--- _id: '7697' abstract: - lang: eng text: "* Morphogenesis and adaptive tropic growth in plants depend on gradients of the phytohormone auxin, mediated by the membrane‐based PIN‐FORMED (PIN) auxin transporters. PINs localize to a particular side of the plasma membrane (PM) or to the endoplasmic reticulum (ER) to directionally transport auxin and maintain intercellular and intracellular auxin homeostasis, respectively. However, the molecular cues that confer their diverse cellular localizations remain largely unknown.\r\n* In this study, we systematically swapped the domains between ER‐ and PM‐localized PIN proteins, as well as between apical and basal PM‐localized PINs from Arabidopsis thaliana , to shed light on why PIN family members with similar topological structures reside at different membrane compartments within cells.\r\n* Our results show that not only do the N‐ and C‐terminal transmembrane domains (TMDs) and central hydrophilic loop contribute to their differential subcellular localizations and cellular polarity, but that the pairwise‐matched N‐ and C‐terminal TMDs resulting from intramolecular domain–domain coevolution are also crucial for their divergent patterns of localization.\r\n* These findings illustrate the complexity of the evolutionary path of PIN proteins in acquiring their plethora of developmental functions and adaptive growth in plants." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Corinna full_name: Hartinger, Corinna id: AEFB2266-8ABF-11EA-AA39-812C3623CBE4 last_name: Hartinger orcid: 0000-0003-1618-2737 - first_name: Xiaojuan full_name: Wang, Xiaojuan last_name: Wang - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang Y, Hartinger C, Wang X, Friml J. Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters. New Phytologist. 2020;227(5):1406-1416. doi:10.1111/nph.16629 apa: Zhang, Y., Hartinger, C., Wang, X., & Friml, J. (2020). Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters. New Phytologist. Wiley. https://doi.org/10.1111/nph.16629 chicago: Zhang, Yuzhou, Corinna Hartinger, Xiaojuan Wang, and Jiří Friml. “Directional Auxin Fluxes in Plants by Intramolecular Domain‐domain Co‐evolution of PIN Auxin Transporters.” New Phytologist. Wiley, 2020. https://doi.org/10.1111/nph.16629. ieee: Y. Zhang, C. Hartinger, X. Wang, and J. Friml, “Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters,” New Phytologist, vol. 227, no. 5. Wiley, pp. 1406–1416, 2020. ista: Zhang Y, Hartinger C, Wang X, Friml J. 2020. Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters. New Phytologist. 227(5), 1406–1416. mla: Zhang, Yuzhou, et al. “Directional Auxin Fluxes in Plants by Intramolecular Domain‐domain Co‐evolution of PIN Auxin Transporters.” New Phytologist, vol. 227, no. 5, Wiley, 2020, pp. 1406–16, doi:10.1111/nph.16629. short: Y. Zhang, C. Hartinger, X. Wang, J. Friml, New Phytologist 227 (2020) 1406–1416. date_created: 2020-04-30T08:43:29Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-09-05T15:46:04Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.16629 ec_funded: 1 external_id: isi: - '000534092400001' pmid: - '32350870' file: - access_level: open_access checksum: 8e8150dbbba8cb65b72f81d1f0864b8b content_type: application/pdf creator: dernst date_created: 2020-11-24T12:19:38Z date_updated: 2020-11-24T12:19:38Z file_id: '8799' file_name: 2020_09_NewPhytologist_Zhang.pdf file_size: 3643395 relation: main_file success: 1 file_date_updated: 2020-11-24T12:19:38Z has_accepted_license: '1' intvolume: ' 227' isi: 1 issue: '5' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version page: 1406-1416 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 227 year: '2020' ... --- _id: '8765' abstract: - lang: eng text: This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly‐shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re‐use popular isotropic plasticity models like the Drucker‐Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate. acknowledged_ssus: - _id: ScienComp acknowledgement: "We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. We would also like to thank Joseph Teran and Chenfanfu Jiang for the helpful discussions.\r\nThis project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No. 638176." article_processing_charge: No article_type: original author: - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Schreck C, Wojtan C. A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum. 2020;39(2):89-99. doi:10.1111/cgf.13914 apa: Schreck, C., & Wojtan, C. (2020). A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.13914 chicago: Schreck, Camille, and Chris Wojtan. “A Practical Method for Animating Anisotropic Elastoplastic Materials.” Computer Graphics Forum. Wiley, 2020. https://doi.org/10.1111/cgf.13914. ieee: C. Schreck and C. Wojtan, “A practical method for animating anisotropic elastoplastic materials,” Computer Graphics Forum, vol. 39, no. 2. Wiley, pp. 89–99, 2020. ista: Schreck C, Wojtan C. 2020. A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum. 39(2), 89–99. mla: Schreck, Camille, and Chris Wojtan. “A Practical Method for Animating Anisotropic Elastoplastic Materials.” Computer Graphics Forum, vol. 39, no. 2, Wiley, 2020, pp. 89–99, doi:10.1111/cgf.13914. short: C. Schreck, C. Wojtan, Computer Graphics Forum 39 (2020) 89–99. date_created: 2020-11-17T09:35:10Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-09-05T16:00:13Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.13914 ec_funded: 1 external_id: isi: - '000548709600008' file: - access_level: open_access checksum: 7605f605acd84d0942b48bc7a1c2d72e content_type: application/pdf creator: dernst date_created: 2020-11-23T09:05:13Z date_updated: 2020-11-23T09:05:13Z file_id: '8796' file_name: 2020_poff_revisited.pdf file_size: 38969122 relation: main_file success: 1 file_date_updated: 2020-11-23T09:05:13Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '2' keyword: - Computer Networks and Communications language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 89-99 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: A practical method for animating anisotropic elastoplastic materials type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 39 year: '2020' ... --- _id: '8057' abstract: - lang: eng text: Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities approaching 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of ‘free’ and ‘bound’ water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability. article_processing_charge: No article_type: original author: - first_name: Roza full_name: Bouchal, Roza last_name: Bouchal - first_name: Zhujie full_name: Li, Zhujie last_name: Li - first_name: Chandra full_name: Bongu, Chandra last_name: Bongu - first_name: Steven full_name: Le Vot, Steven last_name: Le Vot - first_name: Romain full_name: Berthelot, Romain last_name: Berthelot - first_name: Benjamin full_name: Rotenberg, Benjamin last_name: Rotenberg - first_name: Frederic full_name: Favier, Frederic last_name: Favier - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 - first_name: Mathieu full_name: Salanne, Mathieu last_name: Salanne - first_name: Olivier full_name: Fontaine, Olivier last_name: Fontaine citation: ama: Bouchal R, Li Z, Bongu C, et al. Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte. Angewandte Chemie. 2020;132(37):16047-16051. doi:10.1002/ange.202005378 apa: Bouchal, R., Li, Z., Bongu, C., Le Vot, S., Berthelot, R., Rotenberg, B., … Fontaine, O. (2020). Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte. Angewandte Chemie. Wiley. https://doi.org/10.1002/ange.202005378 chicago: Bouchal, Roza, Zhujie Li, Chandra Bongu, Steven Le Vot, Romain Berthelot, Benjamin Rotenberg, Frederic Favier, Stefan Alexander Freunberger, Mathieu Salanne, and Olivier Fontaine. “Competitive Salt Precipitation/Dissolution during Free‐water Reduction in Water‐in‐salt Electrolyte.” Angewandte Chemie. Wiley, 2020. https://doi.org/10.1002/ange.202005378. ieee: R. Bouchal et al., “Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte,” Angewandte Chemie, vol. 132, no. 37. Wiley, pp. 16047–16051, 2020. ista: Bouchal R, Li Z, Bongu C, Le Vot S, Berthelot R, Rotenberg B, Favier F, Freunberger SA, Salanne M, Fontaine O. 2020. Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte. Angewandte Chemie. 132(37), 16047–16051. mla: Bouchal, Roza, et al. “Competitive Salt Precipitation/Dissolution during Free‐water Reduction in Water‐in‐salt Electrolyte.” Angewandte Chemie, vol. 132, no. 37, Wiley, 2020, pp. 16047–51, doi:10.1002/ange.202005378. short: R. Bouchal, Z. Li, C. Bongu, S. Le Vot, R. Berthelot, B. Rotenberg, F. Favier, S.A. Freunberger, M. Salanne, O. Fontaine, Angewandte Chemie 132 (2020) 16047–16051. date_created: 2020-06-29T16:15:49Z date_published: 2020-09-07T00:00:00Z date_updated: 2023-09-05T15:47:50Z day: '07' ddc: - '540' - '541' department: - _id: StFr doi: 10.1002/ange.202005378 file: - access_level: open_access checksum: 7dd0a56f6bd5de08ea75b1ec388c91bc content_type: application/pdf creator: dernst date_created: 2020-09-17T08:59:43Z date_updated: 2020-09-17T08:59:43Z file_id: '8401' file_name: 2020_AngChemieDE_Bouchal.pdf file_size: 1904552 relation: main_file success: 1 file_date_updated: 2020-09-17T08:59:43Z has_accepted_license: '1' intvolume: ' 132' issue: '37' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 16047-16051 publication: Angewandte Chemie publication_identifier: eissn: - 1521-3757 issn: - 0044-8249 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 132 year: '2020' ... --- _id: '7343' abstract: - lang: eng text: Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level. acknowledged_ssus: - _id: LifeSc acknowledgement: "We thank Bernhardt Steinwender and Jorgen Eilenberg for the fungal strains, Xavier Espadaler, Mireia Diaz, Christiane Wanke, Lumi Viljakainen and the Social Immunity Team at IST Austria, for help with ant collection, and Wanda Gorecka and Gertraud Stift of the IST Austria Life Science Facility for technical support. We are thankful to Dieter Ebert for input at all stages of the project, Roger Mundry for statistical advice, Hinrich Schulenburg, Paul Schmid-Hempel, Yuko\r\nUlrich and Joachim Kurtz for project discussion, Bor Kavcic for advice on growth curves, Marcus Roper for advice on modelling work and comments on the manuscript, as well as Marjon de Vos, Weini Huang and the Social Immunity Team for comments on the manuscript.\r\nThis study was funded by the German Research Foundation (DFG) within the Priority Programme 1399 Host-parasite Coevolution (CR 118/3 to S.C.) and the People Programme\r\n(Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 291734 (ISTFELLOW to B.M.). " article_processing_charge: Yes (via OA deal) article_type: letter_note author: - first_name: Barbara full_name: Milutinovic, Barbara id: 2CDC32B8-F248-11E8-B48F-1D18A9856A87 last_name: Milutinovic orcid: 0000-0002-8214-4758 - first_name: Miriam full_name: Stock, Miriam id: 42462816-F248-11E8-B48F-1D18A9856A87 last_name: Stock - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Elisabeth full_name: Naderlinger, Elisabeth id: 31757262-F248-11E8-B48F-1D18A9856A87 last_name: Naderlinger - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Milutinovic B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. Social immunity modulates competition between coinfecting pathogens. Ecology Letters. 2020;23(3):565-574. doi:10.1111/ele.13458 apa: Milutinovic, B., Stock, M., Grasse, A. V., Naderlinger, E., Hilbe, C., & Cremer, S. (2020). Social immunity modulates competition between coinfecting pathogens. Ecology Letters. Wiley. https://doi.org/10.1111/ele.13458 chicago: Milutinovic, Barbara, Miriam Stock, Anna V Grasse, Elisabeth Naderlinger, Christian Hilbe, and Sylvia Cremer. “Social Immunity Modulates Competition between Coinfecting Pathogens.” Ecology Letters. Wiley, 2020. https://doi.org/10.1111/ele.13458. ieee: B. Milutinovic, M. Stock, A. V. Grasse, E. Naderlinger, C. Hilbe, and S. Cremer, “Social immunity modulates competition between coinfecting pathogens,” Ecology Letters, vol. 23, no. 3. Wiley, pp. 565–574, 2020. ista: Milutinovic B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. 2020. Social immunity modulates competition between coinfecting pathogens. Ecology Letters. 23(3), 565–574. mla: Milutinovic, Barbara, et al. “Social Immunity Modulates Competition between Coinfecting Pathogens.” Ecology Letters, vol. 23, no. 3, Wiley, 2020, pp. 565–74, doi:10.1111/ele.13458. short: B. Milutinovic, M. Stock, A.V. Grasse, E. Naderlinger, C. Hilbe, S. Cremer, Ecology Letters 23 (2020) 565–574. date_created: 2020-01-20T13:32:12Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-09-05T16:04:49Z day: '01' ddc: - '570' department: - _id: SyCr - _id: KrCh doi: 10.1111/ele.13458 ec_funded: 1 external_id: isi: - '000507515900001' file: - access_level: open_access checksum: 0cd8be386fa219db02845b7c3991ce04 content_type: application/pdf creator: dernst date_created: 2020-11-19T11:27:10Z date_updated: 2020-11-19T11:27:10Z file_id: '8776' file_name: 2020_EcologyLetters_Milutinovic.pdf file_size: 561749 relation: main_file success: 1 file_date_updated: 2020-11-19T11:27:10Z has_accepted_license: '1' intvolume: ' 23' isi: 1 issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '03' oa: 1 oa_version: Published Version page: 565-574 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25DAF0B2-B435-11E9-9278-68D0E5697425 grant_number: CR-118/3-1 name: Host-Parasite Coevolution publication: Ecology Letters publication_identifier: eissn: - 1461-0248 issn: - 1461-023X publication_status: published publisher: Wiley quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/social-ants-shapes-disease-outcome/ record: - id: '13060' relation: research_data status: public scopus_import: '1' status: public title: Social immunity modulates competition between coinfecting pathogens tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 23 year: '2020' ... --- _id: '8099' abstract: - lang: eng text: Sewall Wright developed FST for describing population differentiation and it has since been extended to many novel applications, including the detection of homomorphic sex chromosomes. However, there has been confusion regarding the expected estimate of FST for a fixed difference between the X‐ and Y‐chromosome when comparing males and females. Here, we attempt to resolve this confusion by contrasting two common FST estimators and explain why they yield different estimates when applied to the case of sex chromosomes. We show that this difference is true for many allele frequencies, but the situation characterized by fixed differences between the X‐ and Y‐chromosome is among the most extreme. To avoid additional confusion, we recommend that all authors using FST clearly state which estimator of FST their work uses. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: William J full_name: Gammerdinger, William J id: 3A7E01BC-F248-11E8-B48F-1D18A9856A87 last_name: Gammerdinger orcid: 0000-0001-9638-1220 - first_name: Melissa A full_name: Toups, Melissa A id: 4E099E4E-F248-11E8-B48F-1D18A9856A87 last_name: Toups orcid: 0000-0002-9752-7380 - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: 'Gammerdinger WJ, Toups MA, Vicoso B. Disagreement in FST estimators: A case study from  sex chromosomes. Molecular Ecology Resources. 2020;20(6):1517-1525. doi:10.1111/1755-0998.13210' apa: 'Gammerdinger, W. J., Toups, M. A., & Vicoso, B. (2020). Disagreement in FST estimators: A case study from  sex chromosomes. Molecular Ecology Resources. Wiley. https://doi.org/10.1111/1755-0998.13210' chicago: 'Gammerdinger, William J, Melissa A Toups, and Beatriz Vicoso. “Disagreement in FST Estimators: A Case Study from  Sex Chromosomes.” Molecular Ecology Resources. Wiley, 2020. https://doi.org/10.1111/1755-0998.13210.' ieee: 'W. J. Gammerdinger, M. A. Toups, and B. Vicoso, “Disagreement in FST estimators: A case study from  sex chromosomes,” Molecular Ecology Resources, vol. 20, no. 6. Wiley, pp. 1517–1525, 2020.' ista: 'Gammerdinger WJ, Toups MA, Vicoso B. 2020. Disagreement in FST estimators: A case study from  sex chromosomes. Molecular Ecology Resources. 20(6), 1517–1525.' mla: 'Gammerdinger, William J., et al. “Disagreement in FST Estimators: A Case Study from  Sex Chromosomes.” Molecular Ecology Resources, vol. 20, no. 6, Wiley, 2020, pp. 1517–25, doi:10.1111/1755-0998.13210.' short: W.J. Gammerdinger, M.A. Toups, B. Vicoso, Molecular Ecology Resources 20 (2020) 1517–1525. date_created: 2020-07-07T08:56:16Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-09-05T16:07:08Z day: '01' ddc: - '570' department: - _id: BeVi doi: 10.1111/1755-0998.13210 ec_funded: 1 external_id: isi: - '000545451200001' pmid: - '32543001' file: - access_level: open_access checksum: 3d87ebb8757dcd504f20c618b72e6575 content_type: application/pdf creator: dernst date_created: 2020-11-26T11:46:43Z date_updated: 2020-11-26T11:46:43Z file_id: '8814' file_name: 2020_MolecularEcologyRes_Gammerdinger.pdf file_size: 820428 relation: main_file success: 1 file_date_updated: 2020-11-26T11:46:43Z has_accepted_license: '1' intvolume: ' 20' isi: 1 issue: '6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1517-1525 pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 250ED89C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28842-B22 name: Sex chromosome evolution under male- and female- heterogamety publication: Molecular Ecology Resources publication_identifier: eissn: - 1755-0998 issn: - 1755-098X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Disagreement in FST estimators: A case study from sex chromosomes' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 20 year: '2020' ...