, no. 3, Wiley, 2021, pp. 196–213, doi:10.1002/evl3.227. short: E.L. Koch, H.E. Morales, J. Larsson, A.M. Westram, R. Faria, A.R. Lemmon, E.M. Lemmon, K. Johannesson, R.K. Butlin, Evolution Letters 5 (2021) 196–213. date_created: 2021-05-16T22:01:47Z date_published: 2021-05-07T00:00:00Z date_updated: 2023-08-08T13:34:08Z day: '07' ddc: - '570' department: - _id: NiBa doi: 10.1002/evl3.227 ec_funded: 1 external_id: isi: - '000647846200001' file: - access_level: open_access checksum: 023b1608e311f0fda30593ba3d0a4e0b content_type: application/pdf creator: cchlebak date_created: 2021-10-15T08:26:02Z date_updated: 2021-10-15T08:26:02Z file_id: '10142' file_name: 2021_EvolutionLetters_Koch.pdf file_size: 3021108 relation: main_file success: 1 file_date_updated: 2021-10-15T08:26:02Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '3' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 196-213 project: - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: Evolution Letters publication_identifier: eissn: - 2056-3744 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '12987' relation: research_data status: public scopus_import: '1' status: public title: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2021' ... --- _id: '9381' abstract: - lang: eng text: 'A game of rock-paper-scissors is an interesting example of an interaction where none of the pure strategies strictly dominates all others, leading to a cyclic pattern. In this work, we consider an unstable version of rock-paper-scissors dynamics and allow individuals to make behavioural mistakes during the strategy execution. We show that such an assumption can break a cyclic relationship leading to a stable equilibrium emerging with only one strategy surviving. We consider two cases: completely random mistakes when individuals have no bias towards any strategy and a general form of mistakes. Then, we determine conditions for a strategy to dominate all other strategies. However, given that individuals who adopt a dominating strategy are still prone to behavioural mistakes in the observed behaviour, we may still observe extinct strategies. That is, behavioural mistakes in strategy execution stabilise evolutionary dynamics leading to an evolutionary stable and, potentially, mixed co-existence equilibrium.' acknowledgement: Authors would like to thank Christian Hilbe and Martin Nowak for their inspiring and very helpful feedback on the manuscript. article_number: e1008523 article_processing_charge: No article_type: original author: - first_name: Maria full_name: Kleshnina, Maria id: 4E21749C-F248-11E8-B48F-1D18A9856A87 last_name: Kleshnina - first_name: Sabrina S. full_name: Streipert, Sabrina S. last_name: Streipert - first_name: Jerzy A. full_name: Filar, Jerzy A. last_name: Filar - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Kleshnina M, Streipert SS, Filar JA, Chatterjee K. Mistakes can stabilise the dynamics of rock-paper-scissors games. PLoS Computational Biology. 2021;17(4). doi:10.1371/journal.pcbi.1008523 apa: Kleshnina, M., Streipert, S. S., Filar, J. A., & Chatterjee, K. (2021). Mistakes can stabilise the dynamics of rock-paper-scissors games. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1008523 chicago: Kleshnina, Maria, Sabrina S. Streipert, Jerzy A. Filar, and Krishnendu Chatterjee. “Mistakes Can Stabilise the Dynamics of Rock-Paper-Scissors Games.” PLoS Computational Biology. Public Library of Science, 2021. https://doi.org/10.1371/journal.pcbi.1008523. ieee: M. Kleshnina, S. S. Streipert, J. A. Filar, and K. Chatterjee, “Mistakes can stabilise the dynamics of rock-paper-scissors games,” PLoS Computational Biology, vol. 17, no. 4. Public Library of Science, 2021. ista: Kleshnina M, Streipert SS, Filar JA, Chatterjee K. 2021. Mistakes can stabilise the dynamics of rock-paper-scissors games. PLoS Computational Biology. 17(4), e1008523. mla: Kleshnina, Maria, et al. “Mistakes Can Stabilise the Dynamics of Rock-Paper-Scissors Games.” PLoS Computational Biology, vol. 17, no. 4, e1008523, Public Library of Science, 2021, doi:10.1371/journal.pcbi.1008523. short: M. Kleshnina, S.S. Streipert, J.A. Filar, K. Chatterjee, PLoS Computational Biology 17 (2021). date_created: 2021-05-09T22:01:38Z date_published: 2021-04-01T00:00:00Z date_updated: 2023-08-08T13:31:08Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.1371/journal.pcbi.1008523 ec_funded: 1 external_id: isi: - '000639711200001' file: - access_level: open_access checksum: a94ebe0c4116f5047eaa6029e54d2dac content_type: application/pdf creator: kschuh date_created: 2021-05-11T13:50:06Z date_updated: 2021-05-11T13:50:06Z file_id: '9385' file_name: 2021_pcbi_Kleshnina.pdf file_size: 1323820 relation: main_file success: 1 file_date_updated: 2021-05-11T13:50:06Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: PLoS Computational Biology publication_identifier: eissn: - '15537358' issn: - 1553734X publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Mistakes can stabilise the dynamics of rock-paper-scissors games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ... --- _id: '9392' abstract: - lang: eng text: 'Humans conceptualize the diversity of life by classifying individuals into types we call ‘species’1. The species we recognize influence political and financial decisions and guide our understanding of how units of diversity evolve and interact. Although the idea of species may seem intuitive, a debate about the best way to define them has raged even before Darwin2. So much energy has been devoted to the so-called ‘species problem’ that no amount of discourse will ever likely solve it2,3. Dozens of species concepts are currently recognized3, but we lack a concrete understanding of how much researchers actually disagree and the factors that cause them to think differently1,2. To address this, we used a survey to quantify the species problem for the first time. The results indicate that the disagreement is extensive: two randomly chosen respondents will most likely disagree on the nature of species. The probability of disagreement is not predicted by researcher experience or broad study system, but tended to be lower among researchers with similar focus, training and who study the same organism. Should we see this diversity of perspectives as a problem? We argue that we should not.' acknowledgement: We thank Christopher Cooney, Martin Garlovsky, Anja M. Westram, Carina Baskett, Stefanie Belohlavy, Michal Hledik, Arka Pal, Nicholas H. Barton, Roger K. Butlin and members of the University of Sheffield Speciation Journal Club for feedback on draft survey questions and/or comments on a draft manuscript. Three anonymous reviewers gave thoughtful feedback that improved the manuscript. We thank Ahmad Nadeem, who was paid to build the Shiny app. We are especially grateful to everyone who took part in the survey. Ethical approval for the survey was obtained through the University of Sheffield Ethics Review Procedure (Application 029768). S.S. was supported by a NERC grant awarded to Roger K. Butlin. article_processing_charge: No article_type: original author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet citation: ama: Stankowski S, Ravinet M. Quantifying the use of species concepts. Current Biology. 2021;31(9):R428-R429. doi:10.1016/j.cub.2021.03.060 apa: Stankowski, S., & Ravinet, M. (2021). Quantifying the use of species concepts. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2021.03.060 chicago: Stankowski, Sean, and Mark Ravinet. “Quantifying the Use of Species Concepts.” Current Biology. Cell Press, 2021. https://doi.org/10.1016/j.cub.2021.03.060. ieee: S. Stankowski and M. Ravinet, “Quantifying the use of species concepts,” Current Biology, vol. 31, no. 9. Cell Press, pp. R428–R429, 2021. ista: Stankowski S, Ravinet M. 2021. Quantifying the use of species concepts. Current Biology. 31(9), R428–R429. mla: Stankowski, Sean, and Mark Ravinet. “Quantifying the Use of Species Concepts.” Current Biology, vol. 31, no. 9, Cell Press, 2021, pp. R428–29, doi:10.1016/j.cub.2021.03.060. short: S. Stankowski, M. Ravinet, Current Biology 31 (2021) R428–R429. date_created: 2021-05-16T22:01:46Z date_published: 2021-05-10T00:00:00Z date_updated: 2023-08-08T13:34:38Z day: '10' department: - _id: NiBa doi: 10.1016/j.cub.2021.03.060 external_id: isi: - '000654741200004' pmid: - '33974865' intvolume: ' 31' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cub.2021.03.060 month: '05' oa: 1 oa_version: Published Version page: R428-R429 pmid: 1 publication: Current Biology publication_identifier: eissn: - '18790445' issn: - '09609822' publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Quantifying the use of species concepts type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 31 year: '2021' ... --- _id: '9387' abstract: - lang: eng text: We report the complete analysis of a deterministic model of deleterious mutations and negative selection against them at two haploid loci without recombination. As long as mutation is a weaker force than selection, mutant alleles remain rare at the only stable equilibrium, and otherwise, a variety of dynamics are possible. If the mutation-free genotype is absent, generally the only stable equilibrium is the one that corresponds to fixation of the mutant allele at the locus where it is less deleterious. This result suggests that fixation of a deleterious allele that follows a click of the Muller’s ratchet is governed by natural selection, instead of random drift. acknowledgement: This work was supported by the Russian Science Foundation grant N 16-14-10173. article_number: '110729' article_processing_charge: No article_type: original author: - first_name: Kseniia full_name: Khudiakova, Kseniia id: 4E6DC800-AE37-11E9-AC72-31CAE5697425 last_name: Khudiakova orcid: 0000-0002-6246-1465 - first_name: Tatiana Yu. full_name: Neretina, Tatiana Yu. last_name: Neretina - first_name: Alexey S. full_name: Kondrashov, Alexey S. last_name: Kondrashov citation: ama: Khudiakova K, Neretina TY, Kondrashov AS. Two linked loci under mutation-selection balance and Muller’s ratchet. Journal of Theoretical Biology. 2021;524. doi:10.1016/j.jtbi.2021.110729 apa: Khudiakova, K., Neretina, T. Y., & Kondrashov, A. S. (2021). Two linked loci under mutation-selection balance and Muller’s ratchet. Journal of Theoretical Biology. Elsevier . https://doi.org/10.1016/j.jtbi.2021.110729 chicago: Khudiakova, Kseniia, Tatiana Yu. Neretina, and Alexey S. Kondrashov. “Two Linked Loci under Mutation-Selection Balance and Muller’s Ratchet.” Journal of Theoretical Biology. Elsevier , 2021. https://doi.org/10.1016/j.jtbi.2021.110729. ieee: K. Khudiakova, T. Y. Neretina, and A. S. Kondrashov, “Two linked loci under mutation-selection balance and Muller’s ratchet,” Journal of Theoretical Biology, vol. 524. Elsevier , 2021. ista: Khudiakova K, Neretina TY, Kondrashov AS. 2021. Two linked loci under mutation-selection balance and Muller’s ratchet. Journal of Theoretical Biology. 524, 110729. mla: Khudiakova, Kseniia, et al. “Two Linked Loci under Mutation-Selection Balance and Muller’s Ratchet.” Journal of Theoretical Biology, vol. 524, 110729, Elsevier , 2021, doi:10.1016/j.jtbi.2021.110729. short: K. Khudiakova, T.Y. Neretina, A.S. Kondrashov, Journal of Theoretical Biology 524 (2021). date_created: 2021-05-12T05:58:42Z date_published: 2021-04-24T00:00:00Z date_updated: 2023-08-08T13:32:40Z day: '24' department: - _id: GradSch doi: 10.1016/j.jtbi.2021.110729 external_id: isi: - '000659161500002' intvolume: ' 524' isi: 1 keyword: - General Biochemistry - Genetics and Molecular Biology - Modelling and Simulation - Statistics and Probability - General Immunology and Microbiology - Applied Mathematics - General Agricultural and Biological Sciences - General Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/477489v1 month: '04' oa: 1 oa_version: Preprint publication: Journal of Theoretical Biology publication_identifier: issn: - 0022-5193 publication_status: published publisher: 'Elsevier ' quality_controlled: '1' status: public title: Two linked loci under mutation-selection balance and Muller’s ratchet type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 524 year: '2021' ... --- _id: '12987' abstract: - lang: eng text: Chromosomal inversion polymorphisms, segments of chromosomes that are flipped in orientation and occur in reversed order in some individuals, have long been recognized to play an important role in local adaptation. They can reduce recombination in heterozygous individuals and thus help to maintain sets of locally adapted alleles. In a wide range of organisms, populations adapted to different habitats differ in frequency of inversion arrangements. However, getting a full understanding of the importance of inversions for adaptation requires confirmation of their influence on traits under divergent selection. Here, we studied a marine snail, Littorina saxatilis, that has evolved ecotypes adapted to wave exposure or crab predation. These two types occur in close proximity on different parts of the shore. Gene flow between them exists in contact zones. However, they exhibit strong phenotypic divergence in several traits under habitat-specific selection, including size, shape and behaviour. We used crosses between these ecotypes to identify genomic regions that explain variation in these traits by using QTL analysis and variance partitioning across linkage groups. We could show that previously detected inversion regions contribute to adaptive divergence. Some inversions influenced multiple traits suggesting that they contain sets of locally adaptive alleles. Our study also identified regions without known inversions that are important for phenotypic divergence. Thus, we provide a more complete overview of the importance of inversions in relation to the remaining genome. article_processing_charge: No author: - first_name: Eva full_name: Koch, Eva last_name: Koch - first_name: Hernán E. full_name: Morales, Hernán E. last_name: Morales - first_name: Jenny full_name: Larsson, Jenny last_name: Larsson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Alan R. full_name: Lemmon, Alan R. last_name: Lemmon - first_name: E. Moriarty full_name: Lemmon, E. Moriarty last_name: Lemmon - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: 'Koch E, Morales HE, Larsson J, et al. Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. 2021. doi:10.5061/DRYAD.ZGMSBCCB4' apa: 'Koch, E., Morales, H. E., Larsson, J., Westram, A. M., Faria, R., Lemmon, A. R., … Butlin, R. K. (2021). Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Dryad. https://doi.org/10.5061/DRYAD.ZGMSBCCB4' chicago: 'Koch, Eva, Hernán E. Morales, Jenny Larsson, Anja M Westram, Rui Faria, Alan R. Lemmon, E. Moriarty Lemmon, Kerstin Johannesson, and Roger K. Butlin. “Data from: Genetic Variation for Adaptive Traits Is Associated with Polymorphic Inversions in Littorina Saxatilis.” Dryad, 2021. https://doi.org/10.5061/DRYAD.ZGMSBCCB4.' ieee: 'E. Koch et al., “Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis.” Dryad, 2021.' ista: 'Koch E, Morales HE, Larsson J, Westram AM, Faria R, Lemmon AR, Lemmon EM, Johannesson K, Butlin RK. 2021. Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis, Dryad, 10.5061/DRYAD.ZGMSBCCB4.' mla: 'Koch, Eva, et al. Data from: Genetic Variation for Adaptive Traits Is Associated with Polymorphic Inversions in Littorina Saxatilis. Dryad, 2021, doi:10.5061/DRYAD.ZGMSBCCB4.' short: E. Koch, H.E. Morales, J. Larsson, A.M. Westram, R. Faria, A.R. Lemmon, E.M. Lemmon, K. Johannesson, R.K. Butlin, (2021). date_created: 2023-05-16T12:34:09Z date_published: 2021-04-10T00:00:00Z date_updated: 2023-08-08T13:34:07Z day: '10' ddc: - '570' department: - _id: NiBa doi: 10.5061/DRYAD.ZGMSBCCB4 has_accepted_license: '1' license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.zgmsbccb4 month: '04' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '9394' relation: used_in_publication status: public status: public title: 'Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9408' abstract: - lang: eng text: We present a computational design system that assists users to model, optimize, and fabricate quad-robots with soft skins. Our system addresses the challenging task of predicting their physical behavior by fully integrating the multibody dynamics of the mechanical skeleton and the elastic behavior of the soft skin. The developed motion control strategy uses an alternating optimization scheme to avoid expensive full space time-optimization, interleaving space-time optimization for the skeleton, and frame-by-frame optimization for the full dynamics. The output are motor torques to drive the robot to achieve a user prescribed motion trajectory. We also provide a collection of convenient engineering tools and empirical manufacturing guidance to support the fabrication of the designed quad-robot. We validate the feasibility of designs generated with our system through physics simulations and with a physically-fabricated prototype. acknowledgement: The authors would like to thank anonymous reviewers for their constructive comments. Weiwei Xu is partially supported by Zhejiang Lab. Yin Yang is partially spported by NSF under Grant Nos. CHS 1845024 and 1717972. Weiwei Xu and Hujun Bao are supported by Fundamental Research Funds for the Central Universities. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No 715767). article_number: 2881-2895 article_processing_charge: No author: - first_name: Xudong full_name: Feng, Xudong last_name: Feng - first_name: Jiafeng full_name: Liu, Jiafeng last_name: Liu - first_name: Huamin full_name: Wang, Huamin last_name: Wang - first_name: Yin full_name: Yang, Yin last_name: Yang - first_name: Hujun full_name: Bao, Hujun last_name: Bao - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Weiwei full_name: Xu, Weiwei last_name: Xu citation: ama: Feng X, Liu J, Wang H, et al. Computational design of skinned Quad-Robots. IEEE Transactions on Visualization and Computer Graphics. 2021;27(6). doi:10.1109/TVCG.2019.2957218 apa: Feng, X., Liu, J., Wang, H., Yang, Y., Bao, H., Bickel, B., & Xu, W. (2021). Computational design of skinned Quad-Robots. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2019.2957218 chicago: Feng, Xudong, Jiafeng Liu, Huamin Wang, Yin Yang, Hujun Bao, Bernd Bickel, and Weiwei Xu. “Computational Design of Skinned Quad-Robots.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2021. https://doi.org/10.1109/TVCG.2019.2957218. ieee: X. Feng et al., “Computational design of skinned Quad-Robots,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 6. IEEE, 2021. ista: Feng X, Liu J, Wang H, Yang Y, Bao H, Bickel B, Xu W. 2021. Computational design of skinned Quad-Robots. IEEE Transactions on Visualization and Computer Graphics. 27(6), 2881–2895. mla: Feng, Xudong, et al. “Computational Design of Skinned Quad-Robots.” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 6, 2881–2895, IEEE, 2021, doi:10.1109/TVCG.2019.2957218. short: X. Feng, J. Liu, H. Wang, Y. Yang, H. Bao, B. Bickel, W. Xu, IEEE Transactions on Visualization and Computer Graphics 27 (2021). date_created: 2021-05-23T22:01:42Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-08-08T13:45:46Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1109/TVCG.2019.2957218 ec_funded: 1 external_id: isi: - '000649620700009' pmid: - '31804937' file: - access_level: open_access checksum: a78e6ac94e33ade4ffaea66943d5f7dc content_type: application/pdf creator: kschuh date_created: 2021-05-25T15:08:49Z date_updated: 2021-05-25T15:08:49Z file_id: '9427' file_name: 2021_TVCG_Feng.pdf file_size: 6183002 relation: main_file success: 1 file_date_updated: 2021-05-25T15:08:49Z has_accepted_license: '1' intvolume: ' 27' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: IEEE Transactions on Visualization and Computer Graphics publication_identifier: eissn: - '10772626' issn: - '19410506' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Computational design of skinned Quad-Robots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 27 year: '2021' ... --- _id: '9410' abstract: - lang: eng text: Antibiotic concentrations vary dramatically in the body and the environment. Hence, understanding the dynamics of resistance evolution along antibiotic concentration gradients is critical for predicting and slowing the emergence and spread of resistance. While it has been shown that increasing the concentration of an antibiotic slows resistance evolution, how adaptation to one antibiotic concentration correlates with fitness at other points along the gradient has not received much attention. Here, we selected populations of Escherichia coli at several points along a concentration gradient for three different antibiotics, asking how rapidly resistance evolved and whether populations became specialized to the antibiotic concentration they were selected on. Populations selected at higher concentrations evolved resistance more slowly but exhibited equal or higher fitness across the whole gradient. Populations selected at lower concentrations evolved resistance rapidly, but overall fitness in the presence of antibiotics was lower. However, these populations readily adapted to higher concentrations upon subsequent selection. Our results indicate that resistance management strategies must account not only for the rates of resistance evolution but also for the fitness of evolved strains. acknowledgement: We would like to thank Martin Ackermann, Camilo Barbosa, Nick Barton, Jonathan Bollback, Sebastian Bonhoeffer, Nick Colegrave, Calin Guet, Alex Hall, Sally Otto, Tiago Paixao, Srdjan Sarikas, Hinrich Schulenburg, Marjon de Vos and Michael Whitlock for insightful support. article_number: '20200913' article_processing_charge: No author: - first_name: Mato full_name: Lagator, Mato id: 345D25EC-F248-11E8-B48F-1D18A9856A87 last_name: Lagator - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 - first_name: Paul full_name: Neve, Paul last_name: Neve citation: ama: Lagator M, Uecker H, Neve P. Adaptation at different points along antibiotic concentration gradients. Biology letters. 2021;17(5). doi:10.1098/rsbl.2020.0913 apa: Lagator, M., Uecker, H., & Neve, P. (2021). Adaptation at different points along antibiotic concentration gradients. Biology Letters. Royal Society of London. https://doi.org/10.1098/rsbl.2020.0913 chicago: Lagator, Mato, Hildegard Uecker, and Paul Neve. “Adaptation at Different Points along Antibiotic Concentration Gradients.” Biology Letters. Royal Society of London, 2021. https://doi.org/10.1098/rsbl.2020.0913. ieee: M. Lagator, H. Uecker, and P. Neve, “Adaptation at different points along antibiotic concentration gradients,” Biology letters, vol. 17, no. 5. Royal Society of London, 2021. ista: Lagator M, Uecker H, Neve P. 2021. Adaptation at different points along antibiotic concentration gradients. Biology letters. 17(5), 20200913. mla: Lagator, Mato, et al. “Adaptation at Different Points along Antibiotic Concentration Gradients.” Biology Letters, vol. 17, no. 5, 20200913, Royal Society of London, 2021, doi:10.1098/rsbl.2020.0913. short: M. Lagator, H. Uecker, P. Neve, Biology Letters 17 (2021). date_created: 2021-05-23T22:01:43Z date_published: 2021-05-12T00:00:00Z date_updated: 2023-08-08T13:44:35Z day: '12' ddc: - '570' department: - _id: NiBa doi: 10.1098/rsbl.2020.0913 ec_funded: 1 external_id: isi: - '000651501400001' pmid: - ' 33975485' file: - access_level: open_access checksum: 9c13c1f5af7609c97c741f11d293188a content_type: application/pdf creator: kschuh date_created: 2021-05-25T14:09:03Z date_updated: 2021-05-25T14:09:03Z file_id: '9425' file_name: 2021_BiologyLetters_Lagator.pdf file_size: 726759 relation: main_file success: 1 file_date_updated: 2021-05-25T14:09:03Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Biology letters publication_identifier: eissn: - 1744957X publication_status: published publisher: Royal Society of London quality_controlled: '1' scopus_import: '1' status: public title: Adaptation at different points along antibiotic concentration gradients tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ... --- _id: '9412' abstract: - lang: eng text: We extend our recent result [22] on the central limit theorem for the linear eigenvalue statistics of non-Hermitian matrices X with independent, identically distributed complex entries to the real symmetry class. We find that the expectation and variance substantially differ from their complex counterparts, reflecting (i) the special spectral symmetry of real matrices onto the real axis; and (ii) the fact that real i.i.d. matrices have many real eigenvalues. Our result generalizes the previously known special cases where either the test function is analytic [49] or the first four moments of the matrix elements match the real Gaussian [59, 44]. The key element of the proof is the analysis of several weakly dependent Dyson Brownian motions (DBMs). The conceptual novelty of the real case compared with [22] is that the correlation structure of the stochastic differentials in each individual DBM is non-trivial, potentially even jeopardising its well-posedness. article_number: '24' article_processing_charge: No author: - first_name: Giorgio full_name: Cipolloni, Giorgio id: 42198EFA-F248-11E8-B48F-1D18A9856A87 last_name: Cipolloni orcid: 0000-0002-4901-7992 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Dominik J full_name: Schröder, Dominik J id: 408ED176-F248-11E8-B48F-1D18A9856A87 last_name: Schröder orcid: 0000-0002-2904-1856 citation: ama: Cipolloni G, Erdös L, Schröder DJ. Fluctuation around the circular law for random matrices with real entries. Electronic Journal of Probability. 2021;26. doi:10.1214/21-EJP591 apa: Cipolloni, G., Erdös, L., & Schröder, D. J. (2021). Fluctuation around the circular law for random matrices with real entries. Electronic Journal of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/21-EJP591 chicago: Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Fluctuation around the Circular Law for Random Matrices with Real Entries.” Electronic Journal of Probability. Institute of Mathematical Statistics, 2021. https://doi.org/10.1214/21-EJP591. ieee: G. Cipolloni, L. Erdös, and D. J. Schröder, “Fluctuation around the circular law for random matrices with real entries,” Electronic Journal of Probability, vol. 26. Institute of Mathematical Statistics, 2021. ista: Cipolloni G, Erdös L, Schröder DJ. 2021. Fluctuation around the circular law for random matrices with real entries. Electronic Journal of Probability. 26, 24. mla: Cipolloni, Giorgio, et al. “Fluctuation around the Circular Law for Random Matrices with Real Entries.” Electronic Journal of Probability, vol. 26, 24, Institute of Mathematical Statistics, 2021, doi:10.1214/21-EJP591. short: G. Cipolloni, L. Erdös, D.J. Schröder, Electronic Journal of Probability 26 (2021). date_created: 2021-05-23T22:01:44Z date_published: 2021-03-23T00:00:00Z date_updated: 2023-08-08T13:39:19Z day: '23' ddc: - '510' department: - _id: LaEr doi: 10.1214/21-EJP591 ec_funded: 1 external_id: arxiv: - '2002.02438' isi: - '000641855600001' file: - access_level: open_access checksum: 864ab003ad4cffea783f65aa8c2ba69f content_type: application/pdf creator: kschuh date_created: 2021-05-25T13:24:19Z date_updated: 2021-05-25T13:24:19Z file_id: '9423' file_name: 2021_EJP_Cipolloni.pdf file_size: 865148 relation: main_file success: 1 file_date_updated: 2021-05-25T13:24:19Z has_accepted_license: '1' intvolume: ' 26' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Electronic Journal of Probability publication_identifier: eissn: - '10836489' publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: Fluctuation around the circular law for random matrices with real entries tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 26 year: '2021' ... --- _id: '9407' abstract: - lang: eng text: 'High impact epidemics constitute one of the largest threats humanity is facing in the 21st century. In the absence of pharmaceutical interventions, physical distancing together with testing, contact tracing and quarantining are crucial in slowing down epidemic dynamics. Yet, here we show that if testing capacities are limited, containment may fail dramatically because such combined countermeasures drastically change the rules of the epidemic transition: Instead of continuous, the response to countermeasures becomes discontinuous. Rather than following the conventional exponential growth, the outbreak that is initially strongly suppressed eventually accelerates and scales faster than exponential during an explosive growth period. As a consequence, containment measures either suffice to stop the outbreak at low total case numbers or fail catastrophically if marginally too weak, thus implying large uncertainties in reliably estimating overall epidemic dynamics, both during initial phases and during second wave scenarios.' acknowledgement: The authors thank Malte Schröder for valuable discussions and creating the scale-free network topologies. B.H. thanks Mukund Vasudevan for helpful discussion. The research by M.T. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy–EXC-2068–390729961–Cluster of Excellence Physics of Life of TU Dresden. article_number: '2586' article_processing_charge: No article_type: original author: - first_name: Davide full_name: Scarselli, Davide id: 40315C30-F248-11E8-B48F-1D18A9856A87 last_name: Scarselli orcid: 0000-0001-5227-4271 - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 - first_name: Marc full_name: Timme, Marc last_name: Timme - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Scarselli D, Budanur NB, Timme M, Hof B. Discontinuous epidemic transition due to limited testing. Nature Communications. 2021;12(1). doi:10.1038/s41467-021-22725-9 apa: Scarselli, D., Budanur, N. B., Timme, M., & Hof, B. (2021). Discontinuous epidemic transition due to limited testing. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-021-22725-9 chicago: Scarselli, Davide, Nazmi B Budanur, Marc Timme, and Björn Hof. “Discontinuous Epidemic Transition Due to Limited Testing.” Nature Communications. Springer Nature, 2021. https://doi.org/10.1038/s41467-021-22725-9. ieee: D. Scarselli, N. B. Budanur, M. Timme, and B. Hof, “Discontinuous epidemic transition due to limited testing,” Nature Communications, vol. 12, no. 1. Springer Nature, 2021. ista: Scarselli D, Budanur NB, Timme M, Hof B. 2021. Discontinuous epidemic transition due to limited testing. Nature Communications. 12(1), 2586. mla: Scarselli, Davide, et al. “Discontinuous Epidemic Transition Due to Limited Testing.” Nature Communications, vol. 12, no. 1, 2586, Springer Nature, 2021, doi:10.1038/s41467-021-22725-9. short: D. Scarselli, N.B. Budanur, M. Timme, B. Hof, Nature Communications 12 (2021). date_created: 2021-05-23T22:01:42Z date_published: 2021-05-10T00:00:00Z date_updated: 2023-08-08T13:45:13Z day: '10' ddc: - '570' department: - _id: BjHo doi: 10.1038/s41467-021-22725-9 external_id: isi: - '000687305500044' file: - access_level: open_access checksum: fe26c1b8a7da1ae07a6c03f80ff06ea1 content_type: application/pdf creator: kschuh date_created: 2021-05-25T14:18:40Z date_updated: 2021-05-25T14:18:40Z file_id: '9426' file_name: 2021_NatureCommunications_Scarselli.pdf file_size: 1176573 relation: main_file success: 1 file_date_updated: 2021-05-25T14:18:40Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/smashing-the-covid-curve/ scopus_import: '1' status: public title: Discontinuous epidemic transition due to limited testing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '9411' abstract: - lang: eng text: The dynamics of a triangular magnetocapillary swimmer is studied using the lattice Boltzmann method. We extend on our previous work, which deals with the self-assembly and a specific type of the swimmer motion characterized by the swimmer’s maximum velocity centred around the particle’s inverse viscous time. Here, we identify additional regimes of motion. First, modifying the ratio of surface tension and magnetic forces allows to study the swimmer propagation in the regime of significantly lower frequencies mainly defined by the strength of the magnetocapillary potential. Second, introducing a constant magnetic contribution in each of the particles in addition to their magnetic moment induced by external fields leads to another regime characterized by strong in-plane swimmer reorientations that resemble experimental observations. acknowledgement: This work was financially supported by the DFG Priority Programme SPP 1726 “Microswimmers–From Single Particle Motion to Collective Behaviour” (HA 4382/5-1). We further acknowledge the Jülich Supercomputing Centre (JSC) and the High Performance Computing Centre Stuttgart (HLRS) for the allocation of computing time. article_number: '59' article_processing_charge: No author: - first_name: Alexander full_name: Sukhov, Alexander last_name: Sukhov - first_name: Maxime full_name: Hubert, Maxime last_name: Hubert - first_name: Galien M full_name: Grosjean, Galien M id: 0C5FDA4A-9CF6-11E9-8939-FF05E6697425 last_name: Grosjean orcid: 0000-0001-5154-417X - first_name: Oleg full_name: Trosman, Oleg last_name: Trosman - first_name: Sebastian full_name: Ziegler, Sebastian last_name: Ziegler - first_name: Ylona full_name: Collard, Ylona last_name: Collard - first_name: Nicolas full_name: Vandewalle, Nicolas last_name: Vandewalle - first_name: Ana Sunčana full_name: Smith, Ana Sunčana last_name: Smith - first_name: Jens full_name: Harting, Jens last_name: Harting citation: ama: Sukhov A, Hubert M, Grosjean GM, et al. Regimes of motion of magnetocapillary swimmers. European Physical Journal E. 2021;44(4). doi:10.1140/epje/s10189-021-00065-2 apa: Sukhov, A., Hubert, M., Grosjean, G. M., Trosman, O., Ziegler, S., Collard, Y., … Harting, J. (2021). Regimes of motion of magnetocapillary swimmers. European Physical Journal E. Springer. https://doi.org/10.1140/epje/s10189-021-00065-2 chicago: Sukhov, Alexander, Maxime Hubert, Galien M Grosjean, Oleg Trosman, Sebastian Ziegler, Ylona Collard, Nicolas Vandewalle, Ana Sunčana Smith, and Jens Harting. “Regimes of Motion of Magnetocapillary Swimmers.” European Physical Journal E. Springer, 2021. https://doi.org/10.1140/epje/s10189-021-00065-2. ieee: A. Sukhov et al., “Regimes of motion of magnetocapillary swimmers,” European Physical Journal E, vol. 44, no. 4. Springer, 2021. ista: Sukhov A, Hubert M, Grosjean GM, Trosman O, Ziegler S, Collard Y, Vandewalle N, Smith AS, Harting J. 2021. Regimes of motion of magnetocapillary swimmers. European Physical Journal E. 44(4), 59. mla: Sukhov, Alexander, et al. “Regimes of Motion of Magnetocapillary Swimmers.” European Physical Journal E, vol. 44, no. 4, 59, Springer, 2021, doi:10.1140/epje/s10189-021-00065-2. short: A. Sukhov, M. Hubert, G.M. Grosjean, O. Trosman, S. Ziegler, Y. Collard, N. Vandewalle, A.S. Smith, J. Harting, European Physical Journal E 44 (2021). date_created: 2021-05-23T22:01:44Z date_published: 2021-04-24T00:00:00Z date_updated: 2023-08-08T13:36:28Z day: '24' ddc: - '530' department: - _id: ScWa doi: 10.1140/epje/s10189-021-00065-2 external_id: isi: - '000643251300001' file: - access_level: open_access checksum: 0ef342d011afbe3c5cb058fda9a3f395 content_type: application/pdf creator: kschuh date_created: 2021-05-25T11:32:14Z date_updated: 2021-05-25T11:32:14Z file_id: '9422' file_name: 2021_EPJE_Sukhov.pdf file_size: 2507870 relation: main_file success: 1 file_date_updated: 2021-05-25T11:32:14Z has_accepted_license: '1' intvolume: ' 44' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: European Physical Journal E publication_identifier: eissn: - 1292895X issn: - '12928941' publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Regimes of motion of magnetocapillary swimmers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 44 year: '2021' ... --- _id: '9414' abstract: - lang: eng text: Microtubule plus-end depolymerization rate is a potentially important target of physiological regulation, but it has been challenging to measure, so its role in spatial organization is poorly understood. Here we apply a method for tracking plus ends based on time difference imaging to measure depolymerization rates in large interphase asters growing in Xenopus egg extract. We observed strong spatial regulation of depolymerization rates, which were higher in the aster interior compared with the periphery, and much less regulation of polymerization or catastrophe rates. We interpret these data in terms of a limiting component model, where aster growth results in lower levels of soluble tubulin and microtubule-associated proteins (MAPs) in the interior cytosol compared with that at the periphery. The steady-state polymer fraction of tubulin was ∼30%, so tubulin is not strongly depleted in the aster interior. We propose that the limiting component for microtubule assembly is a MAP that inhibits depolymerization, and that egg asters are tuned to low microtubule density. acknowledgement: The authors thank the members of Mitchison, Brugués, and Jay Gatlin groups (University of Wyoming) for discussions. We thank Heino Andreas (MPI-CBG) for frog maintenance. We thank Nikon for microscopy support at Marine Biological Laboratory (MBL). K.I. was supported by fellowships from the Honjo International Scholarship Foundation and Center of Systems Biology Dresden. F.D. was supported by the DIGGS-BB fellowship provided by the German Research Foundation (DFG). P.C. is supported by a Boehringer Ingelheim Fonds PhD fellowship. J.F.P. was supported by a fellowship from the Fannie and John Hertz Foundation. M.L.’s research is supported by European Research Council (ERC) Grant no. ERC-2015-StG-679239. J.B.’s research is supported by the Human Frontiers Science Program (CDA00074/2014). T.J.M.’s research is supported by National Institutes of Health Grant no. R35GM131753. article_processing_charge: No article_type: original author: - first_name: Keisuke full_name: Ishihara, Keisuke last_name: Ishihara - first_name: Franziska full_name: Decker, Franziska last_name: Decker - first_name: Paulo R full_name: Dos Santos Caldas, Paulo R id: 38FCDB4C-F248-11E8-B48F-1D18A9856A87 last_name: Dos Santos Caldas orcid: 0000-0001-6730-4461 - first_name: James F. full_name: Pelletier, James F. last_name: Pelletier - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Jan full_name: Brugués, Jan last_name: Brugués - first_name: Timothy J. full_name: Mitchison, Timothy J. last_name: Mitchison citation: ama: Ishihara K, Decker F, Dos Santos Caldas PR, et al. Spatial variation of microtubule depolymerization in large asters. Molecular Biology of the Cell. 2021;32(9):869-879. doi:10.1091/MBC.E20-11-0723 apa: Ishihara, K., Decker, F., Dos Santos Caldas, P. R., Pelletier, J. F., Loose, M., Brugués, J., & Mitchison, T. J. (2021). Spatial variation of microtubule depolymerization in large asters. Molecular Biology of the Cell. American Society for Cell Biology. https://doi.org/10.1091/MBC.E20-11-0723 chicago: Ishihara, Keisuke, Franziska Decker, Paulo R Dos Santos Caldas, James F. Pelletier, Martin Loose, Jan Brugués, and Timothy J. Mitchison. “Spatial Variation of Microtubule Depolymerization in Large Asters.” Molecular Biology of the Cell. American Society for Cell Biology, 2021. https://doi.org/10.1091/MBC.E20-11-0723. ieee: K. Ishihara et al., “Spatial variation of microtubule depolymerization in large asters,” Molecular Biology of the Cell, vol. 32, no. 9. American Society for Cell Biology, pp. 869–879, 2021. ista: Ishihara K, Decker F, Dos Santos Caldas PR, Pelletier JF, Loose M, Brugués J, Mitchison TJ. 2021. Spatial variation of microtubule depolymerization in large asters. Molecular Biology of the Cell. 32(9), 869–879. mla: Ishihara, Keisuke, et al. “Spatial Variation of Microtubule Depolymerization in Large Asters.” Molecular Biology of the Cell, vol. 32, no. 9, American Society for Cell Biology, 2021, pp. 869–79, doi:10.1091/MBC.E20-11-0723. short: K. Ishihara, F. Decker, P.R. Dos Santos Caldas, J.F. Pelletier, M. Loose, J. Brugués, T.J. Mitchison, Molecular Biology of the Cell 32 (2021) 869–879. date_created: 2021-05-23T22:01:45Z date_published: 2021-04-19T00:00:00Z date_updated: 2023-08-08T13:36:02Z day: '19' department: - _id: MaLo doi: 10.1091/MBC.E20-11-0723 ec_funded: 1 external_id: isi: - '000641574700005' intvolume: ' 32' isi: 1 issue: '9' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/3.0/ main_file_link: - open_access: '1' url: https://www.molbiolcell.org/doi/10.1091/mbc.E20-11-0723 month: '04' oa: 1 oa_version: Published Version page: 869-879 project: - _id: 2595697A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '679239' name: Self-Organization of the Bacterial Cell - _id: 260D98C8-B435-11E9-9278-68D0E5697425 name: Reconstitution of Bacterial Cell Division Using Purified Components publication: Molecular Biology of the Cell publication_identifier: eissn: - 1939-4586 issn: - 1059-1524 publication_status: published publisher: American Society for Cell Biology quality_controlled: '1' scopus_import: '1' status: public title: Spatial variation of microtubule depolymerization in large asters tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) short: CC BY-NC-SA (3.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 32 year: '2021' ... --- _id: '9356' abstract: - lang: eng text: 'In runtime verification, a monitor watches a trace of a system and, if possible, decides after observing each finite prefix whether or not the unknown infinite trace satisfies a given specification. We generalize the theory of runtime verification to monitors that attempt to estimate numerical values of quantitative trace properties (instead of attempting to conclude boolean values of trace specifications), such as maximal or average response time along a trace. Quantitative monitors are approximate: with every finite prefix, they can improve their estimate of the infinite trace''s unknown property value. Consequently, quantitative monitors can be compared with regard to a precision-cost trade-off: better approximations of the property value require more monitor resources, such as states (in the case of finite-state monitors) or registers, and additional resources yield better approximations. We introduce a formal framework for quantitative and approximate monitoring, show how it conservatively generalizes the classical boolean setting for monitoring, and give several precision-cost trade-offs for monitors. For example, we prove that there are quantitative properties for which every additional register improves monitoring precision.' acknowledgement: We thank the anonymous reviewers for their helpful comments. This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). article_number: '9470547' article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Henzinger TA, Sarac NE. Quantitative and approximate monitoring. In: Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Institute of Electrical and Electronics Engineers; 2021. doi:10.1109/LICS52264.2021.9470547' apa: 'Henzinger, T. A., & Sarac, N. E. (2021). Quantitative and approximate monitoring. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Online: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/LICS52264.2021.9470547' chicago: Henzinger, Thomas A, and Naci E Sarac. “Quantitative and Approximate Monitoring.” In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Institute of Electrical and Electronics Engineers, 2021. https://doi.org/10.1109/LICS52264.2021.9470547. ieee: T. A. Henzinger and N. E. Sarac, “Quantitative and approximate monitoring,” in Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, Online, 2021. ista: 'Henzinger TA, Sarac NE. 2021. Quantitative and approximate monitoring. Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS: Symposium on Logic in Computer Science, 9470547.' mla: Henzinger, Thomas A., and Naci E. Sarac. “Quantitative and Approximate Monitoring.” Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, 9470547, Institute of Electrical and Electronics Engineers, 2021, doi:10.1109/LICS52264.2021.9470547. short: T.A. Henzinger, N.E. Sarac, in:, Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, Institute of Electrical and Electronics Engineers, 2021. conference: end_date: 2021-07-02 location: Online name: 'LICS: Symposium on Logic in Computer Science' start_date: 2021-06-29 date_created: 2021-04-30T17:30:47Z date_published: 2021-06-29T00:00:00Z date_updated: 2023-08-08T13:52:56Z day: '29' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1109/LICS52264.2021.9470547 external_id: arxiv: - '2105.08353' isi: - '000947350400021' file: - access_level: open_access checksum: 6e4cba3f72775f479c5b1b75d1a4a0c4 content_type: application/pdf creator: esarac date_created: 2021-06-16T08:23:54Z date_updated: 2021-06-16T08:23:54Z file_id: '9557' file_name: qam.pdf file_size: 641990 relation: main_file success: 1 file_date_updated: 2021-06-16T08:23:54Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' scopus_import: '1' status: public title: Quantitative and approximate monitoring type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9439' abstract: - lang: eng text: The ability to adapt to changes in stimulus statistics is a hallmark of sensory systems. Here, we developed a theoretical framework that can account for the dynamics of adaptation from an information processing perspective. We use this framework to optimize and analyze adaptive sensory codes, and we show that codes optimized for stationary environments can suffer from prolonged periods of poor performance when the environment changes. To mitigate the adversarial effects of these environmental changes, sensory systems must navigate tradeoffs between the ability to accurately encode incoming stimuli and the ability to rapidly detect and adapt to changes in the distribution of these stimuli. We derive families of codes that balance these objectives, and we demonstrate their close match to experimentally observed neural dynamics during mean and variance adaptation. Our results provide a unifying perspective on adaptation across a range of sensory systems, environments, and sensory tasks. acknowledgement: We thank D. Kastner and T. Münch for generously providing figures from their work. We also thank V. Jayaraman, M. Noorman, T. Ma, and K. Krishnamurthy for useful discussions and feedback on the manuscript. W.F.M. was funded by the European Union’s Horizon 2020 Research and Innovation Programme under Marie Skłodowska-Curie Grant Agreement No. 754411. A.M.H. was supported by the Howard Hughes Medical Institute. article_processing_charge: No article_type: original author: - first_name: Wiktor F full_name: Mlynarski, Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - first_name: Ann M. full_name: Hermundstad, Ann M. last_name: Hermundstad citation: ama: Mlynarski WF, Hermundstad AM. Efficient and adaptive sensory codes. Nature Neuroscience. 2021;24:998-1009. doi:10.1038/s41593-021-00846-0 apa: Mlynarski, W. F., & Hermundstad, A. M. (2021). Efficient and adaptive sensory codes. Nature Neuroscience. Springer Nature. https://doi.org/10.1038/s41593-021-00846-0 chicago: Mlynarski, Wiktor F, and Ann M. Hermundstad. “Efficient and Adaptive Sensory Codes.” Nature Neuroscience. Springer Nature, 2021. https://doi.org/10.1038/s41593-021-00846-0. ieee: W. F. Mlynarski and A. M. Hermundstad, “Efficient and adaptive sensory codes,” Nature Neuroscience, vol. 24. Springer Nature, pp. 998–1009, 2021. ista: Mlynarski WF, Hermundstad AM. 2021. Efficient and adaptive sensory codes. Nature Neuroscience. 24, 998–1009. mla: Mlynarski, Wiktor F., and Ann M. Hermundstad. “Efficient and Adaptive Sensory Codes.” Nature Neuroscience, vol. 24, Springer Nature, 2021, pp. 998–1009, doi:10.1038/s41593-021-00846-0. short: W.F. Mlynarski, A.M. Hermundstad, Nature Neuroscience 24 (2021) 998–1009. date_created: 2021-05-30T22:01:24Z date_published: 2021-05-20T00:00:00Z date_updated: 2023-08-08T13:51:14Z day: '20' department: - _id: GaTk doi: 10.1038/s41593-021-00846-0 ec_funded: 1 external_id: isi: - '000652577300003' intvolume: ' 24' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: 'https://doi.org/10.1101/669200 ' month: '05' oa: 1 oa_version: Preprint page: 998-1009 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Nature Neuroscience publication_identifier: eissn: - 1546-1726 issn: - 1097-6256 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Efficient and adaptive sensory codes type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 24 year: '2021' ... --- _id: '9443' abstract: - lang: eng text: Endoplasmic reticulum–plasma membrane contact sites (ER–PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER–PM protein tether synaptotagmin1 (SYT1) exhibit decreased PM integrity under multiple abiotic stresses, such as freezing, high salt, osmotic stress, and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER–PM tether that also functions in maintaining PM integrity. The ER–PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild-type while the levels of most glycerolipid species remain unchanged. In addition, the SYT1-green fluorescent protein fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress. acknowledgement: "We would also like to thank Lothar Willmitzer for the lipidomic analysis at the Max Planck Institute of Molecular Plant Physiology (Potsdam, Germany). We thank Manuela Vega from SCI for her technical assistance in image analysis. We thank John R. Pearson and the Bionand Nanoimaging Unit, F. David Navas Fernández and the SCAI Imaging Facility and The Plant Cell Biology facility at the Shanghai Center for Plant Stress Biology for assistance with confocal microscopy. The FaFAH1 clone was a gift from Iraida Amaya Saavedra (IFAPA-Centro de Churriana, Málaga, Spain). The AHA3 antibody against the H+-ATPase was a gift from Ramón Serrano Salom (Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain). The MAP-mTU2-SAC1 construct was provided by Yvon Jaillais (Laboratoire Reproduction et Développement des Plantes, Univ Lyon, France). The pGWB5 from the pGWB vector series, was provided by Tsuyoshi Nakagawa (Department of Molecular and Functional Genomics, Shimane University). We thank Plan Propio from the University of Málaga for financial support.\r\nFunding" article_processing_charge: No article_type: original author: - first_name: N full_name: Ruiz-Lopez, N last_name: Ruiz-Lopez - first_name: J full_name: Pérez-Sancho, J last_name: Pérez-Sancho - first_name: A full_name: Esteban Del Valle, A last_name: Esteban Del Valle - first_name: RP full_name: Haslam, RP last_name: Haslam - first_name: S full_name: Vanneste, S last_name: Vanneste - first_name: R full_name: Catalá, R last_name: Catalá - first_name: C full_name: Perea-Resa, C last_name: Perea-Resa - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: S full_name: García-Hernández, S last_name: García-Hernández - first_name: A full_name: Albert, A last_name: Albert - first_name: J full_name: Vallarino, J last_name: Vallarino - first_name: J full_name: Lin, J last_name: Lin - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: AP full_name: Macho, AP last_name: Macho - first_name: J full_name: Salinas, J last_name: Salinas - first_name: A full_name: Rosado, A last_name: Rosado - first_name: JA full_name: Napier, JA last_name: Napier - first_name: V full_name: Amorim-Silva, V last_name: Amorim-Silva - first_name: MA full_name: Botella, MA last_name: Botella citation: ama: Ruiz-Lopez N, Pérez-Sancho J, Esteban Del Valle A, et al. Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell. 2021;33(7):2431-2453. doi:10.1093/plcell/koab122 apa: Ruiz-Lopez, N., Pérez-Sancho, J., Esteban Del Valle, A., Haslam, R., Vanneste, S., Catalá, R., … Botella, M. (2021). Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1093/plcell/koab122 chicago: Ruiz-Lopez, N, J Pérez-Sancho, A Esteban Del Valle, RP Haslam, S Vanneste, R Catalá, C Perea-Resa, et al. “Synaptotagmins at the Endoplasmic Reticulum-Plasma Membrane Contact Sites Maintain Diacylglycerol Homeostasis during Abiotic Stress.” Plant Cell. American Society of Plant Biologists, 2021. https://doi.org/10.1093/plcell/koab122. ieee: N. Ruiz-Lopez et al., “Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress,” Plant Cell, vol. 33, no. 7. American Society of Plant Biologists, pp. 2431–2453, 2021. ista: Ruiz-Lopez N, Pérez-Sancho J, Esteban Del Valle A, Haslam R, Vanneste S, Catalá R, Perea-Resa C, Van Damme D, García-Hernández S, Albert A, Vallarino J, Lin J, Friml J, Macho A, Salinas J, Rosado A, Napier J, Amorim-Silva V, Botella M. 2021. Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell. 33(7), 2431–2453. mla: Ruiz-Lopez, N., et al. “Synaptotagmins at the Endoplasmic Reticulum-Plasma Membrane Contact Sites Maintain Diacylglycerol Homeostasis during Abiotic Stress.” Plant Cell, vol. 33, no. 7, American Society of Plant Biologists, 2021, pp. 2431–53, doi:10.1093/plcell/koab122. short: N. Ruiz-Lopez, J. Pérez-Sancho, A. Esteban Del Valle, R. Haslam, S. Vanneste, R. Catalá, C. Perea-Resa, D. Van Damme, S. García-Hernández, A. Albert, J. Vallarino, J. Lin, J. Friml, A. Macho, J. Salinas, A. Rosado, J. Napier, V. Amorim-Silva, M. Botella, Plant Cell 33 (2021) 2431–2453. date_created: 2021-06-02T13:13:58Z date_published: 2021-07-01T00:00:00Z date_updated: 2023-08-08T13:54:32Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1093/plcell/koab122 ec_funded: 1 external_id: isi: - '000703938100026' pmid: - '33944955' file: - access_level: open_access checksum: 22d596678d00310d793611864a6d0fcd content_type: application/pdf creator: cchlebak date_created: 2021-10-14T13:36:38Z date_updated: 2021-10-14T13:36:38Z file_id: '10141' file_name: 2021_PlantCell_RuizLopez.pdf file_size: 2952028 relation: main_file success: 1 file_date_updated: 2021-10-14T13:36:38Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2431-2453 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' scopus_import: '1' status: public title: Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 33 year: '2021' ... --- _id: '9431' abstract: - lang: eng text: Inositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 is ~100-fold more potent at promoting RSV mature capsid protein (CA) assembly than observed for HIV-1 and removal of IP6 in cells reduces infectivity by 100-fold. Here, visualized by cryo-electron tomography and subtomogram averaging, mature capsid-like particles show an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 have opposing effects on CA in vitro assembly, inducing formation of T = 1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles reveal that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles. acknowledged_ssus: - _id: ScienComp - _id: LifeSc - _id: EM-Fac acknowledgement: This work was funded by the National Institute of Allergy and Infectious Diseases under awards R01AI147890 to R.A.D., R01AI150454 to V.M.V, R35GM136258 in support of J-P.R.F, and the Austrian Science Fund (FWF) grant P31445 to F.K.M.S. Access to high-resolution cryo-ET data acquisition at EMBL Heidelberg was supported by iNEXT (grant no. 653706), funded by the Horizon 2020 program of the European Union (PID 4246). We thank Wim Hagen and Felix Weis at EMBL Heidelberg for support in cryo-ET data acquisition. This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-179875). This research was also supported by the Scientific Service Units (SSUs) of IST Austria through resources provided by Scientific Computing (SciComp), the Life Science Facility (LSF), and the Electron Microscopy Facility (EMF). article_number: '3226' article_processing_charge: No article_type: original author: - first_name: Martin full_name: Obr, Martin id: 4741CA5A-F248-11E8-B48F-1D18A9856A87 last_name: Obr - first_name: Clifton L. full_name: Ricana, Clifton L. last_name: Ricana - first_name: Nadia full_name: Nikulin, Nadia last_name: Nikulin - first_name: Jon-Philip R. full_name: Feathers, Jon-Philip R. last_name: Feathers - first_name: Marco full_name: Klanschnig, Marco last_name: Klanschnig - first_name: Andreas full_name: Thader, Andreas id: 3A18A7B8-F248-11E8-B48F-1D18A9856A87 last_name: Thader - first_name: Marc C. full_name: Johnson, Marc C. last_name: Johnson - first_name: Volker M. full_name: Vogt, Volker M. last_name: Vogt - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 - first_name: Robert A. full_name: Dick, Robert A. last_name: Dick citation: ama: Obr M, Ricana CL, Nikulin N, et al. Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer. Nature Communications. 2021;12(1). doi:10.1038/s41467-021-23506-0 apa: Obr, M., Ricana, C. L., Nikulin, N., Feathers, J.-P. R., Klanschnig, M., Thader, A., … Dick, R. A. (2021). Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer. Nature Communications. Nature Research. https://doi.org/10.1038/s41467-021-23506-0 chicago: Obr, Martin, Clifton L. Ricana, Nadia Nikulin, Jon-Philip R. Feathers, Marco Klanschnig, Andreas Thader, Marc C. Johnson, Volker M. Vogt, Florian KM Schur, and Robert A. Dick. “Structure of the Mature Rous Sarcoma Virus Lattice Reveals a Role for IP6 in the Formation of the Capsid Hexamer.” Nature Communications. Nature Research, 2021. https://doi.org/10.1038/s41467-021-23506-0. ieee: M. Obr et al., “Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer,” Nature Communications, vol. 12, no. 1. Nature Research, 2021. ista: Obr M, Ricana CL, Nikulin N, Feathers J-PR, Klanschnig M, Thader A, Johnson MC, Vogt VM, Schur FK, Dick RA. 2021. Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer. Nature Communications. 12(1), 3226. mla: Obr, Martin, et al. “Structure of the Mature Rous Sarcoma Virus Lattice Reveals a Role for IP6 in the Formation of the Capsid Hexamer.” Nature Communications, vol. 12, no. 1, 3226, Nature Research, 2021, doi:10.1038/s41467-021-23506-0. short: M. Obr, C.L. Ricana, N. Nikulin, J.-P.R. Feathers, M. Klanschnig, A. Thader, M.C. Johnson, V.M. Vogt, F.K. Schur, R.A. Dick, Nature Communications 12 (2021). date_created: 2021-05-28T14:25:50Z date_published: 2021-05-28T00:00:00Z date_updated: 2023-08-08T13:53:53Z day: '28' ddc: - '570' department: - _id: FlSc doi: 10.1038/s41467-021-23506-0 external_id: isi: - '000659145000011' file: - access_level: open_access checksum: 53ccc53d09a9111143839dbe7784e663 content_type: application/pdf creator: kschuh date_created: 2021-06-09T15:21:14Z date_updated: 2021-06-09T15:21:14Z file_id: '9538' file_name: 2021_NatureCommunications_Obr.pdf file_size: 6166295 relation: main_file success: 1 file_date_updated: 2021-06-09T15:21:14Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '1' keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26736D6A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31445 name: Structural conservation and diversity in retroviral capsid publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Nature Research quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-retroviruses-become-infectious/ scopus_import: '1' status: public title: Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '9467' abstract: - lang: eng text: "Turbulence in the flow of fluid through a pipe can be suppressed by buoyancy forces. As the suppression of turbulence leads to severe heat transfer deterioration, this is an important and undesirable phenomenon in both heating and cooling applications. Vertical flow is often considered, as the axial buoyancy force can help drive the flow. With heating measured by the buoyancy parameter \U0001D436, our direct numerical simulations show that shear-driven turbulence may either be completely laminarised or it transitions to a relatively quiescent convection-driven state. Buoyancy forces cause a flattening of the base flow profile, which in isothermal pipe flow has recently been linked to complete suppression of turbulence (Kühnen et al., Nat. Phys., vol. 14, 2018, pp. 386–390), and the flattened laminar base profile has enhanced nonlinear stability (Marensi et al., J. Fluid Mech., vol. 863, 2019, pp. 50–875). In agreement with these findings, the nonlinear lower-branch travelling-wave solution analysed here, which is believed to mediate transition to turbulence in isothermal pipe flow, is shown to be suppressed by buoyancy. A linear instability of the laminar base flow is responsible for the appearance of the relatively quiescent convection driven state for \U0001D436≳4 across the range of Reynolds numbers considered. In the suppression of turbulence, however, i.e. in the transition from turbulence, we find clearer association with the analysis of He et al. (J. Fluid Mech., vol. 809, 2016, pp. 31–71) than with the above dynamical systems approach, which describes better the transition to turbulence. The laminarisation criterion He et al. propose, based on an apparent Reynolds number of the flow as measured by its driving pressure gradient, is found to capture the critical \U0001D436=\U0001D436\U0001D450\U0001D45F(\U0001D445\U0001D452) above which the flow will be laminarised or switch to the convection-driven type. Our analysis suggests that it is the weakened rolls, rather than the streaks, which appear to be critical for laminarisation." acknowledgement: The anonymous referees are kindly acknowledged for their useful suggestions andcomments. article_number: A17 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Elena full_name: Marensi, Elena id: 0BE7553A-1004-11EA-B805-18983DDC885E last_name: Marensi - first_name: Shuisheng full_name: He, Shuisheng last_name: He - first_name: Ashley P. full_name: Willis, Ashley P. last_name: Willis citation: ama: Marensi E, He S, Willis AP. Suppression of turbulence and travelling waves in a vertical heated pipe. Journal of Fluid Mechanics. 2021;919. doi:10.1017/jfm.2021.371 apa: Marensi, E., He, S., & Willis, A. P. (2021). Suppression of turbulence and travelling waves in a vertical heated pipe. Journal of Fluid Mechanics. Cambridge University Press. https://doi.org/10.1017/jfm.2021.371 chicago: Marensi, Elena, Shuisheng He, and Ashley P. Willis. “Suppression of Turbulence and Travelling Waves in a Vertical Heated Pipe.” Journal of Fluid Mechanics. Cambridge University Press, 2021. https://doi.org/10.1017/jfm.2021.371. ieee: E. Marensi, S. He, and A. P. Willis, “Suppression of turbulence and travelling waves in a vertical heated pipe,” Journal of Fluid Mechanics, vol. 919. Cambridge University Press, 2021. ista: Marensi E, He S, Willis AP. 2021. Suppression of turbulence and travelling waves in a vertical heated pipe. Journal of Fluid Mechanics. 919, A17. mla: Marensi, Elena, et al. “Suppression of Turbulence and Travelling Waves in a Vertical Heated Pipe.” Journal of Fluid Mechanics, vol. 919, A17, Cambridge University Press, 2021, doi:10.1017/jfm.2021.371. short: E. Marensi, S. He, A.P. Willis, Journal of Fluid Mechanics 919 (2021). date_created: 2021-06-06T22:01:30Z date_published: 2021-07-25T00:00:00Z date_updated: 2023-08-08T13:58:41Z day: '25' ddc: - '530' department: - _id: BjHo doi: 10.1017/jfm.2021.371 external_id: arxiv: - '2008.13486' isi: - '000653785000001' file: - access_level: open_access checksum: 867ad077e45c181c2c5ec1311ba27c41 content_type: application/pdf creator: kschuh date_created: 2021-08-03T09:53:28Z date_updated: 2021-08-03T09:53:28Z file_id: '9766' file_name: 2021_JournalFluidMechanics_Marensi.pdf file_size: 4087358 relation: main_file success: 1 file_date_updated: 2021-08-03T09:53:28Z has_accepted_license: '1' intvolume: ' 919' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Journal of Fluid Mechanics publication_identifier: eissn: - '14697645' issn: - '00221120' publication_status: published publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Suppression of turbulence and travelling waves in a vertical heated pipe tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 919 year: '2021' ... --- _id: '9470' abstract: - lang: eng text: A key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance. acknowledgement: We thank the editor, two helpful reviewers, Roger Butlin, Kerstin Johannesson, Valentina Peona, Rike Stelkens, Julie Blommaert, Nick Barton, and João Alpedrinha for helpful comments that improved the manuscript. The authors acknowledge funding from the Swedish Research Council Formas (2017-01597 to AS), the Swedish Research Council Vetenskapsrådet (2016-05139 to AS, 2019-04452 to TS) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 757451 to TS). ELB was funded by a Carl Tryggers grant awarded to Tanja Slotte. Anja M. Westram was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 797747. Inês Fragata was funded by a Junior Researcher contract from FCT (CEECIND/02616/2018). article_processing_charge: No author: - first_name: Emma L. full_name: Berdan, Emma L. last_name: Berdan - first_name: Alexandre full_name: Blanckaert, Alexandre last_name: Blanckaert - first_name: Tanja full_name: Slotte, Tanja last_name: Slotte - first_name: Alexander full_name: Suh, Alexander last_name: Suh - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Inês full_name: Fragata, Inês last_name: Fragata citation: ama: 'Berdan EL, Blanckaert A, Slotte T, Suh A, Westram AM, Fragata I. Unboxing mutations: Connecting mutation types with evolutionary consequences. Molecular Ecology. 2021;30(12):2710-2723. doi:10.1111/mec.15936' apa: 'Berdan, E. L., Blanckaert, A., Slotte, T., Suh, A., Westram, A. M., & Fragata, I. (2021). Unboxing mutations: Connecting mutation types with evolutionary consequences. Molecular Ecology. Wiley. https://doi.org/10.1111/mec.15936' chicago: 'Berdan, Emma L., Alexandre Blanckaert, Tanja Slotte, Alexander Suh, Anja M Westram, and Inês Fragata. “Unboxing Mutations: Connecting Mutation Types with Evolutionary Consequences.” Molecular Ecology. Wiley, 2021. https://doi.org/10.1111/mec.15936.' ieee: 'E. L. Berdan, A. Blanckaert, T. Slotte, A. Suh, A. M. Westram, and I. Fragata, “Unboxing mutations: Connecting mutation types with evolutionary consequences,” Molecular Ecology, vol. 30, no. 12. Wiley, pp. 2710–2723, 2021.' ista: 'Berdan EL, Blanckaert A, Slotte T, Suh A, Westram AM, Fragata I. 2021. Unboxing mutations: Connecting mutation types with evolutionary consequences. Molecular Ecology. 30(12), 2710–2723.' mla: 'Berdan, Emma L., et al. “Unboxing Mutations: Connecting Mutation Types with Evolutionary Consequences.” Molecular Ecology, vol. 30, no. 12, Wiley, 2021, pp. 2710–23, doi:10.1111/mec.15936.' short: E.L. Berdan, A. Blanckaert, T. Slotte, A. Suh, A.M. Westram, I. Fragata, Molecular Ecology 30 (2021) 2710–2723. date_created: 2021-06-06T22:01:31Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-08-08T13:59:18Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/mec.15936 ec_funded: 1 external_id: isi: - '000652056400001' file: - access_level: open_access checksum: e6f4731365bde2614b333040a08265d8 content_type: application/pdf creator: kschuh date_created: 2021-06-11T15:34:53Z date_updated: 2021-06-11T15:34:53Z file_id: '9545' file_name: 2021_MolecularEcology_Berdan.pdf file_size: 1031978 relation: main_file success: 1 file_date_updated: 2021-06-11T15:34:53Z has_accepted_license: '1' intvolume: ' 30' isi: 1 issue: '12' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 2710-2723 project: - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: Molecular Ecology publication_identifier: eissn: - 1365294X issn: - '09621083' publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Unboxing mutations: Connecting mutation types with evolutionary consequences' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 30 year: '2021' ... --- _id: '9468' abstract: - lang: eng text: "Motivated by the successful application of geometry to proving the Harary--Hill conjecture for “pseudolinear” drawings of $K_n$, we introduce “pseudospherical” drawings of graphs. A spherical drawing of a graph $G$ is a drawing in the unit sphere $\\mathbb{S}^2$ in which the vertices of $G$ are represented as points---no three on a great circle---and the edges of $G$ are shortest-arcs in $\\mathbb{S}^2$ connecting pairs of vertices. Such a drawing has three properties: (1) every edge $e$ is contained in a simple closed curve $\\gamma_e$ such that the only vertices in $\\gamma_e$ are the ends of $e$; (2) if $e\\ne f$, then $\\gamma_e\\cap\\gamma_f$ has precisely two crossings; and (3) if $e\\ne f$, then $e$ intersects $\\gamma_f$ at most once, in either a crossing or an end of $e$. We use properties (1)--(3) to define a pseudospherical drawing of $G$. Our main result is that for the complete graph, properties (1)--(3) are equivalent to the same three properties but with “precisely two crossings” in (2) replaced by “at most two crossings.” The proof requires a result in the geometric transversal theory of arrangements of pseudocircles. This is proved using the surprising result that the absence of special arcs (coherent spirals) in an arrangement of simple closed curves characterizes the fact that any two curves in the arrangement have at most two crossings. Our studies provide the necessary ideas for exhibiting a drawing of $K_{10}$ that has no extension to an arrangement of pseudocircles and a drawing of $K_9$ that does extend to an arrangement of pseudocircles, but no such extension has all pairs of pseudocircles crossing twice.\r\n" article_processing_charge: No article_type: original author: - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: R. Bruce full_name: Richter, R. Bruce last_name: Richter - first_name: Matthew full_name: Sunohara, Matthew last_name: Sunohara citation: ama: Arroyo Guevara AM, Richter RB, Sunohara M. Extending drawings of complete graphs into arrangements of pseudocircles. SIAM Journal on Discrete Mathematics. 2021;35(2):1050-1076. doi:10.1137/20M1313234 apa: Arroyo Guevara, A. M., Richter, R. B., & Sunohara, M. (2021). Extending drawings of complete graphs into arrangements of pseudocircles. SIAM Journal on Discrete Mathematics. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/20M1313234 chicago: Arroyo Guevara, Alan M, R. Bruce Richter, and Matthew Sunohara. “Extending Drawings of Complete Graphs into Arrangements of Pseudocircles.” SIAM Journal on Discrete Mathematics. Society for Industrial and Applied Mathematics, 2021. https://doi.org/10.1137/20M1313234. ieee: A. M. Arroyo Guevara, R. B. Richter, and M. Sunohara, “Extending drawings of complete graphs into arrangements of pseudocircles,” SIAM Journal on Discrete Mathematics, vol. 35, no. 2. Society for Industrial and Applied Mathematics, pp. 1050–1076, 2021. ista: Arroyo Guevara AM, Richter RB, Sunohara M. 2021. Extending drawings of complete graphs into arrangements of pseudocircles. SIAM Journal on Discrete Mathematics. 35(2), 1050–1076. mla: Arroyo Guevara, Alan M., et al. “Extending Drawings of Complete Graphs into Arrangements of Pseudocircles.” SIAM Journal on Discrete Mathematics, vol. 35, no. 2, Society for Industrial and Applied Mathematics, 2021, pp. 1050–76, doi:10.1137/20M1313234. short: A.M. Arroyo Guevara, R.B. Richter, M. Sunohara, SIAM Journal on Discrete Mathematics 35 (2021) 1050–1076. date_created: 2021-06-06T22:01:30Z date_published: 2021-05-20T00:00:00Z date_updated: 2023-08-08T13:58:12Z day: '20' department: - _id: UlWa doi: 10.1137/20M1313234 ec_funded: 1 external_id: arxiv: - '2001.06053' isi: - '000674142200022' intvolume: ' 35' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2001.06053 month: '05' oa: 1 oa_version: Preprint page: 1050-1076 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: SIAM Journal on Discrete Mathematics publication_identifier: issn: - '08954801' publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: Extending drawings of complete graphs into arrangements of pseudocircles type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 35 year: '2021' ... --- _id: '9462' abstract: - lang: eng text: We consider a system of N trapped bosons with repulsive interactions in a combined semiclassical mean-field limit at positive temperature. We show that the free energy is well approximated by the minimum of the Hartree free energy functional – a natural extension of the Hartree energy functional to positive temperatures. The Hartree free energy functional converges in the same limit to a semiclassical free energy functional, and we show that the system displays Bose–Einstein condensation if and only if it occurs in the semiclassical free energy functional. This allows us to show that for weak coupling the critical temperature decreases due to the repulsive interactions. acknowledgement: Funding from the European Union's Horizon 2020 research and innovation programme under the ERC grant agreement No 694227 (R.S.) and under the Marie Sklodowska-Curie grant agreement No 836146 (A.D.) is gratefully acknowledged. A.D. acknowledges support of the Swiss National Science Foundation through the Ambizione grant PZ00P2 185851. article_number: '109096' article_processing_charge: No article_type: original author: - first_name: Andreas full_name: Deuchert, Andreas last_name: Deuchert - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Deuchert A, Seiringer R. Semiclassical approximation and critical temperature shift for weakly interacting trapped bosons. Journal of Functional Analysis. 2021;281(6). doi:10.1016/j.jfa.2021.109096 apa: Deuchert, A., & Seiringer, R. (2021). Semiclassical approximation and critical temperature shift for weakly interacting trapped bosons. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2021.109096 chicago: Deuchert, Andreas, and Robert Seiringer. “Semiclassical Approximation and Critical Temperature Shift for Weakly Interacting Trapped Bosons.” Journal of Functional Analysis. Elsevier, 2021. https://doi.org/10.1016/j.jfa.2021.109096. ieee: A. Deuchert and R. Seiringer, “Semiclassical approximation and critical temperature shift for weakly interacting trapped bosons,” Journal of Functional Analysis, vol. 281, no. 6. Elsevier, 2021. ista: Deuchert A, Seiringer R. 2021. Semiclassical approximation and critical temperature shift for weakly interacting trapped bosons. Journal of Functional Analysis. 281(6), 109096. mla: Deuchert, Andreas, and Robert Seiringer. “Semiclassical Approximation and Critical Temperature Shift for Weakly Interacting Trapped Bosons.” Journal of Functional Analysis, vol. 281, no. 6, 109096, Elsevier, 2021, doi:10.1016/j.jfa.2021.109096. short: A. Deuchert, R. Seiringer, Journal of Functional Analysis 281 (2021). date_created: 2021-06-06T22:01:28Z date_published: 2021-09-15T00:00:00Z date_updated: 2023-08-08T13:56:27Z day: '15' department: - _id: RoSe doi: 10.1016/j.jfa.2021.109096 ec_funded: 1 external_id: arxiv: - '2009.00992' isi: - '000656508600008' intvolume: ' 281' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2009.00992 month: '09' oa: 1 oa_version: Preprint project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Journal of Functional Analysis publication_identifier: eissn: - 1096-0783 issn: - 0022-1236 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Semiclassical approximation and critical temperature shift for weakly interacting trapped bosons type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 281 year: '2021' ... --- _id: '9469' abstract: - lang: eng text: In this paper, we consider reflected three-operator splitting methods for monotone inclusion problems in real Hilbert spaces. To do this, we first obtain weak convergence analysis and nonasymptotic O(1/n) convergence rate of the reflected Krasnosel'skiĭ-Mann iteration for finding a fixed point of nonexpansive mapping in real Hilbert spaces under some seemingly easy to implement conditions on the iterative parameters. We then apply our results to three-operator splitting for the monotone inclusion problem and consequently obtain the corresponding convergence analysis. Furthermore, we derive reflected primal-dual algorithms for highly structured monotone inclusion problems. Some numerical implementations are drawn from splitting methods to support the theoretical analysis. acknowledgement: The authors are grateful to the anonymous referees and the handling Editor for their insightful comments which have improved the earlier version of the manuscript greatly. The second author is grateful to the University of Hafr Al Batin. The last author has received funding from the European Research Council (ERC) under the European Union's Seventh Framework Program (FP7-2007-2013) (Grant agreement No. 616160). article_processing_charge: No article_type: original author: - first_name: Olaniyi S. full_name: Iyiola, Olaniyi S. last_name: Iyiola - first_name: Cyril D. full_name: Enyi, Cyril D. last_name: Enyi - first_name: Yekini full_name: Shehu, Yekini id: 3FC7CB58-F248-11E8-B48F-1D18A9856A87 last_name: Shehu orcid: 0000-0001-9224-7139 citation: ama: Iyiola OS, Enyi CD, Shehu Y. Reflected three-operator splitting method for monotone inclusion problem. Optimization Methods and Software. 2021. doi:10.1080/10556788.2021.1924715 apa: Iyiola, O. S., Enyi, C. D., & Shehu, Y. (2021). Reflected three-operator splitting method for monotone inclusion problem. Optimization Methods and Software. Taylor and Francis. https://doi.org/10.1080/10556788.2021.1924715 chicago: Iyiola, Olaniyi S., Cyril D. Enyi, and Yekini Shehu. “Reflected Three-Operator Splitting Method for Monotone Inclusion Problem.” Optimization Methods and Software. Taylor and Francis, 2021. https://doi.org/10.1080/10556788.2021.1924715. ieee: O. S. Iyiola, C. D. Enyi, and Y. Shehu, “Reflected three-operator splitting method for monotone inclusion problem,” Optimization Methods and Software. Taylor and Francis, 2021. ista: Iyiola OS, Enyi CD, Shehu Y. 2021. Reflected three-operator splitting method for monotone inclusion problem. Optimization Methods and Software. mla: Iyiola, Olaniyi S., et al. “Reflected Three-Operator Splitting Method for Monotone Inclusion Problem.” Optimization Methods and Software, Taylor and Francis, 2021, doi:10.1080/10556788.2021.1924715. short: O.S. Iyiola, C.D. Enyi, Y. Shehu, Optimization Methods and Software (2021). date_created: 2021-06-06T22:01:30Z date_published: 2021-05-12T00:00:00Z date_updated: 2023-08-08T13:57:43Z day: '12' department: - _id: VlKo doi: 10.1080/10556788.2021.1924715 ec_funded: 1 external_id: isi: - '000650507600001' isi: 1 language: - iso: eng month: '05' oa_version: None project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' publication: Optimization Methods and Software publication_identifier: eissn: - 1029-4937 issn: - 1055-6788 publication_status: published publisher: Taylor and Francis quality_controlled: '1' scopus_import: '1' status: public title: Reflected three-operator splitting method for monotone inclusion problem type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9540' abstract: - lang: eng text: The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2′-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases. acknowledged_ssus: - _id: EM-Fac acknowledgement: We are deeply grateful to the late Gregor Högenauer who built the foundation for this study with his visionary work on the inhibitor diazaborine and its bacterial target. We thank Rolf Breinbauer for insightful discussions on boron chemistry. We thank Anton Meinhart and Tim Clausen for the valuable discussion of the manuscript. We are indebted to Thomas Köcher for the MS measurement of the diazaborine-ATPγS adduct. We thank the team of the VBCF for support during early phases of this work and the IST Austria Electron Microscopy Facility for providing equipment. The lab of D.H. is supported by Boehringer Ingelheim. The work was funded by FWF projects P32536 and P32977 (to H.B.). article_number: '3483' article_processing_charge: No article_type: original author: - first_name: Michael full_name: Prattes, Michael last_name: Prattes - first_name: Irina full_name: Grishkovskaya, Irina last_name: Grishkovskaya - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - first_name: Ingrid full_name: Rössler, Ingrid last_name: Rössler - first_name: Isabella full_name: Klein, Isabella last_name: Klein - first_name: Christina full_name: Hetzmannseder, Christina last_name: Hetzmannseder - first_name: Gertrude full_name: Zisser, Gertrude last_name: Zisser - first_name: Christian C. full_name: Gruber, Christian C. last_name: Gruber - first_name: Karl full_name: Gruber, Karl last_name: Gruber - first_name: David full_name: Haselbach, David last_name: Haselbach - first_name: Helmut full_name: Bergler, Helmut last_name: Bergler citation: ama: Prattes M, Grishkovskaya I, Hodirnau V-V, et al. Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine. Nature Communications. 2021;12(1). doi:10.1038/s41467-021-23854-x apa: Prattes, M., Grishkovskaya, I., Hodirnau, V.-V., Rössler, I., Klein, I., Hetzmannseder, C., … Bergler, H. (2021). Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-021-23854-x chicago: Prattes, Michael, Irina Grishkovskaya, Victor-Valentin Hodirnau, Ingrid Rössler, Isabella Klein, Christina Hetzmannseder, Gertrude Zisser, et al. “Structural Basis for Inhibition of the AAA-ATPase Drg1 by Diazaborine.” Nature Communications. Springer Nature, 2021. https://doi.org/10.1038/s41467-021-23854-x. ieee: M. Prattes et al., “Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine,” Nature Communications, vol. 12, no. 1. Springer Nature, 2021. ista: Prattes M, Grishkovskaya I, Hodirnau V-V, Rössler I, Klein I, Hetzmannseder C, Zisser G, Gruber CC, Gruber K, Haselbach D, Bergler H. 2021. Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine. Nature Communications. 12(1), 3483. mla: Prattes, Michael, et al. “Structural Basis for Inhibition of the AAA-ATPase Drg1 by Diazaborine.” Nature Communications, vol. 12, no. 1, 3483, Springer Nature, 2021, doi:10.1038/s41467-021-23854-x. short: M. Prattes, I. Grishkovskaya, V.-V. Hodirnau, I. Rössler, I. Klein, C. Hetzmannseder, G. Zisser, C.C. Gruber, K. Gruber, D. Haselbach, H. Bergler, Nature Communications 12 (2021). date_created: 2021-06-10T14:57:45Z date_published: 2021-06-09T00:00:00Z date_updated: 2023-08-08T14:05:26Z day: '09' ddc: - '570' department: - _id: EM-Fac doi: 10.1038/s41467-021-23854-x external_id: isi: - '000664874700014' pmid: - '34108481' file: - access_level: open_access checksum: 40fc24c1310930990b52a8ad1142ee97 content_type: application/pdf creator: cziletti date_created: 2021-06-15T18:55:59Z date_updated: 2021-06-15T18:55:59Z file_id: '9556' file_name: 2021_NatureComm_Prattes.pdf file_size: 3397292 relation: main_file success: 1 file_date_updated: 2021-06-15T18:55:59Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '1' keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '9549' abstract: - lang: eng text: 'AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning1. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength2. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1–GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties. ' acknowledgement: We thank members of the Greger laboratory, B. Herguedas, J. Krieger and J.-N. Dohrke for comments on the manuscript; J. Krieger and J.-N. Dohrke for discussion, J. Krieger for help with the normal mode analysis, B. Köhegyi for help with cryo-EM imaging, V. Chang and K. Suzuki for helping to generate the CNIH2-1D4-HA stable cell line, M. Carvalho for assistance at early stages of this project, the LMB scientific computing and the cryo-EM facility for support, P. Emsley for help with model building, T. Nakane for helpful comments with RELION 3.1 and R. Warshamanage for helping with EMDA cryo-EM-map processing. We acknowledge the Diamond Light Source for access and support of the Cryo-EM facilities at the UK national electron bio10 imaging centre (eBIC), proposal EM17434, funded by the Wellcome Trust, MRC and BBSRC. This work was supported by grants from the Medical Research Council, as part of United Kingdom Research and Innovation (also known as UK Research and Innovation) (MC_U105174197) and BBSRC (BB/N002113/1) to I.H.G. article_processing_charge: No article_type: original author: - first_name: Danyang full_name: Zhang, Danyang last_name: Zhang - first_name: Jake full_name: Watson, Jake id: 63836096-4690-11EA-BD4E-32803DDC885E last_name: Watson orcid: 0000-0002-8698-3823 - first_name: Peter M. full_name: Matthews, Peter M. last_name: Matthews - first_name: Ondrej full_name: Cais, Ondrej last_name: Cais - first_name: Ingo H. full_name: Greger, Ingo H. last_name: Greger citation: ama: Zhang D, Watson J, Matthews PM, Cais O, Greger IH. Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature. 2021;594:454-458. doi:10.1038/s41586-021-03613-0 apa: Zhang, D., Watson, J., Matthews, P. M., Cais, O., & Greger, I. H. (2021). Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature. Springer Nature. https://doi.org/10.1038/s41586-021-03613-0 chicago: Zhang, Danyang, Jake Watson, Peter M. Matthews, Ondrej Cais, and Ingo H. Greger. “Gating and Modulation of a Hetero-Octameric AMPA Glutamate Receptor.” Nature. Springer Nature, 2021. https://doi.org/10.1038/s41586-021-03613-0. ieee: D. Zhang, J. Watson, P. M. Matthews, O. Cais, and I. H. Greger, “Gating and modulation of a hetero-octameric AMPA glutamate receptor,” Nature, vol. 594. Springer Nature, pp. 454–458, 2021. ista: Zhang D, Watson J, Matthews PM, Cais O, Greger IH. 2021. Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature. 594, 454–458. mla: Zhang, Danyang, et al. “Gating and Modulation of a Hetero-Octameric AMPA Glutamate Receptor.” Nature, vol. 594, Springer Nature, 2021, pp. 454–58, doi:10.1038/s41586-021-03613-0. short: D. Zhang, J. Watson, P.M. Matthews, O. Cais, I.H. Greger, Nature 594 (2021) 454–458. date_created: 2021-06-13T22:01:33Z date_published: 2021-06-02T00:00:00Z date_updated: 2023-08-08T13:59:51Z day: '02' department: - _id: PeJo doi: 10.1038/s41586-021-03613-0 external_id: isi: - '000657238100003' pmid: - '34079129' intvolume: ' 594' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41586-021-03613-0 month: '06' oa: 1 oa_version: Published Version page: 454-458 pmid: 1 publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Gating and modulation of a hetero-octameric AMPA glutamate receptor type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 594 year: '2021' ... --- _id: '9550' abstract: - lang: eng text: 'We prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition principle for quantum systems whose components are modelled by Wigner matrices. ' acknowledgement: The first author is supported in part by Hong Kong RGC Grant GRF 16301519 and NSFC 11871425. The second author is supported in part by ERC Advanced Grant RANMAT 338804. The third author is supported in part by Swedish Research Council Grant VR-2017-05195 and the Knut and Alice Wallenberg Foundation article_number: e44 article_processing_charge: No article_type: original author: - first_name: Zhigang full_name: Bao, Zhigang id: 442E6A6C-F248-11E8-B48F-1D18A9856A87 last_name: Bao orcid: 0000-0003-3036-1475 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Kevin full_name: Schnelli, Kevin id: 434AD0AE-F248-11E8-B48F-1D18A9856A87 last_name: Schnelli orcid: 0000-0003-0954-3231 citation: ama: Bao Z, Erdös L, Schnelli K. Equipartition principle for Wigner matrices. Forum of Mathematics, Sigma. 2021;9. doi:10.1017/fms.2021.38 apa: Bao, Z., Erdös, L., & Schnelli, K. (2021). Equipartition principle for Wigner matrices. Forum of Mathematics, Sigma. Cambridge University Press. https://doi.org/10.1017/fms.2021.38 chicago: Bao, Zhigang, László Erdös, and Kevin Schnelli. “Equipartition Principle for Wigner Matrices.” Forum of Mathematics, Sigma. Cambridge University Press, 2021. https://doi.org/10.1017/fms.2021.38. ieee: Z. Bao, L. Erdös, and K. Schnelli, “Equipartition principle for Wigner matrices,” Forum of Mathematics, Sigma, vol. 9. Cambridge University Press, 2021. ista: Bao Z, Erdös L, Schnelli K. 2021. Equipartition principle for Wigner matrices. Forum of Mathematics, Sigma. 9, e44. mla: Bao, Zhigang, et al. “Equipartition Principle for Wigner Matrices.” Forum of Mathematics, Sigma, vol. 9, e44, Cambridge University Press, 2021, doi:10.1017/fms.2021.38. short: Z. Bao, L. Erdös, K. Schnelli, Forum of Mathematics, Sigma 9 (2021). date_created: 2021-06-13T22:01:33Z date_published: 2021-05-27T00:00:00Z date_updated: 2023-08-08T14:03:40Z day: '27' ddc: - '510' department: - _id: LaEr doi: 10.1017/fms.2021.38 ec_funded: 1 external_id: arxiv: - '2008.07061' isi: - '000654960800001' file: - access_level: open_access checksum: 47c986578de132200d41e6d391905519 content_type: application/pdf creator: cziletti date_created: 2021-06-15T14:40:45Z date_updated: 2021-06-15T14:40:45Z file_id: '9555' file_name: 2021_ForumMath_Bao.pdf file_size: 483458 relation: main_file success: 1 file_date_updated: 2021-06-15T14:40:45Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Forum of Mathematics, Sigma publication_identifier: eissn: - '20505094' publication_status: published publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Equipartition principle for Wigner matrices tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2021' ... --- _id: '9570' abstract: - lang: eng text: We present conductance-matrix measurements in long, three-terminal hybrid superconductor-semiconductor nanowires, and compare with theoretical predictions of a magnetic-field-driven, topological quantum phase transition. By examining the nonlocal conductance, we identify the closure of the excitation gap in the bulk of the semiconductor before the emergence of zero-bias peaks, ruling out spurious gap-closure signatures from localized states. We observe that after the gap closes, nonlocal signals and zero-bias peaks fluctuate strongly at both ends, inconsistent with a simple picture of clean topological superconductivity. acknowledgement: We acknowledge insightful discussions with K. Flensberg, E. B. Hansen, T. Karzig, R. Lutchyn, D. Pikulin, E. Prada, and R. Aguado. This work was supported by Microsoft Project Q and the Danmarks Grundforskningsfond. C.M.M. acknowledges support from the Villum Fonden. A.P.H. and L.C. contributed equally to this work. article_number: '235201' article_processing_charge: No article_type: original author: - first_name: Denise full_name: Puglia, Denise id: 4D495994-AE37-11E9-AC72-31CAE5697425 last_name: Puglia - first_name: E. A. full_name: Martinez, E. A. last_name: Martinez - first_name: G. C. full_name: Ménard, G. C. last_name: Ménard - first_name: A. full_name: Pöschl, A. last_name: Pöschl - first_name: S. full_name: Gronin, S. last_name: Gronin - first_name: G. C. full_name: Gardner, G. C. last_name: Gardner - first_name: R. full_name: Kallaher, R. last_name: Kallaher - first_name: M. J. full_name: Manfra, M. J. last_name: Manfra - first_name: C. M. full_name: Marcus, C. M. last_name: Marcus - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 - first_name: L. full_name: Casparis, L. last_name: Casparis citation: ama: Puglia D, Martinez EA, Ménard GC, et al. Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. Physical Review B. 2021;103(23). doi:10.1103/PhysRevB.103.235201 apa: Puglia, D., Martinez, E. A., Ménard, G. C., Pöschl, A., Gronin, S., Gardner, G. C., … Casparis, L. (2021). Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.103.235201 chicago: Puglia, Denise, E. A. Martinez, G. C. Ménard, A. Pöschl, S. Gronin, G. C. Gardner, R. Kallaher, et al. “Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire.” Physical Review B. American Physical Society, 2021. https://doi.org/10.1103/PhysRevB.103.235201. ieee: D. Puglia et al., “Closing of the induced gap in a hybrid superconductor-semiconductor nanowire,” Physical Review B, vol. 103, no. 23. American Physical Society, 2021. ista: Puglia D, Martinez EA, Ménard GC, Pöschl A, Gronin S, Gardner GC, Kallaher R, Manfra MJ, Marcus CM, Higginbotham AP, Casparis L. 2021. Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. Physical Review B. 103(23), 235201. mla: Puglia, Denise, et al. “Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire.” Physical Review B, vol. 103, no. 23, 235201, American Physical Society, 2021, doi:10.1103/PhysRevB.103.235201. short: D. Puglia, E.A. Martinez, G.C. Ménard, A. Pöschl, S. Gronin, G.C. Gardner, R. Kallaher, M.J. Manfra, C.M. Marcus, A.P. Higginbotham, L. Casparis, Physical Review B 103 (2021). date_created: 2021-06-20T22:01:33Z date_published: 2021-06-15T00:00:00Z date_updated: 2023-08-08T14:08:08Z day: '15' department: - _id: AnHi doi: 10.1103/PhysRevB.103.235201 external_id: arxiv: - '2006.01275' isi: - '000661512500002' intvolume: ' 103' isi: 1 issue: '23' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2006.01275 month: '06' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - '24699969' issn: - '24699950' publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '13080' relation: research_data status: public scopus_import: '1' status: public title: Closing of the induced gap in a hybrid superconductor-semiconductor nanowire type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 103 year: '2021' ... --- _id: '9548' abstract: - lang: eng text: 'We extend the notion of the minimal volume ellipsoid containing a convex body in Rd to the setting of logarithmically concave functions. We consider a vast class of logarithmically concave functions whose superlevel sets are concentric ellipsoids. For a fixed function from this class, we consider the set of all its “affine” positions. For any log-concave function f on Rd, we consider functions belonging to this set of “affine” positions, and find the one with the minimal integral under the condition that it is pointwise greater than or equal to f. We study the properties of existence and uniqueness of the solution to this problem. For any s∈[0,+∞), we consider the construction dual to the recently defined John s-function (Ivanov and Naszódi in Functional John ellipsoids. arXiv preprint: arXiv:2006.09934, 2020). We prove that such a construction determines a unique function and call it the Löwner s-function of f. We study the Löwner s-functions as s tends to zero and to infinity. Finally, extending the notion of the outer volume ratio, we define the outer integral ratio of a log-concave function and give an asymptotically tight bound on it.' acknowledgement: The authors acknowledge the support of the grant of the Russian Government N 075-15-2019-1926. article_processing_charge: No article_type: original author: - first_name: Grigory full_name: Ivanov, Grigory id: 87744F66-5C6F-11EA-AFE0-D16B3DDC885E last_name: Ivanov - first_name: Igor full_name: Tsiutsiurupa, Igor last_name: Tsiutsiurupa citation: ama: Ivanov G, Tsiutsiurupa I. Functional Löwner ellipsoids. Journal of Geometric Analysis. 2021;31:11493-11528. doi:10.1007/s12220-021-00691-4 apa: Ivanov, G., & Tsiutsiurupa, I. (2021). Functional Löwner ellipsoids. Journal of Geometric Analysis. Springer. https://doi.org/10.1007/s12220-021-00691-4 chicago: Ivanov, Grigory, and Igor Tsiutsiurupa. “Functional Löwner Ellipsoids.” Journal of Geometric Analysis. Springer, 2021. https://doi.org/10.1007/s12220-021-00691-4. ieee: G. Ivanov and I. Tsiutsiurupa, “Functional Löwner ellipsoids,” Journal of Geometric Analysis, vol. 31. Springer, pp. 11493–11528, 2021. ista: Ivanov G, Tsiutsiurupa I. 2021. Functional Löwner ellipsoids. Journal of Geometric Analysis. 31, 11493–11528. mla: Ivanov, Grigory, and Igor Tsiutsiurupa. “Functional Löwner Ellipsoids.” Journal of Geometric Analysis, vol. 31, Springer, 2021, pp. 11493–528, doi:10.1007/s12220-021-00691-4. short: G. Ivanov, I. Tsiutsiurupa, Journal of Geometric Analysis 31 (2021) 11493–11528. date_created: 2021-06-13T22:01:32Z date_published: 2021-05-31T00:00:00Z date_updated: 2023-08-08T14:04:49Z day: '31' department: - _id: UlWa doi: 10.1007/s12220-021-00691-4 external_id: arxiv: - '2008.09543' isi: - '000656507500001' intvolume: ' 31' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2008.09543 month: '05' oa: 1 oa_version: Preprint page: 11493-11528 publication: Journal of Geometric Analysis publication_identifier: eissn: - 1559-002X issn: - 1050-6926 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Functional Löwner ellipsoids type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 31 year: '2021' ... --- _id: '13080' abstract: - lang: eng text: "Data for the manuscript 'Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire' ([2006.01275] Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire (arxiv.org))\r\n\r\nWe upload a pdf with extended data sets, and the raw data for these extended datasets as well." article_processing_charge: No author: - first_name: Denise full_name: Puglia, Denise id: 4D495994-AE37-11E9-AC72-31CAE5697425 last_name: Puglia - first_name: Esteban full_name: Martinez, Esteban last_name: Martinez - first_name: Gerbold full_name: Menard, Gerbold last_name: Menard - first_name: Andreas full_name: Pöschl, Andreas last_name: Pöschl - first_name: Sergei full_name: Gronin, Sergei last_name: Gronin - first_name: Geoffrey full_name: Gardner, Geoffrey last_name: Gardner - first_name: Ray full_name: Kallaher, Ray last_name: Kallaher - first_name: Michael full_name: Manfra, Michael last_name: Manfra - first_name: Charles full_name: Marcus, Charles last_name: Marcus - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 - first_name: Lucas full_name: Casparis, Lucas last_name: Casparis citation: ama: Puglia D, Martinez E, Menard G, et al. Data for ’Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire. 2021. doi:10.5281/ZENODO.4592435 apa: Puglia, D., Martinez, E., Menard, G., Pöschl, A., Gronin, S., Gardner, G., … Casparis, L. (2021). Data for ’Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire. Zenodo. https://doi.org/10.5281/ZENODO.4592435 chicago: Puglia, Denise, Esteban Martinez, Gerbold Menard, Andreas Pöschl, Sergei Gronin, Geoffrey Gardner, Ray Kallaher, et al. “Data for ’Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire.” Zenodo, 2021. https://doi.org/10.5281/ZENODO.4592435. ieee: D. Puglia et al., “Data for ’Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire.” Zenodo, 2021. ista: Puglia D, Martinez E, Menard G, Pöschl A, Gronin S, Gardner G, Kallaher R, Manfra M, Marcus C, Higginbotham AP, Casparis L. 2021. Data for ’Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire, Zenodo, 10.5281/ZENODO.4592435. mla: Puglia, Denise, et al. Data for ’Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire. Zenodo, 2021, doi:10.5281/ZENODO.4592435. short: D. Puglia, E. Martinez, G. Menard, A. Pöschl, S. Gronin, G. Gardner, R. Kallaher, M. Manfra, C. Marcus, A.P. Higginbotham, L. Casparis, (2021). date_created: 2023-05-23T17:11:28Z date_published: 2021-03-09T00:00:00Z date_updated: 2023-08-08T14:08:07Z day: '09' ddc: - '530' department: - _id: AnHi doi: 10.5281/ZENODO.4592435 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.4592460 month: '03' oa: 1 oa_version: Published Version publisher: Zenodo related_material: link: - relation: software url: https://github.com/caslu85/Induced-Gap-Closing-Shared/tree/1.1.3 record: - id: '9570' relation: used_in_publication status: public status: public title: Data for 'Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9569' abstract: - lang: eng text: We report the synthesis and characterization of graphene functionalized with iron (Fe3+) oxide (G-Fe3O4) nanohybrids for radio-frequency magnetic hyperthermia application. We adopted the wet chemical procedure, using various contents of Fe3O4 (magnetite) from 0–100% for making two-dimensional graphene–Fe3O4 nanohybrids. The homogeneous dispersal of Fe3O4 nanoparticles decorated on the graphene surface combined with their biocompatibility and high thermal conductivity make them an excellent material for magnetic hyperthermia. The morphological and magnetic properties of the nanohybrids were studied using scanning electron microscopy (SEM) and a vibrating sample magnetometer (VSM), respectively. The smart magnetic platforms were exposed to an alternating current (AC) magnetic field of 633 kHz and of strength 9.1 mT for studying their hyperthermic performance. The localized antitumor effects were investigated with artificial neural network modeling. A neural net time-series model was developed for the assessment of the best nanohybrid composition to serve the purpose with an accuracy close to 100%. Six Nonlinear Autoregressive with External Input (NARX) models were obtained, one for each of the components. The assessment of the accuracy of the predicted results has been done on the basis of Mean Squared Error (MSE). The highest Mean Squared Error value was obtained for the nanohybrid containing 45% magnetite and 55% graphene (F45G55) in the training phase i.e., 0.44703, which is where the model achieved optimal results after 71 epochs. The F45G55 nanohybrid was found to be the best for hyperthermia applications in low dosage with the highest specific absorption rate (SAR) and mean squared error values. acknowledgement: The research is funded by Higher Education Commission (HEC) Pakistan under start-up research grant program (SRGP) Project no. 2454. article_processing_charge: No article_type: original author: - first_name: M. S. full_name: Dar, M. S. last_name: Dar - first_name: Khush Bakhat full_name: Akram, Khush Bakhat last_name: Akram - first_name: Ayesha full_name: Sohail, Ayesha last_name: Sohail - first_name: Fatima full_name: Arif, Fatima last_name: Arif - first_name: Fatemeh full_name: Zabihi, Fatemeh last_name: Zabihi - first_name: Shengyuan full_name: Yang, Shengyuan last_name: Yang - first_name: Shamsa full_name: Munir, Shamsa last_name: Munir - first_name: Meifang full_name: Zhu, Meifang last_name: Zhu - first_name: M. full_name: Abid, M. last_name: Abid - first_name: Muhammad full_name: Nauman, Muhammad id: 32c21954-2022-11eb-9d5f-af9f93c24e71 last_name: Nauman orcid: 0000-0002-2111-4846 citation: ama: Dar MS, Akram KB, Sohail A, et al. Heat induction in two-dimensional graphene–Fe3O4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling. RSC Advances. 2021;11(35):21702-21715. doi:10.1039/d1ra03428f apa: Dar, M. S., Akram, K. B., Sohail, A., Arif, F., Zabihi, F., Yang, S., … Nauman, M. (2021). Heat induction in two-dimensional graphene–Fe3O4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling. RSC Advances. Royal Society of Chemistry. https://doi.org/10.1039/d1ra03428f chicago: Dar, M. S., Khush Bakhat Akram, Ayesha Sohail, Fatima Arif, Fatemeh Zabihi, Shengyuan Yang, Shamsa Munir, Meifang Zhu, M. Abid, and Muhammad Nauman. “Heat Induction in Two-Dimensional Graphene–Fe3O4 Nanohybrids for Magnetic Hyperthermia Applications with Artificial Neural Network Modeling.” RSC Advances. Royal Society of Chemistry, 2021. https://doi.org/10.1039/d1ra03428f. ieee: M. S. Dar et al., “Heat induction in two-dimensional graphene–Fe3O4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling,” RSC Advances, vol. 11, no. 35. Royal Society of Chemistry, pp. 21702–21715, 2021. ista: Dar MS, Akram KB, Sohail A, Arif F, Zabihi F, Yang S, Munir S, Zhu M, Abid M, Nauman M. 2021. Heat induction in two-dimensional graphene–Fe3O4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling. RSC Advances. 11(35), 21702–21715. mla: Dar, M. S., et al. “Heat Induction in Two-Dimensional Graphene–Fe3O4 Nanohybrids for Magnetic Hyperthermia Applications with Artificial Neural Network Modeling.” RSC Advances, vol. 11, no. 35, Royal Society of Chemistry, 2021, pp. 21702–15, doi:10.1039/d1ra03428f. short: M.S. Dar, K.B. Akram, A. Sohail, F. Arif, F. Zabihi, S. Yang, S. Munir, M. Zhu, M. Abid, M. Nauman, RSC Advances 11 (2021) 21702–21715. date_created: 2021-06-19T07:27:45Z date_published: 2021-06-18T00:00:00Z date_updated: 2023-08-08T14:23:21Z day: '18' ddc: - '540' department: - _id: KiMo doi: 10.1039/d1ra03428f external_id: isi: - '000665644000048' file: - access_level: open_access checksum: cd582d67ace7151078e46b3a896871a9 content_type: application/pdf creator: asandaue date_created: 2021-06-23T13:09:34Z date_updated: 2021-06-23T13:09:34Z file_id: '9596' file_name: 2021_RSCAdvances_Dar.pdf file_size: 2114557 relation: main_file success: 1 file_date_updated: 2021-06-23T13:09:34Z has_accepted_license: '1' intvolume: ' 11' isi: 1 issue: '35' language: - iso: eng license: https://creativecommons.org/licenses/by/3.0/ month: '06' oa: 1 oa_version: Published Version page: 21702-21715 publication: RSC Advances publication_identifier: eissn: - 2046-2069 publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' status: public title: Heat induction in two-dimensional graphene–Fe3O4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2021' ... --- _id: '9558' abstract: - lang: eng text: "We show that turbulent dynamics that arise in simulations of the three-dimensional Navier--Stokes equations in a triply-periodic domain under sinusoidal forcing can be described as transient visits to the neighborhoods of unstable time-periodic solutions. Based on this description, we reduce the original system with more than 10^5 degrees of freedom to a 17-node Markov chain where each node corresponds to the neighborhood of a periodic orbit. The model accurately reproduces long-term averages of the system's observables as weighted sums over the periodic orbits.\r\n" acknowledged_ssus: - _id: ScienComp acknowledgement: "We thank the referees for improving this Letter with their comments. We acknowledge stimulating discussions with\r\nH. Edelsbrunner. This work was supported by Grant No. 662960 from the Simons Foundation (B. H.). The numerical calculations were performed at TUBITAK ULAKBIM High Performance and Grid Computing Center (TRUBA resources) and IST Austria High Performance Computing cluster." article_number: '244502' article_processing_charge: No article_type: letter_note author: - first_name: Gökhan full_name: Yalniz, Gökhan id: 66E74FA2-D8BF-11E9-8249-8DE2E5697425 last_name: Yalniz orcid: 0000-0002-8490-9312 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 citation: ama: Yalniz G, Hof B, Budanur NB. Coarse graining the state space of a turbulent flow using periodic orbits. Physical Review Letters. 2021;126(24). doi:10.1103/PhysRevLett.126.244502 apa: Yalniz, G., Hof, B., & Budanur, N. B. (2021). Coarse graining the state space of a turbulent flow using periodic orbits. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.126.244502 chicago: Yalniz, Gökhan, Björn Hof, and Nazmi B Budanur. “Coarse Graining the State Space of a Turbulent Flow Using Periodic Orbits.” Physical Review Letters. American Physical Society, 2021. https://doi.org/10.1103/PhysRevLett.126.244502. ieee: G. Yalniz, B. Hof, and N. B. Budanur, “Coarse graining the state space of a turbulent flow using periodic orbits,” Physical Review Letters, vol. 126, no. 24. American Physical Society, 2021. ista: Yalniz G, Hof B, Budanur NB. 2021. Coarse graining the state space of a turbulent flow using periodic orbits. Physical Review Letters. 126(24), 244502. mla: Yalniz, Gökhan, et al. “Coarse Graining the State Space of a Turbulent Flow Using Periodic Orbits.” Physical Review Letters, vol. 126, no. 24, 244502, American Physical Society, 2021, doi:10.1103/PhysRevLett.126.244502. short: G. Yalniz, B. Hof, N.B. Budanur, Physical Review Letters 126 (2021). date_created: 2021-06-16T15:45:36Z date_published: 2021-06-18T00:00:00Z date_updated: 2023-08-08T14:08:36Z day: '18' department: - _id: GradSch - _id: BjHo doi: 10.1103/PhysRevLett.126.244502 external_id: arxiv: - '2007.02584' isi: - '000663310100008' intvolume: ' 126' isi: 1 issue: '24' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2007.02584 month: '06' oa: 1 oa_version: Preprint project: - _id: 238598C6-32DE-11EA-91FC-C7463DDC885E grant_number: '662960' name: 'Revisiting the Turbulence Problem Using Statistical Mechanics: Experimental Studies on Transitional and Turbulent Flows' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/turbulent-flow-simplified/ status: public title: Coarse graining the state space of a turbulent flow using periodic orbits type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 126 year: '2021' ... --- _id: '9607' abstract: - lang: eng text: While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Numerous analyses conducted to date have clearly identified measures that need to be taken to improve research rigor. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e., performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use. acknowledgement: This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777364. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. The authors are very grateful to Martin Heinrich (Abbvie, Ludwigshafen, Germany) for the exceptional IT support and programming the EQIPD Planning Tool and the Creator Tool and to Dr Shai Silberberg (NINDS, USA), Dr. Renza Roncarati (PAASP Italy) and Dr Judith Homberg (Radboud University, Nijmegen) for highly stimulating contributions to the discussions and comments on earlier versions of this manuscript. We also wish to express our thanks to Dr. Sara Stöber (concentris research management GmbH, Fürstenfeldbruck, Germany) for excellent and continuous support of this project. Creation of the EQIPD Stakeholder group was supported by Noldus Information Technology bv (Wageningen, the Netherlands). article_processing_charge: No article_type: original author: - first_name: Anton full_name: Bespalov, Anton last_name: Bespalov - first_name: René full_name: Bernard, René last_name: Bernard - first_name: Anja full_name: Gilis, Anja last_name: Gilis - first_name: Björn full_name: Gerlach, Björn last_name: Gerlach - first_name: Javier full_name: Guillén, Javier last_name: Guillén - first_name: Vincent full_name: Castagné, Vincent last_name: Castagné - first_name: Isabel A. full_name: Lefevre, Isabel A. last_name: Lefevre - first_name: Fiona full_name: Ducrey, Fiona last_name: Ducrey - first_name: Lee full_name: Monk, Lee last_name: Monk - first_name: Sandrine full_name: Bongiovanni, Sandrine last_name: Bongiovanni - first_name: Bruce full_name: Altevogt, Bruce last_name: Altevogt - first_name: María full_name: Arroyo-Araujo, María last_name: Arroyo-Araujo - first_name: Lior full_name: Bikovski, Lior last_name: Bikovski - first_name: Natasja full_name: De Bruin, Natasja last_name: De Bruin - first_name: Esmeralda full_name: Castaños-Vélez, Esmeralda last_name: Castaños-Vélez - first_name: Alexander full_name: Dityatev, Alexander last_name: Dityatev - first_name: Christoph H. full_name: Emmerich, Christoph H. last_name: Emmerich - first_name: Raafat full_name: Fares, Raafat last_name: Fares - first_name: Chantelle full_name: Ferland-Beckham, Chantelle last_name: Ferland-Beckham - first_name: Christelle full_name: Froger-Colléaux, Christelle last_name: Froger-Colléaux - first_name: Valerie full_name: Gailus-Durner, Valerie last_name: Gailus-Durner - first_name: Sabine M. full_name: Hölter, Sabine M. last_name: Hölter - first_name: Martine Cj full_name: Hofmann, Martine Cj last_name: Hofmann - first_name: Patricia full_name: Kabitzke, Patricia last_name: Kabitzke - first_name: Martien Jh full_name: Kas, Martien Jh last_name: Kas - first_name: Claudia full_name: Kurreck, Claudia last_name: Kurreck - first_name: Paul full_name: Moser, Paul last_name: Moser - first_name: Malgorzata full_name: Pietraszek, Malgorzata last_name: Pietraszek - first_name: Piotr full_name: Popik, Piotr last_name: Popik - first_name: Heidrun full_name: Potschka, Heidrun last_name: Potschka - first_name: Ernesto full_name: Prado Montes De Oca, Ernesto last_name: Prado Montes De Oca - first_name: Leonardo full_name: Restivo, Leonardo last_name: Restivo - first_name: Gernot full_name: Riedel, Gernot last_name: Riedel - first_name: Merel full_name: Ritskes-Hoitinga, Merel last_name: Ritskes-Hoitinga - first_name: Janko full_name: Samardzic, Janko last_name: Samardzic - first_name: Michael full_name: Schunn, Michael id: 4272DB4A-F248-11E8-B48F-1D18A9856A87 last_name: Schunn orcid: 0000-0003-4326-5300 - first_name: Claudia full_name: Stöger, Claudia last_name: Stöger - first_name: Vootele full_name: Voikar, Vootele last_name: Voikar - first_name: Jan full_name: Vollert, Jan last_name: Vollert - first_name: Kimberley E. full_name: Wever, Kimberley E. last_name: Wever - first_name: Kathleen full_name: Wuyts, Kathleen last_name: Wuyts - first_name: Malcolm R. full_name: Macleod, Malcolm R. last_name: Macleod - first_name: Ulrich full_name: Dirnagl, Ulrich last_name: Dirnagl - first_name: Thomas full_name: Steckler, Thomas last_name: Steckler citation: ama: Bespalov A, Bernard R, Gilis A, et al. Introduction to the EQIPD quality system. eLife. 2021;10. doi:10.7554/eLife.63294 apa: Bespalov, A., Bernard, R., Gilis, A., Gerlach, B., Guillén, J., Castagné, V., … Steckler, T. (2021). Introduction to the EQIPD quality system. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.63294 chicago: Bespalov, Anton, René Bernard, Anja Gilis, Björn Gerlach, Javier Guillén, Vincent Castagné, Isabel A. Lefevre, et al. “Introduction to the EQIPD Quality System.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/eLife.63294. ieee: A. Bespalov et al., “Introduction to the EQIPD quality system,” eLife, vol. 10. eLife Sciences Publications, 2021. ista: Bespalov A, Bernard R, Gilis A, Gerlach B, Guillén J, Castagné V, Lefevre IA, Ducrey F, Monk L, Bongiovanni S, Altevogt B, Arroyo-Araujo M, Bikovski L, De Bruin N, Castaños-Vélez E, Dityatev A, Emmerich CH, Fares R, Ferland-Beckham C, Froger-Colléaux C, Gailus-Durner V, Hölter SM, Hofmann MC, Kabitzke P, Kas MJ, Kurreck C, Moser P, Pietraszek M, Popik P, Potschka H, Prado Montes De Oca E, Restivo L, Riedel G, Ritskes-Hoitinga M, Samardzic J, Schunn M, Stöger C, Voikar V, Vollert J, Wever KE, Wuyts K, Macleod MR, Dirnagl U, Steckler T. 2021. Introduction to the EQIPD quality system. eLife. 10. mla: Bespalov, Anton, et al. “Introduction to the EQIPD Quality System.” ELife, vol. 10, eLife Sciences Publications, 2021, doi:10.7554/eLife.63294. short: A. Bespalov, R. Bernard, A. Gilis, B. Gerlach, J. Guillén, V. Castagné, I.A. Lefevre, F. Ducrey, L. Monk, S. Bongiovanni, B. Altevogt, M. Arroyo-Araujo, L. Bikovski, N. De Bruin, E. Castaños-Vélez, A. Dityatev, C.H. Emmerich, R. Fares, C. Ferland-Beckham, C. Froger-Colléaux, V. Gailus-Durner, S.M. Hölter, M.C. Hofmann, P. Kabitzke, M.J. Kas, C. Kurreck, P. Moser, M. Pietraszek, P. Popik, H. Potschka, E. Prado Montes De Oca, L. Restivo, G. Riedel, M. Ritskes-Hoitinga, J. Samardzic, M. Schunn, C. Stöger, V. Voikar, J. Vollert, K.E. Wever, K. Wuyts, M.R. Macleod, U. Dirnagl, T. Steckler, ELife 10 (2021). date_created: 2021-06-27T22:01:49Z date_published: 2021-05-24T00:00:00Z date_updated: 2023-08-10T13:36:50Z day: '24' ddc: - '570' department: - _id: PreCl doi: 10.7554/eLife.63294 external_id: isi: - '000661272000001' pmid: - '34028353' file: - access_level: open_access checksum: 885b746051a7a6b6e24e3d2781a48fde content_type: application/pdf creator: asandaue date_created: 2021-06-28T11:35:30Z date_updated: 2021-06-28T11:35:30Z file_id: '9609' file_name: 2021_ELife_Bespalov.pdf file_size: 2500720 relation: main_file success: 1 file_date_updated: 2021-06-28T11:35:30Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Introduction to the EQIPD quality system tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2021' ... --- _id: '9601' abstract: - lang: eng text: 'In mammalian genomes, differentially methylated regions (DMRs) and histone marks including trimethylation of histone 3 lysine 27 (H3K27me3) at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. However, neither parent-of-origin-specific transcription nor imprints have been comprehensively mapped at the blastocyst stage of preimplantation development. Here, we address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos. We find that seventy-one genes exhibit previously unreported parent-of-origin-specific expression in blastocysts (nBiX: novel blastocyst-imprinted expressed). Uniparental expression of nBiX genes disappears soon after implantation. Micro-whole-genome bisulfite sequencing (µWGBS) of individual uniparental blastocysts detects 859 DMRs. We further find that 16% of nBiX genes are associated with a DMR, whereas most are associated with parentally-biased H3K27me3, suggesting a role for Polycomb-mediated imprinting in blastocysts. nBiX genes are clustered: five clusters contained at least one published imprinted gene, and five clusters exclusively contained nBiX genes. These data suggest that early development undergoes a complex program of stage-specific imprinting involving different tiers of regulation.' acknowledgement: The authors thank Robert Feil and Anton Wutz for helpful discussions and comments, Samuel Collombet and Peter Fraser for sharing embryo TAD coordinates, and Andy Riddel at the Cambridge Stem Cell Institute and Thomas Sauer at the Max Perutz Laboratories FACS facility for flow-sorting. We thank the team of the Biomedical Sequencing Facility at the CeMM and the Vienna Biocenter Core Facilities (VBCF) for support with next-generation sequencing. We are grateful to animal care teams at the University of Bath and MRC Harwell. A.C.F.P. acknowledges support from the UK Medical Research Council (MR/N000080/1 and MR/N020294/1) and Biotechnology and Biological Sciences Research Council (BB/P009506/1). L.S. is part of the FWF doctoral programme SMICH and supported by an Austrian Academy of Sciences DOC Fellowship. M.L. is funded by a Vienna Research Group for Young Investigators grant (VRG14-006) by the Vienna Science and Technology Fund (WWTF) and by the Austrian Science Fund FWF (I3786 and P31334). article_number: '3804' article_processing_charge: No article_type: original author: - first_name: Laura full_name: Santini, Laura last_name: Santini - first_name: Florian full_name: Halbritter, Florian last_name: Halbritter - first_name: Fabian full_name: Titz-Teixeira, Fabian last_name: Titz-Teixeira - first_name: Toru full_name: Suzuki, Toru last_name: Suzuki - first_name: Maki full_name: Asami, Maki last_name: Asami - first_name: Xiaoyan full_name: Ma, Xiaoyan last_name: Ma - first_name: Julia full_name: Ramesmayer, Julia last_name: Ramesmayer - first_name: Andreas full_name: Lackner, Andreas last_name: Lackner - first_name: Nick full_name: Warr, Nick last_name: Warr - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler orcid: 0000-0002-7462-0048 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Ernest full_name: Laue, Ernest last_name: Laue - first_name: Matthias full_name: Farlik, Matthias last_name: Farlik - first_name: Christoph full_name: Bock, Christoph last_name: Bock - first_name: Andreas full_name: Beyer, Andreas last_name: Beyer - first_name: Anthony C.F. full_name: Perry, Anthony C.F. last_name: Perry - first_name: Martin full_name: Leeb, Martin last_name: Leeb citation: ama: Santini L, Halbritter F, Titz-Teixeira F, et al. Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3. Nature Communications. 2021;12(1). doi:10.1038/s41467-021-23510-4 apa: Santini, L., Halbritter, F., Titz-Teixeira, F., Suzuki, T., Asami, M., Ma, X., … Leeb, M. (2021). Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-021-23510-4 chicago: Santini, Laura, Florian Halbritter, Fabian Titz-Teixeira, Toru Suzuki, Maki Asami, Xiaoyan Ma, Julia Ramesmayer, et al. “Genomic Imprinting in Mouse Blastocysts Is Predominantly Associated with H3K27me3.” Nature Communications. Springer Nature, 2021. https://doi.org/10.1038/s41467-021-23510-4. ieee: L. Santini et al., “Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3,” Nature Communications, vol. 12, no. 1. Springer Nature, 2021. ista: Santini L, Halbritter F, Titz-Teixeira F, Suzuki T, Asami M, Ma X, Ramesmayer J, Lackner A, Warr N, Pauler F, Hippenmeyer S, Laue E, Farlik M, Bock C, Beyer A, Perry ACF, Leeb M. 2021. Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3. Nature Communications. 12(1), 3804. mla: Santini, Laura, et al. “Genomic Imprinting in Mouse Blastocysts Is Predominantly Associated with H3K27me3.” Nature Communications, vol. 12, no. 1, 3804, Springer Nature, 2021, doi:10.1038/s41467-021-23510-4. short: L. Santini, F. Halbritter, F. Titz-Teixeira, T. Suzuki, M. Asami, X. Ma, J. Ramesmayer, A. Lackner, N. Warr, F. Pauler, S. Hippenmeyer, E. Laue, M. Farlik, C. Bock, A. Beyer, A.C.F. Perry, M. Leeb, Nature Communications 12 (2021). date_created: 2021-06-27T22:01:46Z date_published: 2021-07-12T00:00:00Z date_updated: 2023-08-10T13:53:23Z day: '12' ddc: - '570' department: - _id: SiHi doi: 10.1038/s41467-021-23510-4 external_id: isi: - '000667248600005' file: - access_level: open_access checksum: 75dd89d09945185b2d14b2434a0bcb50 content_type: application/pdf creator: asandaue date_created: 2021-06-28T08:04:22Z date_updated: 2021-06-28T08:04:22Z file_id: '9608' file_name: 2021_NatureCommunications_Santini.pdf file_size: 2156554 relation: main_file success: 1 file_date_updated: 2021-06-28T08:04:22Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '9602' abstract: - lang: eng text: "An ordered graph is a graph with a linear ordering on its vertex set. We prove that for every positive integer k, there exists a constant ck > 0 such that any ordered graph G on n vertices with the property that neither G nor its complement contains an induced monotone path of size k, has either a clique or an independent set of size at least n^ck . This strengthens a result of Bousquet, Lagoutte, and Thomassé, who proved the analogous result for unordered graphs.\r\nA key idea of the above paper was to show that any unordered graph on n vertices that does not contain an induced path of size k, and whose maximum degree is at most c(k)n for some small c(k) > 0, contains two disjoint linear size subsets with no edge between them. This approach fails for ordered graphs, because the analogous statement is false for k ≥ 3, by a construction of Fox. We provide some further examples showing that this statement also fails for ordered graphs avoiding other ordered trees." acknowledgement: We would like to thank the anonymous referees for their useful comments and suggestions. János Pach is partially supported by Austrian Science Fund (FWF) grant Z 342-N31 and by ERC Advanced grant “GeoScape.” István Tomon is partially supported by Swiss National Science Foundation grant no. 200021_196965, and thanks the support of MIPT Moscow. Both authors are partially supported by The Russian Government in the framework of MegaGrant no. 075-15-2019-1926. article_processing_charge: No article_type: original author: - first_name: János full_name: Pach, János id: E62E3130-B088-11EA-B919-BF823C25FEA4 last_name: Pach - first_name: István full_name: Tomon, István last_name: Tomon citation: ama: Pach J, Tomon I. Erdős-Hajnal-type results for monotone paths. Journal of Combinatorial Theory Series B. 2021;151:21-37. doi:10.1016/j.jctb.2021.05.004 apa: Pach, J., & Tomon, I. (2021). Erdős-Hajnal-type results for monotone paths. Journal of Combinatorial Theory. Series B. Elsevier. https://doi.org/10.1016/j.jctb.2021.05.004 chicago: Pach, János, and István Tomon. “Erdős-Hajnal-Type Results for Monotone Paths.” Journal of Combinatorial Theory. Series B. Elsevier, 2021. https://doi.org/10.1016/j.jctb.2021.05.004. ieee: J. Pach and I. Tomon, “Erdős-Hajnal-type results for monotone paths,” Journal of Combinatorial Theory. Series B, vol. 151. Elsevier, pp. 21–37, 2021. ista: Pach J, Tomon I. 2021. Erdős-Hajnal-type results for monotone paths. Journal of Combinatorial Theory. Series B. 151, 21–37. mla: Pach, János, and István Tomon. “Erdős-Hajnal-Type Results for Monotone Paths.” Journal of Combinatorial Theory. Series B, vol. 151, Elsevier, 2021, pp. 21–37, doi:10.1016/j.jctb.2021.05.004. short: J. Pach, I. Tomon, Journal of Combinatorial Theory. Series B 151 (2021) 21–37. date_created: 2021-06-27T22:01:47Z date_published: 2021-06-09T00:00:00Z date_updated: 2023-08-10T13:38:00Z day: '09' ddc: - '510' department: - _id: HeEd doi: 10.1016/j.jctb.2021.05.004 external_id: isi: - '000702280800002' file: - access_level: open_access checksum: 15fbc9064cd9d1c777ac0043b78c8f12 content_type: application/pdf creator: asandaue date_created: 2021-06-28T13:33:23Z date_updated: 2021-06-28T13:33:23Z file_id: '9612' file_name: 2021_JournalOfCombinatorialTheory_Pach.pdf file_size: 418168 relation: main_file success: 1 file_date_updated: 2021-06-28T13:33:23Z has_accepted_license: '1' intvolume: ' 151' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 21-37 project: - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: Journal of Combinatorial Theory. Series B publication_identifier: issn: - 0095-8956 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Erdős-Hajnal-type results for monotone paths tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 151 year: '2021' ... --- _id: '9606' abstract: - lang: eng text: Sound propagation is a macroscopic manifestation of the interplay between the equilibrium thermodynamics and the dynamical transport properties of fluids. Here, for a two-dimensional system of ultracold fermions, we calculate the first and second sound velocities across the whole BCS-BEC crossover, and we analyze the system response to an external perturbation. In the low-temperature regime we reproduce the recent measurements [Phys. Rev. Lett. 124, 240403 (2020)] of the first sound velocity, which, due to the decoupling of density and entropy fluctuations, is the sole mode excited by a density probe. Conversely, a heat perturbation excites only the second sound, which, being sensitive to the superfluid depletion, vanishes in the deep BCS regime and jumps discontinuously to zero at the Berezinskii-Kosterlitz-Thouless superfluid transition. A mixing between the modes occurs only in the finite-temperature BEC regime, where our theory converges to the purely bosonic results. acknowledgement: "G.B. acknowledges support from the Austrian Science Fund (FWF), under Project No. M2641-N27. This work was\r\npartially supported by the University of Padua, BIRD project “Superfluid properties of Fermi gases in optical potentials.”\r\nThe authors thank Miki Ota, Tomoki Ozawa, Sandro Stringari, Tilman Enss, Hauke Biss, Henning Moritz, and Nicolò Defenu for fruitful discussions. The authors thank Henning Moritz and Markus Bohlen for providing their experimental\r\ndata." article_number: L061303 article_processing_charge: No article_type: letter_note author: - first_name: A. full_name: Tononi, A. last_name: Tononi - first_name: Alberto full_name: Cappellaro, Alberto id: 9d13b3cb-30a2-11eb-80dc-f772505e8660 last_name: Cappellaro orcid: 0000-0001-6110-2359 - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: L. full_name: Salasnich, L. last_name: Salasnich citation: ama: Tononi A, Cappellaro A, Bighin G, Salasnich L. Propagation of first and second sound in a two-dimensional Fermi superfluid. Physical Review A. 2021;103(6). doi:10.1103/PhysRevA.103.L061303 apa: Tononi, A., Cappellaro, A., Bighin, G., & Salasnich, L. (2021). Propagation of first and second sound in a two-dimensional Fermi superfluid. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.103.L061303 chicago: Tononi, A., Alberto Cappellaro, Giacomo Bighin, and L. Salasnich. “Propagation of First and Second Sound in a Two-Dimensional Fermi Superfluid.” Physical Review A. American Physical Society, 2021. https://doi.org/10.1103/PhysRevA.103.L061303. ieee: A. Tononi, A. Cappellaro, G. Bighin, and L. Salasnich, “Propagation of first and second sound in a two-dimensional Fermi superfluid,” Physical Review A, vol. 103, no. 6. American Physical Society, 2021. ista: Tononi A, Cappellaro A, Bighin G, Salasnich L. 2021. Propagation of first and second sound in a two-dimensional Fermi superfluid. Physical Review A. 103(6), L061303. mla: Tononi, A., et al. “Propagation of First and Second Sound in a Two-Dimensional Fermi Superfluid.” Physical Review A, vol. 103, no. 6, L061303, American Physical Society, 2021, doi:10.1103/PhysRevA.103.L061303. short: A. Tononi, A. Cappellaro, G. Bighin, L. Salasnich, Physical Review A 103 (2021). date_created: 2021-06-27T22:01:49Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-08-10T13:37:25Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevA.103.L061303 external_id: arxiv: - '2009.06491' isi: - '000662296700014' intvolume: ' 103' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2009.06491 month: '06' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - '24699934' issn: - '24699926' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Propagation of first and second sound in a two-dimensional Fermi superfluid type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 103 year: '2021' ... --- _id: '9642' abstract: - lang: eng text: Perineuronal nets (PNNs), components of the extracellular matrix, preferentially coat parvalbumin-positive interneurons and constrain critical-period plasticity in the adult cerebral cortex. Current strategies to remove PNN are long-lasting, invasive, and trigger neuropsychiatric symptoms. Here, we apply repeated anesthetic ketamine as a method with minimal behavioral effect. We find that this paradigm strongly reduces PNN coating in the healthy adult brain and promotes juvenile-like plasticity. Microglia are critically involved in PNN loss because they engage with parvalbumin-positive neurons in their defined cortical layer. We identify external 60-Hz light-flickering entrainment to recapitulate microglia-mediated PNN removal. Importantly, 40-Hz frequency, which is known to remove amyloid plaques, does not induce PNN loss, suggesting microglia might functionally tune to distinct brain frequencies. Thus, our 60-Hz light-entrainment strategy provides an alternative form of PNN intervention in the healthy adult brain. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We thank the scientific service units at IST Austria, especially the IST bioimaging facility, the preclinical facility, and, specifically, Michael Schunn and Sonja Haslinger for excellent support; Plexxikon for the PLX food; the Csicsvari group for advice and equipment for in vivo recording; Jürgen Siegert for the light-entrainment design; Marco Benevento, Soledad Gonzalo Cogno, Pat King, and all Siegert group members for constant feedback on the project and manuscript; Lorena Pantano (PILM Bioinformatics Core) for assisting with sample-size determination for OD plasticity experiments; and Ana Morello from MIT for technical assistance with VEPs recordings. This research was supported by a DOC Fellowship from the Austrian Academy of Sciences at the Institute of Science and Technology Austria to R.S., from the European Union Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions program (grants 665385 to G.C.; 754411 to R.J.A.C.), the European Research Council (grant 715571 to S.S.), and the National Eye Institute of the National Institutes of Health under award numbers R01EY029245 (to M.F.B.) and R01EY023037 (diversity supplement to H.D.J-C.). article_number: '109313' article_processing_charge: No article_type: original author: - first_name: Alessandro full_name: Venturino, Alessandro id: 41CB84B2-F248-11E8-B48F-1D18A9856A87 last_name: Venturino orcid: 0000-0003-2356-9403 - first_name: Rouven full_name: Schulz, Rouven id: 4C5E7B96-F248-11E8-B48F-1D18A9856A87 last_name: Schulz orcid: 0000-0001-5297-733X - first_name: Héctor full_name: De Jesús-Cortés, Héctor last_name: De Jesús-Cortés - first_name: Margaret E full_name: Maes, Margaret E id: 3838F452-F248-11E8-B48F-1D18A9856A87 last_name: Maes orcid: 0000-0001-9642-1085 - first_name: Balint full_name: Nagy, Balint id: 93C65ECC-A6F2-11E9-8DF9-9712E6697425 last_name: Nagy - first_name: Francis full_name: Reilly-Andújar, Francis last_name: Reilly-Andújar - first_name: Gloria full_name: Colombo, Gloria id: 3483CF6C-F248-11E8-B48F-1D18A9856A87 last_name: Colombo orcid: 0000-0001-9434-8902 - first_name: Ryan J full_name: Cubero, Ryan J id: 850B2E12-9CD4-11E9-837F-E719E6697425 last_name: Cubero orcid: 0000-0003-0002-1867 - first_name: Florianne E full_name: Schoot Uiterkamp, Florianne E id: 3526230C-F248-11E8-B48F-1D18A9856A87 last_name: Schoot Uiterkamp - first_name: Mark F. full_name: Bear, Mark F. last_name: Bear - first_name: Sandra full_name: Siegert, Sandra id: 36ACD32E-F248-11E8-B48F-1D18A9856A87 last_name: Siegert orcid: 0000-0001-8635-0877 citation: ama: Venturino A, Schulz R, De Jesús-Cortés H, et al. Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60-Hz light entrainment in the healthy brain. Cell Reports. 2021;36(1). doi:10.1016/j.celrep.2021.109313 apa: Venturino, A., Schulz, R., De Jesús-Cortés, H., Maes, M. E., Nagy, B., Reilly-Andújar, F., … Siegert, S. (2021). Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60-Hz light entrainment in the healthy brain. Cell Reports. Elsevier. https://doi.org/10.1016/j.celrep.2021.109313 chicago: Venturino, Alessandro, Rouven Schulz, Héctor De Jesús-Cortés, Margaret E Maes, Balint Nagy, Francis Reilly-Andújar, Gloria Colombo, et al. “Microglia Enable Mature Perineuronal Nets Disassembly upon Anesthetic Ketamine Exposure or 60-Hz Light Entrainment in the Healthy Brain.” Cell Reports. Elsevier, 2021. https://doi.org/10.1016/j.celrep.2021.109313. ieee: A. Venturino et al., “Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60-Hz light entrainment in the healthy brain,” Cell Reports, vol. 36, no. 1. Elsevier, 2021. ista: Venturino A, Schulz R, De Jesús-Cortés H, Maes ME, Nagy B, Reilly-Andújar F, Colombo G, Cubero RJ, Schoot Uiterkamp FE, Bear MF, Siegert S. 2021. Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60-Hz light entrainment in the healthy brain. Cell Reports. 36(1), 109313. mla: Venturino, Alessandro, et al. “Microglia Enable Mature Perineuronal Nets Disassembly upon Anesthetic Ketamine Exposure or 60-Hz Light Entrainment in the Healthy Brain.” Cell Reports, vol. 36, no. 1, 109313, Elsevier, 2021, doi:10.1016/j.celrep.2021.109313. short: A. Venturino, R. Schulz, H. De Jesús-Cortés, M.E. Maes, B. Nagy, F. Reilly-Andújar, G. Colombo, R.J. Cubero, F.E. Schoot Uiterkamp, M.F. Bear, S. Siegert, Cell Reports 36 (2021). date_created: 2021-07-11T22:01:16Z date_published: 2021-07-06T00:00:00Z date_updated: 2023-08-10T14:09:39Z day: '06' ddc: - '570' department: - _id: SaSi doi: 10.1016/j.celrep.2021.109313 ec_funded: 1 external_id: isi: - '000670188500004' pmid: - '34233180' file: - access_level: open_access checksum: f056255f6d01fd9a86b5387635928173 content_type: application/pdf creator: cziletti date_created: 2021-07-19T13:32:17Z date_updated: 2021-07-19T13:32:17Z file_id: '9693' file_name: 2021_CellReports_Venturino.pdf file_size: 56388540 relation: main_file success: 1 file_date_updated: 2021-07-19T13:32:17Z has_accepted_license: '1' intvolume: ' 36' isi: 1 issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25D4A630-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715571' name: Microglia action towards neuronal circuit formation and function in health and disease publication: Cell Reports publication_identifier: eissn: - '22111247' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/the-twinkle-and-the-brain/ scopus_import: '1' status: public title: Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60-Hz light entrainment in the healthy brain tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 36 year: '2021' ... --- _id: '9603' abstract: - lang: eng text: Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: PreCl acknowledgement: We thank the Bioimaging, Life Science, and Pre-Clinical Facilities at IST Austria; M.P. Postiglione, C. Simbriger, K. Valoskova, C. Schwayer, T. Hussain, M. Pieber, and V. Wimmer for initial experiments, technical support, and/or assistance; R. Shigemoto for sharing iv (Dnah11 mutant) mice; and M. Sixt and all members of the Hippenmeyer lab for discussion. This work was supported by National Institutes of Health grants ( R01-NS050580 to L.L. and F32MH096361 to L.A.S.). L.L. is an investigator of HHMI. N.A. received support from FWF Firnberg-Programm ( T 1031 ). A.H.H. is a recipient of a DOC Fellowship (24812) of the Austrian Academy of Sciences . This work also received support from IST Austria institutional funds , FWF SFB F78 to S.H., the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme ( FP7/2007-2013 ) under REA grant agreement no 618444 to S.H., and the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 725780 LinPro ) to S.H. article_number: '109274' article_processing_charge: No article_type: original author: - first_name: Ximena full_name: Contreras, Ximena id: 475990FE-F248-11E8-B48F-1D18A9856A87 last_name: Contreras - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Amarbayasgalan full_name: Davaatseren, Amarbayasgalan id: 70ADC922-B424-11E9-99E3-BA18E6697425 last_name: Davaatseren - first_name: Andi H full_name: Hansen, Andi H id: 38853E16-F248-11E8-B48F-1D18A9856A87 last_name: Hansen - first_name: Johanna full_name: Sonntag, Johanna id: 32FE7D7C-F248-11E8-B48F-1D18A9856A87 last_name: Sonntag - first_name: Lill full_name: Andersen, Lill last_name: Andersen - first_name: Tina full_name: Bernthaler, Tina last_name: Bernthaler - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Anna-Magdalena full_name: Heger, Anna-Magdalena id: 4B76FFD2-F248-11E8-B48F-1D18A9856A87 last_name: Heger - first_name: Randy L. full_name: Johnson, Randy L. last_name: Johnson - first_name: Lindsay A. full_name: Schwarz, Lindsay A. last_name: Schwarz - first_name: Liqun full_name: Luo, Liqun last_name: Luo - first_name: Thomas full_name: Rülicke, Thomas last_name: Rülicke - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Contreras X, Amberg N, Davaatseren A, et al. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. 2021;35(12). doi:10.1016/j.celrep.2021.109274 apa: Contreras, X., Amberg, N., Davaatseren, A., Hansen, A. H., Sonntag, J., Andersen, L., … Hippenmeyer, S. (2021). A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. Cell Press. https://doi.org/10.1016/j.celrep.2021.109274 chicago: Contreras, Ximena, Nicole Amberg, Amarbayasgalan Davaatseren, Andi H Hansen, Johanna Sonntag, Lill Andersen, Tina Bernthaler, et al. “A Genome-Wide Library of MADM Mice for Single-Cell Genetic Mosaic Analysis.” Cell Reports. Cell Press, 2021. https://doi.org/10.1016/j.celrep.2021.109274. ieee: X. Contreras et al., “A genome-wide library of MADM mice for single-cell genetic mosaic analysis,” Cell Reports, vol. 35, no. 12. Cell Press, 2021. ista: Contreras X, Amberg N, Davaatseren A, Hansen AH, Sonntag J, Andersen L, Bernthaler T, Streicher C, Heger A-M, Johnson RL, Schwarz LA, Luo L, Rülicke T, Hippenmeyer S. 2021. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. 35(12), 109274. mla: Contreras, Ximena, et al. “A Genome-Wide Library of MADM Mice for Single-Cell Genetic Mosaic Analysis.” Cell Reports, vol. 35, no. 12, 109274, Cell Press, 2021, doi:10.1016/j.celrep.2021.109274. short: X. Contreras, N. Amberg, A. Davaatseren, A.H. Hansen, J. Sonntag, L. Andersen, T. Bernthaler, C. Streicher, A.-M. Heger, R.L. Johnson, L.A. Schwarz, L. Luo, T. Rülicke, S. Hippenmeyer, Cell Reports 35 (2021). date_created: 2021-06-27T22:01:48Z date_published: 2021-06-22T00:00:00Z date_updated: 2023-08-10T13:55:00Z day: '22' ddc: - '570' department: - _id: SiHi - _id: LoSw - _id: PreCl doi: 10.1016/j.celrep.2021.109274 ec_funded: 1 external_id: isi: - '000664463600016' file: - access_level: open_access checksum: d49520fdcbbb5c2f883bddb67cee5d77 content_type: application/pdf creator: asandaue date_created: 2021-06-28T14:06:24Z date_updated: 2021-06-28T14:06:24Z file_id: '9613' file_name: 2021_CellReports_Contreras.pdf file_size: 7653149 relation: main_file success: 1 file_date_updated: 2021-06-28T14:06:24Z has_accepted_license: '1' intvolume: ' 35' isi: 1 issue: '12' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 2625A13E-B435-11E9-9278-68D0E5697425 grant_number: '24812' name: Molecular Mechanisms of Radial Neuronal Migration - _id: 25D61E48-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618444' name: Molecular Mechanisms of Cerebral Cortex Development - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Cell Reports publication_identifier: eissn: - '22111247' publication_status: published publisher: Cell Press quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/boost-for-mouse-genetic-analysis/ scopus_import: '1' status: public title: A genome-wide library of MADM mice for single-cell genetic mosaic analysis tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 35 year: '2021' ... --- _id: '9618' abstract: - lang: eng text: The control of nonequilibrium quantum dynamics in many-body systems is challenging because interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We investigate nonequilibrium dynamics after rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we show that coherent revivals associated with so-called quantum many-body scars can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating new ways to steer complex dynamics in many-body systems and enabling potential applications in quantum information science. acknowledgement: 'We thank many members of the Harvard AMO community, particularly E. Urbach, S. Dakoulas, and J. Doyle for their efforts enabling safe and productive operation of our laboratories during 2020. We thank D. Abanin, I. Cong, F. Machado, H. Pichler, N. Yao, B. Ye, and H. Zhou for stimulating discussions. Funding: We acknowledge financial support from the Center for Ultracold Atoms, the National Science Foundation, the Vannevar Bush Faculty Fellowship, the U.S. Department of Energy (LBNL QSA Center and grant no. DE-SC0021013), the Office of Naval Research, the Army Research Office MURI, the DARPA DRINQS program (grant no. D18AC00033), and the DARPA ONISQ program (grant no. W911NF2010021). The authors acknowledge support from the NSF Graduate Research Fellowship Program (grant DGE1745303) and The Fannie and John Hertz Foundation (D.B.); a National Defense Science and Engineering Graduate (NDSEG) fellowship (H.L.); a fellowship from the Max Planck/Harvard Research Center for Quantum Optics (G.S.); Gordon College (T.T.W.); the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 850899) (A.A.M. and M.S.); a Department of Energy Computational Science Graduate Fellowship under award number DE-SC0021110 (N.M.); the Moore Foundation’s EPiQS Initiative grant no. GBMF4306, the NUS Development grant AY2019/2020, and the Stanford Institute of Theoretical Physics (W.W.H.); and the Miller Institute for Basic Research in Science (S.C.). Author contributions: D.B., A.O., H.L., A.K., G.S., S.E., and T.T.W. contributed to the building of the experimental setup, performed the measurements, and analyzed the data. A.A.M., N.M., W.W.H., S.C., and M.S. performed theoretical analysis. All work was supervised by M.G., V.V., and M.D.L. All authors discussed the results and contributed to the manuscript. Competing interests: M.G., V.V., and M.D.L. are co-founders and shareholders of QuEra Computing. A.O. is a shareholder of QuEra Computing. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and the supplementary materials.' article_processing_charge: No article_type: original author: - first_name: D. full_name: Bluvstein, D. last_name: Bluvstein - first_name: A. full_name: Omran, A. last_name: Omran - first_name: H. full_name: Levine, H. last_name: Levine - first_name: A. full_name: Keesling, A. last_name: Keesling - first_name: G. full_name: Semeghini, G. last_name: Semeghini - first_name: S. full_name: Ebadi, S. last_name: Ebadi - first_name: T. T. full_name: Wang, T. T. last_name: Wang - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: N. full_name: Maskara, N. last_name: Maskara - first_name: W. W. full_name: Ho, W. W. last_name: Ho - first_name: S. full_name: Choi, S. last_name: Choi - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: M. full_name: Greiner, M. last_name: Greiner - first_name: V. full_name: Vuletić, V. last_name: Vuletić - first_name: M. D. full_name: Lukin, M. D. last_name: Lukin citation: ama: Bluvstein D, Omran A, Levine H, et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science. 2021;371(6536):1355-1359. doi:10.1126/science.abg2530 apa: Bluvstein, D., Omran, A., Levine, H., Keesling, A., Semeghini, G., Ebadi, S., … Lukin, M. D. (2021). Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science. AAAS. https://doi.org/10.1126/science.abg2530 chicago: Bluvstein, D., A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, et al. “Controlling Quantum Many-Body Dynamics in Driven Rydberg Atom Arrays.” Science. AAAS, 2021. https://doi.org/10.1126/science.abg2530. ieee: D. Bluvstein et al., “Controlling quantum many-body dynamics in driven Rydberg atom arrays,” Science, vol. 371, no. 6536. AAAS, pp. 1355–1359, 2021. ista: Bluvstein D, Omran A, Levine H, Keesling A, Semeghini G, Ebadi S, Wang TT, Michailidis A, Maskara N, Ho WW, Choi S, Serbyn M, Greiner M, Vuletić V, Lukin MD. 2021. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science. 371(6536), 1355–1359. mla: Bluvstein, D., et al. “Controlling Quantum Many-Body Dynamics in Driven Rydberg Atom Arrays.” Science, vol. 371, no. 6536, AAAS, 2021, pp. 1355–59, doi:10.1126/science.abg2530. short: D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T.T. Wang, A. Michailidis, N. Maskara, W.W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, M.D. Lukin, Science 371 (2021) 1355–1359. date_created: 2021-06-29T12:04:05Z date_published: 2021-03-26T00:00:00Z date_updated: 2023-08-10T13:57:07Z day: '26' ddc: - '539' department: - _id: MaSe doi: 10.1126/science.abg2530 ec_funded: 1 external_id: arxiv: - '2012.12276' isi: - '000636043400048' pmid: - '33632894' file: - access_level: open_access checksum: 0b356fd10ab9bb95177d4c047d4e9c1a content_type: application/pdf creator: patrickd date_created: 2021-09-23T14:00:05Z date_updated: 2021-09-23T14:00:05Z file_id: '10040' file_name: scars_subharmonic_combined_manuscript_2_11_2021 (2)-1.pdf file_size: 3671159 relation: main_file success: 1 file_date_updated: 2021-09-23T14:00:05Z has_accepted_license: '1' intvolume: ' 371' isi: 1 issue: '6536' keyword: - Multidisciplinary language: - iso: eng month: '03' oa: 1 oa_version: Preprint page: 1355-1359 pmid: 1 project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: AAAS quality_controlled: '1' scopus_import: '1' status: public title: Controlling quantum many-body dynamics in driven Rydberg atom arrays type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 371 year: '2021' ... --- _id: '9657' abstract: - lang: eng text: To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that is fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia. article_processing_charge: No article_type: original author: - first_name: Z full_name: Gao, Z last_name: Gao - first_name: Z full_name: Chen, Z last_name: Chen - first_name: Y full_name: Cui, Y last_name: Cui - first_name: M full_name: Ke, M last_name: Ke - first_name: H full_name: Xu, H last_name: Xu - first_name: Q full_name: Xu, Q last_name: Xu - first_name: J full_name: Chen, J last_name: Chen - first_name: Y full_name: Li, Y last_name: Li - first_name: L full_name: Huang, L last_name: Huang - first_name: H full_name: Zhao, H last_name: Zhao - first_name: D full_name: Huang, D last_name: Huang - first_name: S full_name: Mai, S last_name: Mai - first_name: T full_name: Xu, T last_name: Xu - first_name: X full_name: Liu, X last_name: Liu - first_name: S full_name: Li, S last_name: Li - first_name: Y full_name: Guan, Y last_name: Guan - first_name: W full_name: Yang, W last_name: Yang - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: J full_name: Petrášek, J last_name: Petrášek - first_name: J full_name: Zhang, J last_name: Zhang - first_name: X full_name: Chen, X last_name: Chen citation: ama: Gao Z, Chen Z, Cui Y, et al. GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell. 2021;33(9):2981–3003. doi:10.1093/plcell/koab183 apa: Gao, Z., Chen, Z., Cui, Y., Ke, M., Xu, H., Xu, Q., … Chen, X. (2021). GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1093/plcell/koab183 chicago: Gao, Z, Z Chen, Y Cui, M Ke, H Xu, Q Xu, J Chen, et al. “GmPIN-Dependent Polar Auxin Transport Is Involved in Soybean Nodule Development.” Plant Cell. American Society of Plant Biologists, 2021. https://doi.org/10.1093/plcell/koab183. ieee: Z. Gao et al., “GmPIN-dependent polar auxin transport is involved in soybean nodule development,” Plant Cell, vol. 33, no. 9. American Society of Plant Biologists, pp. 2981–3003, 2021. ista: Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. 2021. GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell. 33(9), 2981–3003. mla: Gao, Z., et al. “GmPIN-Dependent Polar Auxin Transport Is Involved in Soybean Nodule Development.” Plant Cell, vol. 33, no. 9, American Society of Plant Biologists, 2021, pp. 2981–3003, doi:10.1093/plcell/koab183. short: Z. Gao, Z. Chen, Y. Cui, M. Ke, H. Xu, Q. Xu, J. Chen, Y. Li, L. Huang, H. Zhao, D. Huang, S. Mai, T. Xu, X. Liu, S. Li, Y. Guan, W. Yang, J. Friml, J. Petrášek, J. Zhang, X. Chen, Plant Cell 33 (2021) 2981–3003. date_created: 2021-07-14T15:32:43Z date_published: 2021-07-07T00:00:00Z date_updated: 2023-08-10T14:01:41Z day: '07' ddc: - '580' department: - _id: JiFr doi: 10.1093/plcell/koab183 external_id: isi: - '000702165300012' pmid: - '34240197' file: - access_level: open_access checksum: 6715712ec306c321f0204c817b7f8ae7 content_type: application/pdf creator: cziletti date_created: 2021-07-19T12:13:34Z date_updated: 2021-07-19T12:13:34Z file_id: '9691' file_name: 2021_PlantCell_Gao.pdf file_size: 10566921 relation: main_file success: 1 file_date_updated: 2021-07-19T12:13:34Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '9' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2981–3003 pmid: 1 publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' status: public title: GmPIN-dependent polar auxin transport is involved in soybean nodule development tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 33 year: '2021' ... --- _id: '9640' abstract: - lang: eng text: 'Selection and random drift determine the probability that novel mutations fixate in a population. Population structure is known to affect the dynamics of the evolutionary process. Amplifiers of selection are population structures that increase the fixation probability of beneficial mutants compared to well-mixed populations. Over the past 15 years, extensive research has produced remarkable structures called strong amplifiers which guarantee that every beneficial mutation fixates with high probability. But strong amplification has come at the cost of considerably delaying the fixation event, which can slow down the overall rate of evolution. However, the precise relationship between fixation probability and time has remained elusive. Here we characterize the slowdown effect of strong amplification. First, we prove that all strong amplifiers must delay the fixation event at least to some extent. Second, we construct strong amplifiers that delay the fixation event only marginally as compared to the well-mixed populations. Our results thus establish a tight relationship between fixation probability and time: Strong amplification always comes at a cost of a slowdown, but more than a marginal slowdown is not needed.' acknowledgement: 'K.C. acknowledges support from ERC Start grant no. (279307: Graph Games), ERC Consolidator grant no. (863818: ForM-SMart), Austrian Science Fund (FWF) grant no. P23499-N23 and S11407-N23 (RiSE). M.A.N. acknowledges support from Office of Naval Research grant N00014-16-1-2914 and from the John Templeton Foundation.' article_number: '4009' article_processing_charge: No article_type: original author: - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Fast and strong amplifiers of natural selection. Nature Communications. 2021;12(1). doi:10.1038/s41467-021-24271-w apa: Tkadlec, J., Pavlogiannis, A., Chatterjee, K., & Nowak, M. A. (2021). Fast and strong amplifiers of natural selection. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-021-24271-w chicago: Tkadlec, Josef, Andreas Pavlogiannis, Krishnendu Chatterjee, and Martin A. Nowak. “Fast and Strong Amplifiers of Natural Selection.” Nature Communications. Springer Nature, 2021. https://doi.org/10.1038/s41467-021-24271-w. ieee: J. Tkadlec, A. Pavlogiannis, K. Chatterjee, and M. A. Nowak, “Fast and strong amplifiers of natural selection,” Nature Communications, vol. 12, no. 1. Springer Nature, 2021. ista: Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. 2021. Fast and strong amplifiers of natural selection. Nature Communications. 12(1), 4009. mla: Tkadlec, Josef, et al. “Fast and Strong Amplifiers of Natural Selection.” Nature Communications, vol. 12, no. 1, 4009, Springer Nature, 2021, doi:10.1038/s41467-021-24271-w. short: J. Tkadlec, A. Pavlogiannis, K. Chatterjee, M.A. Nowak, Nature Communications 12 (2021). date_created: 2021-07-11T22:01:15Z date_published: 2021-06-29T00:00:00Z date_updated: 2023-08-10T14:05:09Z day: '29' ddc: - '510' department: - _id: KrCh doi: 10.1038/s41467-021-24271-w ec_funded: 1 external_id: isi: - '000671752100003' pmid: - '34188036' file: - access_level: open_access checksum: 5767418926a7f7fb76151de29473dae0 content_type: application/pdf creator: cziletti date_created: 2021-07-19T13:02:20Z date_updated: 2021-07-19T13:02:20Z file_id: '9692' file_name: 2021_NatCoom_Tkadlec.pdf file_size: 628992 relation: main_file success: 1 file_date_updated: 2021-07-19T13:02:20Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Fast and strong amplifiers of natural selection tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '9656' abstract: - lang: eng text: Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underly differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, and a crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment. acknowledgement: We are grateful to Lukas Fiedler, Alexandra Mally (IST Austria) and Dr. Bartel Vanholme (VIB, Ghent) for their critical comments on the manuscript. We apologize to those researchers whose great work was not cited. This work is supported by the European Research Council under the European Union’s Horizon 2020 research and innovation Programme (ERC grant agreement number 742985), and the Austrian Science Fund (FWF, grant number I 3630-B25) to JF. HH is supported by the China Scholarship Council (CSC scholarship, 201506870018) and a starting grant from Jiangxi Agriculture University (9232308314). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: SS full_name: Alotaibi, SS last_name: Alotaibi - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Han H, Adamowski M, Qi L, Alotaibi S, Friml J. PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist. 2021;232(2):510-522. doi:10.1111/nph.17617 apa: Han, H., Adamowski, M., Qi, L., Alotaibi, S., & Friml, J. (2021). PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist. Wiley. https://doi.org/10.1111/nph.17617 chicago: Han, Huibin, Maciek Adamowski, Linlin Qi, SS Alotaibi, and Jiří Friml. “PIN-Mediated Polar Auxin Transport Regulations in Plant Tropic Responses.” New Phytologist. Wiley, 2021. https://doi.org/10.1111/nph.17617. ieee: H. Han, M. Adamowski, L. Qi, S. Alotaibi, and J. Friml, “PIN-mediated polar auxin transport regulations in plant tropic responses,” New Phytologist, vol. 232, no. 2. Wiley, pp. 510–522, 2021. ista: Han H, Adamowski M, Qi L, Alotaibi S, Friml J. 2021. PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist. 232(2), 510–522. mla: Han, Huibin, et al. “PIN-Mediated Polar Auxin Transport Regulations in Plant Tropic Responses.” New Phytologist, vol. 232, no. 2, Wiley, 2021, pp. 510–22, doi:10.1111/nph.17617. short: H. Han, M. Adamowski, L. Qi, S. Alotaibi, J. Friml, New Phytologist 232 (2021) 510–522. date_created: 2021-07-14T15:29:14Z date_published: 2021-10-01T00:00:00Z date_updated: 2023-08-10T14:02:41Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.17617 ec_funded: 1 external_id: isi: - '000680587100001' pmid: - '34254313' file: - access_level: open_access checksum: 6422a6eb329b52d96279daaee0fcf189 content_type: application/pdf creator: kschuh date_created: 2021-10-07T13:42:47Z date_updated: 2021-10-07T13:42:47Z file_id: '10105' file_name: 2021_NewPhytologist_Han.pdf file_size: 1939800 relation: main_file success: 1 file_date_updated: 2021-10-07T13:42:47Z has_accepted_license: '1' intvolume: ' 232' isi: 1 issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 510-522 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: PIN-mediated polar auxin transport regulations in plant tropic responses tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 232 year: '2021' ... --- _id: '9679' abstract: - lang: eng text: The relative motion of three impenetrable particles on a ring, in our case two identical fermions and one impurity, is isomorphic to a triangular quantum billiard. Depending on the ratio κ of the impurity and fermion masses, the billiards can be integrable or non-integrable (also referred to in the main text as chaotic). To set the stage, we first investigate the energy level distributions of the billiards as a function of 1/κ ∈ [0, 1] and find no evidence of integrable cases beyond the limiting values 1/κ = 1 and 1/κ = 0. Then, we use machine learning tools to analyze properties of probability distributions of individual quantum states. We find that convolutional neural networks can correctly classify integrable and non-integrable states. The decisive features of the wave functions are the normalization and a large number of zero elements, corresponding to the existence of a nodal line. The network achieves typical accuracies of 97%, suggesting that machine learning tools can be used to analyze and classify the morphology of probability densities obtained in theory or experiment. acknowledgement: We thank Aidan Tracy for his input during the initial stages of this project. We thank Nathan Harshman, Achim Richter, Wojciech Rzadkowski, and Dane Hudson Smith for helpful discussions and comments on the manuscript. This work has been supported by European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 754411 (AGV); by the German Aeronautics and Space Administration (DLR) through Grant No. 50 WM 1957 (OVM); by the Deutsche Forschungsgemeinschaft through Project VO 2437/1-1 (Project No. 413495248) (AGV and HWH); by the Deutsche Forschungsgemeinschaft through Collaborative Research Center SFB 1245 (Project No. 279384907) and by the Bundesministerium für Bildung und Forschung under Contract 05P18RDFN1 (HWH). HWH also thanks the ECT* for hospitality during the workshop 'Universal physics in Many-Body Quantum Systems—From Atoms to Quarks'. This infrastructure is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 824093. We acknowledge support by the Deutsche Forschungsgemeinschaft and the Open Access Publishing Fund of Technische Universität Darmstadt. article_number: '065009' article_processing_charge: Yes article_type: original author: - first_name: David full_name: Huber, David last_name: Huber - first_name: Oleksandr V. full_name: Marchukov, Oleksandr V. last_name: Marchukov - first_name: Hans Werner full_name: Hammer, Hans Werner last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Huber D, Marchukov OV, Hammer HW, Volosniev A. Morphology of three-body quantum states from machine learning. New Journal of Physics. 2021;23(6). doi:10.1088/1367-2630/ac0576 apa: Huber, D., Marchukov, O. V., Hammer, H. W., & Volosniev, A. (2021). Morphology of three-body quantum states from machine learning. New Journal of Physics. IOP Publishing. https://doi.org/10.1088/1367-2630/ac0576 chicago: Huber, David, Oleksandr V. Marchukov, Hans Werner Hammer, and Artem Volosniev. “Morphology of Three-Body Quantum States from Machine Learning.” New Journal of Physics. IOP Publishing, 2021. https://doi.org/10.1088/1367-2630/ac0576. ieee: D. Huber, O. V. Marchukov, H. W. Hammer, and A. Volosniev, “Morphology of three-body quantum states from machine learning,” New Journal of Physics, vol. 23, no. 6. IOP Publishing, 2021. ista: Huber D, Marchukov OV, Hammer HW, Volosniev A. 2021. Morphology of three-body quantum states from machine learning. New Journal of Physics. 23(6), 065009. mla: Huber, David, et al. “Morphology of Three-Body Quantum States from Machine Learning.” New Journal of Physics, vol. 23, no. 6, 065009, IOP Publishing, 2021, doi:10.1088/1367-2630/ac0576. short: D. Huber, O.V. Marchukov, H.W. Hammer, A. Volosniev, New Journal of Physics 23 (2021). date_created: 2021-07-18T22:01:22Z date_published: 2021-06-23T00:00:00Z date_updated: 2023-08-10T13:58:09Z day: '23' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/ac0576 ec_funded: 1 external_id: arxiv: - '2102.04961' isi: - '000664736300001' file: - access_level: open_access checksum: e39164ce7ea228d287cf8924e1a0f9fe content_type: application/pdf creator: cziletti date_created: 2021-07-19T11:47:16Z date_updated: 2021-07-19T11:47:16Z file_id: '9690' file_name: 2021_NewJPhys_Huber.pdf file_size: 3868445 relation: main_file success: 1 file_date_updated: 2021-07-19T11:47:16Z has_accepted_license: '1' intvolume: ' 23' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: New Journal of Physics publication_identifier: eissn: - '13672630' publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Morphology of three-body quantum states from machine learning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2021' ... --- _id: '9629' abstract: - lang: eng text: Intestinal organoids derived from single cells undergo complex crypt–villus patterning and morphogenesis. However, the nature and coordination of the underlying forces remains poorly characterized. Here, using light-sheet microscopy and large-scale imaging quantification, we demonstrate that crypt formation coincides with a stark reduction in lumen volume. We develop a 3D biophysical model to computationally screen different mechanical scenarios of crypt morphogenesis. Combining this with live-imaging data and multiple mechanical perturbations, we show that actomyosin-driven crypt apical contraction and villus basal tension work synergistically with lumen volume reduction to drive crypt morphogenesis, and demonstrate the existence of a critical point in differential tensions above which crypt morphology becomes robust to volume changes. Finally, we identified a sodium/glucose cotransporter that is specific to differentiated enterocytes that modulates lumen volume reduction through cell swelling in the villus region. Together, our study uncovers the cellular basis of how cell fate modulates osmotic and actomyosin forces to coordinate robust morphogenesis. acknowledgement: 'We acknowledge the members of the Lennon-Duménil laboratory for sharing the mouse line of Myh9-GFP. We are grateful to the members of the Liberali laboratory and the FMI facilities for their support. We thank E. Tagliavini for IT support; L. Gelman for assistance and training; S. Bichet and A. Bogucki for helping with histology of mouse tissues; H. Kohler for fluorescence-activated cell sorting; G. Q. G. de Medeiros for maintenance of light-sheet microscopy; M. G. Stadler for scRNA-seq analysis; G. Gay for discussions on the 3D vertex model; the members of the Liberali laboratory, C. P. Heisenberg and C. Tsiairis for reading and providing feedback on the manuscript. Funding: Q.Y. is supported by a Postdoc fellowship from Peter und Taul Engelhorn Stiftung (PTES). This work received funding from the European Research Council (ERC) under the EU Horizon 2020 research and Innovation Programme Grant Agreement no. 758617 (to P.L.), the Swiss National Foundation (SNF) (POOP3_157531, to P.L.) and from the ERC under the EU Horizon 2020 Research and Innovation Program Grant Agreements 851288 (to E.H.) and the Austrian Science Fund (FWF) (P31639, to E.H.).' article_processing_charge: No article_type: original author: - first_name: Qiutan full_name: Yang, Qiutan last_name: Yang - first_name: Shi-lei full_name: Xue, Shi-lei id: 31D2C804-F248-11E8-B48F-1D18A9856A87 last_name: Xue - first_name: Chii Jou full_name: Chan, Chii Jou last_name: Chan - first_name: Markus full_name: Rempfler, Markus last_name: Rempfler - first_name: Dario full_name: Vischi, Dario last_name: Vischi - first_name: Francisca full_name: Maurer-Gutierrez, Francisca last_name: Maurer-Gutierrez - first_name: Takashi full_name: Hiiragi, Takashi last_name: Hiiragi - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Prisca full_name: Liberali, Prisca last_name: Liberali citation: ama: Yang Q, Xue S, Chan CJ, et al. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nature Cell Biology. 2021;23:733–744. doi:10.1038/s41556-021-00700-2 apa: Yang, Q., Xue, S., Chan, C. J., Rempfler, M., Vischi, D., Maurer-Gutierrez, F., … Liberali, P. (2021). Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nature Cell Biology. Springer Nature. https://doi.org/10.1038/s41556-021-00700-2 chicago: Yang, Qiutan, Shi-lei Xue, Chii Jou Chan, Markus Rempfler, Dario Vischi, Francisca Maurer-Gutierrez, Takashi Hiiragi, Edouard B Hannezo, and Prisca Liberali. “Cell Fate Coordinates Mechano-Osmotic Forces in Intestinal Crypt Formation.” Nature Cell Biology. Springer Nature, 2021. https://doi.org/10.1038/s41556-021-00700-2. ieee: Q. Yang et al., “Cell fate coordinates mechano-osmotic forces in intestinal crypt formation,” Nature Cell Biology, vol. 23. Springer Nature, pp. 733–744, 2021. ista: Yang Q, Xue S, Chan CJ, Rempfler M, Vischi D, Maurer-Gutierrez F, Hiiragi T, Hannezo EB, Liberali P. 2021. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nature Cell Biology. 23, 733–744. mla: Yang, Qiutan, et al. “Cell Fate Coordinates Mechano-Osmotic Forces in Intestinal Crypt Formation.” Nature Cell Biology, vol. 23, Springer Nature, 2021, pp. 733–744, doi:10.1038/s41556-021-00700-2. short: Q. Yang, S. Xue, C.J. Chan, M. Rempfler, D. Vischi, F. Maurer-Gutierrez, T. Hiiragi, E.B. Hannezo, P. Liberali, Nature Cell Biology 23 (2021) 733–744. date_created: 2021-07-04T22:01:25Z date_published: 2021-06-21T00:00:00Z date_updated: 2023-08-10T13:57:36Z day: '21' department: - _id: EdHa doi: 10.1038/s41556-021-00700-2 ec_funded: 1 external_id: isi: - '000664016300003' pmid: - '34155381' intvolume: ' 23' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2020.05.13.094359 month: '06' oa: 1 oa_version: Preprint page: 733–744 pmid: 1 project: - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Nature Cell Biology publication_identifier: eissn: - 1476-4679 issn: - 1465-7392 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Cell fate coordinates mechano-osmotic forces in intestinal crypt formation type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2021' ...