--- _id: '13197' abstract: - lang: eng text: "Nominally identical materials exchange net electric charge during contact through a mechanism that is still debated. ‘Mosaic models’, in which surfaces are presumed to consist of a random patchwork of microscopic donor/acceptor sites, offer an appealing explanation for this phenomenon. However, recent experiments have shown that global differences persist even between same-material samples, which the standard mosaic framework does not account for. Here, we expand the mosaic framework by incorporating global differences in the densities of donor/acceptor sites. We develop\r\nan analytical model, backed by numerical simulations, that smoothly connects the global and deterministic charge transfer of different materials to the local and stochastic mosaic picture normally associated with identical materials. Going further, we extend our model to explain the effect of contact asymmetries during sliding, providing a plausible explanation for reversal of charging sign that has been observed experimentally." acknowledgement: "This project has received funding from the European Research Council Grant Agreement No. 949120 and from\r\nthe European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant\r\nAgreement No. 754411. " article_number: '065601' article_processing_charge: No article_type: original author: - first_name: Galien M full_name: Grosjean, Galien M id: 0C5FDA4A-9CF6-11E9-8939-FF05E6697425 last_name: Grosjean orcid: 0000-0001-5154-417X - first_name: Scott R full_name: Waitukaitis, Scott R id: 3A1FFC16-F248-11E8-B48F-1D18A9856A87 last_name: Waitukaitis orcid: 0000-0002-2299-3176 citation: ama: 'Grosjean GM, Waitukaitis SR. Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials. 2023;7(6). doi:10.1103/physrevmaterials.7.065601' apa: 'Grosjean, G. M., & Waitukaitis, S. R. (2023). Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials. American Physical Society. https://doi.org/10.1103/physrevmaterials.7.065601' chicago: 'Grosjean, Galien M, and Scott R Waitukaitis. “Asymmetries in Triboelectric Charging: Generalizing Mosaic Models to Different-Material Samples and Sliding Contacts.” Physical Review Materials. American Physical Society, 2023. https://doi.org/10.1103/physrevmaterials.7.065601.' ieee: 'G. M. Grosjean and S. R. Waitukaitis, “Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts,” Physical Review Materials, vol. 7, no. 6. American Physical Society, 2023.' ista: 'Grosjean GM, Waitukaitis SR. 2023. Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials. 7(6), 065601.' mla: 'Grosjean, Galien M., and Scott R. Waitukaitis. “Asymmetries in Triboelectric Charging: Generalizing Mosaic Models to Different-Material Samples and Sliding Contacts.” Physical Review Materials, vol. 7, no. 6, 065601, American Physical Society, 2023, doi:10.1103/physrevmaterials.7.065601.' short: G.M. Grosjean, S.R. Waitukaitis, Physical Review Materials 7 (2023). date_created: 2023-07-07T12:48:01Z date_published: 2023-06-13T00:00:00Z date_updated: 2023-08-02T06:34:47Z day: '13' ddc: - '537' department: - _id: ScWa doi: 10.1103/physrevmaterials.7.065601 ec_funded: 1 external_id: arxiv: - '2304.12861' isi: - '001019565900002' file: - access_level: open_access checksum: 75584730d9cdd50eeccb4c52c509776d content_type: application/pdf creator: ggrosjea date_created: 2023-07-07T12:49:51Z date_updated: 2023-07-07T12:49:51Z file_id: '13198' file_name: Mosaic_asymmetries.pdf file_size: 1127040 relation: main_file success: 1 file_date_updated: 2023-07-07T12:49:51Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '6' keyword: - Physics and Astronomy (miscellaneous) - General Materials Science language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version project: - _id: 0aa60e99-070f-11eb-9043-a6de6bdc3afa call_identifier: H2020 grant_number: '949120' name: 'Tribocharge: a multi-scale approach to an enduring problem in physics' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Materials publication_identifier: issn: - 2475-9953 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: 'Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2023' ... --- _id: '13230' abstract: - lang: eng text: 'To interpret the sensory environment, the brain combines ambiguous sensory measurements with knowledge that reflects context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages knowledge about the statistical structure of the task to maximize decision accuracy, including knowledge about the dynamics of the environment. We show that its decisions are biased by the dynamically changing task context. The magnitude of this decision bias depends on the observer’s continually evolving belief about the current context. The model therefore not only predicts that decision bias will grow as the context is indicated more reliably, but also as the stability of the environment increases, and as the number of trials since the last context switch grows. Analysis of human choice data validates all three predictions, suggesting that the brain leverages knowledge of the statistical structure of environmental change when interpreting ambiguous sensory signals.' acknowledgement: The authors thank Corey Ziemba and Zoe Boundy-Singer for valuable discussion and feedback. article_number: e1011104 article_processing_charge: No article_type: original author: - first_name: Julie A. full_name: Charlton, Julie A. last_name: Charlton - first_name: Wiktor F full_name: Mlynarski, Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - first_name: Yoon H. full_name: Bai, Yoon H. last_name: Bai - first_name: Ann M. full_name: Hermundstad, Ann M. last_name: Hermundstad - first_name: Robbe L.T. full_name: Goris, Robbe L.T. last_name: Goris citation: ama: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 2023;19(6). doi:10.1371/journal.pcbi.1011104 apa: Charlton, J. A., Mlynarski, W. F., Bai, Y. H., Hermundstad, A. M., & Goris, R. L. T. (2023). Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1011104 chicago: Charlton, Julie A., Wiktor F Mlynarski, Yoon H. Bai, Ann M. Hermundstad, and Robbe L.T. Goris. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pcbi.1011104. ieee: J. A. Charlton, W. F. Mlynarski, Y. H. Bai, A. M. Hermundstad, and R. L. T. Goris, “Environmental dynamics shape perceptual decision bias,” PLoS Computational Biology, vol. 19, no. 6. Public Library of Science, 2023. ista: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. 2023. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 19(6), e1011104. mla: Charlton, Julie A., et al. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology, vol. 19, no. 6, e1011104, Public Library of Science, 2023, doi:10.1371/journal.pcbi.1011104. short: J.A. Charlton, W.F. Mlynarski, Y.H. Bai, A.M. Hermundstad, R.L.T. Goris, PLoS Computational Biology 19 (2023). date_created: 2023-07-16T22:01:09Z date_published: 2023-06-08T00:00:00Z date_updated: 2023-08-02T06:33:50Z day: '08' ddc: - '570' department: - _id: MaJö doi: 10.1371/journal.pcbi.1011104 external_id: isi: - '001003410200003' pmid: - '37289753' file: - access_level: open_access checksum: 800761fa2c647fabd6ad034589bc526e content_type: application/pdf creator: dernst date_created: 2023-07-18T08:07:59Z date_updated: 2023-07-18T08:07:59Z file_id: '13247' file_name: 2023_PloSCompBio_Charlton.pdf file_size: 2281868 relation: main_file success: 1 file_date_updated: 2023-07-18T08:07:59Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Environmental dynamics shape perceptual decision bias tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '13232' abstract: - lang: eng text: The potential of immune-evasive mutation accumulation in the SARS-CoV-2 virus has led to its rapid spread, causing over 600 million confirmed cases and more than 6.5 million confirmed deaths. The huge demand for the rapid development and deployment of low-cost and effective vaccines against emerging variants has renewed interest in DNA vaccine technology. Here, we report the rapid generation and immunological evaluation of novel DNA vaccine candidates against the Wuhan-Hu-1 and Omicron variants based on the RBD protein fused with the Potato virus X coat protein (PVXCP). The delivery of DNA vaccines using electroporation in a two-dose regimen induced high-antibody titers and profound cellular responses in mice. The antibody titers induced against the Omicron variant of the vaccine were sufficient for effective protection against both Omicron and Wuhan-Hu-1 virus infections. The PVXCP protein in the vaccine construct shifted the immune response to the favorable Th1-like type and provided the oligomerization of RBD-PVXCP protein. Naked DNA delivery by needle-free injection allowed us to achieve antibody titers comparable with mRNA-LNP delivery in rabbits. These data identify the RBD-PVXCP DNA vaccine platform as a promising solution for robust and effective SARS-CoV-2 protection, supporting further translational study. acknowledgement: The authors declare that this study received funding from Immunofusion. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article, or the decision to submit it for publication. The authors express their gratitude to the Institute of Physiology of the National Academy of Sciences of Belarus for providing assistance in keeping laboratory animals. article_number: '1014' article_processing_charge: No article_type: original author: - first_name: Dmitri full_name: Dormeshkin, Dmitri last_name: Dormeshkin - first_name: Mikalai full_name: Katsin, Mikalai last_name: Katsin - first_name: Maria full_name: Stegantseva, Maria last_name: Stegantseva - first_name: Sergey full_name: Golenchenko, Sergey last_name: Golenchenko - first_name: Michail full_name: Shapira, Michail last_name: Shapira - first_name: Simon full_name: Dubovik, Simon last_name: Dubovik - first_name: Dzmitry full_name: Lutskovich, Dzmitry last_name: Lutskovich - first_name: Anton full_name: Kavaleuski, Anton id: 62304f89-eb97-11eb-a6c2-8903dd183976 last_name: Kavaleuski orcid: 0000-0003-2091-526X - first_name: Alexander full_name: Meleshko, Alexander last_name: Meleshko citation: ama: Dormeshkin D, Katsin M, Stegantseva M, et al. Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. 2023;11(6). doi:10.3390/vaccines11061014 apa: Dormeshkin, D., Katsin, M., Stegantseva, M., Golenchenko, S., Shapira, M., Dubovik, S., … Meleshko, A. (2023). Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. MDPI. https://doi.org/10.3390/vaccines11061014 chicago: Dormeshkin, Dmitri, Mikalai Katsin, Maria Stegantseva, Sergey Golenchenko, Michail Shapira, Simon Dubovik, Dzmitry Lutskovich, Anton Kavaleuski, and Alexander Meleshko. “Design and Immunogenicity of SARS-CoV-2 DNA Vaccine Encoding RBD-PVXCP Fusion Protein.” Vaccines. MDPI, 2023. https://doi.org/10.3390/vaccines11061014. ieee: D. Dormeshkin et al., “Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein,” Vaccines, vol. 11, no. 6. MDPI, 2023. ista: Dormeshkin D, Katsin M, Stegantseva M, Golenchenko S, Shapira M, Dubovik S, Lutskovich D, Kavaleuski A, Meleshko A. 2023. Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. 11(6), 1014. mla: Dormeshkin, Dmitri, et al. “Design and Immunogenicity of SARS-CoV-2 DNA Vaccine Encoding RBD-PVXCP Fusion Protein.” Vaccines, vol. 11, no. 6, 1014, MDPI, 2023, doi:10.3390/vaccines11061014. short: D. Dormeshkin, M. Katsin, M. Stegantseva, S. Golenchenko, M. Shapira, S. Dubovik, D. Lutskovich, A. Kavaleuski, A. Meleshko, Vaccines 11 (2023). date_created: 2023-07-16T22:01:10Z date_published: 2023-06-01T00:00:00Z date_updated: 2023-08-02T06:31:19Z day: '01' ddc: - '570' department: - _id: LeSa doi: 10.3390/vaccines11061014 external_id: isi: - '001017740000001' file: - access_level: open_access checksum: 8f484c0f30f8699c589b1c29a0fd7d7f content_type: application/pdf creator: dernst date_created: 2023-07-18T07:25:43Z date_updated: 2023-07-18T07:25:43Z file_id: '13244' file_name: 2023_Vaccines_Dormeshkin.pdf file_size: 2339746 relation: main_file success: 1 file_date_updated: 2023-07-18T07:25:43Z has_accepted_license: '1' intvolume: ' 11' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Vaccines publication_identifier: eissn: - 2076-393X publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2023' ... --- _id: '13235' abstract: - lang: eng text: AgSbSe2 is a promising thermoelectric (TE) p-type material for applications in the middle-temperature range. AgSbSe2 is characterized by relatively low thermal conductivities and high Seebeck coefficients, but its main limitation is moderate electrical conductivity. Herein, we detail an efficient and scalable hot-injection synthesis route to produce AgSbSe2 nanocrystals (NCs). To increase the carrier concentration and improve the electrical conductivity, these NCs are doped with Sn2+ on Sb3+ sites. Upon processing, the Sn2+ chemical state is conserved using a reducing NaBH4 solution to displace the organic ligand and anneal the material under a forming gas flow. The TE properties of the dense materials obtained from the consolidation of the NCs using a hot pressing are then characterized. The presence of Sn2+ ions replacing Sb3+ significantly increases the charge carrier concentration and, consequently, the electrical conductivity. Opportunely, the measured Seebeck coefficient varied within a small range upon Sn doping. The excellent performance obtained when Sn2+ ions are prevented from oxidation is rationalized by modeling the system. Calculated band structures disclosed that Sn doping induces convergence of the AgSbSe2 valence bands, accounting for an enhanced electronic effective mass. The dramatically enhanced carrier transport leads to a maximized power factor for AgSb0.98Sn0.02Se2 of 0.63 mW m–1 K–2 at 640 K. Thermally, phonon scattering is significantly enhanced in the NC-based materials, yielding an ultralow thermal conductivity of 0.3 W mK–1 at 666 K. Overall, a record-high figure of merit (zT) is obtained at 666 K for AgSb0.98Sn0.02Se2 at zT = 1.37, well above the values obtained for undoped AgSbSe2, at zT = 0.58 and state-of-art Pb- and Te-free materials, which makes AgSb0.98Sn0.02Se2 an excellent p-type candidate for medium-temperature TE applications. acknowledgement: Y.L. acknowledges funding from the National Natural Science Foundation of China (NSFC) (Grants No. 22209034), the Innovation and Entrepreneurship Project of Overseas Returnees in Anhui Province (Grant No. 2022LCX002). K.H.L. acknowledges financial support from the National Natural Science Foundation of China (Grant No. 22208293). Y.Z. acknowledges support from the SBIR program NanoOhmics. J.L. is grateful for the project supported by the Natural Science Foundation of Sichuan (2022NSFSC1229). M.I. acknowledges financial support from ISTA and the Werner Siemens Foundation. article_processing_charge: No article_type: original author: - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Mingquan full_name: Li, Mingquan last_name: Li - first_name: Shanhong full_name: Wan, Shanhong last_name: Wan - first_name: Khak Ho full_name: Lim, Khak Ho last_name: Lim - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Mengyao full_name: Li, Mengyao last_name: Li - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Min full_name: Hong, Min last_name: Hong - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: 'Liu Y, Li M, Wan S, et al. Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance. ACS Nano. 2023;17(12):11923–11934. doi:10.1021/acsnano.3c03541' apa: 'Liu, Y., Li, M., Wan, S., Lim, K. H., Zhang, Y., Li, M., … Cabot, A. (2023). Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance. ACS Nano. American Chemical Society. https://doi.org/10.1021/acsnano.3c03541' chicago: 'Liu, Yu, Mingquan Li, Shanhong Wan, Khak Ho Lim, Yu Zhang, Mengyao Li, Junshan Li, Maria Ibáñez, Min Hong, and Andreu Cabot. “Surface Chemistry and Band Engineering in AgSbSe₂: Toward High Thermoelectric Performance.” ACS Nano. American Chemical Society, 2023. https://doi.org/10.1021/acsnano.3c03541.' ieee: 'Y. Liu et al., “Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance,” ACS Nano, vol. 17, no. 12. American Chemical Society, pp. 11923–11934, 2023.' ista: 'Liu Y, Li M, Wan S, Lim KH, Zhang Y, Li M, Li J, Ibáñez M, Hong M, Cabot A. 2023. Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance. ACS Nano. 17(12), 11923–11934.' mla: 'Liu, Yu, et al. “Surface Chemistry and Band Engineering in AgSbSe₂: Toward High Thermoelectric Performance.” ACS Nano, vol. 17, no. 12, American Chemical Society, 2023, pp. 11923–11934, doi:10.1021/acsnano.3c03541.' short: Y. Liu, M. Li, S. Wan, K.H. Lim, Y. Zhang, M. Li, J. Li, M. Ibáñez, M. Hong, A. Cabot, ACS Nano 17 (2023) 11923–11934. date_created: 2023-07-16T22:01:11Z date_published: 2023-06-13T00:00:00Z date_updated: 2023-08-02T06:29:55Z day: '13' department: - _id: MaIb doi: 10.1021/acsnano.3c03541 external_id: isi: - '001008564800001' pmid: - '37310395' intvolume: ' 17' isi: 1 issue: '12' language: - iso: eng month: '06' oa_version: None page: 11923–11934 pmid: 1 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: ACS Nano publication_identifier: eissn: - 1936-086X issn: - 1936-0851 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2023' ... --- _id: '13231' abstract: - lang: eng text: We study ab initio approaches for calculating x-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula that expresses the inelastic contribution in terms of the dielectric function. We study the electronic dynamic structure factor computed from the Mermin dielectric function using an ab initio electron-ion collision frequency in comparison to computations using a linear-response time-dependent density functional theory (LR-TDDFT) framework for hydrogen and beryllium and investigate the dispersion of free-free and bound-free contributions to the scattering signal. A separate treatment of these contributions, where only the free-free part follows the Mermin dispersion, shows good agreement with LR-TDDFT results for ambient-density beryllium, but breaks down for highly compressed matter where the bound states become pressure ionized. LR-TDDFT is used to reanalyze x-ray Thomson scattering experiments on beryllium demonstrating strong deviations from the plasma conditions inferred with traditional analytic models at small scattering angles. acknowledgement: "We want to thank P. Sperling, B. Witte, M. French, G. Röpke, H. J. Lee and A. Cangi for many helpful discussions. M. S. and R. R. acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) within the Research Unit FOR 2440. All simulations and analyses were performed at the North-German Supercomputing Alliance (HLRN) and the ITMZ of the University of Rostock. M. B. gratefully acknowledges support by the European Horizon 2020 programme within the Marie Sklodowska-Curie actions (xICE grant 894725) and the\r\nNOMIS foundation. The work of T. D. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344." article_number: '065207' article_processing_charge: No article_type: original author: - first_name: Maximilian full_name: Schörner, Maximilian last_name: Schörner - first_name: Mandy full_name: Bethkenhagen, Mandy id: 201939f4-803f-11ed-ab7e-d8da4bd1517f last_name: Bethkenhagen orcid: 0000-0002-1838-2129 - first_name: Tilo full_name: Döppner, Tilo last_name: Döppner - first_name: Dominik full_name: Kraus, Dominik last_name: Kraus - first_name: Luke B. full_name: Fletcher, Luke B. last_name: Fletcher - first_name: Siegfried H. full_name: Glenzer, Siegfried H. last_name: Glenzer - first_name: Ronald full_name: Redmer, Ronald last_name: Redmer citation: ama: Schörner M, Bethkenhagen M, Döppner T, et al. X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Physical Review E. 2023;107(6). doi:10.1103/PhysRevE.107.065207 apa: Schörner, M., Bethkenhagen, M., Döppner, T., Kraus, D., Fletcher, L. B., Glenzer, S. H., & Redmer, R. (2023). X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.107.065207 chicago: Schörner, Maximilian, Mandy Bethkenhagen, Tilo Döppner, Dominik Kraus, Luke B. Fletcher, Siegfried H. Glenzer, and Ronald Redmer. “X-Ray Thomson Scattering Spectra from Density Functional Theory Molecular Dynamics Simulations Based on a Modified Chihara Formula.” Physical Review E. American Physical Society, 2023. https://doi.org/10.1103/PhysRevE.107.065207. ieee: M. Schörner et al., “X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula,” Physical Review E, vol. 107, no. 6. American Physical Society, 2023. ista: Schörner M, Bethkenhagen M, Döppner T, Kraus D, Fletcher LB, Glenzer SH, Redmer R. 2023. X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Physical Review E. 107(6), 065207. mla: Schörner, Maximilian, et al. “X-Ray Thomson Scattering Spectra from Density Functional Theory Molecular Dynamics Simulations Based on a Modified Chihara Formula.” Physical Review E, vol. 107, no. 6, 065207, American Physical Society, 2023, doi:10.1103/PhysRevE.107.065207. short: M. Schörner, M. Bethkenhagen, T. Döppner, D. Kraus, L.B. Fletcher, S.H. Glenzer, R. Redmer, Physical Review E 107 (2023). date_created: 2023-07-16T22:01:10Z date_published: 2023-06-14T00:00:00Z date_updated: 2023-08-02T06:30:46Z day: '14' department: - _id: BiCh doi: 10.1103/PhysRevE.107.065207 external_id: arxiv: - '2301.01545' isi: - '001020265000002' intvolume: ' 107' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.01545 month: '06' oa: 1 oa_version: Preprint publication: Physical Review E publication_identifier: eissn: - 2470-0053 issn: - 2470-0045 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ...