--- _id: '11613' abstract: - lang: eng text: Over 2,000 stars were observed for 1 month with a high enough cadence in order to look for acoustic modes during the survey phase of the Kepler mission. Solar-like oscillations have been detected in about 540 stars. The question of why no oscillations were detected in the remaining stars is still open. Previous works explained the non-detection of modes with the high level of magnetic activity of the stars. However, the sample of stars studied contained some classical pulsators and red giants that could have biased the results. In this work, we revisit this analysis on a cleaner sample of main-sequence solar-like stars that consists of 1,014 stars. First we compute the predicted amplitude of the modes of that sample and for the stars with detected oscillation and compare it to the noise at high frequency in the power spectrum. We find that the stars with detected modes have an amplitude to noise ratio larger than 0.94. We measure reliable rotation periods and the associated photometric magnetic index for 684 stars out of the full sample and in particular for 323 stars where the amplitude of the modes is predicted to be high enough to be detected. We find that among these 323 stars 32% of them have a level of magnetic activity larger than the Sun during its maximum activity, explaining the non-detection of acoustic modes. Interestingly, magnetic activity cannot be the primary reason responsible for the absence of detectable modes in the remaining 68% of the stars without acoustic modes detected and with reliable rotation periods. Thus, we investigate metallicity, inclination angle of the rotation axis, and binarity as possible causes of low mode amplitudes. Using spectroscopic observations for a subsample, we find that a low metallicity could be the reason for suppressed modes. No clear correlation with binarity nor inclination is found. We also derive the lower limit for our photometric activity index (of 20–30 ppm) below which rotation and magnetic activity are not detected. Finally, with our analysis we conclude that stars with a photometric activity index larger than 2,000 ppm have 98.3% probability of not having oscillations detected. acknowledgement: This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Partly Based on observations obtained with the HERMES spectrograph on the Mercator Telescope, which was supported by the Research Foundation—Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany. SM acknowledges support by the National Aeronautics and Space Administration under Grant NNX15AF13G, by the National Science Foundation grant AST-1411685, and the Ramon y Cajal fellowship number RYC-2015-17697. RG acknowledges the support from PLATO and GOLF CNES grants. ÂS acknowledges the support from National Aeronautics and Space Administration under Grant NNX17AF27G. PB acknowledges the support of the MINECO under the fellowship program Juan de la Cierva Incorporacion (IJCI-2015-26034). article_number: '46' article_processing_charge: No article_type: original author: - first_name: Savita full_name: Mathur, Savita last_name: Mathur - first_name: Rafael A. full_name: García, Rafael A. last_name: García - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: Ângela R.G. full_name: Santos, Ângela R.G. last_name: Santos - first_name: Netsha full_name: Santiago, Netsha last_name: Santiago - first_name: Paul G. full_name: Beck, Paul G. last_name: Beck citation: ama: Mathur S, García RA, Bugnet LA, Santos ÂRG, Santiago N, Beck PG. Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. 2019;6. doi:10.3389/fspas.2019.00046 apa: Mathur, S., García, R. A., Bugnet, L. A., Santos, Â. R. G., Santiago, N., & Beck, P. G. (2019). Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. Frontiers Media. https://doi.org/10.3389/fspas.2019.00046 chicago: Mathur, Savita, Rafael A. García, Lisa Annabelle Bugnet, Ângela R.G. Santos, Netsha Santiago, and Paul G. Beck. “Revisiting the Impact of Stellar Magnetic Activity on the Detectability of Solar-like Oscillations by Kepler.” Frontiers in Astronomy and Space Sciences. Frontiers Media, 2019. https://doi.org/10.3389/fspas.2019.00046. ieee: S. Mathur, R. A. García, L. A. Bugnet, Â. R. G. Santos, N. Santiago, and P. G. Beck, “Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler,” Frontiers in Astronomy and Space Sciences, vol. 6. Frontiers Media, 2019. ista: Mathur S, García RA, Bugnet LA, Santos ÂRG, Santiago N, Beck PG. 2019. Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. 6, 46. mla: Mathur, Savita, et al. “Revisiting the Impact of Stellar Magnetic Activity on the Detectability of Solar-like Oscillations by Kepler.” Frontiers in Astronomy and Space Sciences, vol. 6, 46, Frontiers Media, 2019, doi:10.3389/fspas.2019.00046. short: S. Mathur, R.A. García, L.A. Bugnet, Â.R.G. Santos, N. Santiago, P.G. Beck, Frontiers in Astronomy and Space Sciences 6 (2019). date_created: 2022-07-18T14:00:36Z date_published: 2019-07-10T00:00:00Z date_updated: 2022-08-22T07:29:55Z day: '10' doi: 10.3389/fspas.2019.00046 extern: '1' external_id: arxiv: - '1907.01415' intvolume: ' 6' keyword: - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.01415 month: '07' oa: 1 oa_version: Preprint publication: Frontiers in Astronomy and Space Sciences publication_identifier: eissn: - 2296-987X publication_status: published publisher: Frontiers Media quality_controlled: '1' scopus_import: '1' status: public title: Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2019' ... --- _id: '11615' abstract: - lang: eng text: The recently published Kepler mission Data Release 25 (DR25) reported on ∼197 000 targets observed during the mission. Despite this, no wide search for red giants showing solar-like oscillations have been made across all stars observed in Kepler’s long-cadence mode. In this work, we perform this task using custom apertures on the Kepler pixel files and detect oscillations in 21 914 stars, representing the largest sample of solar-like oscillating stars to date. We measure their frequency at maximum power, νmax, down to νmax≃4μHz and obtain log (g) estimates with a typical uncertainty below 0.05 dex, which is superior to typical measurements from spectroscopy. Additionally, the νmax distribution of our detections show good agreement with results from a simulated model of the Milky Way, with a ratio of observed to predicted stars of 0.992 for stars with 10<νmax<270μHz. Among our red giant detections, we find 909 to be dwarf/subgiant stars whose flux signal is polluted by a neighbouring giant as a result of using larger photometric apertures than those used by the NASA Kepler science processing pipeline. We further find that only 293 of the polluting giants are known Kepler targets. The remainder comprises over 600 newly identified oscillating red giants, with many expected to belong to the Galactic halo, serendipitously falling within the Kepler pixel files of targeted stars. acknowledgement: Funding for this Discovery mission is provided by NASA’s Science mission Directorate. We thank the entire Kepler team without whom this investigation would not be possible. DS is the recipient of an Australian Research Council Future Fellowship (project number FT1400147). RAG acknowledges the support from CNES. SM acknowledges support from NASA grant NNX15AF13G, NSF grant AST-1411685, and the Ramon y Cajal fellowship number RYC-2015-17697. ILC acknowledges scholarship support from the University of Sydney. We would like to thank Nicholas Barbara and Timothy Bedding for providing us with a list of variable stars that helped to validate a number of detections in this study. We also thank the group at the University of Sydney for fruitful discussions. Finally, we gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. article_processing_charge: No article_type: original author: - first_name: Marc full_name: Hon, Marc last_name: Hon - first_name: Dennis full_name: Stello, Dennis last_name: Stello - first_name: Rafael A full_name: García, Rafael A last_name: García - first_name: Savita full_name: Mathur, Savita last_name: Mathur - first_name: Sanjib full_name: Sharma, Sanjib last_name: Sharma - first_name: Isabel L full_name: Colman, Isabel L last_name: Colman - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 citation: ama: Hon M, Stello D, García RA, et al. A search for red giant solar-like oscillations in all Kepler data. Monthly Notices of the Royal Astronomical Society. 2019;485(4):5616-5630. doi:10.1093/mnras/stz622 apa: Hon, M., Stello, D., García, R. A., Mathur, S., Sharma, S., Colman, I. L., & Bugnet, L. A. (2019). A search for red giant solar-like oscillations in all Kepler data. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stz622 chicago: Hon, Marc, Dennis Stello, Rafael A García, Savita Mathur, Sanjib Sharma, Isabel L Colman, and Lisa Annabelle Bugnet. “A Search for Red Giant Solar-like Oscillations in All Kepler Data.” Monthly Notices of the Royal Astronomical Society. Oxford University Press, 2019. https://doi.org/10.1093/mnras/stz622. ieee: M. Hon et al., “A search for red giant solar-like oscillations in all Kepler data,” Monthly Notices of the Royal Astronomical Society, vol. 485, no. 4. Oxford University Press, pp. 5616–5630, 2019. ista: Hon M, Stello D, García RA, Mathur S, Sharma S, Colman IL, Bugnet LA. 2019. A search for red giant solar-like oscillations in all Kepler data. Monthly Notices of the Royal Astronomical Society. 485(4), 5616–5630. mla: Hon, Marc, et al. “A Search for Red Giant Solar-like Oscillations in All Kepler Data.” Monthly Notices of the Royal Astronomical Society, vol. 485, no. 4, Oxford University Press, 2019, pp. 5616–30, doi:10.1093/mnras/stz622. short: M. Hon, D. Stello, R.A. García, S. Mathur, S. Sharma, I.L. Colman, L.A. Bugnet, Monthly Notices of the Royal Astronomical Society 485 (2019) 5616–5630. date_created: 2022-07-18T14:26:03Z date_published: 2019-06-01T00:00:00Z date_updated: 2022-08-22T07:35:19Z day: '01' doi: 10.1093/mnras/stz622 extern: '1' external_id: arxiv: - '1903.00115' intvolume: ' 485' issue: '4' keyword: - Space and Planetary Science - Astronomy and Astrophysics - asteroseismology - 'methods: data analysis' - 'techniques: image processing' - 'stars: oscillations' - 'stars: statistics' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.00115 month: '06' oa: 1 oa_version: Preprint page: 5616-5630 publication: Monthly Notices of the Royal Astronomical Society publication_identifier: eissn: - 1365-2966 issn: - 0035-8711 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: A search for red giant solar-like oscillations in all Kepler data type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 485 year: '2019' ... --- _id: '11614' abstract: - lang: eng text: The NASA Transiting Exoplanet Survey Satellite (TESS) is about to provide full-frame images of almost the entire sky. The amount of stellar data to be analysed represents hundreds of millions stars, which is several orders of magnitude more than the number of stars observed by the Convection, Rotation and planetary Transits satellite (CoRoT), and NASA Kepler and K2 missions. We aim at automatically classifying the newly observed stars with near real-time algorithms to better guide the subsequent detailed studies. In this paper, we present a classification algorithm built to recognise solar-like pulsators among classical pulsators. This algorithm relies on the global amount of power contained in the power spectral density (PSD), also known as the flicker in spectral power density (FliPer). Because each type of pulsating star has a characteristic background or pulsation pattern, the shape of the PSD at different frequencies can be used to characterise the type of pulsating star. The FliPer classifier (FliPerClass) uses different FliPer parameters along with the effective temperature as input parameters to feed a ML algorithm in order to automatically classify the pulsating stars observed by TESS. Using noisy TESS-simulated data from the TESS Asteroseismic Science Consortium (TASC), we classify pulsators with a 98% accuracy. Among them, solar-like pulsating stars are recognised with a 99% accuracy, which is of great interest for a further seismic analysis of these stars, which are like our Sun. Similar results are obtained when we trained our classifier and applied it to 27-day subsets of real Kepler data. FliPerClass is part of the large TASC classification pipeline developed by the TESS Data for Asteroseismology (T’DA) classification working group. acknowledgement: We thank the enitre T’DA team for useful comments and discussions, in particular Andrew Tkachenko. We also acknowledge Marc Hon, Keaton Bell, and James Kuszlewicz for useful comments on the manuscript. L.B. and R.A.G. acknowledge the support from PLATO and GOLF CNES grants. S.M. acknowledges support by the Ramon y Cajal fellowship number RYC-2015-17697. O.J.H. and B.M.R. acknowledge the support of the UK Science and Technology Facilities Council (STFC). M.N.L. acknowledges the support of the ESA PRODEX programme (PEA 4000119301). Funding for the Stellar Astrophysics Centre is provided by the Danish National Research Foundation (Grant DNRF106). article_number: A79 article_processing_charge: No article_type: original author: - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: R. A. full_name: García, R. A. last_name: García - first_name: S. full_name: Mathur, S. last_name: Mathur - first_name: G. R. full_name: Davies, G. R. last_name: Davies - first_name: O. J. full_name: Hall, O. J. last_name: Hall - first_name: M. N. full_name: Lund, M. N. last_name: Lund - first_name: B. M. full_name: Rendle, B. M. last_name: Rendle citation: ama: 'Bugnet LA, García RA, Mathur S, et al. FliPerClass: In search of solar-like pulsators among TESS targets. Astronomy & Astrophysics. 2019;624. doi:10.1051/0004-6361/201834780' apa: 'Bugnet, L. A., García, R. A., Mathur, S., Davies, G. R., Hall, O. J., Lund, M. N., & Rendle, B. M. (2019). FliPerClass: In search of solar-like pulsators among TESS targets. Astronomy & Astrophysics. EDP Science. https://doi.org/10.1051/0004-6361/201834780' chicago: 'Bugnet, Lisa Annabelle, R. A. García, S. Mathur, G. R. Davies, O. J. Hall, M. N. Lund, and B. M. Rendle. “FliPerClass: In Search of Solar-like Pulsators among TESS Targets.” Astronomy & Astrophysics. EDP Science, 2019. https://doi.org/10.1051/0004-6361/201834780.' ieee: 'L. A. Bugnet et al., “FliPerClass: In search of solar-like pulsators among TESS targets,” Astronomy & Astrophysics, vol. 624. EDP Science, 2019.' ista: 'Bugnet LA, García RA, Mathur S, Davies GR, Hall OJ, Lund MN, Rendle BM. 2019. FliPerClass: In search of solar-like pulsators among TESS targets. Astronomy & Astrophysics. 624, A79.' mla: 'Bugnet, Lisa Annabelle, et al. “FliPerClass: In Search of Solar-like Pulsators among TESS Targets.” Astronomy & Astrophysics, vol. 624, A79, EDP Science, 2019, doi:10.1051/0004-6361/201834780.' short: L.A. Bugnet, R.A. García, S. Mathur, G.R. Davies, O.J. Hall, M.N. Lund, B.M. Rendle, Astronomy & Astrophysics 624 (2019). date_created: 2022-07-18T14:13:34Z date_published: 2019-04-19T00:00:00Z date_updated: 2022-08-22T07:32:51Z day: '19' doi: 10.1051/0004-6361/201834780 extern: '1' external_id: arxiv: - '1902.09854' intvolume: ' 624' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.09854 month: '04' oa: 1 oa_version: Preprint publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Science quality_controlled: '1' scopus_import: '1' status: public title: 'FliPerClass: In search of solar-like pulsators among TESS targets' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 624 year: '2019' ... --- _id: '11623' abstract: - lang: eng text: Brightness variations due to dark spots on the stellar surface encode information about stellar surface rotation and magnetic activity. In this work, we analyze the Kepler long-cadence data of 26,521 main-sequence stars of spectral types M and K in order to measure their surface rotation and photometric activity level. Rotation-period estimates are obtained by the combination of a wavelet analysis and autocorrelation function of the light curves. Reliable rotation estimates are determined by comparing the results from the different rotation diagnostics and four data sets. We also measure the photometric activity proxy Sph using the amplitude of the flux variations on an appropriate timescale. We report rotation periods and photometric activity proxies for about 60% of the sample, including 4431 targets for which McQuillan et al. did not report a rotation period. For the common targets with rotation estimates in this study and in McQuillan et al., our rotation periods agree within 99%. In this work, we also identify potential polluters, such as misclassified red giants and classical pulsator candidates. Within the parameter range we study, there is a mild tendency for hotter stars to have shorter rotation periods. The photometric activity proxy spans a wider range of values with increasing effective temperature. The rotation period and photometric activity proxy are also related, with Sph being larger for fast rotators. Similar to McQuillan et al., we find a bimodal distribution of rotation periods. acknowledgement: "The authors thank Róbert Szabó Paul G. Beck, Katrien Kolenberg, and Isabel L. Colman for helping on the classification of stars. This paper includes data collected by the Kepler mission and obtained from the MAST data archive at the Space Telescope Science Institute (STScI). Funding for the Kepler mission is provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. A.R.G.S. acknowledges the support from NASA under grant NNX17AF27G. R.A.G. and L.B. acknowledge the support from PLATO and GOLF CNES grants. S.M. acknowledges the support from the Ramon y Cajal fellowship number RYC-2015-17697. T.S.M. acknowledges support from a Visiting Fellowship at the Max Planck Institute for Solar System Research. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.\r\n\r\nSoftware: KADACS (García et al. 2011), NumPy (van der Walt et al. 2011), SciPy (Jones et al. 2001), Matplotlib (Hunter 2007).\r\n\r\nFacilities: MAST - , Kepler Eclipsing Binary Catalog - , Exoplanet Archive. -" article_number: '21' article_processing_charge: No article_type: original author: - first_name: A. R. G. full_name: Santos, A. R. G. last_name: Santos - first_name: R. A. full_name: García, R. A. last_name: García - first_name: S. full_name: Mathur, S. last_name: Mathur - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: J. L. full_name: van Saders, J. L. last_name: van Saders - first_name: T. S. full_name: Metcalfe, T. S. last_name: Metcalfe - first_name: G. V. A. full_name: Simonian, G. V. A. last_name: Simonian - first_name: M. H. full_name: Pinsonneault, M. H. last_name: Pinsonneault citation: ama: Santos ARG, García RA, Mathur S, et al. Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars. The Astrophysical Journal Supplement Series. 2019;244(1). doi:10.3847/1538-4365/ab3b56 apa: Santos, A. R. G., García, R. A., Mathur, S., Bugnet, L. A., van Saders, J. L., Metcalfe, T. S., … Pinsonneault, M. H. (2019). Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars. The Astrophysical Journal Supplement Series. IOP Publishing. https://doi.org/10.3847/1538-4365/ab3b56 chicago: Santos, A. R. G., R. A. García, S. Mathur, Lisa Annabelle Bugnet, J. L. van Saders, T. S. Metcalfe, G. V. A. Simonian, and M. H. Pinsonneault. “Surface Rotation and Photometric Activity for Kepler Targets. I. M and K Main-Sequence Stars.” The Astrophysical Journal Supplement Series. IOP Publishing, 2019. https://doi.org/10.3847/1538-4365/ab3b56. ieee: A. R. G. Santos et al., “Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars,” The Astrophysical Journal Supplement Series, vol. 244, no. 1. IOP Publishing, 2019. ista: Santos ARG, García RA, Mathur S, Bugnet LA, van Saders JL, Metcalfe TS, Simonian GVA, Pinsonneault MH. 2019. Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars. The Astrophysical Journal Supplement Series. 244(1), 21. mla: Santos, A. R. G., et al. “Surface Rotation and Photometric Activity for Kepler Targets. I. M and K Main-Sequence Stars.” The Astrophysical Journal Supplement Series, vol. 244, no. 1, 21, IOP Publishing, 2019, doi:10.3847/1538-4365/ab3b56. short: A.R.G. Santos, R.A. García, S. Mathur, L.A. Bugnet, J.L. van Saders, T.S. Metcalfe, G.V.A. Simonian, M.H. Pinsonneault, The Astrophysical Journal Supplement Series 244 (2019). date_created: 2022-07-19T09:21:58Z date_published: 2019-09-19T00:00:00Z date_updated: 2022-08-22T08:10:38Z day: '19' doi: 10.3847/1538-4365/ab3b56 extern: '1' external_id: arxiv: - '1908.05222' intvolume: ' 244' issue: '1' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'methods: data analysis' - 'stars: activity' - 'stars: low-mass' - 'stars: rotation' - starspots - 'techniques: photometric' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.05222 month: '09' oa: 1 oa_version: Preprint publication: The Astrophysical Journal Supplement Series publication_identifier: issn: - 0067-0049 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 244 year: '2019' ... --- _id: '11627' abstract: - lang: eng text: 'For a solar-like star, the surface rotation evolves with time, allowing in principle to estimate the age of a star from its surface rotation period. Here we are interested in measuring surface rotation periods of solar-like stars observed by the NASA mission Kepler. Different methods have been developed to track rotation signals in Kepler photometric light curves: time-frequency analysis based on wavelet techniques, autocorrelation and composite spectrum. We use the learning abilities of random forest classifiers to take decisions during two crucial steps of the analysis. First, given some input parameters, we discriminate the considered Kepler targets between rotating MS stars, non-rotating MS stars, red giants, binaries and pulsators. We then use a second classifier only on the MS rotating targets to decide the best data analysis treatment.' article_number: '1906.09609' article_processing_charge: No author: - first_name: S. N. full_name: Breton, S. N. last_name: Breton - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: A. R. G. full_name: Santos, A. R. G. last_name: Santos - first_name: A. Le full_name: Saux, A. Le last_name: Saux - first_name: S. full_name: Mathur, S. last_name: Mathur - first_name: P. L. full_name: Palle, P. L. last_name: Palle - first_name: R. A. full_name: Garcia, R. A. last_name: Garcia citation: ama: Breton SN, Bugnet LA, Santos ARG, et al. Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques. arXiv. doi:10.48550/arXiv.1906.09609 apa: Breton, S. N., Bugnet, L. A., Santos, A. R. G., Saux, A. L., Mathur, S., Palle, P. L., & Garcia, R. A. (n.d.). Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques. arXiv. https://doi.org/10.48550/arXiv.1906.09609 chicago: Breton, S. N., Lisa Annabelle Bugnet, A. R. G. Santos, A. Le Saux, S. Mathur, P. L. Palle, and R. A. Garcia. “Determining Surface Rotation Periods of Solar-like Stars Observed by the Kepler Mission Using Machine Learning Techniques.” ArXiv, n.d. https://doi.org/10.48550/arXiv.1906.09609. ieee: S. N. Breton et al., “Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques,” arXiv. . ista: Breton SN, Bugnet LA, Santos ARG, Saux AL, Mathur S, Palle PL, Garcia RA. Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques. arXiv, 1906.09609. mla: Breton, S. N., et al. “Determining Surface Rotation Periods of Solar-like Stars Observed by the Kepler Mission Using Machine Learning Techniques.” ArXiv, 1906.09609, doi:10.48550/arXiv.1906.09609. short: S.N. Breton, L.A. Bugnet, A.R.G. Santos, A.L. Saux, S. Mathur, P.L. Palle, R.A. Garcia, ArXiv (n.d.). date_created: 2022-07-20T11:18:53Z date_published: 2019-06-23T00:00:00Z date_updated: 2022-08-22T08:16:53Z day: '23' doi: 10.48550/arXiv.1906.09609 extern: '1' external_id: arxiv: - '1906.09609' keyword: - asteroseismology - rotation - solar-like stars - kepler - machine learning - random forest language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1906.09609 month: '06' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted status: public title: Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ...