--- _id: '11706' abstract: - lang: eng text: 'We say that (Formula presented.) if, in every edge coloring (Formula presented.), we can find either a 1-colored copy of (Formula presented.) or a 2-colored copy of (Formula presented.). The well-known states that the threshold for the property (Formula presented.) is equal to (Formula presented.), where (Formula presented.) is given by (Formula presented.) for any pair of graphs (Formula presented.) and (Formula presented.) with (Formula presented.). In this article, we show the 0-statement of the Kohayakawa–Kreuter conjecture for every pair of cycles and cliques. ' acknowledgement: "This work was started at the thematic program GRAPHS@IMPA (January–March 2018), in Rio de Janeiro. We thank IMPA and the organisers for the hospitality and for providing a pleasant research environment. We thank Rob Morris for helpful discussions, and the anonymous referees for their careful reading and many helpful suggestions. Open Access funding enabled and organized by Projekt DEAL.\r\nA. Liebenau was supported by an ARC DECRA Fellowship Grant DE170100789. L. Mattos was supported by CAPES and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689). W. Mendonça was supported by CAPES project 88882.332408/2010-01." article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Anita full_name: Liebenau, Anita last_name: Liebenau - first_name: Letícia full_name: Mattos, Letícia last_name: Mattos - first_name: Walner full_name: Mendonca Dos Santos, Walner id: 12c6bd4d-2cd0-11ec-a0da-e28f42f65ebd last_name: Mendonca Dos Santos - first_name: Jozef full_name: Skokan, Jozef last_name: Skokan citation: ama: Liebenau A, Mattos L, Mendonca dos Santos W, Skokan J. Asymmetric Ramsey properties of random graphs involving cliques and cycles. Random Structures and Algorithms. 2023;62(4):1035-1055. doi:10.1002/rsa.21106 apa: Liebenau, A., Mattos, L., Mendonca dos Santos, W., & Skokan, J. (2023). Asymmetric Ramsey properties of random graphs involving cliques and cycles. Random Structures and Algorithms. Wiley. https://doi.org/10.1002/rsa.21106 chicago: Liebenau, Anita, Letícia Mattos, Walner Mendonca dos Santos, and Jozef Skokan. “Asymmetric Ramsey Properties of Random Graphs Involving Cliques and Cycles.” Random Structures and Algorithms. Wiley, 2023. https://doi.org/10.1002/rsa.21106. ieee: A. Liebenau, L. Mattos, W. Mendonca dos Santos, and J. Skokan, “Asymmetric Ramsey properties of random graphs involving cliques and cycles,” Random Structures and Algorithms, vol. 62, no. 4. Wiley, pp. 1035–1055, 2023. ista: Liebenau A, Mattos L, Mendonca dos Santos W, Skokan J. 2023. Asymmetric Ramsey properties of random graphs involving cliques and cycles. Random Structures and Algorithms. 62(4), 1035–1055. mla: Liebenau, Anita, et al. “Asymmetric Ramsey Properties of Random Graphs Involving Cliques and Cycles.” Random Structures and Algorithms, vol. 62, no. 4, Wiley, 2023, pp. 1035–55, doi:10.1002/rsa.21106. short: A. Liebenau, L. Mattos, W. Mendonca dos Santos, J. Skokan, Random Structures and Algorithms 62 (2023) 1035–1055. date_created: 2022-07-31T22:01:49Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-10-04T09:38:45Z day: '01' ddc: - '510' department: - _id: MaKw doi: 10.1002/rsa.21106 external_id: isi: - '000828530400001' file: - access_level: open_access checksum: 3a5969d0c512aef01c30f3dc81c6d59b content_type: application/pdf creator: dernst date_created: 2023-10-04T09:37:26Z date_updated: 2023-10-04T09:37:26Z file_id: '14389' file_name: 2023_RandomStructureAlgorithms_Liebenau.pdf file_size: 1362334 relation: main_file success: 1 file_date_updated: 2023-10-04T09:37:26Z has_accepted_license: '1' intvolume: ' 62' isi: 1 issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 1035-1055 publication: Random Structures and Algorithms publication_identifier: eissn: - 1098-2418 issn: - 1042-9832 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Asymmetric Ramsey properties of random graphs involving cliques and cycles tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 62 year: '2023' ... --- _id: '12707' abstract: - lang: eng text: We establish precise right-tail small deviation estimates for the largest eigenvalue of real symmetric and complex Hermitian matrices whose entries are independent random variables with uniformly bounded moments. The proof relies on a Green function comparison along a continuous interpolating matrix flow for a long time. Less precise estimates are also obtained in the left tail. article_processing_charge: No article_type: original author: - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Yuanyuan full_name: Xu, Yuanyuan id: 7902bdb1-a2a4-11eb-a164-c9216f71aea3 last_name: Xu orcid: 0000-0003-1559-1205 citation: ama: Erdös L, Xu Y. Small deviation estimates for the largest eigenvalue of Wigner matrices. Bernoulli. 2023;29(2):1063-1079. doi:10.3150/22-BEJ1490 apa: Erdös, L., & Xu, Y. (2023). Small deviation estimates for the largest eigenvalue of Wigner matrices. Bernoulli. Bernoulli Society for Mathematical Statistics and Probability. https://doi.org/10.3150/22-BEJ1490 chicago: Erdös, László, and Yuanyuan Xu. “Small Deviation Estimates for the Largest Eigenvalue of Wigner Matrices.” Bernoulli. Bernoulli Society for Mathematical Statistics and Probability, 2023. https://doi.org/10.3150/22-BEJ1490. ieee: L. Erdös and Y. Xu, “Small deviation estimates for the largest eigenvalue of Wigner matrices,” Bernoulli, vol. 29, no. 2. Bernoulli Society for Mathematical Statistics and Probability, pp. 1063–1079, 2023. ista: Erdös L, Xu Y. 2023. Small deviation estimates for the largest eigenvalue of Wigner matrices. Bernoulli. 29(2), 1063–1079. mla: Erdös, László, and Yuanyuan Xu. “Small Deviation Estimates for the Largest Eigenvalue of Wigner Matrices.” Bernoulli, vol. 29, no. 2, Bernoulli Society for Mathematical Statistics and Probability, 2023, pp. 1063–79, doi:10.3150/22-BEJ1490. short: L. Erdös, Y. Xu, Bernoulli 29 (2023) 1063–1079. date_created: 2023-03-05T23:01:05Z date_published: 2023-05-01T00:00:00Z date_updated: 2023-10-04T10:21:07Z day: '01' department: - _id: LaEr doi: 10.3150/22-BEJ1490 ec_funded: 1 external_id: arxiv: - '2112.12093 ' isi: - '000947270100008' intvolume: ' 29' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2112.12093 month: '05' oa: 1 oa_version: Preprint page: 1063-1079 project: - _id: 62796744-2b32-11ec-9570-940b20777f1d call_identifier: H2020 grant_number: '101020331' name: Random matrices beyond Wigner-Dyson-Mehta publication: Bernoulli publication_identifier: issn: - 1350-7265 publication_status: published publisher: Bernoulli Society for Mathematical Statistics and Probability quality_controlled: '1' scopus_import: '1' status: public title: Small deviation estimates for the largest eigenvalue of Wigner matrices type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 29 year: '2023' ... --- _id: '12837' abstract: - lang: eng text: As developing tissues grow in size and undergo morphogenetic changes, their material properties may be altered. Such changes result from tension dynamics at cell contacts or cellular jamming. Yet, in many cases, the cellular mechanisms controlling the physical state of growing tissues are unclear. We found that at early developmental stages, the epithelium in the developing mouse spinal cord maintains both high junctional tension and high fluidity. This is achieved via a mechanism in which interkinetic nuclear movements generate cell area dynamics that drive extensive cell rearrangements. Over time, the cell proliferation rate declines, effectively solidifying the tissue. Thus, unlike well-studied jamming transitions, the solidification uncovered here resembles a glass transition that depends on the dynamical stresses generated by proliferation and differentiation. Our finding that the fluidity of developing epithelia is linked to interkinetic nuclear movements and the dynamics of growth is likely to be relevant to multiple developing tissues. acknowledgement: 'We thank S. Hippenmeyer for the reagents and C. P. Heisenberg, J. Briscoe and K. Page for comments on the manuscript. This work was supported by IST Austria; the European Research Council under Horizon 2020 research and innovation programme grant no. 680037 and Horizon Europe grant 101044579 (A.K.); Austrian Science Fund (FWF): F78 (Stem Cell Modulation) (A.K.); ISTFELLOW postdoctoral program (A.S.); Narodowe Centrum Nauki, Poland SONATA, 2017/26/D/NZ2/00454 (M.Z.); and the Polish National Agency for Academic Exchange (M.Z.).' article_processing_charge: No article_type: original author: - first_name: Laura full_name: Bocanegra, Laura id: 4896F754-F248-11E8-B48F-1D18A9856A87 last_name: Bocanegra - first_name: Amrita full_name: Singh, Amrita id: 76250f9f-3a21-11eb-9a80-a6180a0d7958 last_name: Singh - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 2023;19:1050-1058. doi:10.1038/s41567-023-01977-w apa: Bocanegra, L., Singh, A., Hannezo, E. B., Zagórski, M. P., & Kicheva, A. (2023). Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-01977-w chicago: Bocanegra, Laura, Amrita Singh, Edouard B Hannezo, Marcin P Zagórski, and Anna Kicheva. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-01977-w. ieee: L. Bocanegra, A. Singh, E. B. Hannezo, M. P. Zagórski, and A. Kicheva, “Cell cycle dynamics control fluidity of the developing mouse neuroepithelium,” Nature Physics, vol. 19. Springer Nature, pp. 1050–1058, 2023. ista: Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. 2023. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 19, 1050–1058. mla: Bocanegra, Laura, et al. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1050–58, doi:10.1038/s41567-023-01977-w. short: L. Bocanegra, A. Singh, E.B. Hannezo, M.P. Zagórski, A. Kicheva, Nature Physics 19 (2023) 1050–1058. date_created: 2023-04-16T22:01:09Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-10-04T11:14:05Z day: '01' ddc: - '570' department: - _id: EdHa - _id: AnKi doi: 10.1038/s41567-023-01977-w ec_funded: 1 external_id: isi: - '000964029300003' file: - access_level: open_access checksum: 858225a4205b74406e5045006cdd853f content_type: application/pdf creator: dernst date_created: 2023-10-04T11:13:28Z date_updated: 2023-10-04T11:13:28Z file_id: '14392' file_name: 2023_NaturePhysics_Boncanegra.pdf file_size: 5532285 relation: main_file success: 1 file_date_updated: 2023-10-04T11:13:28Z has_accepted_license: '1' intvolume: ' 19' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 1050-1058 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: bd7e737f-d553-11ed-ba76-d69ffb5ee3aa grant_number: '101044579' name: Mechanisms of tissue size regulation in spinal cord development - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13081' relation: dissertation_contains status: public scopus_import: '1' status: public title: Cell cycle dynamics control fluidity of the developing mouse neuroepithelium tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '13081' abstract: - lang: eng text: During development, tissues undergo changes in size and shape to form functional organs. Distinct cellular processes such as cell division and cell rearrangements underlie tissue morphogenesis. Yet how the distinct processes are controlled and coordinated, and how they contribute to morphogenesis is poorly understood. In our study, we addressed these questions using the developing mouse neural tube. This epithelial organ transforms from a flat epithelial sheet to an epithelial tube while increasing in size and undergoing morpho-gen-mediated patterning. The extent and mechanism of neural progenitor rearrangement within the developing mouse neuroepithelium is unknown. To investigate this, we per-formed high resolution lineage tracing analysis to quantify the extent of epithelial rear-rangement at different stages of neural tube development. We quantitatively described the relationship between apical cell size with cell cycle dependent interkinetic nuclear migra-tions (IKNM) and performed high cellular resolution live imaging of the neuroepithelium to study the dynamics of junctional remodeling. Furthermore, developed a vertex model of the neuroepithelium to investigate the quantitative contribution of cell proliferation, cell differentiation and mechanical properties to the epithelial rearrangement dynamics and validated the model predictions through functional experiments. Our analysis revealed that at early developmental stages, the apical cell area kinetics driven by IKNM induce high lev-els of cell rearrangements in a regime of high junctional tension and contractility. After E9.5, there is a sharp decline in the extent of cell rearrangements, suggesting that the epi-thelium transitions from a fluid-like to a solid-like state. We found that this transition is regulated by the growth rate of the tissue, rather than by changes in cell-cell adhesion and contractile forces. Overall, our study provides a quantitative description of the relationship between tissue growth, cell cycle dynamics, epithelia rearrangements and the emergent tissue material properties, and novel insights on how epithelial cell dynamics influences tissue morphogenesis. acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Laura full_name: Bocanegra, Laura id: 4896F754-F248-11E8-B48F-1D18A9856A87 last_name: Bocanegra citation: ama: Bocanegra L. Epithelial dynamics during mouse neural tube development. 2023. doi:10.15479/at:ista:13081 apa: Bocanegra, L. (2023). Epithelial dynamics during mouse neural tube development. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:13081 chicago: Bocanegra, Laura. “Epithelial Dynamics during Mouse Neural Tube Development.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:13081. ieee: L. Bocanegra, “Epithelial dynamics during mouse neural tube development,” Institute of Science and Technology Austria, 2023. ista: Bocanegra L. 2023. Epithelial dynamics during mouse neural tube development. Institute of Science and Technology Austria. mla: Bocanegra, Laura. Epithelial Dynamics during Mouse Neural Tube Development. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:13081. short: L. Bocanegra, Epithelial Dynamics during Mouse Neural Tube Development, Institute of Science and Technology Austria, 2023. date_created: 2023-05-23T19:10:42Z date_published: 2023-05-23T00:00:00Z date_updated: 2023-10-04T11:14:04Z day: '23' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: AnKi doi: 10.15479/at:ista:13081 file: - access_level: closed checksum: 74f3f89e59a0189bee53ebfad9c1b9af content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lbocaneg date_created: 2023-05-25T06:32:12Z date_updated: 2023-05-25T06:32:12Z file_id: '13089' file_name: Thesis_final_LauraBocanegra.docx file_size: 25615534 relation: source_file - access_level: closed checksum: c6cdef6323eacfb4b7a8af20f32eae97 content_type: application/pdf creator: lbocaneg date_created: 2023-05-25T06:32:16Z date_updated: 2023-05-25T06:32:16Z embargo: 2024-05-31 embargo_to: open_access file_id: '13090' file_name: TotalFinal_Thesis_LauraBocanegraArx.pdf file_size: 12386046 relation: main_file file_date_updated: 2023-05-25T06:32:16Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '05' oa_version: Published Version page: '93' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9349' relation: part_of_dissertation status: public - id: '12837' relation: part_of_dissertation status: public status: public supervisor: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 title: Epithelial dynamics during mouse neural tube development tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12863' abstract: - lang: eng text: In the present study, essential and nonessential metal content and biomarker responses were investigated in the intestine of fish collected from the areas polluted by mining. Our objective was to determine metal and biomarker levels in tissue responsible for dietary intake, which is rarely studied in water pollution research. The study was conducted in the Bregalnica River, reference location, and in the Zletovska and Kriva Rivers (the Republic of North Macedonia), which are directly influenced by the active mines Zletovo and Toranica, respectively. Biological responses were analyzed in Vardar chub (Squalius vardarensis; Karaman, 1928), using for the first time intestinal cytosol as a potentially toxic cell fraction, since metal sensitivity is mostly associated with cytosol. Cytosolic metal levels were higher in fish under the influence of mining (Tl, Li, Cs, Mo, Sr, Cd, Rb, and Cu in the Zletovska River and Cr, Pb, and Se in the Kriva River compared to the Bregalnica River in both seasons). The same trend was evident for total proteins, biomarkers of general stress, and metallothioneins, biomarkers of metal exposure, indicating cellular disturbances in the intestine, the primary site of dietary metal uptake. The association of cytosolic Cu and Cd at all locations pointed to similar pathways and homeostasis of these metallothionein-binding metals. Comparison with other indicator tissues showed that metal concentrations were higher in the intestine of fish from mining-affected areas than in the liver and gills. In general, these results indicated the importance of dietary metal pathways, and cytosolic metal fraction in assessing pollution impacts in freshwater ecosystems. acknowledgement: 'The authors are grateful to Dr. Nevenka Mikac for the opportunity to perform metal measurements on HR ICP-MS. This research was funded by the Ministry of Science, Education and Sport of the Republic of Croatia (projects No. 098–0982934-2721 and 098–1782739-2749). The sampling was carried out as a part of two Croatian-Macedonian bilateral projects: “The assessment of availability and effects of metals on fish in the rivers under the impact of mining activities” and “Bacterial and parasitical communities of chub as indicators of the status of environment exposed to mining activities.”' article_processing_charge: No article_type: original author: - first_name: Vlatka full_name: Filipović Marijić, Vlatka last_name: Filipović Marijić - first_name: Nesrete full_name: Krasnici, Nesrete id: cb5852d4-287f-11ed-baf0-bc1dd2d5c745 last_name: Krasnici - first_name: Damir full_name: Valić, Damir last_name: Valić - first_name: Damir full_name: Kapetanović, Damir last_name: Kapetanović - first_name: Irena full_name: Vardić Smrzlić, Irena last_name: Vardić Smrzlić - first_name: Maja full_name: Jordanova, Maja last_name: Jordanova - first_name: Katerina full_name: Rebok, Katerina last_name: Rebok - first_name: Sheriban full_name: Ramani, Sheriban last_name: Ramani - first_name: Vasil full_name: Kostov, Vasil last_name: Kostov - first_name: Rodne full_name: Nastova, Rodne last_name: Nastova - first_name: Zrinka full_name: Dragun, Zrinka last_name: Dragun citation: ama: Filipović Marijić V, Krasnici N, Valić D, et al. Pollution impact on metal and biomarker responses in intestinal cytosol of freshwater fish. Environmental Science and Pollution Research. 2023;30:63510-63521. doi:10.1007/s11356-023-26844-2 apa: Filipović Marijić, V., Krasnici, N., Valić, D., Kapetanović, D., Vardić Smrzlić, I., Jordanova, M., … Dragun, Z. (2023). Pollution impact on metal and biomarker responses in intestinal cytosol of freshwater fish. Environmental Science and Pollution Research. Springer Nature. https://doi.org/10.1007/s11356-023-26844-2 chicago: Filipović Marijić, Vlatka, Nesrete Krasnici, Damir Valić, Damir Kapetanović, Irena Vardić Smrzlić, Maja Jordanova, Katerina Rebok, et al. “Pollution Impact on Metal and Biomarker Responses in Intestinal Cytosol of Freshwater Fish.” Environmental Science and Pollution Research. Springer Nature, 2023. https://doi.org/10.1007/s11356-023-26844-2. ieee: V. Filipović Marijić et al., “Pollution impact on metal and biomarker responses in intestinal cytosol of freshwater fish,” Environmental Science and Pollution Research, vol. 30. Springer Nature, pp. 63510–63521, 2023. ista: Filipović Marijić V, Krasnici N, Valić D, Kapetanović D, Vardić Smrzlić I, Jordanova M, Rebok K, Ramani S, Kostov V, Nastova R, Dragun Z. 2023. Pollution impact on metal and biomarker responses in intestinal cytosol of freshwater fish. Environmental Science and Pollution Research. 30, 63510–63521. mla: Filipović Marijić, Vlatka, et al. “Pollution Impact on Metal and Biomarker Responses in Intestinal Cytosol of Freshwater Fish.” Environmental Science and Pollution Research, vol. 30, Springer Nature, 2023, pp. 63510–21, doi:10.1007/s11356-023-26844-2. short: V. Filipović Marijić, N. Krasnici, D. Valić, D. Kapetanović, I. Vardić Smrzlić, M. Jordanova, K. Rebok, S. Ramani, V. Kostov, R. Nastova, Z. Dragun, Environmental Science and Pollution Research 30 (2023) 63510–63521. date_created: 2023-04-23T22:01:03Z date_published: 2023-05-01T00:00:00Z date_updated: 2023-10-04T11:23:10Z day: '01' department: - _id: LifeSc doi: 10.1007/s11356-023-26844-2 external_id: isi: - '000970917900012' pmid: - '37055686' intvolume: ' 30' isi: 1 language: - iso: eng month: '05' oa_version: None page: 63510-63521 pmid: 1 publication: Environmental Science and Pollution Research publication_identifier: eissn: - 1614-7499 issn: - 0944-1344 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Pollution impact on metal and biomarker responses in intestinal cytosol of freshwater fish type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 30 year: '2023' ...