--- _id: '1511' abstract: - lang: eng text: 'The fact that the complete graph K_5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K_n embeds in a closed surface M if and only if (n-3)(n-4) is at most 6b_1(M), where b_1(M) is the first Z_2-Betti number of M. On the other hand, Van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of K_{n+1}) embeds in R^{2k} if and only if n is less or equal to 2k+2. Two decades ago, Kuhnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k-1)-connected 2k-manifold with kth Z_2-Betti number b_k only if the following generalized Heawood inequality holds: binom{n-k-1}{k+1} is at most binom{2k+1}{k+1} b_k. This is a common generalization of the case of graphs on surfaces as well as the Van Kampen--Flores theorem. In the spirit of Kuhnel''s conjecture, we prove that if the k-skeleton of the n-simplex embeds in a 2k-manifold with kth Z_2-Betti number b_k, then n is at most 2b_k binom{2k+2}{k} + 2k + 5. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k-1)-connected. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.' acknowledgement: "The work by Z. P. was partially supported by the Charles University Grant SVV-2014-260103. The\r\nwork by Z. P. and M. T. was partially supported by the project CE-ITI (GACR P202/12/G061) of\r\nthe Czech Science Foundation and by the ERC Advanced Grant No. 267165. Part of the research\r\nwork of M. T. was conducted at IST Austria, supported by an IST Fellowship. The work by U.W.\r\nwas partially supported by the Swiss National Science Foundation (grants SNSF-200020-138230 and\r\nSNSF-PP00P2-138948)." alternative_title: - LIPIcs author: - first_name: Xavier full_name: Goaoc, Xavier last_name: Goaoc - first_name: Isaac full_name: Mabillard, Isaac id: 32BF9DAA-F248-11E8-B48F-1D18A9856A87 last_name: Mabillard - first_name: Pavel full_name: Paták, Pavel last_name: Paták - first_name: Zuzana full_name: Patakova, Zuzana id: 48B57058-F248-11E8-B48F-1D18A9856A87 last_name: Patakova orcid: 0000-0002-3975-1683 - first_name: Martin full_name: Tancer, Martin id: 38AC689C-F248-11E8-B48F-1D18A9856A87 last_name: Tancer orcid: 0000-0002-1191-6714 - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: 'Goaoc X, Mabillard I, Paták P, Patakova Z, Tancer M, Wagner U. On generalized Heawood inequalities for manifolds: A Van Kampen–Flores-type nonembeddability result. In: Vol 34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2015:476-490. doi:10.4230/LIPIcs.SOCG.2015.476' apa: 'Goaoc, X., Mabillard, I., Paták, P., Patakova, Z., Tancer, M., & Wagner, U. (2015). On generalized Heawood inequalities for manifolds: A Van Kampen–Flores-type nonembeddability result (Vol. 34, pp. 476–490). Presented at the SoCG: Symposium on Computational Geometry, Eindhoven, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SOCG.2015.476' chicago: 'Goaoc, Xavier, Isaac Mabillard, Pavel Paták, Zuzana Patakova, Martin Tancer, and Uli Wagner. “On Generalized Heawood Inequalities for Manifolds: A Van Kampen–Flores-Type Nonembeddability Result,” 34:476–90. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. https://doi.org/10.4230/LIPIcs.SOCG.2015.476.' ieee: 'X. Goaoc, I. Mabillard, P. Paták, Z. Patakova, M. Tancer, and U. Wagner, “On generalized Heawood inequalities for manifolds: A Van Kampen–Flores-type nonembeddability result,” presented at the SoCG: Symposium on Computational Geometry, Eindhoven, Netherlands, 2015, vol. 34, pp. 476–490.' ista: 'Goaoc X, Mabillard I, Paták P, Patakova Z, Tancer M, Wagner U. 2015. On generalized Heawood inequalities for manifolds: A Van Kampen–Flores-type nonembeddability result. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 34, 476–490.' mla: 'Goaoc, Xavier, et al. On Generalized Heawood Inequalities for Manifolds: A Van Kampen–Flores-Type Nonembeddability Result. Vol. 34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 476–90, doi:10.4230/LIPIcs.SOCG.2015.476.' short: X. Goaoc, I. Mabillard, P. Paták, Z. Patakova, M. Tancer, U. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 476–490. conference: end_date: 2015-06-25 location: Eindhoven, Netherlands name: 'SoCG: Symposium on Computational Geometry' start_date: 2015-06-22 date_created: 2018-12-11T11:52:27Z date_published: 2015-06-11T00:00:00Z date_updated: 2023-02-23T12:38:00Z day: '11' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SOCG.2015.476 ec_funded: 1 file: - access_level: open_access checksum: 0945811875351796324189312ca29e9e content_type: application/pdf creator: system date_created: 2018-12-12T10:11:18Z date_updated: 2020-07-14T12:44:59Z file_id: '4871' file_name: IST-2016-502-v1+1_42.pdf file_size: 636735 relation: main_file file_date_updated: 2020-07-14T12:44:59Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '06' oa: 1 oa_version: Published Version page: 476 - 490 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '5666' pubrep_id: '502' quality_controlled: '1' related_material: record: - id: '610' relation: later_version status: public scopus_import: 1 status: public title: 'On generalized Heawood inequalities for manifolds: A Van Kampen–Flores-type nonembeddability result' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: '34 ' year: '2015' ... --- _id: '6118' abstract: - lang: eng text: 'Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.' author: - first_name: Lorenz A. full_name: Fenk, Lorenz A. last_name: Fenk - first_name: Mario full_name: de Bono, Mario id: 4E3FF80E-F248-11E8-B48F-1D18A9856A87 last_name: de Bono orcid: 0000-0001-8347-0443 citation: ama: Fenk LA, de Bono M. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity. Proceedings of the National Academy of Sciences. 2015;112(27):E3525-E3534. doi:10.1073/pnas.1423808112 apa: Fenk, L. A., & de Bono, M. (2015). Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.1423808112 chicago: Fenk, Lorenz A., and Mario de Bono. “Environmental CO2 Inhibits Caenorhabditis Elegans Egg-Laying by Modulating Olfactory Neurons and Evokes Widespread Changes in Neural Activity.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2015. https://doi.org/10.1073/pnas.1423808112. ieee: L. A. Fenk and M. de Bono, “Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity,” Proceedings of the National Academy of Sciences, vol. 112, no. 27. National Academy of Sciences, pp. E3525–E3534, 2015. ista: Fenk LA, de Bono M. 2015. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity. Proceedings of the National Academy of Sciences. 112(27), E3525–E3534. mla: Fenk, Lorenz A., and Mario de Bono. “Environmental CO2 Inhibits Caenorhabditis Elegans Egg-Laying by Modulating Olfactory Neurons and Evokes Widespread Changes in Neural Activity.” Proceedings of the National Academy of Sciences, vol. 112, no. 27, National Academy of Sciences, 2015, pp. E3525–34, doi:10.1073/pnas.1423808112. short: L.A. Fenk, M. de Bono, Proceedings of the National Academy of Sciences 112 (2015) E3525–E3534. date_created: 2019-03-19T14:15:50Z date_published: 2015-07-07T00:00:00Z date_updated: 2021-01-12T08:06:12Z day: '07' ddc: - '570' doi: 10.1073/pnas.1423808112 extern: '1' external_id: pmid: - '26100886' file: - access_level: open_access checksum: 3d2da5af8d72467e382a565abc2e003d content_type: application/pdf creator: kschuh date_created: 2019-03-19T14:21:07Z date_updated: 2020-07-14T12:47:20Z file_id: '6119' file_name: 2015_PNAS_Fenk.pdf file_size: 2822681 relation: main_file file_date_updated: 2020-07-14T12:47:20Z has_accepted_license: '1' intvolume: ' 112' issue: '27' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: E3525-E3534 pmid: 1 publication: Proceedings of the National Academy of Sciences publication_identifier: issn: - 0027-8424 - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' status: public title: Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2015' ... --- _id: '6120' abstract: - lang: eng text: Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed. article_number: e04241 author: - first_name: Patrick full_name: Laurent, Patrick last_name: Laurent - first_name: Zoltan full_name: Soltesz, Zoltan last_name: Soltesz - first_name: Geoffrey M full_name: Nelson, Geoffrey M last_name: Nelson - first_name: Changchun full_name: Chen, Changchun last_name: Chen - first_name: Fausto full_name: Arellano-Carbajal, Fausto last_name: Arellano-Carbajal - first_name: Emmanuel full_name: Levy, Emmanuel last_name: Levy - first_name: Mario full_name: de Bono, Mario id: 4E3FF80E-F248-11E8-B48F-1D18A9856A87 last_name: de Bono orcid: 0000-0001-8347-0443 citation: ama: Laurent P, Soltesz Z, Nelson GM, et al. Decoding a neural circuit controlling global animal state in C. elegans. eLife. 2015;4. doi:10.7554/elife.04241 apa: Laurent, P., Soltesz, Z., Nelson, G. M., Chen, C., Arellano-Carbajal, F., Levy, E., & de Bono, M. (2015). Decoding a neural circuit controlling global animal state in C. elegans. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.04241 chicago: Laurent, Patrick, Zoltan Soltesz, Geoffrey M Nelson, Changchun Chen, Fausto Arellano-Carbajal, Emmanuel Levy, and Mario de Bono. “Decoding a Neural Circuit Controlling Global Animal State in C. Elegans.” ELife. eLife Sciences Publications, 2015. https://doi.org/10.7554/elife.04241. ieee: P. Laurent et al., “Decoding a neural circuit controlling global animal state in C. elegans,” eLife, vol. 4. eLife Sciences Publications, 2015. ista: Laurent P, Soltesz Z, Nelson GM, Chen C, Arellano-Carbajal F, Levy E, de Bono M. 2015. Decoding a neural circuit controlling global animal state in C. elegans. eLife. 4, e04241. mla: Laurent, Patrick, et al. “Decoding a Neural Circuit Controlling Global Animal State in C. Elegans.” ELife, vol. 4, e04241, eLife Sciences Publications, 2015, doi:10.7554/elife.04241. short: P. Laurent, Z. Soltesz, G.M. Nelson, C. Chen, F. Arellano-Carbajal, E. Levy, M. de Bono, ELife 4 (2015). date_created: 2019-03-19T14:23:51Z date_published: 2015-03-11T00:00:00Z date_updated: 2021-01-12T08:06:13Z day: '11' ddc: - '570' doi: 10.7554/elife.04241 extern: '1' external_id: pmid: - '25760081' file: - access_level: open_access checksum: cf641b7a363aecd0a101755d23dee7e0 content_type: application/pdf creator: kschuh date_created: 2019-03-19T14:29:43Z date_updated: 2020-07-14T12:47:20Z file_id: '6121' file_name: 2015_elife_Laurent.pdf file_size: 6723528 relation: main_file file_date_updated: 2020-07-14T12:47:20Z has_accepted_license: '1' intvolume: ' 4' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: issn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' status: public title: Decoding a neural circuit controlling global animal state in C. elegans tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2015' ... --- _id: '1637' abstract: - lang: eng text: An instance of the Valued Constraint Satisfaction Problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P ≠ NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in {0, ∞} corresponds to ordinary CSPs, where one deals only with the feasibility issue and there is no optimization. This case is the subject of the Algebraic CSP Dichotomy Conjecture predicting for which constraint languages CSPs are tractable (i.e. solvable in polynomial time) and for which NP-hard. The case when all allowed functions take only finite values corresponds to finite-valued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Zivny. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e. the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs. alternative_title: - 56th Annual Symposium on Foundations of Computer Science author: - first_name: Vladimir full_name: Kolmogorov, Vladimir id: 3D50B0BA-F248-11E8-B48F-1D18A9856A87 last_name: Kolmogorov - first_name: Andrei full_name: Krokhin, Andrei last_name: Krokhin - first_name: Michal full_name: Rolinek, Michal id: 3CB3BC06-F248-11E8-B48F-1D18A9856A87 last_name: Rolinek citation: ama: 'Kolmogorov V, Krokhin A, Rolinek M. The complexity of general-valued CSPs. In: IEEE; 2015:1246-1258. doi:10.1109/FOCS.2015.80' apa: 'Kolmogorov, V., Krokhin, A., & Rolinek, M. (2015). The complexity of general-valued CSPs (pp. 1246–1258). Presented at the FOCS: Foundations of Computer Science, Berkeley, CA, United States: IEEE. https://doi.org/10.1109/FOCS.2015.80' chicago: Kolmogorov, Vladimir, Andrei Krokhin, and Michal Rolinek. “The Complexity of General-Valued CSPs,” 1246–58. IEEE, 2015. https://doi.org/10.1109/FOCS.2015.80. ieee: 'V. Kolmogorov, A. Krokhin, and M. Rolinek, “The complexity of general-valued CSPs,” presented at the FOCS: Foundations of Computer Science, Berkeley, CA, United States, 2015, pp. 1246–1258.' ista: 'Kolmogorov V, Krokhin A, Rolinek M. 2015. The complexity of general-valued CSPs. FOCS: Foundations of Computer Science, 56th Annual Symposium on Foundations of Computer Science, , 1246–1258.' mla: Kolmogorov, Vladimir, et al. The Complexity of General-Valued CSPs. IEEE, 2015, pp. 1246–58, doi:10.1109/FOCS.2015.80. short: V. Kolmogorov, A. Krokhin, M. Rolinek, in:, IEEE, 2015, pp. 1246–1258. conference: end_date: 2015-10-20 location: Berkeley, CA, United States name: 'FOCS: Foundations of Computer Science' start_date: 2015-10-18 date_created: 2018-12-11T11:53:10Z date_published: 2015-12-01T00:00:00Z date_updated: 2023-02-23T12:44:26Z day: '01' department: - _id: VlKo doi: 10.1109/FOCS.2015.80 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1502.07327 month: '12' oa: 1 oa_version: Preprint page: 1246 - 1258 project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' publication_status: published publisher: IEEE publist_id: '5518' quality_controlled: '1' related_material: record: - id: '644' relation: other status: public scopus_import: 1 status: public title: The complexity of general-valued CSPs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2015' ... --- _id: '6507' abstract: - lang: eng text: The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 μM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2. author: - first_name: Long full_name: Zhou, Long id: 3E751364-F248-11E8-B48F-1D18A9856A87 last_name: Zhou orcid: 0000-0002-1864-8951 - first_name: J. M. full_name: Hinerman, J. M. last_name: Hinerman - first_name: M. full_name: Blaszczyk, M. last_name: Blaszczyk - first_name: J. L. C. full_name: Miller, J. L. C. last_name: Miller - first_name: D. G. full_name: Conrady, D. G. last_name: Conrady - first_name: A. D. full_name: Barrow, A. D. last_name: Barrow - first_name: D. Y. full_name: Chirgadze, D. Y. last_name: Chirgadze - first_name: D. full_name: Bihan, D. last_name: Bihan - first_name: R. W. full_name: Farndale, R. W. last_name: Farndale - first_name: A. B. full_name: Herr, A. B. last_name: Herr citation: ama: Zhou L, Hinerman JM, Blaszczyk M, et al. Structural basis for collagen recognition by the immune receptor OSCAR. Blood. 2015;127(5):529-537. doi:10.1182/blood-2015-08-667055 apa: Zhou, L., Hinerman, J. M., Blaszczyk, M., Miller, J. L. C., Conrady, D. G., Barrow, A. D., … Herr, A. B. (2015). Structural basis for collagen recognition by the immune receptor OSCAR. Blood. American Society of Hematology. https://doi.org/10.1182/blood-2015-08-667055 chicago: Zhou, Long, J. M. Hinerman, M. Blaszczyk, J. L. C. Miller, D. G. Conrady, A. D. Barrow, D. Y. Chirgadze, D. Bihan, R. W. Farndale, and A. B. Herr. “Structural Basis for Collagen Recognition by the Immune Receptor OSCAR.” Blood. American Society of Hematology, 2015. https://doi.org/10.1182/blood-2015-08-667055. ieee: L. Zhou et al., “Structural basis for collagen recognition by the immune receptor OSCAR,” Blood, vol. 127, no. 5. American Society of Hematology, pp. 529–537, 2015. ista: Zhou L, Hinerman JM, Blaszczyk M, Miller JLC, Conrady DG, Barrow AD, Chirgadze DY, Bihan D, Farndale RW, Herr AB. 2015. Structural basis for collagen recognition by the immune receptor OSCAR. Blood. 127(5), 529–537. mla: Zhou, Long, et al. “Structural Basis for Collagen Recognition by the Immune Receptor OSCAR.” Blood, vol. 127, no. 5, American Society of Hematology, 2015, pp. 529–37, doi:10.1182/blood-2015-08-667055. short: L. Zhou, J.M. Hinerman, M. Blaszczyk, J.L.C. Miller, D.G. Conrady, A.D. Barrow, D.Y. Chirgadze, D. Bihan, R.W. Farndale, A.B. Herr, Blood 127 (2015) 529–537. date_created: 2019-05-31T09:38:50Z date_published: 2015-11-02T00:00:00Z date_updated: 2021-01-12T08:07:47Z day: '02' doi: 10.1182/blood-2015-08-667055 extern: '1' external_id: pmid: - '26552697' intvolume: ' 127' issue: '5' language: - iso: eng month: '11' oa_version: None page: 529-537 pmid: 1 publication: Blood publication_identifier: issn: - 0006-4971 - 1528-0020 publication_status: published publisher: American Society of Hematology quality_controlled: '1' status: public title: Structural basis for collagen recognition by the immune receptor OSCAR type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 127 year: '2015' ...