--- _id: '8699' abstract: - lang: eng text: In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling. acknowledgement: 'We gratefully acknowledge C. Sahle for experimental support at the ID20 beamline of the ESRF. The soft X-ray experiments were carried out at the ADRESS beamline of the Swiss Light Source, Paul Scherrer Institut (PSI). E. Paris and T.S. thank X. Lu and C. Monney for valuable discussions. The work at PSI is supported by the Swiss National Science Foundation (SNSF) through Project 200021_178867, the NCCR (National Centre of Competence in Research) MARVEL (Materials’ Revolution: Computational Design and Discovery of Novel Materials) and the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH) (SNSF Research Grants CRSII2_160765/1 and CRSII2_141962). K.W. acknowledges support by the Narodowe Centrum Nauki Projects 2016/22/E/ST3/00560 and 2016/23/B/ST3/00839. E.M.P. and M.N. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreements 754411 and 701647, respectively. M.R. was supported by the Swiss National Science Foundation under Project 200021 – 182695. This research used resources of the APS, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357.' article_processing_charge: No article_type: original author: - first_name: Eugenio full_name: Paris, Eugenio last_name: Paris - first_name: Yi full_name: Tseng, Yi last_name: Tseng - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Wenliang full_name: Zhang, Wenliang last_name: Zhang - first_name: Mary H full_name: Upton, Mary H last_name: Upton - first_name: Anna full_name: Efimenko, Anna last_name: Efimenko - first_name: Katharina full_name: Rolfs, Katharina last_name: Rolfs - first_name: Daniel E full_name: McNally, Daniel E last_name: McNally - first_name: Laura full_name: Maurel, Laura last_name: Maurel - first_name: Muntaser full_name: Naamneh, Muntaser last_name: Naamneh - first_name: Marco full_name: Caputo, Marco last_name: Caputo - first_name: Vladimir N full_name: Strocov, Vladimir N last_name: Strocov - first_name: Zhiming full_name: Wang, Zhiming last_name: Wang - first_name: Diego full_name: Casa, Diego last_name: Casa - first_name: Christof W full_name: Schneider, Christof W last_name: Schneider - first_name: Ekaterina full_name: Pomjakushina, Ekaterina last_name: Pomjakushina - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld - first_name: Milan full_name: Radovic, Milan last_name: Radovic - first_name: Thorsten full_name: Schmitt, Thorsten last_name: Schmitt citation: ama: Paris E, Tseng Y, Paerschke E, et al. Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(40):24764-24770. doi:10.1073/pnas.2012043117 apa: Paris, E., Tseng, Y., Paerschke, E., Zhang, W., Upton, M. H., Efimenko, A., … Schmitt, T. (2020). Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2012043117 chicago: Paris, Eugenio, Yi Tseng, Ekaterina Paerschke, Wenliang Zhang, Mary H Upton, Anna Efimenko, Katharina Rolfs, et al. “Strain Engineering of the Charge and Spin-Orbital Interactions in Sr2IrO4.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.2012043117. ieee: E. Paris et al., “Strain engineering of the charge and spin-orbital interactions in Sr2IrO4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 40. National Academy of Sciences, pp. 24764–24770, 2020. ista: Paris E, Tseng Y, Paerschke E, Zhang W, Upton MH, Efimenko A, Rolfs K, McNally DE, Maurel L, Naamneh M, Caputo M, Strocov VN, Wang Z, Casa D, Schneider CW, Pomjakushina E, Wohlfeld K, Radovic M, Schmitt T. 2020. Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. 117(40), 24764–24770. mla: Paris, Eugenio, et al. “Strain Engineering of the Charge and Spin-Orbital Interactions in Sr2IrO4.” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 40, National Academy of Sciences, 2020, pp. 24764–70, doi:10.1073/pnas.2012043117. short: E. Paris, Y. Tseng, E. Paerschke, W. Zhang, M.H. Upton, A. Efimenko, K. Rolfs, D.E. McNally, L. Maurel, M. Naamneh, M. Caputo, V.N. Strocov, Z. Wang, D. Casa, C.W. Schneider, E. Pomjakushina, K. Wohlfeld, M. Radovic, T. Schmitt, Proceedings of the National Academy of Sciences of the United States of America 117 (2020) 24764–24770. date_created: 2020-10-25T23:01:17Z date_published: 2020-10-06T00:00:00Z date_updated: 2023-08-22T12:11:52Z day: '06' ddc: - '530' department: - _id: MiLe doi: 10.1073/pnas.2012043117 ec_funded: 1 external_id: arxiv: - '2009.12262' isi: - '000579059100029' pmid: - '32958669' file: - access_level: open_access checksum: 1638fa36b442e2868576c6dd7d6dc505 content_type: application/pdf creator: cziletti date_created: 2020-10-28T11:53:12Z date_updated: 2020-10-28T11:53:12Z file_id: '8715' file_name: 2020_PNAS_Paris.pdf file_size: 1176522 relation: main_file success: 1 file_date_updated: 2020-10-28T11:53:12Z has_accepted_license: '1' intvolume: ' 117' isi: 1 issue: '40' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '10' oa: 1 oa_version: Published Version page: 24764-24770 pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - '10916490' issn: - '00278424' publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Strain engineering of the charge and spin-orbital interactions in Sr2IrO4 tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 117 year: '2020' ... --- _id: '8737' abstract: - lang: eng text: Mitochondrial complex I couples NADH:ubiquinone oxidoreduction to proton pumping by an unknown mechanism. Here, we present cryo-electron microscopy structures of ovine complex I in five different conditions, including turnover, at resolutions up to 2.3 to 2.5 angstroms. Resolved water molecules allowed us to experimentally define the proton translocation pathways. Quinone binds at three positions along the quinone cavity, as does the inhibitor rotenone that also binds within subunit ND4. Dramatic conformational changes around the quinone cavity couple the redox reaction to proton translocation during open-to-closed state transitions of the enzyme. In the induced deactive state, the open conformation is arrested by the ND6 subunit. We propose a detailed molecular coupling mechanism of complex I, which is an unexpected combination of conformational changes and electrostatic interactions. acknowledged_ssus: - _id: LifeSc - _id: EM-Fac acknowledgement: We thank J. Novacek (CEITEC Brno) and V.-V. Hodirnau (IST Austria) for their help with collecting cryo-EM datasets. We thank the IST Life Science and Electron Microscopy Facilities for providing equipment. This work has been supported by iNEXT,project number 653706, funded by the Horizon 2020 program of the European Union. This article reflects only the authors’view,and the European Commission is not responsible for any use that may be made of the information it contains. CIISB research infrastructure project LM2015043 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at the CF Cryo-electron Microscopy and Tomography CEITEC MU.This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement no. 665385 article_number: eabc4209 article_processing_charge: No article_type: original author: - first_name: Domen full_name: Kampjut, Domen id: 37233050-F248-11E8-B48F-1D18A9856A87 last_name: Kampjut - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: Kampjut D, Sazanov LA. The coupling mechanism of mammalian respiratory complex I. Science. 2020;370(6516). doi:10.1126/science.abc4209 apa: Kampjut, D., & Sazanov, L. A. (2020). The coupling mechanism of mammalian respiratory complex I. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.abc4209 chicago: Kampjut, Domen, and Leonid A Sazanov. “The Coupling Mechanism of Mammalian Respiratory Complex I.” Science. American Association for the Advancement of Science, 2020. https://doi.org/10.1126/science.abc4209. ieee: D. Kampjut and L. A. Sazanov, “The coupling mechanism of mammalian respiratory complex I,” Science, vol. 370, no. 6516. American Association for the Advancement of Science, 2020. ista: Kampjut D, Sazanov LA. 2020. The coupling mechanism of mammalian respiratory complex I. Science. 370(6516), eabc4209. mla: Kampjut, Domen, and Leonid A. Sazanov. “The Coupling Mechanism of Mammalian Respiratory Complex I.” Science, vol. 370, no. 6516, eabc4209, American Association for the Advancement of Science, 2020, doi:10.1126/science.abc4209. short: D. Kampjut, L.A. Sazanov, Science 370 (2020). date_created: 2020-11-08T23:01:23Z date_published: 2020-10-30T00:00:00Z date_updated: 2023-08-22T12:35:38Z day: '30' ddc: - '572' department: - _id: LeSa doi: 10.1126/science.abc4209 ec_funded: 1 external_id: isi: - '000583031800004' pmid: - '32972993' file: - access_level: open_access checksum: 658ba90979ca9528a2efdfac8547047a content_type: application/pdf creator: lsazanov date_created: 2020-11-26T18:47:58Z date_updated: 2020-11-26T18:47:58Z file_id: '8820' file_name: Full_manuscript_with_SI_opt_red.pdf file_size: 7618987 relation: main_file success: 1 file_date_updated: 2020-11-26T18:47:58Z has_accepted_license: '1' intvolume: ' 370' isi: 1 issue: '6516' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version pmid: 1 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Science publication_identifier: eissn: - '10959203' publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: The coupling mechanism of mammalian respiratory complex I type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 370 year: '2020' ... --- _id: '8722' abstract: - lang: eng text: "Load imbalance pervasively exists in distributed deep learning training systems, either caused by the inherent imbalance in learned tasks or by the system itself. Traditional synchronous Stochastic Gradient Descent (SGD)\r\nachieves good accuracy for a wide variety of tasks, but relies on global synchronization to accumulate the gradients at every training step. In this paper, we propose eager-SGD, which relaxes the global synchronization for\r\ndecentralized accumulation. To implement eager-SGD, we propose to use two partial collectives: solo and majority. With solo allreduce, the faster processes contribute their gradients eagerly without waiting for the slower processes, whereas with majority allreduce, at least half of the participants must contribute gradients before continuing, all without using a central parameter server. We theoretically prove the convergence of the algorithms and describe the partial collectives in detail. Experimental results on load-imbalanced environments (CIFAR-10, ImageNet, and UCF101 datasets) show\r\nthat eager-SGD achieves 1.27x speedup over the state-of-the-art synchronous SGD, without losing accuracy." article_processing_charge: No author: - first_name: Shigang full_name: Li, Shigang last_name: Li - first_name: Tal Ben-Nun full_name: Tal Ben-Nun, Tal Ben-Nun last_name: Tal Ben-Nun - first_name: Salvatore Di full_name: Girolamo, Salvatore Di last_name: Girolamo - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Torsten full_name: Hoefler, Torsten last_name: Hoefler citation: ama: 'Li S, Tal Ben-Nun TB-N, Girolamo SD, Alistarh D-A, Hoefler T. Taming unbalanced training workloads in deep learning with partial collective operations. In: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Association for Computing Machinery; 2020:45-61. doi:10.1145/3332466.3374528' apa: 'Li, S., Tal Ben-Nun, T. B.-N., Girolamo, S. D., Alistarh, D.-A., & Hoefler, T. (2020). Taming unbalanced training workloads in deep learning with partial collective operations. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 45–61). San Diego, CA, United States: Association for Computing Machinery. https://doi.org/10.1145/3332466.3374528' chicago: Li, Shigang, Tal Ben-Nun Tal Ben-Nun, Salvatore Di Girolamo, Dan-Adrian Alistarh, and Torsten Hoefler. “Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations.” In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 45–61. Association for Computing Machinery, 2020. https://doi.org/10.1145/3332466.3374528. ieee: S. Li, T. B.-N. Tal Ben-Nun, S. D. Girolamo, D.-A. Alistarh, and T. Hoefler, “Taming unbalanced training workloads in deep learning with partial collective operations,” in Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, CA, United States, 2020, pp. 45–61. ista: 'Li S, Tal Ben-Nun TB-N, Girolamo SD, Alistarh D-A, Hoefler T. 2020. Taming unbalanced training workloads in deep learning with partial collective operations. Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP: Sympopsium on Principles and Practice of Parallel Programming, 45–61.' mla: Li, Shigang, et al. “Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations.” Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2020, pp. 45–61, doi:10.1145/3332466.3374528. short: S. Li, T.B.-N. Tal Ben-Nun, S.D. Girolamo, D.-A. Alistarh, T. Hoefler, in:, Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2020, pp. 45–61. conference: end_date: 2020-02-26 location: San Diego, CA, United States name: 'PPoPP: Sympopsium on Principles and Practice of Parallel Programming' start_date: 2020-02-22 date_created: 2020-11-05T15:25:30Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-22T12:13:48Z day: '01' department: - _id: DaAl doi: 10.1145/3332466.3374528 ec_funded: 1 external_id: arxiv: - '1908.04207' isi: - '000564476500004' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.04207 month: '02' oa: 1 oa_version: Preprint page: 45-61 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Taming unbalanced training workloads in deep learning with partial collective operations type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2020' ... --- _id: '8744' abstract: - lang: eng text: Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding. acknowledgement: 'We acknowledge help from Anja Seybert, Margot Frangakis, Diana Grewe, Mikhail Eltsov, Utz Ermel, and Shintaro Aibara. The work was supported by Deutsche Forschungsgemeinschaft in the CLiC graduate school. Work at the Center for Biomolecular Magnetic Resonance (BMRZ) is supported by the German state of Hesse. The work at BMRZ has been supported by the state of Hesse. L.S. has been supported by the DFG graduate college: CLiC.' article_number: '5569' article_processing_charge: No article_type: original author: - first_name: Linda full_name: Schulte, Linda last_name: Schulte - first_name: Jiafei full_name: Mao, Jiafei last_name: Mao - first_name: Julian full_name: Reitz, Julian last_name: Reitz - first_name: Sridhar full_name: Sreeramulu, Sridhar last_name: Sreeramulu - first_name: Denis full_name: Kudlinzki, Denis last_name: Kudlinzki - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - first_name: Jakob full_name: Meier-Credo, Jakob last_name: Meier-Credo - first_name: Krishna full_name: Saxena, Krishna last_name: Saxena - first_name: Florian full_name: Buhr, Florian last_name: Buhr - first_name: Julian D. full_name: Langer, Julian D. last_name: Langer - first_name: Martin full_name: Blackledge, Martin last_name: Blackledge - first_name: Achilleas S. full_name: Frangakis, Achilleas S. last_name: Frangakis - first_name: Clemens full_name: Glaubitz, Clemens last_name: Glaubitz - first_name: Harald full_name: Schwalbe, Harald last_name: Schwalbe citation: ama: Schulte L, Mao J, Reitz J, et al. Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nature Communications. 2020;11. doi:10.1038/s41467-020-19372-x apa: Schulte, L., Mao, J., Reitz, J., Sreeramulu, S., Kudlinzki, D., Hodirnau, V.-V., … Schwalbe, H. (2020). Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-19372-x chicago: Schulte, Linda, Jiafei Mao, Julian Reitz, Sridhar Sreeramulu, Denis Kudlinzki, Victor-Valentin Hodirnau, Jakob Meier-Credo, et al. “Cysteine Oxidation and Disulfide Formation in the Ribosomal Exit Tunnel.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-19372-x. ieee: L. Schulte et al., “Cysteine oxidation and disulfide formation in the ribosomal exit tunnel,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Schulte L, Mao J, Reitz J, Sreeramulu S, Kudlinzki D, Hodirnau V-V, Meier-Credo J, Saxena K, Buhr F, Langer JD, Blackledge M, Frangakis AS, Glaubitz C, Schwalbe H. 2020. Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nature Communications. 11, 5569. mla: Schulte, Linda, et al. “Cysteine Oxidation and Disulfide Formation in the Ribosomal Exit Tunnel.” Nature Communications, vol. 11, 5569, Springer Nature, 2020, doi:10.1038/s41467-020-19372-x. short: L. Schulte, J. Mao, J. Reitz, S. Sreeramulu, D. Kudlinzki, V.-V. Hodirnau, J. Meier-Credo, K. Saxena, F. Buhr, J.D. Langer, M. Blackledge, A.S. Frangakis, C. Glaubitz, H. Schwalbe, Nature Communications 11 (2020). date_created: 2020-11-09T07:49:36Z date_published: 2020-11-04T00:00:00Z date_updated: 2023-08-22T12:36:07Z day: '04' ddc: - '570' department: - _id: EM-Fac doi: 10.1038/s41467-020-19372-x external_id: isi: - '000592028600001' file: - access_level: open_access checksum: b2688f0347e69e6629bba582077278c5 content_type: application/pdf creator: dernst date_created: 2020-11-09T07:56:24Z date_updated: 2020-11-09T07:56:24Z file_id: '8745' file_name: 2020_NatureComm_Schulte.pdf file_size: 1670898 relation: main_file success: 1 file_date_updated: 2020-11-09T07:56:24Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Cysteine oxidation and disulfide formation in the ribosomal exit tunnel tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8747' abstract: - lang: eng text: "Appropriately designed nanocomposites allow improving the thermoelectric performance by several mechanisms, including phonon scattering, modulation doping and energy filtering, while additionally promoting better mechanical properties than those of crystalline materials. Here, a strategy for producing Bi2Te3–Cu2xTe nanocomposites based on the consolidation of heterostructured nanoparticles is described and the thermoelectric properties of the obtained materials are investigated. We first detail a two-step solution-based process to produce Bi2Te3–Cu2xTe heteronanostructures, based on the growth of Cu2xTe nanocrystals on the surface of Bi2Te3 nanowires. We characterize the structural and chemical properties of the synthesized nanostructures and of the nanocomposites\r\nproduced by hot-pressing the particles at moderate temperatures. Besides, the transport properties of the nanocomposites are investigated as a function of the amount of Cu introduced. Overall, the presence of Cu decreases the material thermal conductivity through promotion of phonon scattering, modulates the charge carrier concentration through electron spillover, and increases the Seebeck coefficient through filtering of charge carriers at energy barriers. These effects result in an improvement of over 50% of the thermoelectric figure of merit of Bi2Te3." acknowledgement: "This work was supported by the European Regional Development Funds and by the Spanish Ministerio de Economı´a y\r\nCompetitividad through the project SEHTOP (ENE2016-77798-C4-3-R). Y. Z. and X. H., thank the China Scholarship Council for scholarship support. M. C. has received funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. M. I. acknowledges financial support from IST Austria. Y. L. acknowledges funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement no. 754411. ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327 and the Spanish MINECO project ENE2017-85087-C3. ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (grant no. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat \r\nAuto`noma de Barcelona Materials Science PhD program." article_processing_charge: No article_type: original author: - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Mariano full_name: Calcabrini, Mariano last_name: Calcabrini - first_name: Congcong full_name: Xing, Congcong last_name: Xing - first_name: Xu full_name: Han, Xu last_name: Han - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Doris full_name: Cadavid, Doris last_name: Cadavid - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Zhang Y, Liu Y, Calcabrini M, et al. Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks. Journal of Materials Chemistry C. 2020;8(40):14092-14099. doi:10.1039/D0TC02182B apa: Zhang, Y., Liu, Y., Calcabrini, M., Xing, C., Han, X., Arbiol, J., … Cabot, A. (2020). Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks. Journal of Materials Chemistry C. Royal Society of Chemistry. https://doi.org/10.1039/D0TC02182B chicago: Zhang, Yu, Yu Liu, Mariano Calcabrini, Congcong Xing, Xu Han, Jordi Arbiol, Doris Cadavid, Maria Ibáñez, and Andreu Cabot. “Bismuth Telluride-Copper Telluride Nanocomposites from Heterostructured Building Blocks.” Journal of Materials Chemistry C. Royal Society of Chemistry, 2020. https://doi.org/10.1039/D0TC02182B. ieee: Y. Zhang et al., “Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks,” Journal of Materials Chemistry C, vol. 8, no. 40. Royal Society of Chemistry, pp. 14092–14099, 2020. ista: Zhang Y, Liu Y, Calcabrini M, Xing C, Han X, Arbiol J, Cadavid D, Ibáñez M, Cabot A. 2020. Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks. Journal of Materials Chemistry C. 8(40), 14092–14099. mla: Zhang, Yu, et al. “Bismuth Telluride-Copper Telluride Nanocomposites from Heterostructured Building Blocks.” Journal of Materials Chemistry C, vol. 8, no. 40, Royal Society of Chemistry, 2020, pp. 14092–99, doi:10.1039/D0TC02182B. short: Y. Zhang, Y. Liu, M. Calcabrini, C. Xing, X. Han, J. Arbiol, D. Cadavid, M. Ibáñez, A. Cabot, Journal of Materials Chemistry C 8 (2020) 14092–14099. date_created: 2020-11-09T08:37:51Z date_published: 2020-10-28T00:00:00Z date_updated: 2023-08-22T12:41:05Z day: '28' department: - _id: MaIb doi: 10.1039/D0TC02182B ec_funded: 1 external_id: isi: - '000581559100015' intvolume: ' 8' isi: 1 issue: '40' language: - iso: eng month: '10' oa_version: None page: 14092-14099 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Journal of Materials Chemistry C publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' scopus_import: '1' status: public title: Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2020' ...