--- _id: '1924' abstract: - lang: eng text: Stomata are two-celled valves that control epidermal pores whose spacing optimizes shoot-atmosphere gas exchange. They develop from protodermal cells after unequal divisions followed by an equal division and differentiation. The concentration of the hormone auxin, a master plant developmental regulator, is tightly controlled in time and space, but its role, if any, in stomatal formation is obscure. Here dynamic changes of auxin activity during stomatal development are monitored using auxin input (DII-VENUS) and output (DR5:VENUS) markers by time-lapse imaging. A decrease in auxin levels in the smaller daughter cell after unequal division presages the acquisition of a guard mother cell fate whose equal division produces the two guard cells. Thus, stomatal patterning requires auxin pathway control of stem cell compartment size, as well as auxin depletion that triggers a developmental switch from unequal to equal division. article_number: '3090' author: - first_name: Jie full_name: Le, Jie last_name: Le - first_name: Xuguang full_name: Liu, Xuguang last_name: Liu - first_name: Kezhen full_name: Yang, Kezhen last_name: Yang - first_name: Xiaolan full_name: Chen, Xiaolan last_name: Chen - first_name: Lingling full_name: Zhu, Lingling last_name: Zhu - first_name: Hongzhe full_name: Wang, Hongzhe last_name: Wang - first_name: Ming full_name: Wang, Ming last_name: Wang - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Miyo full_name: Morita, Miyo last_name: Morita - first_name: Masao full_name: Tasaka, Masao last_name: Tasaka - first_name: Zhaojun full_name: Ding, Zhaojun last_name: Ding - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Fred full_name: Sack, Fred last_name: Sack citation: ama: Le J, Liu X, Yang K, et al. Auxin transport and activity regulate stomatal patterning and development. Nature Communications. 2014;5. doi:10.1038/ncomms4090 apa: Le, J., Liu, X., Yang, K., Chen, X., Zhu, L., Wang, H., … Sack, F. (2014). Auxin transport and activity regulate stomatal patterning and development. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms4090 chicago: Le, Jie, Xuguang Liu, Kezhen Yang, Xiaolan Chen, Lingling Zhu, Hongzhe Wang, Ming Wang, et al. “Auxin Transport and Activity Regulate Stomatal Patterning and Development.” Nature Communications. Nature Publishing Group, 2014. https://doi.org/10.1038/ncomms4090. ieee: J. Le et al., “Auxin transport and activity regulate stomatal patterning and development,” Nature Communications, vol. 5. Nature Publishing Group, 2014. ista: Le J, Liu X, Yang K, Chen X, Zhu L, Wang H, Wang M, Vanneste S, Morita M, Tasaka M, Ding Z, Friml J, Beeckman T, Sack F. 2014. Auxin transport and activity regulate stomatal patterning and development. Nature Communications. 5, 3090. mla: Le, Jie, et al. “Auxin Transport and Activity Regulate Stomatal Patterning and Development.” Nature Communications, vol. 5, 3090, Nature Publishing Group, 2014, doi:10.1038/ncomms4090. short: J. Le, X. Liu, K. Yang, X. Chen, L. Zhu, H. Wang, M. Wang, S. Vanneste, M. Morita, M. Tasaka, Z. Ding, J. Friml, T. Beeckman, F. Sack, Nature Communications 5 (2014). date_created: 2018-12-11T11:54:44Z date_published: 2014-01-27T00:00:00Z date_updated: 2021-01-12T06:54:06Z day: '27' department: - _id: JiFr doi: 10.1038/ncomms4090 intvolume: ' 5' language: - iso: eng month: '01' oa_version: None publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5170' quality_controlled: '1' scopus_import: 1 status: public title: Auxin transport and activity regulate stomatal patterning and development type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2014' ... --- _id: '1928' abstract: - lang: eng text: In infectious disease epidemiology the basic reproductive ratio, R0, is defined as the average number of new infections caused by a single infected individual in a fully susceptible population. Many models describing competition for hosts between non-interacting pathogen strains in an infinite population lead to the conclusion that selection favors invasion of new strains if and only if they have higher R0 values than the resident. Here we demonstrate that this picture fails in finite populations. Using a simple stochastic SIS model, we show that in general there is no analogous optimization principle. We find that successive invasions may in some cases lead to strains that infect a smaller fraction of the host population, and that mutually invasible pathogen strains exist. In the limit of weak selection we demonstrate that an optimization principle does exist, although it differs from R0 maximization. For strains with very large R0, we derive an expression for this local fitness function and use it to establish a lower bound for the error caused by neglecting stochastic effects. Furthermore, we apply this weak selection limit to investigate the selection dynamics in the presence of a trade-off between the virulence and the transmission rate of a pathogen. acknowledgement: J.H. received support from the Zdenek Bakala Foundation and the Mobility Fund of Charles University in Prague. author: - first_name: Jan full_name: Humplik, Jan id: 2E9627A8-F248-11E8-B48F-1D18A9856A87 last_name: Humplik - first_name: Alison full_name: Hill, Alison last_name: Hill - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Humplik J, Hill A, Nowak M. Evolutionary dynamics of infectious diseases in finite populations. Journal of Theoretical Biology. 2014;360:149-162. doi:10.1016/j.jtbi.2014.06.039 apa: Humplik, J., Hill, A., & Nowak, M. (2014). Evolutionary dynamics of infectious diseases in finite populations. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2014.06.039 chicago: Humplik, Jan, Alison Hill, and Martin Nowak. “Evolutionary Dynamics of Infectious Diseases in Finite Populations.” Journal of Theoretical Biology. Elsevier, 2014. https://doi.org/10.1016/j.jtbi.2014.06.039. ieee: J. Humplik, A. Hill, and M. Nowak, “Evolutionary dynamics of infectious diseases in finite populations,” Journal of Theoretical Biology, vol. 360. Elsevier, pp. 149–162, 2014. ista: Humplik J, Hill A, Nowak M. 2014. Evolutionary dynamics of infectious diseases in finite populations. Journal of Theoretical Biology. 360, 149–162. mla: Humplik, Jan, et al. “Evolutionary Dynamics of Infectious Diseases in Finite Populations.” Journal of Theoretical Biology, vol. 360, Elsevier, 2014, pp. 149–62, doi:10.1016/j.jtbi.2014.06.039. short: J. Humplik, A. Hill, M. Nowak, Journal of Theoretical Biology 360 (2014) 149–162. date_created: 2018-12-11T11:54:46Z date_published: 2014-11-07T00:00:00Z date_updated: 2021-01-12T06:54:08Z day: '07' department: - _id: GaTk doi: 10.1016/j.jtbi.2014.06.039 intvolume: ' 360' language: - iso: eng month: '11' oa_version: None page: 149 - 162 publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '5166' scopus_import: 1 status: public title: Evolutionary dynamics of infectious diseases in finite populations type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 360 year: '2014' ... --- _id: '1929' abstract: - lang: eng text: We propose an algorithm for the generalization of cartographic objects that can be used to represent maps on different scales. acknowledgement: We would like to offer our special thanks to students of the Department of Mathematics of Demidov Yaroslavl State University A. A. Gorokhov and V. N. Knyazev for participation in developing the program and assistance in preparation of test data. This work was supported by grant 11.G34.31.0053 from the government of the Russian Federation. article_processing_charge: No article_type: original author: - first_name: V V full_name: Alexeev, V V last_name: Alexeev - first_name: V G full_name: Bogaevskaya, V G last_name: Bogaevskaya - first_name: M M full_name: Preobrazhenskaya, M M last_name: Preobrazhenskaya - first_name: A Y full_name: Ukhalov, A Y last_name: Ukhalov - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Olga full_name: Yakimova, Olga last_name: Yakimova citation: ama: Alexeev VV, Bogaevskaya VG, Preobrazhenskaya MM, Ukhalov AY, Edelsbrunner H, Yakimova O. An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. 2014;203(6):754-760. doi:10.1007/s10958-014-2165-8 apa: Alexeev, V. V., Bogaevskaya, V. G., Preobrazhenskaya, M. M., Ukhalov, A. Y., Edelsbrunner, H., & Yakimova, O. (2014). An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. Springer. https://doi.org/10.1007/s10958-014-2165-8 chicago: Alexeev, V V, V G Bogaevskaya, M M Preobrazhenskaya, A Y Ukhalov, Herbert Edelsbrunner, and Olga Yakimova. “An Algorithm for Cartographic Generalization That Preserves Global Topology.” Journal of Mathematical Sciences. Springer, 2014. https://doi.org/10.1007/s10958-014-2165-8. ieee: V. V. Alexeev, V. G. Bogaevskaya, M. M. Preobrazhenskaya, A. Y. Ukhalov, H. Edelsbrunner, and O. Yakimova, “An algorithm for cartographic generalization that preserves global topology,” Journal of Mathematical Sciences, vol. 203, no. 6. Springer, pp. 754–760, 2014. ista: Alexeev VV, Bogaevskaya VG, Preobrazhenskaya MM, Ukhalov AY, Edelsbrunner H, Yakimova O. 2014. An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. 203(6), 754–760. mla: Alexeev, V. V., et al. “An Algorithm for Cartographic Generalization That Preserves Global Topology.” Journal of Mathematical Sciences, vol. 203, no. 6, Springer, 2014, pp. 754–60, doi:10.1007/s10958-014-2165-8. short: V.V. Alexeev, V.G. Bogaevskaya, M.M. Preobrazhenskaya, A.Y. Ukhalov, H. Edelsbrunner, O. Yakimova, Journal of Mathematical Sciences 203 (2014) 754–760. date_created: 2018-12-11T11:54:46Z date_published: 2014-11-16T00:00:00Z date_updated: 2022-05-24T10:39:06Z day: '16' department: - _id: HeEd doi: 10.1007/s10958-014-2165-8 intvolume: ' 203' issue: '6' language: - iso: eng month: '11' oa_version: None page: 754 - 760 publication: Journal of Mathematical Sciences publication_identifier: eissn: - 1573-8795 issn: - 1072-3374 publication_status: published publisher: Springer publist_id: '5165' quality_controlled: '1' scopus_import: '1' status: public title: An algorithm for cartographic generalization that preserves global topology type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 203 year: '2014' ... --- _id: '1935' abstract: - lang: eng text: 'We consider Ising models in d = 2 and d = 3 dimensions with nearest neighbor ferromagnetic and long-range antiferromagnetic interactions, the latter decaying as (distance)-p, p > 2d, at large distances. If the strength J of the ferromagnetic interaction is larger than a critical value J c, then the ground state is homogeneous. It has been conjectured that when J is smaller than but close to J c, the ground state is periodic and striped, with stripes of constant width h = h(J), and h → ∞ as J → Jc -. (In d = 3 stripes mean slabs, not columns.) Here we rigorously prove that, if we normalize the energy in such a way that the energy of the homogeneous state is zero, then the ratio e 0(J)/e S(J) tends to 1 as J → Jc -, with e S(J) being the energy per site of the optimal periodic striped/slabbed state and e 0(J) the actual ground state energy per site of the system. Our proof comes with explicit bounds on the difference e 0(J)-e S(J) at small but positive J c-J, and also shows that in this parameter range the ground state is striped/slabbed in a certain sense: namely, if one looks at a randomly chosen window, of suitable size ℓ (very large compared to the optimal stripe size h(J)), one finds a striped/slabbed state with high probability.' acknowledgement: "2014 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.\r\n\r\nThe research leading to these results has received funding from the European Research\r\nCouncil under the European Union’s Seventh Framework Programme ERC Starting Grant CoMBoS (Grant Agreement No. 239694; A.G. and R.S.), the U.S. National Science Foundation (Grant PHY 0965859; E.H.L.), the Simons Foundation (Grant # 230207; E.H.L) and the NSERC (R.S.). The work is part of a project started in collaboration with Joel Lebowitz, whom we thank for many useful discussions and for his constant encouragement." article_processing_charge: No article_type: original author: - first_name: Alessandro full_name: Giuliani, Alessandro last_name: Giuliani - first_name: Élliott full_name: Lieb, Élliott last_name: Lieb - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Giuliani A, Lieb É, Seiringer R. Formation of stripes and slabs near the ferromagnetic transition. Communications in Mathematical Physics. 2014;331:333-350. doi:10.1007/s00220-014-1923-2 apa: Giuliani, A., Lieb, É., & Seiringer, R. (2014). Formation of stripes and slabs near the ferromagnetic transition. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-014-1923-2 chicago: Giuliani, Alessandro, Élliott Lieb, and Robert Seiringer. “Formation of Stripes and Slabs near the Ferromagnetic Transition.” Communications in Mathematical Physics. Springer, 2014. https://doi.org/10.1007/s00220-014-1923-2. ieee: A. Giuliani, É. Lieb, and R. Seiringer, “Formation of stripes and slabs near the ferromagnetic transition,” Communications in Mathematical Physics, vol. 331. Springer, pp. 333–350, 2014. ista: Giuliani A, Lieb É, Seiringer R. 2014. Formation of stripes and slabs near the ferromagnetic transition. Communications in Mathematical Physics. 331, 333–350. mla: Giuliani, Alessandro, et al. “Formation of Stripes and Slabs near the Ferromagnetic Transition.” Communications in Mathematical Physics, vol. 331, Springer, 2014, pp. 333–50, doi:10.1007/s00220-014-1923-2. short: A. Giuliani, É. Lieb, R. Seiringer, Communications in Mathematical Physics 331 (2014) 333–350. date_created: 2018-12-11T11:54:48Z date_published: 2014-10-01T00:00:00Z date_updated: 2022-05-24T08:32:50Z day: '01' ddc: - '510' department: - _id: RoSe doi: 10.1007/s00220-014-1923-2 external_id: arxiv: - '1304.6344' file: - access_level: open_access checksum: c8423271cd1e1ba9e44c47af75efe7b6 content_type: application/pdf creator: dernst date_created: 2022-05-24T08:30:40Z date_updated: 2022-05-24T08:30:40Z file_id: '11409' file_name: 2014_CommMathPhysics_Giuliani.pdf file_size: 334064 relation: main_file success: 1 file_date_updated: 2022-05-24T08:30:40Z has_accepted_license: '1' intvolume: ' 331' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 333 - 350 publication: Communications in Mathematical Physics publication_identifier: eissn: - 1432-0916 issn: - 0010-3616 publication_status: published publisher: Springer publist_id: '5159' quality_controlled: '1' scopus_import: '1' status: public title: Formation of stripes and slabs near the ferromagnetic transition type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 331 year: '2014' ... --- _id: '1936' abstract: - lang: eng text: 'The social intelligence hypothesis states that the need to cope with complexities of social life has driven the evolution of advanced cognitive abilities. It is usually invoked in the context of challenges arising from complex intragroup structures, hierarchies, and alliances. However, a fundamental aspect of group living remains largely unexplored as a driving force in cognitive evolution: the competition between individuals searching for resources (producers) and conspecifics that parasitize their findings (scroungers). In populations of social foragers, abilities that enable scroungers to steal by outsmarting producers, and those allowing producers to prevent theft by outsmarting scroungers, are likely to be beneficial and may fuel a cognitive arms race. Using analytical theory and agent-based simulations, we present a general model for such a race that is driven by the producer-scrounger game and show that the race''s plausibility is dramatically affected by the nature of the evolving abilities. If scrounging and scrounging avoidance rely on separate, strategy-specific cognitive abilities, arms races are short-lived and have a limited effect on cognition. However, general cognitive abilities that facilitate both scrounging and scrounging avoidance undergo stable, long-lasting arms races. Thus, ubiquitous foraging interactions may lead to the evolution of general cognitive abilities in social animals, without the requirement of complex intragroup structures.' author: - first_name: Michal full_name: Arbilly, Michal last_name: Arbilly - first_name: Daniel full_name: Weissman, Daniel id: 2D0CE020-F248-11E8-B48F-1D18A9856A87 last_name: Weissman - first_name: Marcus full_name: Feldman, Marcus last_name: Feldman - first_name: Uri full_name: Grodzinski, Uri last_name: Grodzinski citation: ama: Arbilly M, Weissman D, Feldman M, Grodzinski U. An arms race between producers and scroungers can drive the evolution of social cognition. Behavioral Ecology. 2014;25(3):487-495. doi:10.1093/beheco/aru002 apa: Arbilly, M., Weissman, D., Feldman, M., & Grodzinski, U. (2014). An arms race between producers and scroungers can drive the evolution of social cognition. Behavioral Ecology. Oxford University Press. https://doi.org/10.1093/beheco/aru002 chicago: Arbilly, Michal, Daniel Weissman, Marcus Feldman, and Uri Grodzinski. “An Arms Race between Producers and Scroungers Can Drive the Evolution of Social Cognition.” Behavioral Ecology. Oxford University Press, 2014. https://doi.org/10.1093/beheco/aru002. ieee: M. Arbilly, D. Weissman, M. Feldman, and U. Grodzinski, “An arms race between producers and scroungers can drive the evolution of social cognition,” Behavioral Ecology, vol. 25, no. 3. Oxford University Press, pp. 487–495, 2014. ista: Arbilly M, Weissman D, Feldman M, Grodzinski U. 2014. An arms race between producers and scroungers can drive the evolution of social cognition. Behavioral Ecology. 25(3), 487–495. mla: Arbilly, Michal, et al. “An Arms Race between Producers and Scroungers Can Drive the Evolution of Social Cognition.” Behavioral Ecology, vol. 25, no. 3, Oxford University Press, 2014, pp. 487–95, doi:10.1093/beheco/aru002. short: M. Arbilly, D. Weissman, M. Feldman, U. Grodzinski, Behavioral Ecology 25 (2014) 487–495. date_created: 2018-12-11T11:54:48Z date_published: 2014-02-13T00:00:00Z date_updated: 2021-01-12T06:54:11Z day: '13' department: - _id: NiBa doi: 10.1093/beheco/aru002 ec_funded: 1 intvolume: ' 25' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014306/ month: '02' oa: 1 oa_version: Submitted Version page: 487 - 495 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Behavioral Ecology publication_status: published publisher: Oxford University Press publist_id: '5157' quality_controlled: '1' scopus_import: 1 status: public title: An arms race between producers and scroungers can drive the evolution of social cognition type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2014' ...