--- _id: '13969' abstract: - lang: eng text: "Bundling crossings is a strategy which can enhance the readability\r\nof graph drawings. In this paper we consider good drawings, i.e., we require that\r\nany two edges have at most one common point which can be a common vertex or a\r\ncrossing. Our main result is that there is a polynomial-time algorithm to compute an\r\n8-approximation of the bundled crossing number of a good drawing with no toothed\r\nhole. In general the number of toothed holes has to be added to the 8-approximation.\r\nIn the special case of circular drawings the approximation factor is 8, this improves\r\nupon the 10-approximation of Fink et al. [14]. Our approach also works with the same\r\napproximation factor for families of pseudosegments, i.e., curves intersecting at most\r\nonce. We also show how to compute a 9/2-approximation when the intersection graph of\r\nthe pseudosegments is bipartite and has no toothed hole." acknowledgement: This work was initiated during the Workshop on Geometric Graphs in November 2019 in Strobl, Austria. We would like to thank Oswin Aichholzer, Fabian Klute, Man-Kwun Chiu, Martin Balko, Pavel Valtr for their avid discussions during the workshop. The first author has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 754411. The second author has been supported by the German Research Foundation DFG Project FE 340/12-1. An extended abstract of this paper has been published in the proceedings of WALCOM 2022 in the Springer LNCS series, vol. 13174, pages 383–395. article_processing_charge: Yes article_type: original author: - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: Stefan full_name: Felsner, Stefan last_name: Felsner citation: ama: Arroyo Guevara AM, Felsner S. Approximating the bundled crossing number. Journal of Graph Algorithms and Applications. 2023;27(6):433-457. doi:10.7155/jgaa.00629 apa: Arroyo Guevara, A. M., & Felsner, S. (2023). Approximating the bundled crossing number. Journal of Graph Algorithms and Applications. Brown University. https://doi.org/10.7155/jgaa.00629 chicago: Arroyo Guevara, Alan M, and Stefan Felsner. “Approximating the Bundled Crossing Number.” Journal of Graph Algorithms and Applications. Brown University, 2023. https://doi.org/10.7155/jgaa.00629. ieee: A. M. Arroyo Guevara and S. Felsner, “Approximating the bundled crossing number,” Journal of Graph Algorithms and Applications, vol. 27, no. 6. Brown University, pp. 433–457, 2023. ista: Arroyo Guevara AM, Felsner S. 2023. Approximating the bundled crossing number. Journal of Graph Algorithms and Applications. 27(6), 433–457. mla: Arroyo Guevara, Alan M., and Stefan Felsner. “Approximating the Bundled Crossing Number.” Journal of Graph Algorithms and Applications, vol. 27, no. 6, Brown University, 2023, pp. 433–57, doi:10.7155/jgaa.00629. short: A.M. Arroyo Guevara, S. Felsner, Journal of Graph Algorithms and Applications 27 (2023) 433–457. date_created: 2023-08-06T22:01:11Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-09-25T10:56:10Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.7155/jgaa.00629 ec_funded: 1 external_id: arxiv: - '2109.14892' file: - access_level: open_access checksum: 9c30d2b8e324cc1c904f2aeec92013a3 content_type: application/pdf creator: dernst date_created: 2023-08-07T08:00:48Z date_updated: 2023-08-07T08:00:48Z file_id: '13979' file_name: 2023_JourGraphAlgorithms_Arroyo.pdf file_size: 865774 relation: main_file success: 1 file_date_updated: 2023-08-07T08:00:48Z has_accepted_license: '1' intvolume: ' 27' issue: '6' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 433-457 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Journal of Graph Algorithms and Applications publication_identifier: issn: - 1526-1719 publication_status: published publisher: Brown University quality_controlled: '1' related_material: record: - id: '11185' relation: earlier_version status: public scopus_import: '1' status: public title: Approximating the bundled crossing number tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 27 year: '2023' ... --- _id: '14344' abstract: - lang: eng text: We study the Hamilton cycle problem with input a random graph G ~ G(n,p) in two different settings. In the first one, G is given to us in the form of randomly ordered adjacency lists while in the second one, we are given the adjacency matrix of G. In each of the two settings we derive a deterministic algorithm that w.h.p. either finds a Hamilton cycle or returns a certificate that such a cycle does not exist for p = p(n) ≥ 0. The running times of our algorithms are O(n) and respectively, each being best possible in its own setting. article_processing_charge: No author: - first_name: Michael full_name: Anastos, Michael id: 0b2a4358-bb35-11ec-b7b9-e3279b593dbb last_name: Anastos citation: ama: 'Anastos M. Fast algorithms for solving the Hamilton cycle problem with high probability. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms. Vol 2023. Society for Industrial and Applied Mathematics; 2023:2286-2323. doi:10.1137/1.9781611977554.ch88' apa: 'Anastos, M. (2023). Fast algorithms for solving the Hamilton cycle problem with high probability. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (Vol. 2023, pp. 2286–2323). Florence, Italy: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611977554.ch88' chicago: Anastos, Michael. “Fast Algorithms for Solving the Hamilton Cycle Problem with High Probability.” In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 2023:2286–2323. Society for Industrial and Applied Mathematics, 2023. https://doi.org/10.1137/1.9781611977554.ch88. ieee: M. Anastos, “Fast algorithms for solving the Hamilton cycle problem with high probability,” in Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Florence, Italy, 2023, vol. 2023, pp. 2286–2323. ista: 'Anastos M. 2023. Fast algorithms for solving the Hamilton cycle problem with high probability. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms vol. 2023, 2286–2323.' mla: Anastos, Michael. “Fast Algorithms for Solving the Hamilton Cycle Problem with High Probability.” Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 2023, Society for Industrial and Applied Mathematics, 2023, pp. 2286–323, doi:10.1137/1.9781611977554.ch88. short: M. Anastos, in:, Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2023, pp. 2286–2323. conference: end_date: 2023-01-25 location: Florence, Italy name: 'SODA: Symposium on Discrete Algorithms' start_date: 2023-01-22 date_created: 2023-09-17T22:01:10Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-09-25T09:13:41Z day: '01' department: - _id: MaKw doi: 10.1137/1.9781611977554.ch88 external_id: arxiv: - '2111.14759' intvolume: ' 2023' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2111.14759 month: '01' oa: 1 oa_version: Preprint page: 2286-2323 publication: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms publication_identifier: isbn: - '9781611977554' publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: Fast algorithms for solving the Hamilton cycle problem with high probability type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2023 year: '2023' ... --- _id: '12710' abstract: - lang: eng text: Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes. acknowledgement: B.S. and A.R. contributed equally to this work. A.P.G.C. and P.R.F. acknowledge the funding from Fundação para a Ciência e Tecnologia (Portugal), through IDMEC, under LAETA project UIDB/50022/2020. T.H.V.P. acknowledges the funding from Fundação para a Ciência e Tecnologia (Portugal), through Ph.D. Grant 2020.04417.BD. A.S. acknowledges that this work was partially supported by the ATTRACT Investigator Grant (no. A17/MS/11572821/MBRACE, to A.S.) from the Luxembourg National Research Fund. The author thanks Gerardo Ceada for his help in the graphical representations. N.A.K. acknowledges support from the European Research Council (grant 851960) and the Gravitation Program “Materials Driven Regeneration,” funded by the Netherlands Organization for Scientific Research (024.003.013). M.B.A. acknowledges support from the French National Research Agency (grant ANR-201-8-CE1-3-0008 for the project “Epimorph”). G.E.S.T. acknowledges funding by the Australian Research Council through project DP200102593. A.C. acknowledges the funding from the Deutsche Forschungsgemeinschaft (DFG) Emmy Noether Grant CI 203/-2 1, the Spanish Ministry of Science and Innovation (PID2021-123013O-BI00) and the IKERBASQUE Basque Foundation for Science. article_number: '2206110' article_processing_charge: No article_type: review author: - first_name: Barbara full_name: Schamberger, Barbara last_name: Schamberger - first_name: Ricardo full_name: Ziege, Ricardo last_name: Ziege - first_name: Karine full_name: Anselme, Karine last_name: Anselme - first_name: Martine full_name: Ben Amar, Martine last_name: Ben Amar - first_name: Michał full_name: Bykowski, Michał last_name: Bykowski - first_name: André P.G. full_name: Castro, André P.G. last_name: Castro - first_name: Amaia full_name: Cipitria, Amaia last_name: Cipitria - first_name: Rhoslyn A. full_name: Coles, Rhoslyn A. last_name: Coles - first_name: Rumiana full_name: Dimova, Rumiana last_name: Dimova - first_name: Michaela full_name: Eder, Michaela last_name: Eder - first_name: Sebastian full_name: Ehrig, Sebastian last_name: Ehrig - first_name: Luis M. full_name: Escudero, Luis M. last_name: Escudero - first_name: Myfanwy E. full_name: Evans, Myfanwy E. last_name: Evans - first_name: Paulo R. full_name: Fernandes, Paulo R. last_name: Fernandes - first_name: Peter full_name: Fratzl, Peter last_name: Fratzl - first_name: Liesbet full_name: Geris, Liesbet last_name: Geris - first_name: Notburga full_name: Gierlinger, Notburga last_name: Gierlinger - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Aleš full_name: Iglič, Aleš last_name: Iglič - first_name: Jacob J.K. full_name: Kirkensgaard, Jacob J.K. last_name: Kirkensgaard - first_name: Philip full_name: Kollmannsberger, Philip last_name: Kollmannsberger - first_name: Łucja full_name: Kowalewska, Łucja last_name: Kowalewska - first_name: Nicholas A. full_name: Kurniawan, Nicholas A. last_name: Kurniawan - first_name: Ioannis full_name: Papantoniou, Ioannis last_name: Papantoniou - first_name: Laurent full_name: Pieuchot, Laurent last_name: Pieuchot - first_name: Tiago H.V. full_name: Pires, Tiago H.V. last_name: Pires - first_name: Lars D. full_name: Renner, Lars D. last_name: Renner - first_name: Andrew O. full_name: Sageman-Furnas, Andrew O. last_name: Sageman-Furnas - first_name: Gerd E. full_name: Schröder-Turk, Gerd E. last_name: Schröder-Turk - first_name: Anupam full_name: Sengupta, Anupam last_name: Sengupta - first_name: Vikas R. full_name: Sharma, Vikas R. last_name: Sharma - first_name: Antonio full_name: Tagua, Antonio last_name: Tagua - first_name: Caterina full_name: Tomba, Caterina last_name: Tomba - first_name: Xavier full_name: Trepat, Xavier last_name: Trepat - first_name: Sarah L. full_name: Waters, Sarah L. last_name: Waters - first_name: Edwina F. full_name: Yeo, Edwina F. last_name: Yeo - first_name: Andreas full_name: Roschger, Andreas last_name: Roschger - first_name: Cécile M. full_name: Bidan, Cécile M. last_name: Bidan - first_name: John W.C. full_name: Dunlop, John W.C. last_name: Dunlop citation: ama: 'Schamberger B, Ziege R, Anselme K, et al. Curvature in biological systems: Its quantification, emergence, and implications across the scales. Advanced Materials. 2023;35(13). doi:10.1002/adma.202206110' apa: 'Schamberger, B., Ziege, R., Anselme, K., Ben Amar, M., Bykowski, M., Castro, A. P. G., … Dunlop, J. W. C. (2023). Curvature in biological systems: Its quantification, emergence, and implications across the scales. Advanced Materials. Wiley. https://doi.org/10.1002/adma.202206110' chicago: 'Schamberger, Barbara, Ricardo Ziege, Karine Anselme, Martine Ben Amar, Michał Bykowski, André P.G. Castro, Amaia Cipitria, et al. “Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales.” Advanced Materials. Wiley, 2023. https://doi.org/10.1002/adma.202206110.' ieee: 'B. Schamberger et al., “Curvature in biological systems: Its quantification, emergence, and implications across the scales,” Advanced Materials, vol. 35, no. 13. Wiley, 2023.' ista: 'Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo EB, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. 2023. Curvature in biological systems: Its quantification, emergence, and implications across the scales. Advanced Materials. 35(13), 2206110.' mla: 'Schamberger, Barbara, et al. “Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales.” Advanced Materials, vol. 35, no. 13, 2206110, Wiley, 2023, doi:10.1002/adma.202206110.' short: B. Schamberger, R. Ziege, K. Anselme, M. Ben Amar, M. Bykowski, A.P.G. Castro, A. Cipitria, R.A. Coles, R. Dimova, M. Eder, S. Ehrig, L.M. Escudero, M.E. Evans, P.R. Fernandes, P. Fratzl, L. Geris, N. Gierlinger, E.B. Hannezo, A. Iglič, J.J.K. Kirkensgaard, P. Kollmannsberger, Ł. Kowalewska, N.A. Kurniawan, I. Papantoniou, L. Pieuchot, T.H.V. Pires, L.D. Renner, A.O. Sageman-Furnas, G.E. Schröder-Turk, A. Sengupta, V.R. Sharma, A. Tagua, C. Tomba, X. Trepat, S.L. Waters, E.F. Yeo, A. Roschger, C.M. Bidan, J.W.C. Dunlop, Advanced Materials 35 (2023). date_created: 2023-03-05T23:01:06Z date_published: 2023-03-29T00:00:00Z date_updated: 2023-09-26T10:56:46Z day: '29' ddc: - '570' department: - _id: EdHa doi: 10.1002/adma.202206110 external_id: isi: - '000941068900001' pmid: - '36461812' file: - access_level: open_access checksum: 5c04d68130e97a0ecd1ca27fbc15a246 content_type: application/pdf creator: dernst date_created: 2023-09-26T10:51:56Z date_updated: 2023-09-26T10:51:56Z file_id: '14373' file_name: 2023_AdvancedMaterials_Schamberger.pdf file_size: 2898063 relation: main_file success: 1 file_date_updated: 2023-09-26T10:51:56Z has_accepted_license: '1' intvolume: ' 35' isi: 1 issue: '13' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: Advanced Materials publication_identifier: eissn: - 1521-4095 issn: - 0935-9648 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Curvature in biological systems: Its quantification, emergence, and implications across the scales' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2023' ... --- _id: '14377' abstract: - lang: eng text: Coherent flows of self-propelled particles are characterized by vortices and jets that sustain chaotic flows, referred to as active turbulence. Here, we reveal a crossover between defect-free active turbulence and active turbulence laden with topological defects. Interestingly, we show that concurrent to the crossover from defect-free to defect-laden active turbulence is the restoration of the previously broken SO(2) symmetry signaled by the fast decay of the two-point correlations. By stability analyses of the topological charge density field, we provide theoretical insights on the criterion for the crossover to the defect-laden active turbulent state. Despite the distinct symmetry features between these two active turbulence regimes, the flow fluctuations exhibit universal statistical scaling behaviors at large scales, while the spectrum of polarity fluctuations decays exponentially at small length scales compared to the active energy injection length. These findings reveal a dynamical crossover between distinct spatiotemporal organization patterns in polar active matter. article_number: '063101' article_processing_charge: No article_type: original author: - first_name: Benjamin H. full_name: Andersen, Benjamin H. last_name: Andersen - first_name: Julian B full_name: Renaud, Julian B id: 7af6767d-14eb-11ed-b536-a32449ae867c last_name: Renaud - first_name: Jonas full_name: Rønning, Jonas last_name: Rønning - first_name: Luiza full_name: Angheluta, Luiza last_name: Angheluta - first_name: Amin full_name: Doostmohammadi, Amin last_name: Doostmohammadi citation: ama: Andersen BH, Renaud JB, Rønning J, Angheluta L, Doostmohammadi A. Symmetry-restoring crossover from defect-free to defect-laden turbulence in polar active matter. Physical Review Fluids. 2023;8(6). doi:10.1103/physrevfluids.8.063101 apa: Andersen, B. H., Renaud, J. B., Rønning, J., Angheluta, L., & Doostmohammadi, A. (2023). Symmetry-restoring crossover from defect-free to defect-laden turbulence in polar active matter. Physical Review Fluids. American Physical Society. https://doi.org/10.1103/physrevfluids.8.063101 chicago: Andersen, Benjamin H., Julian B Renaud, Jonas Rønning, Luiza Angheluta, and Amin Doostmohammadi. “Symmetry-Restoring Crossover from Defect-Free to Defect-Laden Turbulence in Polar Active Matter.” Physical Review Fluids. American Physical Society, 2023. https://doi.org/10.1103/physrevfluids.8.063101. ieee: B. H. Andersen, J. B. Renaud, J. Rønning, L. Angheluta, and A. Doostmohammadi, “Symmetry-restoring crossover from defect-free to defect-laden turbulence in polar active matter,” Physical Review Fluids, vol. 8, no. 6. American Physical Society, 2023. ista: Andersen BH, Renaud JB, Rønning J, Angheluta L, Doostmohammadi A. 2023. Symmetry-restoring crossover from defect-free to defect-laden turbulence in polar active matter. Physical Review Fluids. 8(6), 063101. mla: Andersen, Benjamin H., et al. “Symmetry-Restoring Crossover from Defect-Free to Defect-Laden Turbulence in Polar Active Matter.” Physical Review Fluids, vol. 8, no. 6, 063101, American Physical Society, 2023, doi:10.1103/physrevfluids.8.063101. short: B.H. Andersen, J.B. Renaud, J. Rønning, L. Angheluta, A. Doostmohammadi, Physical Review Fluids 8 (2023). date_created: 2023-09-29T08:46:47Z date_published: 2023-06-14T00:00:00Z date_updated: 2023-10-03T07:25:39Z day: '14' doi: 10.1103/physrevfluids.8.063101 extern: '1' external_id: arxiv: - '2209.10916' intvolume: ' 8' issue: '6' keyword: - Fluid Flow and Transfer Processes - Modeling and Simulation - Computational Mechanics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2209.10916 month: '06' oa: 1 oa_version: Preprint publication: Physical Review Fluids publication_identifier: issn: - 2469-990X publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Symmetry-restoring crossover from defect-free to defect-laden turbulence in polar active matter type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2023' ... --- _id: '13340' abstract: - lang: eng text: Photoisomerization of azobenzenes from their stable E isomer to the metastable Z state is the basis of numerous applications of these molecules. However, this reaction typically requires ultraviolet light, which limits applicability. In this study, we introduce disequilibration by sensitization under confinement (DESC), a supramolecular approach to induce the E-to-Z isomerization by using light of a desired color, including red. DESC relies on a combination of a macrocyclic host and a photosensitizer, which act together to selectively bind and sensitize E-azobenzenes for isomerization. The Z isomer lacks strong affinity for and is expelled from the host, which can then convert additional E-azobenzenes to the Z state. In this way, the host–photosensitizer complex converts photon energy into chemical energy in the form of out-of-equilibrium photostationary states, including ones that cannot be accessed through direct photoexcitation. acknowledgement: We acknowledge funding from the European Union’s Horizon 2020 Research and Innovation Program [European Research Council grants 820008 (Ra.K.) and 101045223 (A.P.) and Marie Skłodowska-Curie grants 812868 (J.G.) and 101022777 (T.-P.R.)], the Academy of Finland [Center of Excellence Programme LIBER grant 346107 (A.P.), Flagship Programme PREIN grant 320165 (A.P.), and Postdoctoral Researcher grant 340103 (T.-P.R.)], Zuckerman STEM Leadership Program Fellowship (J.R.C.), President’s PhD Scholarship (M.O.), and the EPSRC [Established Career Fellowship grant EP/R00188X/1 (M.J.F.)]. article_processing_charge: No article_type: original author: - first_name: Julius full_name: Gemen, Julius last_name: Gemen - first_name: Jonathan R. full_name: Church, Jonathan R. last_name: Church - first_name: Tero-Petri full_name: Ruoko, Tero-Petri last_name: Ruoko - first_name: Nikita full_name: Durandin, Nikita last_name: Durandin - first_name: Michał J. full_name: Białek, Michał J. last_name: Białek - first_name: Maren full_name: Weissenfels, Maren last_name: Weissenfels - first_name: Moran full_name: Feller, Moran last_name: Feller - first_name: Miri full_name: Kazes, Miri last_name: Kazes - first_name: Veniamin A. full_name: Borin, Veniamin A. last_name: Borin - first_name: Magdalena full_name: Odaybat, Magdalena last_name: Odaybat - first_name: Rishir full_name: Kalepu, Rishir last_name: Kalepu - first_name: Yael full_name: Diskin-Posner, Yael last_name: Diskin-Posner - first_name: Dan full_name: Oron, Dan last_name: Oron - first_name: Matthew J. full_name: Fuchter, Matthew J. last_name: Fuchter - first_name: Arri full_name: Priimagi, Arri last_name: Priimagi - first_name: Igor full_name: Schapiro, Igor last_name: Schapiro - first_name: Rafal full_name: Klajn, Rafal id: 8e84690e-1e48-11ed-a02b-a1e6fb8bb53b last_name: Klajn citation: ama: Gemen J, Church JR, Ruoko T-P, et al. Disequilibrating azoarenes by visible-light sensitization under confinement. Science. 2023;381(6664):1357-1363. doi:10.1126/science.adh9059 apa: Gemen, J., Church, J. R., Ruoko, T.-P., Durandin, N., Białek, M. J., Weissenfels, M., … Klajn, R. (2023). Disequilibrating azoarenes by visible-light sensitization under confinement. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.adh9059 chicago: Gemen, Julius, Jonathan R. Church, Tero-Petri Ruoko, Nikita Durandin, Michał J. Białek, Maren Weissenfels, Moran Feller, et al. “Disequilibrating Azoarenes by Visible-Light Sensitization under Confinement.” Science. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/science.adh9059. ieee: J. Gemen et al., “Disequilibrating azoarenes by visible-light sensitization under confinement,” Science, vol. 381, no. 6664. American Association for the Advancement of Science, pp. 1357–1363, 2023. ista: Gemen J, Church JR, Ruoko T-P, Durandin N, Białek MJ, Weissenfels M, Feller M, Kazes M, Borin VA, Odaybat M, Kalepu R, Diskin-Posner Y, Oron D, Fuchter MJ, Priimagi A, Schapiro I, Klajn R. 2023. Disequilibrating azoarenes by visible-light sensitization under confinement. Science. 381(6664), 1357–1363. mla: Gemen, Julius, et al. “Disequilibrating Azoarenes by Visible-Light Sensitization under Confinement.” Science, vol. 381, no. 6664, American Association for the Advancement of Science, 2023, pp. 1357–63, doi:10.1126/science.adh9059. short: J. Gemen, J.R. Church, T.-P. Ruoko, N. Durandin, M.J. Białek, M. Weissenfels, M. Feller, M. Kazes, V.A. Borin, M. Odaybat, R. Kalepu, Y. Diskin-Posner, D. Oron, M.J. Fuchter, A. Priimagi, I. Schapiro, R. Klajn, Science 381 (2023) 1357–1363. date_created: 2023-08-01T08:26:15Z date_published: 2023-09-22T00:00:00Z date_updated: 2023-10-03T08:11:26Z day: '22' department: - _id: RaKl doi: 10.1126/science.adh9059 intvolume: ' 381' issue: '6664' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.26434/chemrxiv-2023-gq2h0 month: '09' oa: 1 oa_version: Preprint page: 1357-1363 publication: Science publication_identifier: eissn: - 1095-9203 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: Disequilibrating azoarenes by visible-light sensitization under confinement type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 381 year: '2023' ...