--- _id: '14726' abstract: - lang: eng text: Autocrine signaling pathways regulated by RAPID ALKALINIZATION FACTORs (RALFs) control cell wall integrity during pollen tube germination and growth in Arabidopsis (Arabidopsis thaliana). To investigate the role of pollen-specific RALFs in another plant species, we combined gene expression data with phylogenetic and biochemical studies to identify candidate orthologs in maize (Zea mays). We show that Clade IB ZmRALF2/3 mutations, but not Clade III ZmRALF1/5 mutations, cause cell wall instability in the sub-apical region of the growing pollen tube. ZmRALF2/3 are mainly located in the cell wall and are partially able to complement the pollen germination defect of their Arabidopsis orthologs AtRALF4/19. Mutations in ZmRALF2/3 compromise pectin distribution patterns leading to altered cell wall organization and thickness culminating in pollen tube burst. Clade IB, but not Clade III ZmRALFs, strongly interact as ligands with the pollen-specific Catharanthus roseus RLK1-like (CrRLK1L) receptor kinases Zea mays FERONIA-like (ZmFERL) 4/7/9, LORELEI-like glycosylphosphatidylinositol-anchor (LLG) proteins Zea mays LLG 1 and 2 (ZmLLG1/2) and Zea mays pollen extension-like (PEX) cell wall proteins ZmPEX2/4. Notably, ZmFERL4 outcompetes ZmLLG2 and ZmPEX2 outcompetes ZmFERL4 for ZmRALF2 binding. Based on these data, we suggest that Clade IB RALFs act in a dual role as cell wall components and extracellular sensors to regulate cell wall integrity and thickness during pollen tube growth in maize and probably other plants. article_number: koad324 article_processing_charge: No article_type: original author: - first_name: Liang-Zi full_name: Zhou, Liang-Zi last_name: Zhou - first_name: Lele full_name: Wang, Lele last_name: Wang - first_name: Xia full_name: Chen, Xia last_name: Chen - first_name: Zengxiang full_name: Ge, Zengxiang id: f43371a3-09ff-11eb-8013-bd0c6a2f6de8 last_name: Ge orcid: 0000-0001-9381-3577 - first_name: Julia full_name: Mergner, Julia last_name: Mergner - first_name: Xingli full_name: Li, Xingli last_name: Li - first_name: Bernhard full_name: Küster, Bernhard last_name: Küster - first_name: Gernot full_name: Längst, Gernot last_name: Längst - first_name: Li-Jia full_name: Qu, Li-Jia last_name: Qu - first_name: Thomas full_name: Dresselhaus, Thomas last_name: Dresselhaus citation: ama: Zhou L-Z, Wang L, Chen X, et al. The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize. The Plant Cell. 2023. doi:10.1093/plcell/koad324 apa: Zhou, L.-Z., Wang, L., Chen, X., Ge, Z., Mergner, J., Li, X., … Dresselhaus, T. (2023). The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize. The Plant Cell. Oxford University Press. https://doi.org/10.1093/plcell/koad324 chicago: Zhou, Liang-Zi, Lele Wang, Xia Chen, Zengxiang Ge, Julia Mergner, Xingli Li, Bernhard Küster, Gernot Längst, Li-Jia Qu, and Thomas Dresselhaus. “The RALF Signaling Pathway Regulates Cell Wall Integrity during Pollen Tube Growth in Maize.” The Plant Cell. Oxford University Press, 2023. https://doi.org/10.1093/plcell/koad324. ieee: L.-Z. Zhou et al., “The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize,” The Plant Cell. Oxford University Press, 2023. ista: Zhou L-Z, Wang L, Chen X, Ge Z, Mergner J, Li X, Küster B, Längst G, Qu L-J, Dresselhaus T. 2023. The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize. The Plant Cell., koad324. mla: Zhou, Liang-Zi, et al. “The RALF Signaling Pathway Regulates Cell Wall Integrity during Pollen Tube Growth in Maize.” The Plant Cell, koad324, Oxford University Press, 2023, doi:10.1093/plcell/koad324. short: L.-Z. Zhou, L. Wang, X. Chen, Z. Ge, J. Mergner, X. Li, B. Küster, G. Längst, L.-J. Qu, T. Dresselhaus, The Plant Cell (2023). date_created: 2024-01-02T11:19:37Z date_published: 2023-12-23T00:00:00Z date_updated: 2024-01-03T12:43:41Z day: '23' ddc: - '580' doi: 10.1093/plcell/koad324 extern: '1' has_accepted_license: '1' keyword: - Cell Biology - Plant Science language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ main_file_link: - open_access: '1' url: https://doi.org/10.1093/plcell/koad324 month: '12' oa: 1 oa_version: Published Version publication: The Plant Cell publication_identifier: eissn: - 1532-298X issn: - 1040-4651 publication_status: epub_ahead publisher: Oxford University Press quality_controlled: '1' status: public title: The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12833' abstract: - lang: eng text: 'The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results: 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.' acknowledgement: "This work was begun at the University of Waterloo and was partially supported by the Natural Sciences and Engineering Council of Canada (NSERC).\r\n" article_number: '9' article_processing_charge: No article_type: original author: - first_name: Ahmad full_name: Biniaz, Ahmad last_name: Biniaz - first_name: Kshitij full_name: Jain, Kshitij last_name: Jain - first_name: Anna full_name: Lubiw, Anna last_name: Lubiw - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 - first_name: Tillmann full_name: Miltzow, Tillmann last_name: Miltzow - first_name: Debajyoti full_name: Mondal, Debajyoti last_name: Mondal - first_name: Anurag Murty full_name: Naredla, Anurag Murty last_name: Naredla - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Alexi full_name: Turcotte, Alexi last_name: Turcotte citation: ama: Biniaz A, Jain K, Lubiw A, et al. Token swapping on trees. Discrete Mathematics and Theoretical Computer Science. 2023;24(2). doi:10.46298/DMTCS.8383 apa: Biniaz, A., Jain, K., Lubiw, A., Masárová, Z., Miltzow, T., Mondal, D., … Turcotte, A. (2023). Token swapping on trees. Discrete Mathematics and Theoretical Computer Science. EPI Sciences. https://doi.org/10.46298/DMTCS.8383 chicago: Biniaz, Ahmad, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann Miltzow, Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, and Alexi Turcotte. “Token Swapping on Trees.” Discrete Mathematics and Theoretical Computer Science. EPI Sciences, 2023. https://doi.org/10.46298/DMTCS.8383. ieee: A. Biniaz et al., “Token swapping on trees,” Discrete Mathematics and Theoretical Computer Science, vol. 24, no. 2. EPI Sciences, 2023. ista: Biniaz A, Jain K, Lubiw A, Masárová Z, Miltzow T, Mondal D, Naredla AM, Tkadlec J, Turcotte A. 2023. Token swapping on trees. Discrete Mathematics and Theoretical Computer Science. 24(2), 9. mla: Biniaz, Ahmad, et al. “Token Swapping on Trees.” Discrete Mathematics and Theoretical Computer Science, vol. 24, no. 2, 9, EPI Sciences, 2023, doi:10.46298/DMTCS.8383. short: A. Biniaz, K. Jain, A. Lubiw, Z. Masárová, T. Miltzow, D. Mondal, A.M. Naredla, J. Tkadlec, A. Turcotte, Discrete Mathematics and Theoretical Computer Science 24 (2023). date_created: 2023-04-16T22:01:08Z date_published: 2023-01-18T00:00:00Z date_updated: 2024-01-04T12:42:09Z day: '18' ddc: - '000' department: - _id: KrCh - _id: HeEd - _id: UlWa doi: 10.46298/DMTCS.8383 external_id: arxiv: - '1903.06981' file: - access_level: open_access checksum: 439102ea4f6e2aeefd7107dfb9ccf532 content_type: application/pdf creator: dernst date_created: 2023-04-17T08:10:28Z date_updated: 2023-04-17T08:10:28Z file_id: '12844' file_name: 2022_DMTCS_Biniaz.pdf file_size: 2072197 relation: main_file success: 1 file_date_updated: 2023-04-17T08:10:28Z has_accepted_license: '1' intvolume: ' 24' issue: '2' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '01' oa: 1 oa_version: Published Version publication: Discrete Mathematics and Theoretical Computer Science publication_identifier: eissn: - 1365-8050 issn: - 1462-7264 publication_status: published publisher: EPI Sciences quality_controlled: '1' related_material: record: - id: '7950' relation: earlier_version status: public scopus_import: '1' status: public title: Token swapping on trees tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2023' ... --- _id: '14735' abstract: - lang: eng text: "Scaling blockchain protocols to perform on par with the expected needs of Web3.0 has been proven to be a challenging task with almost a decade of research. In the forefront of the current solution is the idea of separating the execution of the updates encoded in a block from the ordering of blocks. In order to achieve this, a new class of protocols called rollups has emerged. Rollups have as input a total ordering of valid and invalid transactions and as output a new valid state-transition.\r\nIf we study rollups from a distributed computing perspective, we uncover that rollups take as input the output of a Byzantine Atomic Broadcast (BAB) protocol and convert it to a State Machine Replication (SMR) protocol. BAB and SMR, however, are considered equivalent as far as distributed computing is concerned and a solution to one can easily be retrofitted to solve the other simply by adding/removing an execution step before the validation of the input.\r\nThis “easy” step of retrofitting an atomic broadcast solution to implement an SMR has, however, been overlooked in practice. In this paper, we formalize the problem and show that after BAB is solved, traditional impossibility results for consensus no longer apply towards an SMR. Leveraging this we propose a distributed execution protocol that allows reduced execution and storage cost per executor (O(log2n/n)) without relaxing the network assumptions of the underlying BAB protocol and providing censorship-resistance. Finally, we propose efficient non-interactive light client constructions that leverage our efficient execution protocols and do not require any synchrony assumptions or expensive ZK-proofs." acknowledgement: 'Eleftherios Kokoris-Kogias is partially supported by Austrian Science Fund (FWF) grant No: F8512-N.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Christos full_name: Stefo, Christos id: a20e8902-32b0-11ee-9fa8-b23fa638b793 last_name: Stefo - first_name: Zhuolun full_name: Xiang, Zhuolun last_name: Xiang - first_name: Eleftherios full_name: Kokoris Kogias, Eleftherios id: f5983044-d7ef-11ea-ac6d-fd1430a26d30 last_name: Kokoris Kogias citation: ama: 'Stefo C, Xiang Z, Kokoris Kogias E. Executing and proving over dirty ledgers. In: 27th International Conference on Financial Cryptography and Data Security. Vol 13950. Springer Nature; 2023:3-20. doi:10.1007/978-3-031-47754-6_1' apa: 'Stefo, C., Xiang, Z., & Kokoris Kogias, E. (2023). Executing and proving over dirty ledgers. In 27th International Conference on Financial Cryptography and Data Security (Vol. 13950, pp. 3–20). Bol, Brac, Croatia: Springer Nature. https://doi.org/10.1007/978-3-031-47754-6_1' chicago: Stefo, Christos, Zhuolun Xiang, and Eleftherios Kokoris Kogias. “Executing and Proving over Dirty Ledgers.” In 27th International Conference on Financial Cryptography and Data Security, 13950:3–20. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-47754-6_1. ieee: C. Stefo, Z. Xiang, and E. Kokoris Kogias, “Executing and proving over dirty ledgers,” in 27th International Conference on Financial Cryptography and Data Security, Bol, Brac, Croatia, 2023, vol. 13950, pp. 3–20. ista: 'Stefo C, Xiang Z, Kokoris Kogias E. 2023. Executing and proving over dirty ledgers. 27th International Conference on Financial Cryptography and Data Security. FC: Financial Cryptography and Data Security, LNCS, vol. 13950, 3–20.' mla: Stefo, Christos, et al. “Executing and Proving over Dirty Ledgers.” 27th International Conference on Financial Cryptography and Data Security, vol. 13950, Springer Nature, 2023, pp. 3–20, doi:10.1007/978-3-031-47754-6_1. short: C. Stefo, Z. Xiang, E. Kokoris Kogias, in:, 27th International Conference on Financial Cryptography and Data Security, Springer Nature, 2023, pp. 3–20. conference: end_date: 2023-05-05 location: Bol, Brac, Croatia name: 'FC: Financial Cryptography and Data Security' start_date: 2023-05-01 date_created: 2024-01-08T09:17:38Z date_published: 2023-12-01T00:00:00Z date_updated: 2024-01-08T09:28:14Z day: '01' department: - _id: ElKo - _id: GradSch doi: 10.1007/978-3-031-47754-6_1 intvolume: ' 13950' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2022/1554 month: '12' oa: 1 oa_version: Preprint page: 3-20 project: - _id: 34a4ce89-11ca-11ed-8bc3-8cc37fb6e11f grant_number: F8512 name: Secure Network and Hardware for Efficient Blockchains publication: 27th International Conference on Financial Cryptography and Data Security publication_identifier: eisbn: - '9783031477546' eissn: - 0302-9743 isbn: - '9783031477539' issn: - 1611-3349 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Executing and proving over dirty ledgers type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13950 year: '2023' ... --- _id: '14733' abstract: - lang: eng text: Redox flow batteries (RFBs) rely on the development of cheap, highly soluble, and high-energy-density electrolytes. Several candidate quinones have already been investigated in the literature as two-electron anolytes or catholytes, benefiting from fast kinetics, high tunability, and low cost. Here, an investigation of nitrogen-rich fused heteroaromatic quinones was carried out to explore avenues for electrolyte development. These quinones were synthesized and screened by using electrochemical techniques. The most promising candidate, 4,8-dioxo-4,8-dihydrobenzo[1,2-d:4,5-d′]bis([1,2,3]triazole)-1,5-diide (−0.68 V(SHE)), was tested in both an asymmetric and symmetric full-cell setup resulting in capacity fade rates of 0.35% per cycle and 0.0124% per cycle, respectively. In situ ultraviolet-visible spectroscopy (UV–Vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopies were used to investigate the electrochemical stability of the charged species during operation. UV–Vis spectroscopy, supported by density functional theory (DFT) modeling, reaffirmed that the two-step charging mechanism observed during battery operation consisted of two, single-electron transfers. The radical concentration during battery operation and the degree of delocalization of the unpaired electron were quantified with NMR and EPR spectroscopy. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Rajesh B full_name: Jethwa, Rajesh B id: 4cc538d5-803f-11ed-ab7e-8139573aad8f last_name: Jethwa orcid: 0000-0002-0404-4356 - first_name: Dominic full_name: Hey, Dominic last_name: Hey - first_name: Rachel N. full_name: Kerber, Rachel N. last_name: Kerber - first_name: Andrew D. full_name: Bond, Andrew D. last_name: Bond - first_name: Dominic S. full_name: Wright, Dominic S. last_name: Wright - first_name: Clare P. full_name: Grey, Clare P. last_name: Grey citation: ama: Jethwa RB, Hey D, Kerber RN, Bond AD, Wright DS, Grey CP. Exploring the landscape of heterocyclic quinones for redox flow batteries. ACS Applied Energy Materials. 2023. doi:10.1021/acsaem.3c02223 apa: Jethwa, R. B., Hey, D., Kerber, R. N., Bond, A. D., Wright, D. S., & Grey, C. P. (2023). Exploring the landscape of heterocyclic quinones for redox flow batteries. ACS Applied Energy Materials. American Chemical Society. https://doi.org/10.1021/acsaem.3c02223 chicago: Jethwa, Rajesh B, Dominic Hey, Rachel N. Kerber, Andrew D. Bond, Dominic S. Wright, and Clare P. Grey. “Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries.” ACS Applied Energy Materials. American Chemical Society, 2023. https://doi.org/10.1021/acsaem.3c02223. ieee: R. B. Jethwa, D. Hey, R. N. Kerber, A. D. Bond, D. S. Wright, and C. P. Grey, “Exploring the landscape of heterocyclic quinones for redox flow batteries,” ACS Applied Energy Materials. American Chemical Society, 2023. ista: Jethwa RB, Hey D, Kerber RN, Bond AD, Wright DS, Grey CP. 2023. Exploring the landscape of heterocyclic quinones for redox flow batteries. ACS Applied Energy Materials. mla: Jethwa, Rajesh B., et al. “Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries.” ACS Applied Energy Materials, American Chemical Society, 2023, doi:10.1021/acsaem.3c02223. short: R.B. Jethwa, D. Hey, R.N. Kerber, A.D. Bond, D.S. Wright, C.P. Grey, ACS Applied Energy Materials (2023). date_created: 2024-01-05T09:20:48Z date_published: 2023-12-28T00:00:00Z date_updated: 2024-01-08T09:03:01Z day: '28' ddc: - '540' department: - _id: StFr doi: 10.1021/acsaem.3c02223 ec_funded: 1 has_accepted_license: '1' keyword: - Electrical and Electronic Engineering - Materials Chemistry - Electrochemistry - Energy Engineering and Power Technology - Chemical Engineering (miscellaneous) language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/acsaem.3c02223 month: '12' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: ACS Applied Energy Materials publication_identifier: eissn: - 2574-0962 publication_status: epub_ahead publisher: American Chemical Society quality_controlled: '1' status: public title: Exploring the landscape of heterocyclic quinones for redox flow batteries tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14734' abstract: - lang: eng text: Developing cost-effective and high-performance thermoelectric (TE) materials to assemble efficient TE devices presents a multitude of challenges and opportunities. Cu3SbSe4 is a promising p-type TE material based on relatively earth abundant elements. However, the challenge lies in its poor electrical conductivity. Herein, an efficient and scalable solution-based approach is developed to synthesize high-quality Cu3SbSe4 nanocrystals doped with Pb at the Sb site. After ligand displacement and annealing treatments, the dried powders are consolidated into dense pellets, and their TE properties are investigated. Pb doping effectively increases the charge carrier concentration, resulting in a significant increase in electrical conductivity, while the Seebeck coefficients remain consistently high. The calculated band structure shows that Pb doping induces band convergence, thereby increasing the effective mass. Furthermore, the large ionic radius of Pb2+ results in the generation of additional point and plane defects and interphases, dramatically enhancing phonon scattering, which significantly decreases the lattice thermal conductivity at high temperatures. Overall, a maximum figure of merit (zTmax) ≈ 0.85 at 653 K is obtained in Cu3Sb0.97Pb0.03Se4. This represents a 1.6-fold increase compared to the undoped sample and exceeds most doped Cu3SbSe4-based materials produced by solid-state, demonstrating advantages of versatility and cost-effectiveness using a solution-based technology. acknowledgement: Y.L. acknowledges funding from the National Natural Science Foundation of China (NSFC) (Grants No. 22209034), the Innovation and Entrepreneurship Project of Overseas Returnees in Anhui Province (Grant No. 2022LCX002). K.H.L. acknowledges financial support from the National Natural Science Foundation of China (NSFC) (Grant No. 22208293). M.I. acknowledges financial support from ISTA and the Werner Siemens Foundation. article_processing_charge: No article_type: original author: - first_name: Shanhong full_name: Wan, Shanhong last_name: Wan - first_name: Shanshan full_name: Xiao, Shanshan last_name: Xiao - first_name: Mingquan full_name: Li, Mingquan last_name: Li - first_name: Xin full_name: Wang, Xin last_name: Wang - first_name: Khak Ho full_name: Lim, Khak Ho last_name: Lim - first_name: Min full_name: Hong, Min last_name: Hong - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 citation: ama: Wan S, Xiao S, Li M, et al. Band engineering through Pb-doping of nanocrystal building blocks to enhance thermoelectric performance in Cu3SbSe4. Small Methods. 2023. doi:10.1002/smtd.202301377 apa: Wan, S., Xiao, S., Li, M., Wang, X., Lim, K. H., Hong, M., … Liu, Y. (2023). Band engineering through Pb-doping of nanocrystal building blocks to enhance thermoelectric performance in Cu3SbSe4. Small Methods. Wiley. https://doi.org/10.1002/smtd.202301377 chicago: Wan, Shanhong, Shanshan Xiao, Mingquan Li, Xin Wang, Khak Ho Lim, Min Hong, Maria Ibáñez, Andreu Cabot, and Yu Liu. “Band Engineering through Pb-Doping of Nanocrystal Building Blocks to Enhance Thermoelectric Performance in Cu3SbSe4.” Small Methods. Wiley, 2023. https://doi.org/10.1002/smtd.202301377. ieee: S. Wan et al., “Band engineering through Pb-doping of nanocrystal building blocks to enhance thermoelectric performance in Cu3SbSe4,” Small Methods. Wiley, 2023. ista: Wan S, Xiao S, Li M, Wang X, Lim KH, Hong M, Ibáñez M, Cabot A, Liu Y. 2023. Band engineering through Pb-doping of nanocrystal building blocks to enhance thermoelectric performance in Cu3SbSe4. Small Methods. mla: Wan, Shanhong, et al. “Band Engineering through Pb-Doping of Nanocrystal Building Blocks to Enhance Thermoelectric Performance in Cu3SbSe4.” Small Methods, Wiley, 2023, doi:10.1002/smtd.202301377. short: S. Wan, S. Xiao, M. Li, X. Wang, K.H. Lim, M. Hong, M. Ibáñez, A. Cabot, Y. Liu, Small Methods (2023). date_created: 2024-01-07T23:00:51Z date_published: 2023-12-28T00:00:00Z date_updated: 2024-01-08T09:17:04Z day: '28' department: - _id: MaIb doi: 10.1002/smtd.202301377 external_id: pmid: - '38152986' language: - iso: eng month: '12' oa_version: None pmid: 1 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Small Methods publication_identifier: eissn: - 2366-9608 publication_status: epub_ahead publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Band engineering through Pb-doping of nanocrystal building blocks to enhance thermoelectric performance in Cu3SbSe4 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ...