--- _id: '9684' abstract: - lang: eng text: The size dependence of the strength of nano- and micron-sized crystals is studied using a new simulation approach in which the dynamics of the density functions of dislocations are modeled. Since any quantity of dislocations can be represented by a density, this approach can handle large systems containing large quantities of dislocations, which may handicap discrete dislocation dynamics schemes due to the excessive computation time involved. For this reason, pillar sizes spanning a large range, from the sub-micron to micron regimes, can be simulated. The simulation results reveal the power-law relationship between strength and specimen size up to a certain size, beyond which the strength varies much more slowly with size. For specimens smaller than ~4000b, their strength is found to be controlled by the dislocation depletion condition, in which the total dislocation density remains almost constant throughout the loading process. In specimens larger than ~4000b, the initial dislocation distribution is of critical importance since the presence of dislocation entanglements is found to obstruct deformation in the neighboring regions within a distance of ~2000b. This length scale suggests that the effects of dense dislocation clusters are greater in intermediate-sized specimens (e.g. 4000b and 8000b) than in larger specimens (e.g. 16 000b), according to the weakest-link concept. article_number: '035001' article_processing_charge: No article_type: original author: - first_name: P S S full_name: Leung, P S S last_name: Leung - first_name: H S full_name: Leung, H S last_name: Leung - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 - first_name: A H W full_name: Ngan, A H W last_name: Ngan citation: ama: Leung PSS, Leung HS, Cheng B, Ngan AHW. Size dependence of yield strength simulated by a dislocation-density function dynamics approach. Modelling and Simulation in Materials Science and Engineering. 2015;23(3). doi:10.1088/0965-0393/23/3/035001 apa: Leung, P. S. S., Leung, H. S., Cheng, B., & Ngan, A. H. W. (2015). Size dependence of yield strength simulated by a dislocation-density function dynamics approach. Modelling and Simulation in Materials Science and Engineering. IOP Publishing. https://doi.org/10.1088/0965-0393/23/3/035001 chicago: Leung, P S S, H S Leung, Bingqing Cheng, and A H W Ngan. “Size Dependence of Yield Strength Simulated by a Dislocation-Density Function Dynamics Approach.” Modelling and Simulation in Materials Science and Engineering. IOP Publishing, 2015. https://doi.org/10.1088/0965-0393/23/3/035001. ieee: P. S. S. Leung, H. S. Leung, B. Cheng, and A. H. W. Ngan, “Size dependence of yield strength simulated by a dislocation-density function dynamics approach,” Modelling and Simulation in Materials Science and Engineering, vol. 23, no. 3. IOP Publishing, 2015. ista: Leung PSS, Leung HS, Cheng B, Ngan AHW. 2015. Size dependence of yield strength simulated by a dislocation-density function dynamics approach. Modelling and Simulation in Materials Science and Engineering. 23(3), 035001. mla: Leung, P. S. S., et al. “Size Dependence of Yield Strength Simulated by a Dislocation-Density Function Dynamics Approach.” Modelling and Simulation in Materials Science and Engineering, vol. 23, no. 3, 035001, IOP Publishing, 2015, doi:10.1088/0965-0393/23/3/035001. short: P.S.S. Leung, H.S. Leung, B. Cheng, A.H.W. Ngan, Modelling and Simulation in Materials Science and Engineering 23 (2015). date_created: 2021-07-19T09:11:12Z date_published: 2015-04-01T00:00:00Z date_updated: 2023-02-23T14:04:54Z day: '01' doi: 10.1088/0965-0393/23/3/035001 extern: '1' intvolume: ' 23' issue: '3' language: - iso: eng month: '04' oa_version: None publication: Modelling and Simulation in Materials Science and Engineering publication_identifier: eissn: - 1361-651X issn: - 0965-0393 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Size dependence of yield strength simulated by a dislocation-density function dynamics approach type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 23 year: '2015' ... --- _id: '1566' abstract: - lang: eng text: Deposits of misfolded proteins in the human brain are associated with the development of many neurodegenerative diseases. Recent studies show that these proteins have common traits even at the monomer level. Among them, a polyglutamine region that is present in huntingtin is known to exhibit a correlation between the length of the chain and the severity as well as the earliness of the onset of Huntington disease. Here, we apply bias exchange molecular dynamics to generate structures of polyglutamine expansions of several lengths and characterize the resulting independent conformations. We compare the properties of these conformations to those of the standard proteins, as well as to other homopolymeric tracts. We find that, similar to the previously studied polyvaline chains, the set of possible transient folds is much broader than the set of known-to-date folds, although the conformations have different structures. We show that the mechanical stability is not related to any simple geometrical characteristics of the structures. We demonstrate that long polyglutamine expansions result in higher mechanical stability than the shorter ones. They also have a longer life span and are substantially more prone to form knotted structures. The knotted region has an average length of 35 residues, similar to the typical threshold for most polyglutamine-related diseases. Similarly, changes in shape and mechanical stability appear once the total length of the peptide exceeds this threshold of 35 glutamine residues. We suggest that knotted conformers may also harm the cellular machinery and thus lead to disease. acknowledgement: 'We acknowledge the support by the EU Joint Programme in Neurodegenerative Diseases (JPND AC14/00037) project. The project is supported through the following funding organisations under the aegis of JPND—www.jpnd.eu: Ireland, HRB; Poland, National Science Centre; and Spain, ISCIII. ' article_number: e1004541 author: - first_name: Àngel full_name: Gómez Sicilia, Àngel last_name: Gómez Sicilia - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Marek full_name: Cieplak, Marek last_name: Cieplak - first_name: Mariano full_name: Carrión Vázquez, Mariano last_name: Carrión Vázquez citation: ama: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. An exploration of the universe of polyglutamine structures. PLoS Computational Biology. 2015;11(10). doi:10.1371/journal.pcbi.1004541 apa: Gómez Sicilia, À., Sikora, M. K., Cieplak, M., & Carrión Vázquez, M. (2015). An exploration of the universe of polyglutamine structures. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1004541 chicago: Gómez Sicilia, Àngel, Mateusz K Sikora, Marek Cieplak, and Mariano Carrión Vázquez. “An Exploration of the Universe of Polyglutamine Structures.” PLoS Computational Biology. Public Library of Science, 2015. https://doi.org/10.1371/journal.pcbi.1004541. ieee: À. Gómez Sicilia, M. K. Sikora, M. Cieplak, and M. Carrión Vázquez, “An exploration of the universe of polyglutamine structures,” PLoS Computational Biology, vol. 11, no. 10. Public Library of Science, 2015. ista: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. 2015. An exploration of the universe of polyglutamine structures. PLoS Computational Biology. 11(10), e1004541. mla: Gómez Sicilia, Àngel, et al. “An Exploration of the Universe of Polyglutamine Structures.” PLoS Computational Biology, vol. 11, no. 10, e1004541, Public Library of Science, 2015, doi:10.1371/journal.pcbi.1004541. short: À. Gómez Sicilia, M.K. Sikora, M. Cieplak, M. Carrión Vázquez, PLoS Computational Biology 11 (2015). date_created: 2018-12-11T11:52:45Z date_published: 2015-10-23T00:00:00Z date_updated: 2023-02-23T14:05:55Z day: '23' ddc: - '570' department: - _id: CaHe doi: 10.1371/journal.pcbi.1004541 file: - access_level: open_access checksum: 8b67d729be663bfc9af04bfd94459655 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:21Z date_updated: 2020-07-14T12:45:02Z file_id: '5207' file_name: IST-2016-478-v1+1_journal.pcbi.1004541.pdf file_size: 1412511 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 11' issue: '10' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '10' oa: 1 oa_version: Published Version publication: PLoS Computational Biology publication_status: published publisher: Public Library of Science publist_id: '5605' pubrep_id: '478' quality_controlled: '1' related_material: record: - id: '9714' relation: research_data status: public scopus_import: 1 status: public title: An exploration of the universe of polyglutamine structures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2015' ... --- _id: '9712' article_processing_charge: No author: - first_name: Murat full_name: Tugrul, Murat id: 37C323C6-F248-11E8-B48F-1D18A9856A87 last_name: Tugrul orcid: 0000-0002-8523-0758 - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Tugrul M, Paixao T, Barton NH, Tkačik G. Other fitness models for comparison & for interacting TFBSs. 2015. doi:10.1371/journal.pgen.1005639.s001 apa: Tugrul, M., Paixao, T., Barton, N. H., & Tkačik, G. (2015). Other fitness models for comparison & for interacting TFBSs. Public Library of Science. https://doi.org/10.1371/journal.pgen.1005639.s001 chicago: Tugrul, Murat, Tiago Paixao, Nicholas H Barton, and Gašper Tkačik. “Other Fitness Models for Comparison & for Interacting TFBSs.” Public Library of Science, 2015. https://doi.org/10.1371/journal.pgen.1005639.s001. ieee: M. Tugrul, T. Paixao, N. H. Barton, and G. Tkačik, “Other fitness models for comparison & for interacting TFBSs.” Public Library of Science, 2015. ista: Tugrul M, Paixao T, Barton NH, Tkačik G. 2015. Other fitness models for comparison & for interacting TFBSs, Public Library of Science, 10.1371/journal.pgen.1005639.s001. mla: Tugrul, Murat, et al. Other Fitness Models for Comparison & for Interacting TFBSs. Public Library of Science, 2015, doi:10.1371/journal.pgen.1005639.s001. short: M. Tugrul, T. Paixao, N.H. Barton, G. Tkačik, (2015). date_created: 2021-07-23T12:00:37Z date_published: 2015-11-06T00:00:00Z date_updated: 2023-02-23T10:09:08Z day: '06' department: - _id: NiBa - _id: CaGu - _id: GaTk doi: 10.1371/journal.pgen.1005639.s001 month: '11' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1666' relation: used_in_publication status: public status: public title: Other fitness models for comparison & for interacting TFBSs type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '9714' article_processing_charge: No author: - first_name: Àngel full_name: Gómez Sicilia, Àngel last_name: Gómez Sicilia - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Marek full_name: Cieplak, Marek last_name: Cieplak - first_name: Mariano full_name: Carrión Vázquez, Mariano last_name: Carrión Vázquez citation: ama: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. An exploration of the universe of polyglutamine structures - submission to PLOS journals. 2015. doi:10.1371/journal.pcbi.1004541.s001 apa: Gómez Sicilia, À., Sikora, M. K., Cieplak, M., & Carrión Vázquez, M. (2015). An exploration of the universe of polyglutamine structures - submission to PLOS journals. Public Library of Science . https://doi.org/10.1371/journal.pcbi.1004541.s001 chicago: Gómez Sicilia, Àngel, Mateusz K Sikora, Marek Cieplak, and Mariano Carrión Vázquez. “An Exploration of the Universe of Polyglutamine Structures - Submission to PLOS Journals.” Public Library of Science , 2015. https://doi.org/10.1371/journal.pcbi.1004541.s001. ieee: À. Gómez Sicilia, M. K. Sikora, M. Cieplak, and M. Carrión Vázquez, “An exploration of the universe of polyglutamine structures - submission to PLOS journals.” Public Library of Science , 2015. ista: Gómez Sicilia À, Sikora MK, Cieplak M, Carrión Vázquez M. 2015. An exploration of the universe of polyglutamine structures - submission to PLOS journals, Public Library of Science , 10.1371/journal.pcbi.1004541.s001. mla: Gómez Sicilia, Àngel, et al. An Exploration of the Universe of Polyglutamine Structures - Submission to PLOS Journals. Public Library of Science , 2015, doi:10.1371/journal.pcbi.1004541.s001. short: À. Gómez Sicilia, M.K. Sikora, M. Cieplak, M. Carrión Vázquez, (2015). date_created: 2021-07-23T12:05:28Z date_published: 2015-10-23T00:00:00Z date_updated: 2023-02-23T10:04:35Z day: '23' department: - _id: CaHe doi: 10.1371/journal.pcbi.1004541.s001 month: '10' oa_version: Published Version publisher: 'Public Library of Science ' related_material: record: - id: '1566' relation: used_in_publication status: public status: public title: An exploration of the universe of polyglutamine structures - submission to PLOS journals type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '9715' article_processing_charge: No author: - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Reinmar full_name: Hager, Reinmar last_name: Hager citation: ama: Trubenova B, Novak S, Hager R. Mathematical inference of the results. 2015. doi:10.1371/journal.pone.0126907.s001 apa: Trubenova, B., Novak, S., & Hager, R. (2015). Mathematical inference of the results. Public Library of Science. https://doi.org/10.1371/journal.pone.0126907.s001 chicago: Trubenova, Barbora, Sebastian Novak, and Reinmar Hager. “Mathematical Inference of the Results.” Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0126907.s001. ieee: B. Trubenova, S. Novak, and R. Hager, “Mathematical inference of the results.” Public Library of Science, 2015. ista: Trubenova B, Novak S, Hager R. 2015. Mathematical inference of the results, Public Library of Science, 10.1371/journal.pone.0126907.s001. mla: Trubenova, Barbora, et al. Mathematical Inference of the Results. Public Library of Science, 2015, doi:10.1371/journal.pone.0126907.s001. short: B. Trubenova, S. Novak, R. Hager, (2015). date_created: 2021-07-23T12:11:30Z date_published: 2015-05-18T00:00:00Z date_updated: 2023-02-23T10:15:25Z day: '18' department: - _id: NiBa doi: 10.1371/journal.pone.0126907.s001 month: '05' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1809' relation: used_in_publication status: public status: public title: Mathematical inference of the results type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ...