--- _id: '7629' abstract: - lang: eng text: "This thesis is based on three main topics: In the first part, we study convergence of discrete gradient flow structures associated with regular finite-volume discretisations of Fokker-Planck equations. We show evolutionary I convergence of the discrete gradient flows to the L2-Wasserstein gradient flow corresponding to the solution of a Fokker-Planck\r\nequation in arbitrary dimension d >= 1. Along the argument, we prove Mosco- and I-convergence results for discrete energy functionals, which are of independent interest for convergence of equivalent gradient flow structures in Hilbert spaces.\r\nThe second part investigates L2-Wasserstein flows on metric graph. The starting point is a Benamou-Brenier formula for the L2-Wasserstein distance, which is proved via a regularisation scheme for solutions of the continuity equation, adapted to the peculiar geometric structure of metric graphs. Based on those results, we show that the L2-Wasserstein space over a metric graph admits a gradient flow which may be identified as a solution of a Fokker-Planck equation.\r\nIn the third part, we focus again on the discrete gradient flows, already encountered in the first part. We propose a variational structure which extends the gradient flow structure to Markov chains violating the detailed-balance conditions. Using this structure, we characterise contraction estimates for the discrete heat flow in terms of convexity of\r\ncorresponding path-dependent energy functionals. In addition, we use this approach to derive several functional inequalities for said functionals." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dominik L full_name: Forkert, Dominik L id: 35C79D68-F248-11E8-B48F-1D18A9856A87 last_name: Forkert citation: ama: Forkert DL. Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains. 2020. doi:10.15479/AT:ISTA:7629 apa: Forkert, D. L. (2020). Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7629 chicago: Forkert, Dominik L. “Gradient Flows in Spaces of Probability Measures for Finite-Volume Schemes, Metric Graphs and Non-Reversible Markov Chains.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7629. ieee: D. L. Forkert, “Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains,” Institute of Science and Technology Austria, 2020. ista: Forkert DL. 2020. Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains. Institute of Science and Technology Austria. mla: Forkert, Dominik L. Gradient Flows in Spaces of Probability Measures for Finite-Volume Schemes, Metric Graphs and Non-Reversible Markov Chains. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7629. short: D.L. Forkert, Gradient Flows in Spaces of Probability Measures for Finite-Volume Schemes, Metric Graphs and Non-Reversible Markov Chains, Institute of Science and Technology Austria, 2020. date_created: 2020-04-02T06:40:23Z date_published: 2020-03-31T00:00:00Z date_updated: 2023-09-07T13:03:12Z day: '31' ddc: - '510' degree_awarded: PhD department: - _id: JaMa doi: 10.15479/AT:ISTA:7629 ec_funded: 1 file: - access_level: open_access checksum: c814a1a6195269ca6fe48b0dca45ae8a content_type: application/pdf creator: dernst date_created: 2020-04-14T10:47:59Z date_updated: 2020-07-14T12:48:01Z file_id: '7657' file_name: Thesis_Forkert_PDFA.pdf file_size: 3297129 relation: main_file - access_level: closed checksum: ceafb53f923d1b5bdf14b2b0f22e4a81 content_type: application/x-zip-compressed creator: dernst date_created: 2020-04-14T10:47:59Z date_updated: 2020-07-14T12:48:01Z file_id: '7658' file_name: Thesis_Forkert_source.zip file_size: 1063908 relation: source_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '154' project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Jan full_name: Maas, Jan id: 4C5696CE-F248-11E8-B48F-1D18A9856A87 last_name: Maas orcid: 0000-0002-0845-1338 title: Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8574' abstract: - lang: eng text: "This thesis concerns itself with the interactions of evolutionary and ecological forces and the consequences on genetic diversity and the ultimate survival of populations. It is important to understand what signals processes \r\nleave on the genome and what we can infer from such data, which is usually abundant but noisy. Furthermore, understanding how and when populations adapt or go extinct is important for practical purposes, such as the genetic management of populations, as well as for theoretical questions, since local adaptation can be the first step toward speciation. \r\nIn Chapter 2, we introduce the method of maximum entropy to approximate the demographic changes of a population in a simple setting, namely the logistic growth model with immigration. We show that this method is not only a powerful \r\ntool in physics but can be gainfully applied in an ecological framework. We investigate how well it approximates the real \r\nbehavior of the system, and find that is does so, even in unexpected situations. Finally, we illustrate how it can model changing environments.\r\nIn Chapter 3, we analyze the co-evolution of allele frequencies and population sizes in an infinite island model.\r\nWe give conditions under which polygenic adaptation to a rare habitat is possible. The model we use is based on the diffusion approximation, considers eco-evolutionary feedback mechanisms (hard selection), and treats both \r\ndrift and environmental fluctuations explicitly. We also look at limiting scenarios, for which we derive analytical expressions. \r\nIn Chapter 4, we present a coalescent based simulation tool to obtain patterns of diversity in a spatially explicit subdivided population, in which the demographic history of each subpopulation can be specified. We compare \r\nthe results to existing predictions, and explore the relative importance of time and space under a variety of spatial arrangements and demographic histories, such as expansion and extinction. \r\nIn the last chapter, we give a brief outlook to further research. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Eniko full_name: Szep, Eniko id: 485BB5A4-F248-11E8-B48F-1D18A9856A87 last_name: Szep citation: ama: Szep E. Local adaptation in metapopulations. 2020. doi:10.15479/AT:ISTA:8574 apa: Szep, E. (2020). Local adaptation in metapopulations. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8574 chicago: Szep, Eniko. “Local Adaptation in Metapopulations.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8574. ieee: E. Szep, “Local adaptation in metapopulations,” Institute of Science and Technology Austria, 2020. ista: Szep E. 2020. Local adaptation in metapopulations. Institute of Science and Technology Austria. mla: Szep, Eniko. Local Adaptation in Metapopulations. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8574. short: E. Szep, Local Adaptation in Metapopulations, Institute of Science and Technology Austria, 2020. date_created: 2020-09-28T07:33:38Z date_published: 2020-09-20T00:00:00Z date_updated: 2023-09-07T13:11:39Z day: '20' ddc: - '570' degree_awarded: PhD department: - _id: NiBa doi: 10.15479/AT:ISTA:8574 file: - access_level: open_access checksum: 20e71f015fbbd78fea708893ad634ed0 content_type: application/pdf creator: dernst date_created: 2020-09-28T07:25:35Z date_updated: 2020-09-28T07:25:35Z file_id: '8575' file_name: thesis_EnikoSzep_final.pdf file_size: 6354833 relation: main_file success: 1 - access_level: closed checksum: a8de2c14a1bb4e53c857787efbb289e1 content_type: application/x-zip-compressed creator: dernst date_created: 2020-09-28T07:25:37Z date_updated: 2020-09-28T07:25:37Z file_id: '8576' file_name: thesisFiles_EnikoSzep.zip file_size: 23020401 relation: source_file file_date_updated: 2020-09-28T07:25:37Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '158' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Local adaptation in metapopulations type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7514' abstract: - lang: eng text: "We study the interacting homogeneous Bose gas in two spatial dimensions in the thermodynamic limit at fixed density. We shall be concerned with some mathematical aspects of this complicated problem in many-body quantum mechanics. More specifically, we consider the dilute limit where the scattering length of the interaction potential, which is a measure for the effective range of the potential, is small compared to the average distance between the particles. We are interested in a setting with positive (i.e., non-zero) temperature. After giving a survey of the relevant literature in the field, we provide some facts and examples to set expectations for the two-dimensional system. The crucial difference to the three-dimensional system is that there is no Bose–Einstein condensate at positive temperature due to the Hohenberg–Mermin–Wagner theorem. However, it turns out that an asymptotic formula for the free energy holds similarly to the three-dimensional case.\r\nWe motivate this formula by considering a toy model with δ interaction potential. By restricting this model Hamiltonian to certain trial states with a quasi-condensate we obtain an upper bound for the free energy that still has the quasi-condensate fraction as a free parameter. When minimizing over the quasi-condensate fraction, we obtain the Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity, which plays an important role in our rigorous contribution. The mathematically rigorous result that we prove concerns the specific free energy in the dilute limit. We give upper and lower bounds on the free energy in terms of the free energy of the non-interacting system and a correction term coming from the interaction. Both bounds match and thus we obtain the leading term of an asymptotic approximation in the dilute limit, provided the thermal wavelength of the particles is of the same order (or larger) than the average distance between the particles. The remarkable feature of this result is its generality: the correction term depends on the interaction potential only through its scattering length and it holds for all nonnegative interaction potentials with finite scattering length that are measurable. In particular, this allows to model an interaction of hard disks." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Simon full_name: Mayer, Simon id: 30C4630A-F248-11E8-B48F-1D18A9856A87 last_name: Mayer citation: ama: Mayer S. The free energy of a dilute two-dimensional Bose gas. 2020. doi:10.15479/AT:ISTA:7514 apa: Mayer, S. (2020). The free energy of a dilute two-dimensional Bose gas. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7514 chicago: Mayer, Simon. “The Free Energy of a Dilute Two-Dimensional Bose Gas.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7514. ieee: S. Mayer, “The free energy of a dilute two-dimensional Bose gas,” Institute of Science and Technology Austria, 2020. ista: Mayer S. 2020. The free energy of a dilute two-dimensional Bose gas. Institute of Science and Technology Austria. mla: Mayer, Simon. The Free Energy of a Dilute Two-Dimensional Bose Gas. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7514. short: S. Mayer, The Free Energy of a Dilute Two-Dimensional Bose Gas, Institute of Science and Technology Austria, 2020. date_created: 2020-02-24T09:17:27Z date_published: 2020-02-24T00:00:00Z date_updated: 2023-09-07T13:12:42Z day: '24' ddc: - '510' degree_awarded: PhD department: - _id: RoSe - _id: GradSch doi: 10.15479/AT:ISTA:7514 ec_funded: 1 file: - access_level: open_access checksum: b4de7579ddc1dbdd44ff3f17c48395f6 content_type: application/pdf creator: dernst date_created: 2020-02-24T09:15:06Z date_updated: 2020-07-14T12:47:59Z file_id: '7515' file_name: thesis.pdf file_size: 1563429 relation: main_file - access_level: closed checksum: ad7425867b52d7d9e72296e87bc9cb67 content_type: application/x-zip-compressed creator: dernst date_created: 2020-02-24T09:15:16Z date_updated: 2020-07-14T12:47:59Z file_id: '7516' file_name: thesis_source.zip file_size: 2028038 relation: source_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '02' oa: 1 oa_version: Published Version page: '148' project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7524' relation: part_of_dissertation status: public status: public supervisor: - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 title: The free energy of a dilute two-dimensional Bose gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8353' abstract: - lang: eng text: "Mrp (Multi resistance and pH adaptation) are broadly distributed secondary active antiporters that catalyze the transport of monovalent ions such as sodium and potassium outside of the cell coupled to the inward translocation of protons. Mrp antiporters are unique in a way that they are composed of seven subunits (MrpABCDEFG) encoded in a single operon, whereas other antiporters catalyzing the same reaction are mostly encoded by a single gene. Mrp exchangers are crucial for intracellular pH homeostasis and Na+ efflux, essential mechanisms for H+ uptake under alkaline environments and for reduction of the intracellular concentration of toxic cations. Mrp displays no homology to any other monovalent Na+(K+)/H+ antiporters but Mrp subunits have primary sequence similarity to essential redox-driven proton pumps, such as respiratory complex I and membrane-bound hydrogenases. This similarity reinforces the hypothesis that these present day redox-driven proton pumps are descended from the Mrp antiporter. The Mrp structure serves as a model to understand the yet obscure coupling mechanism between ion or electron transfer and proton translocation in this large group of proteins. In the thesis, I am presenting the purification, biochemical analysis, cryo-EM analysis and molecular structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. Numerous conditions were screened to purify Mrp to high homogeneity and to obtain an appropriate distribution of single particles on cryo-EM grids covered with a continuous layer of ultrathin carbon. A preferred particle orientation problem was solved by performing a tilted data collection. The activity assays showed the specific pH-dependent\r\nprofile of secondary active antiporters. The molecular structure shows that Mrp is a dimer of seven-subunit protomers with 50 trans-membrane helices each. The dimer interface is built by many short and tilted transmembrane helices, probably causing a thinning of the bacterial membrane. The surface charge distribution shows an extraordinary asymmetry within each monomer, revealing presumable proton and sodium translocation pathways. The two largest\r\nand homologous Mrp subunits MrpA and MrpD probably translocate one proton each into the cell. The sodium ion is likely being translocated in the opposite direction within the small subunits along a ladder of charged and conserved residues. Based on the structure, we propose a mechanism were the antiport activity is accomplished via electrostatic interactions between the charged cations and key charged residues. The flexible key TM helices coordinate these\r\nelectrostatic interactions, while the membrane thinning between the monomers enables the translocation of sodium across the charged membrane. The entire family of redox-driven proton pumps is likely to perform their mechanism in a likewise manner." acknowledged_ssus: - _id: LifeSc - _id: EM-Fac - _id: ScienComp acknowledgement: "I acknowledge the scientific service units of the IST Austria for providing resources by the Life Science Facility, the Electron Microscopy Facility and the high-performance computer cluster. Special thanks to the cryo-EM specialists Valentin Hodirnau and Daniel Johann Gütl for spending many hours with me in front of the microscope and for supporting me to collect the data presented here. I also want to thank Professor Masahiro Ito for providing plasmid DNA\r\nencoding Mrp from Anoxybacillus flavithermus WK1. I am a recipient of a DOC Fellowship of the Austrian Academy of Sciences." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Julia full_name: Steiner, Julia id: 3BB67EB0-F248-11E8-B48F-1D18A9856A87 last_name: Steiner orcid: 0000-0003-0493-3775 citation: ama: Steiner J. Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. 2020. doi:10.15479/AT:ISTA:8353 apa: Steiner, J. (2020). Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8353 chicago: Steiner, Julia. “Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8353. ieee: J. Steiner, “Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I,” Institute of Science and Technology Austria, 2020. ista: Steiner J. 2020. Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. Institute of Science and Technology Austria. mla: Steiner, Julia. Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8353. short: J. Steiner, Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I, Institute of Science and Technology Austria, 2020. date_created: 2020-09-09T14:27:01Z date_published: 2020-09-09T00:00:00Z date_updated: 2023-09-07T13:14:09Z day: '09' ddc: - '572' degree_awarded: PhD department: - _id: LeSa doi: 10.15479/AT:ISTA:8353 file: - access_level: open_access checksum: 2388d7e6e7a4d364c096fa89f305c3de content_type: application/pdf creator: jsteiner date_created: 2020-09-09T14:22:35Z date_updated: 2021-09-16T12:40:56Z file_id: '8354' file_name: Thesis_Julia_Steiner_pdfA.pdf file_size: 117547589 relation: main_file - access_level: closed checksum: ba112f957b7145462d0ab79044873ee9 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jsteiner date_created: 2020-09-09T14:23:25Z date_updated: 2020-09-15T08:48:37Z file_id: '8355' file_name: Thesis_Julia_Steiner.docx file_size: 223328668 relation: source_file file_date_updated: 2021-09-16T12:40:56Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: None page: '191' project: - _id: 26169496-B435-11E9-9278-68D0E5697425 grant_number: '24741' name: Revealing the functional mechanism of Mrp antiporter, an ancestor of complex I publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8284' relation: part_of_dissertation status: public status: public supervisor: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 title: Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8589' abstract: - lang: eng text: The plant hormone auxin plays indispensable roles in plant growth and development. An essential level of regulation in auxin action is the directional auxin transport within cells. The establishment of auxin gradient in plant tissue has been attributed to local auxin biosynthesis and directional intercellular auxin transport, which both are controlled by various environmental and developmental signals. It is well established that asymmetric auxin distribution in cells is achieved by polarly localized PIN-FORMED (PIN) auxin efflux transporters. Despite the initial insights into cellular mechanisms of PIN polarization obtained from the last decades, the molecular mechanism and specific regulators mediating PIN polarization remains elusive. In this thesis, we aim to find novel players in PIN subcellular polarity regulation during Arabidopsis development. We first characterize the physiological effect of piperonylic acid (PA) on Arabidopsis hypocotyl gravitropic bending and PIN polarization. Secondly, we reveal the importance of SCFTIR1/AFB auxin signaling pathway in shoot gravitropism bending termination. In addition, we also explore the role of myosin XI complex, and actin cytoskeleton in auxin feedback regulation on PIN polarity. In Chapter 1, we give an overview of the current knowledge about PIN-mediated auxin fluxes in various plant tropic responses. In Chapter 2, we study the physiological effect of PA on shoot gravitropic bending. Our results show that PA treatment inhibits auxin-mediated PIN3 repolarization by interfering with PINOID and PIN3 phosphorylation status, ultimately leading to hyperbending hypocotyls. In Chapter 3, we provide evidence to show that the SCFTIR1/AFB nuclear auxin signaling pathway is crucial and required for auxin-mediated PIN3 repolarization and shoot gravitropic bending termination. In Chapter 4, we perform a phosphoproteomics approach and identify the motor protein Myosin XI and its binding protein, the MadB2 family, as an essential regulator of PIN polarity for auxin-canalization related developmental processes. In Chapter 5, we demonstrate the vital role of actin cytoskeleton in auxin feedback on PIN polarity by regulating PIN subcellular trafficking. Overall, the data presented in this PhD thesis brings novel insights into the PIN polar localization regulation that resulted in the (re)establishment of the polar auxin flow and gradient in response to environmental stimuli during plant development. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: I also want to thank the China Scholarship Council for supporting my study during the year from 2015 to 2019. I also want to thank IST facilities – the Bioimaging facility, the media kitchen, the plant facility and all of the campus services, for their support. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han citation: ama: Han H. Novel insights into PIN polarity regulation during Arabidopsis development. 2020. doi:10.15479/AT:ISTA:8589 apa: Han, H. (2020). Novel insights into PIN polarity regulation during Arabidopsis development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8589 chicago: Han, Huibin. “Novel Insights into PIN Polarity Regulation during Arabidopsis Development.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8589. ieee: H. Han, “Novel insights into PIN polarity regulation during Arabidopsis development,” Institute of Science and Technology Austria, 2020. ista: Han H. 2020. Novel insights into PIN polarity regulation during Arabidopsis development. Institute of Science and Technology Austria. mla: Han, Huibin. Novel Insights into PIN Polarity Regulation during Arabidopsis Development. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8589. short: H. Han, Novel Insights into PIN Polarity Regulation during Arabidopsis Development, Institute of Science and Technology Austria, 2020. date_created: 2020-09-30T14:50:51Z date_published: 2020-09-30T00:00:00Z date_updated: 2023-09-07T13:13:05Z day: '30' ddc: - '580' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:8589 file: - access_level: closed checksum: c4bda1947d4c09c428ac9ce667b02327 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2020-09-30T14:50:20Z date_updated: 2020-09-30T14:50:20Z file_id: '8590' file_name: 2020_Han_Thesis.docx file_size: 49198118 relation: source_file - access_level: open_access checksum: 3f4f5d1718c2230adf30639ecaf8a00b content_type: application/pdf creator: dernst date_created: 2020-09-30T14:49:59Z date_updated: 2021-10-01T13:33:02Z file_id: '8591' file_name: 2020_Han_Thesis.pdf file_size: 15513963 relation: main_file file_date_updated: 2021-10-01T13:33:02Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '164' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7643' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Novel insights into PIN polarity regulation during Arabidopsis development type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ...