--- _id: '13043' abstract: - lang: eng text: "We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction\r\nof a gradient flow calibration in the sense of the recent work of Fischer et al. (2020) for any such\r\ncluster. This extends the two-dimensional construction to the three-dimensional case of surfaces\r\nmeeting along triple junctions." acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 948819), and from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2047/1 – 390685813. article_processing_charge: No article_type: original author: - first_name: Sebastian full_name: Hensel, Sebastian id: 4D23B7DA-F248-11E8-B48F-1D18A9856A87 last_name: Hensel orcid: 0000-0001-7252-8072 - first_name: Tim full_name: Laux, Tim last_name: Laux citation: ama: Hensel S, Laux T. Weak-strong uniqueness for the mean curvature flow of double bubbles. Interfaces and Free Boundaries. 2023;25(1):37-107. doi:10.4171/IFB/484 apa: Hensel, S., & Laux, T. (2023). Weak-strong uniqueness for the mean curvature flow of double bubbles. Interfaces and Free Boundaries. EMS Press. https://doi.org/10.4171/IFB/484 chicago: Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” Interfaces and Free Boundaries. EMS Press, 2023. https://doi.org/10.4171/IFB/484. ieee: S. Hensel and T. Laux, “Weak-strong uniqueness for the mean curvature flow of double bubbles,” Interfaces and Free Boundaries, vol. 25, no. 1. EMS Press, pp. 37–107, 2023. ista: Hensel S, Laux T. 2023. Weak-strong uniqueness for the mean curvature flow of double bubbles. Interfaces and Free Boundaries. 25(1), 37–107. mla: Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” Interfaces and Free Boundaries, vol. 25, no. 1, EMS Press, 2023, pp. 37–107, doi:10.4171/IFB/484. short: S. Hensel, T. Laux, Interfaces and Free Boundaries 25 (2023) 37–107. date_created: 2023-05-21T22:01:06Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-08-01T14:43:29Z day: '20' ddc: - '510' department: - _id: JuFi doi: 10.4171/IFB/484 ec_funded: 1 external_id: arxiv: - '2108.01733' isi: - '000975817300002' file: - access_level: open_access checksum: 622422484810441e48f613e968c7e7a4 content_type: application/pdf creator: dernst date_created: 2023-05-22T07:24:13Z date_updated: 2023-05-22T07:24:13Z file_id: '13045' file_name: 2023_Interfaces_Hensel.pdf file_size: 867876 relation: main_file success: 1 file_date_updated: 2023-05-22T07:24:13Z has_accepted_license: '1' intvolume: ' 25' isi: 1 issue: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 37-107 project: - _id: 0aa76401-070f-11eb-9043-b5bb049fa26d call_identifier: H2020 grant_number: '948819' name: Bridging Scales in Random Materials publication: Interfaces and Free Boundaries publication_identifier: eissn: - 1463-9971 issn: - 1463-9963 publication_status: published publisher: EMS Press quality_controlled: '1' related_material: record: - id: '10013' relation: earlier_version status: public scopus_import: '1' status: public title: Weak-strong uniqueness for the mean curvature flow of double bubbles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 25 year: '2023' ... --- _id: '12912' abstract: - lang: eng text: The chemical potential of adsorbed or confined fluids provides insight into their unique thermodynamic properties and determines adsorption isotherms. However, it is often difficult to compute this quantity from atomistic simulations using existing statistical mechanical methods. We introduce a computational framework that utilizes static structure factors, thermodynamic integration, and free energy perturbation for calculating the absolute chemical potential of fluids. For demonstration, we apply the method to compute the adsorption isotherms of carbon dioxide in a metal-organic framework and water in carbon nanotubes. acknowledgement: We thank Aleks Reinhardt and Daan Frenkel for their insightful comments and suggestions on the article. B.C. acknowledges the resources provided by the Cambridge Tier-2 system operated by the University of Cambridge Research Computing Service funded by EPSRC Tier-2 capital Grant No. EP/P020259/1. article_number: '161101 ' article_processing_charge: No article_type: original author: - first_name: Rochus full_name: Schmid, Rochus last_name: Schmid - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 citation: ama: Schmid R, Cheng B. Computing chemical potentials of adsorbed or confined fluids. The Journal of Chemical Physics. 2023;158(16). doi:10.1063/5.0146711 apa: Schmid, R., & Cheng, B. (2023). Computing chemical potentials of adsorbed or confined fluids. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/5.0146711 chicago: Schmid, Rochus, and Bingqing Cheng. “Computing Chemical Potentials of Adsorbed or Confined Fluids.” The Journal of Chemical Physics. AIP Publishing, 2023. https://doi.org/10.1063/5.0146711. ieee: R. Schmid and B. Cheng, “Computing chemical potentials of adsorbed or confined fluids,” The Journal of Chemical Physics, vol. 158, no. 16. AIP Publishing, 2023. ista: Schmid R, Cheng B. 2023. Computing chemical potentials of adsorbed or confined fluids. The Journal of Chemical Physics. 158(16), 161101. mla: Schmid, Rochus, and Bingqing Cheng. “Computing Chemical Potentials of Adsorbed or Confined Fluids.” The Journal of Chemical Physics, vol. 158, no. 16, 161101, AIP Publishing, 2023, doi:10.1063/5.0146711. short: R. Schmid, B. Cheng, The Journal of Chemical Physics 158 (2023). date_created: 2023-05-07T22:01:03Z date_published: 2023-04-24T00:00:00Z date_updated: 2023-08-01T14:34:49Z day: '24' ddc: - '540' department: - _id: BiCh doi: 10.1063/5.0146711 external_id: arxiv: - '2302.01297' isi: - '001010676000010' pmid: - '37093149' file: - access_level: open_access checksum: 4ab8c965f2fa4e17920bfa846847f137 content_type: application/pdf creator: dernst date_created: 2023-05-08T07:44:49Z date_updated: 2023-05-08T07:44:49Z file_id: '12918' file_name: 2023_JourChemicalPhysics_Schmid.pdf file_size: 6499468 relation: main_file success: 1 file_date_updated: 2023-05-08T07:44:49Z has_accepted_license: '1' intvolume: ' 158' isi: 1 issue: '16' language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: The Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: link: - relation: software url: https://github.com/BingqingCheng/mu-adsorption - relation: software url: https://github.com/BingqingCheng/S0 scopus_import: '1' status: public title: Computing chemical potentials of adsorbed or confined fluids tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 158 year: '2023' ... --- _id: '12972' abstract: - lang: eng text: Embroidery is a long-standing and high-quality approach to making logos and images on textiles. Nowadays, it can also be performed via automated machines that weave threads with high spatial accuracy. A characteristic feature of the appearance of the threads is a high degree of anisotropy. The anisotropic behavior is caused by depositing thin but long strings of thread. As a result, the stitched patterns convey both color and direction. Artists leverage this anisotropic behavior to enhance pure color images with textures, illusions of motion, or depth cues. However, designing colorful embroidery patterns with prescribed directionality is a challenging task, one usually requiring an expert designer. In this work, we propose an interactive algorithm that generates machine-fabricable embroidery patterns from multi-chromatic images equipped with user-specified directionality fields.We cast the problem of finding a stitching pattern into vector theory. To find a suitable stitching pattern, we extract sources and sinks from the divergence field of the vector field extracted from the input and use them to trace streamlines. We further optimize the streamlines to guarantee a smooth and connected stitching pattern. The generated patterns approximate the color distribution constrained by the directionality field. To allow for further artistic control, the trade-off between color match and directionality match can be interactively explored via an intuitive slider. We showcase our approach by fabricating several embroidery paths. acknowledgement: This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 715767 – MATERIALIZABLE), and FWF Lise Meitner (Grant M 3319). We thank the anonymous reviewers for their insightful feedback; Solal Pirelli, Shardul Chiplunkar, and Paola Mejia for proofreading; everyone in the visual computing group at ISTA for inspiring lunch and coffee breaks; Thibault Tricard for help producing the results of Phasor Noise. article_processing_charge: No article_type: original author: - first_name: Zhenyuan full_name: Liu, Zhenyuan id: 70f0d7cf-ae65-11ec-a14f-89dfc5505b19 last_name: Liu orcid: 0000-0001-9200-5690 - first_name: Michael full_name: Piovarci, Michael id: 62E473F4-5C99-11EA-A40E-AF823DDC885E last_name: Piovarci - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Raphael full_name: Charrondiere, Raphael id: a3a24133-2cc7-11ec-be88-8ddaf6f464b1 last_name: Charrondiere - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Liu Z, Piovarci M, Hafner C, Charrondiere R, Bickel B. Directionality-aware design of embroidery patterns. Computer Graphics Forum. 2023;42(2):397-409. doi:10.1111/cgf.14770 apa: 'Liu, Z., Piovarci, M., Hafner, C., Charrondiere, R., & Bickel, B. (2023). Directionality-aware design of embroidery patterns. Computer Graphics Forum. Saarbrucken, Germany: Wiley. https://doi.org/10.1111/cgf.14770 ' chicago: Liu, Zhenyuan, Michael Piovarci, Christian Hafner, Raphael Charrondiere, and Bernd Bickel. “Directionality-Aware Design of Embroidery Patterns.” Computer Graphics Forum. Wiley, 2023. https://doi.org/10.1111/cgf.14770 . ieee: Z. Liu, M. Piovarci, C. Hafner, R. Charrondiere, and B. Bickel, “Directionality-aware design of embroidery patterns,” Computer Graphics Forum, vol. 42, no. 2. Wiley, pp. 397–409, 2023. ista: Liu Z, Piovarci M, Hafner C, Charrondiere R, Bickel B. 2023. Directionality-aware design of embroidery patterns. Computer Graphics Forum. 42(2), 397–409. mla: Liu, Zhenyuan, et al. “Directionality-Aware Design of Embroidery Patterns.” Computer Graphics Forum, vol. 42, no. 2, Wiley, 2023, pp. 397–409, doi:10.1111/cgf.14770 . short: Z. Liu, M. Piovarci, C. Hafner, R. Charrondiere, B. Bickel, Computer Graphics Forum 42 (2023) 397–409. conference: end_date: 2023-05-12 location: Saarbrucken, Germany name: 'EG: Eurographics' start_date: 2023-05-08 date_created: 2023-05-16T08:47:25Z date_published: 2023-05-08T00:00:00Z date_updated: 2023-08-01T14:47:05Z day: '08' ddc: - '004' department: - _id: BeBi doi: '10.1111/cgf.14770 ' ec_funded: 1 external_id: isi: - '001000062600033' file: - access_level: open_access checksum: 4c188c2be4745467a8790bbf5d6491aa content_type: application/pdf creator: mpiovarc date_created: 2023-05-16T08:28:37Z date_updated: 2023-05-16T08:28:37Z file_id: '12974' file_name: Zhenyuan2023.pdf file_size: 24003702 relation: main_file success: 1 file_date_updated: 2023-05-16T08:28:37Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '2' keyword: - embroidery - design - directionality - density - image language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 397-409 project: - _id: eb901961-77a9-11ec-83b8-f5c883a62027 grant_number: M03319 name: Perception-Aware Appearance Fabrication - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Computer Graphics Forum publication_identifier: issn: - 1467-8659 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Directionality-aware design of embroidery patterns tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 42 year: '2023' ... --- _id: '13033' abstract: - lang: eng text: Current methods for assessing cell proliferation in 3D scaffolds rely on changes in metabolic activity or total DNA, however, direct quantification of cell number in 3D scaffolds remains a challenge. To address this issue, we developed an unbiased stereology approach that uses systematic-random sampling and thin focal-plane optical sectioning of the scaffolds followed by estimation of total cell number (StereoCount). This approach was validated against an indirect method for measuring the total DNA (DNA content); and the Bürker counting chamber, the current reference method for quantifying cell number. We assessed the total cell number for cell seeding density (cells per unit volume) across four values and compared the methods in terms of accuracy, ease-of-use and time demands. The accuracy of StereoCount markedly outperformed the DNA content for cases with ~ 10,000 and ~ 125,000 cells/scaffold. For cases with ~ 250,000 and ~ 375,000 cells/scaffold both StereoCount and DNA content showed lower accuracy than the Bürker but did not differ from each other. In terms of ease-of-use, there was a strong advantage for the StereoCount due to output in terms of absolute cell numbers along with the possibility for an overview of cell distribution and future use of automation for high throughput analysis. Taking together, the StereoCount method is an efficient approach for direct cell quantification in 3D collagen scaffolds. Its major benefit is that automated StereoCount could accelerate research using 3D scaffolds focused on drug discovery for a wide variety of human diseases. acknowledgement: The study was supported by Project No. CZ.02.1.01/0.0/0.0/16_019/0000787 “Fighting INfectious Diseases”, awarded by the MEYS CR, financed from EFRR, by the Cooperatio Program, research area DIAG and research area MED/DIAG, by the profiBONE project (TO01000309) benefitting from a € (1.433.000) grant from Iceland, Liechtenstein and Norway through the EEA Grants and the Technology Agency of the Czech Republic and by a Grant (#1926990) to PRM and SRC Biosciences from the National Science Foundation (U.S. Public Health Service). The authors acknowledge the invaluable assistance provided by Iveta Paurova via her support in terms of the provision of laboratory services. article_number: '7959' article_processing_charge: No article_type: original author: - first_name: Anna full_name: Zavadakova, Anna last_name: Zavadakova - first_name: Lucie full_name: Vistejnova, Lucie last_name: Vistejnova - first_name: Tereza full_name: Belinova, Tereza id: 0bf89b6a-d28b-11eb-8bd6-f43768e4d368 last_name: Belinova - first_name: Filip full_name: Tichanek, Filip last_name: Tichanek - first_name: Dagmar full_name: Bilikova, Dagmar last_name: Bilikova - first_name: Peter R. full_name: Mouton, Peter R. last_name: Mouton citation: ama: Zavadakova A, Vistejnova L, Belinova T, Tichanek F, Bilikova D, Mouton PR. Novel stereological method for estimation of cell counts in 3D collagen scaffolds. Scientific Reports. 2023;13(1). doi:10.1038/s41598-023-35162-z apa: Zavadakova, A., Vistejnova, L., Belinova, T., Tichanek, F., Bilikova, D., & Mouton, P. R. (2023). Novel stereological method for estimation of cell counts in 3D collagen scaffolds. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-023-35162-z chicago: Zavadakova, Anna, Lucie Vistejnova, Tereza Belinova, Filip Tichanek, Dagmar Bilikova, and Peter R. Mouton. “Novel Stereological Method for Estimation of Cell Counts in 3D Collagen Scaffolds.” Scientific Reports. Springer Nature, 2023. https://doi.org/10.1038/s41598-023-35162-z. ieee: A. Zavadakova, L. Vistejnova, T. Belinova, F. Tichanek, D. Bilikova, and P. R. Mouton, “Novel stereological method for estimation of cell counts in 3D collagen scaffolds,” Scientific Reports, vol. 13, no. 1. Springer Nature, 2023. ista: Zavadakova A, Vistejnova L, Belinova T, Tichanek F, Bilikova D, Mouton PR. 2023. Novel stereological method for estimation of cell counts in 3D collagen scaffolds. Scientific Reports. 13(1), 7959. mla: Zavadakova, Anna, et al. “Novel Stereological Method for Estimation of Cell Counts in 3D Collagen Scaffolds.” Scientific Reports, vol. 13, no. 1, 7959, Springer Nature, 2023, doi:10.1038/s41598-023-35162-z. short: A. Zavadakova, L. Vistejnova, T. Belinova, F. Tichanek, D. Bilikova, P.R. Mouton, Scientific Reports 13 (2023). date_created: 2023-05-19T11:12:25Z date_published: 2023-05-17T00:00:00Z date_updated: 2023-08-01T14:46:06Z day: '17' ddc: - '570' department: - _id: Bio doi: 10.1038/s41598-023-35162-z external_id: isi: - '000995271600104' file: - access_level: open_access checksum: 8c1b769693ff4288df8376e59ad1176d content_type: application/pdf creator: dernst date_created: 2023-05-22T07:57:37Z date_updated: 2023-05-22T07:57:37Z file_id: '13047' file_name: 2023_ScientificReports_Zavadakova.pdf file_size: 3055077 relation: main_file success: 1 file_date_updated: 2023-05-22T07:57:37Z has_accepted_license: '1' intvolume: ' 13' isi: 1 issue: '1' keyword: - Multidisciplinary language: - iso: eng month: '05' oa: 1 oa_version: Published Version publication: Scientific Reports publication_identifier: issn: - 2045-2322 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41598-023-37265-z scopus_import: '1' status: public title: Novel stereological method for estimation of cell counts in 3D collagen scaffolds tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2023' ... --- _id: '13095' abstract: - lang: eng text: Disulfide bond formation is fundamentally important for protein structure and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive μs time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfill other favorable contacts. acknowledgement: "We thank Albert A. Smith (Univ. Leipzig) for discussions and help with detectors analyses, Undina Guillerm (IST Austria) for gel electrophoresis experiments (Figure S7), and Jens\r\nLidman (Univ. Gothenburg) for a 3Q relaxation analysis script. Intramural funding from Institute of Science and Technology Austria is acknowledged. This work also used the platforms of\r\nthe Grenoble Instruct-ERIC center (ISBG; UMS 3518 CNRSCEA-UJF-EMBL) within the Grenoble Partnership for Structural Biology (PSB), as well as the Swedish NMR Centre\r\nof the University of Gothenburg. Both platforms provided excellent research infrastructures. B.M.B. gratefully acknowledges funding from the Swedish Research Council (Starting grant 2016-04721), the Swedish Cancer Foundation (2019-0415), and the Knut och Alice Wallenberg Foundation through a Wallenberg Academy Fellowship (2016.0163) as well as through the Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden. " article_processing_charge: No article_type: original author: - first_name: Laura full_name: Troussicot, Laura id: 3d9cac31-413c-11eb-9514-d1ec2a7fb7f3 last_name: Troussicot - first_name: Alicia full_name: Vallet, Alicia last_name: Vallet - first_name: Mikael full_name: Molin, Mikael last_name: Molin - first_name: Björn M. full_name: Burmann, Björn M. last_name: Burmann - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 citation: ama: Troussicot L, Vallet A, Molin M, Burmann BM, Schanda P. Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR. Journal of the American Chemical Society. 2023;145(19):10700–10711. doi:10.1021/jacs.3c01200 apa: Troussicot, L., Vallet, A., Molin, M., Burmann, B. M., & Schanda, P. (2023). Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR. Journal of the American Chemical Society. American Chemical Society. https://doi.org/10.1021/jacs.3c01200 chicago: Troussicot, Laura, Alicia Vallet, Mikael Molin, Björn M. Burmann, and Paul Schanda. “Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR.” Journal of the American Chemical Society. American Chemical Society, 2023. https://doi.org/10.1021/jacs.3c01200. ieee: L. Troussicot, A. Vallet, M. Molin, B. M. Burmann, and P. Schanda, “Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR,” Journal of the American Chemical Society, vol. 145, no. 19. American Chemical Society, pp. 10700–10711, 2023. ista: Troussicot L, Vallet A, Molin M, Burmann BM, Schanda P. 2023. Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR. Journal of the American Chemical Society. 145(19), 10700–10711. mla: Troussicot, Laura, et al. “Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR.” Journal of the American Chemical Society, vol. 145, no. 19, American Chemical Society, 2023, pp. 10700–10711, doi:10.1021/jacs.3c01200. short: L. Troussicot, A. Vallet, M. Molin, B.M. Burmann, P. Schanda, Journal of the American Chemical Society 145 (2023) 10700–10711. date_created: 2023-05-28T22:01:04Z date_published: 2023-05-04T00:00:00Z date_updated: 2023-08-01T14:48:09Z day: '04' ddc: - '540' department: - _id: PaSc doi: 10.1021/jacs.3c01200 external_id: isi: - '000985907400001' pmid: - '37140345' file: - access_level: open_access checksum: 0758a930ef21c62fc91b14e657479f83 content_type: application/pdf creator: dernst date_created: 2023-05-30T07:05:28Z date_updated: 2023-05-30T07:05:28Z file_id: '13098' file_name: 2023_JACS_Troussicot.pdf file_size: 6719299 relation: main_file success: 1 file_date_updated: 2023-05-30T07:05:28Z has_accepted_license: '1' intvolume: ' 145' isi: 1 issue: '19' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 10700–10711 pmid: 1 publication: Journal of the American Chemical Society publication_identifier: eissn: - 1520-5126 issn: - 0002-7863 publication_status: published publisher: American Chemical Society quality_controlled: '1' related_material: record: - id: '12820' relation: research_data status: public scopus_import: '1' status: public title: Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 145 year: '2023' ...