--- _id: '10537' abstract: - lang: eng text: We consider the quantum many-body evolution of a homogeneous Fermi gas in three dimensions in the coupled semiclassical and mean-field scaling regime. We study a class of initial data describing collective particle–hole pair excitations on the Fermi ball. Using a rigorous version of approximate bosonization, we prove that the many-body evolution can be approximated in Fock space norm by a quasi-free bosonic evolution of the collective particle–hole excitations. acknowledgement: NB was supported by Gruppo Nazionale per la Fisica Matematica (GNFM). RS was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 694227). PTN was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC-2111-390814868). MP was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC StG MaMBoQ, Grant Agreement No. 802901). BS was supported by the NCCR SwissMAP, the Swiss National Science Foundation through the Grant “Dynamical and energetic properties of Bose-Einstein condensates,” and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program through the ERC-AdG CLaQS (Grant Agreement No. 834782). article_processing_charge: No article_type: original author: - first_name: Niels P full_name: Benedikter, Niels P id: 3DE6C32A-F248-11E8-B48F-1D18A9856A87 last_name: Benedikter orcid: 0000-0002-1071-6091 - first_name: Phan Thành full_name: Nam, Phan Thành last_name: Nam - first_name: Marcello full_name: Porta, Marcello last_name: Porta - first_name: Benjamin full_name: Schlein, Benjamin last_name: Schlein - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Benedikter NP, Nam PT, Porta M, Schlein B, Seiringer R. Bosonization of fermionic many-body dynamics. Annales Henri Poincaré. 2021. doi:10.1007/s00023-021-01136-y apa: Benedikter, N. P., Nam, P. T., Porta, M., Schlein, B., & Seiringer, R. (2021). Bosonization of fermionic many-body dynamics. Annales Henri Poincaré. Springer Nature. https://doi.org/10.1007/s00023-021-01136-y chicago: Benedikter, Niels P, Phan Thành Nam, Marcello Porta, Benjamin Schlein, and Robert Seiringer. “Bosonization of Fermionic Many-Body Dynamics.” Annales Henri Poincaré. Springer Nature, 2021. https://doi.org/10.1007/s00023-021-01136-y. ieee: N. P. Benedikter, P. T. Nam, M. Porta, B. Schlein, and R. Seiringer, “Bosonization of fermionic many-body dynamics,” Annales Henri Poincaré. Springer Nature, 2021. ista: Benedikter NP, Nam PT, Porta M, Schlein B, Seiringer R. 2021. Bosonization of fermionic many-body dynamics. Annales Henri Poincaré. mla: Benedikter, Niels P., et al. “Bosonization of Fermionic Many-Body Dynamics.” Annales Henri Poincaré, Springer Nature, 2021, doi:10.1007/s00023-021-01136-y. short: N.P. Benedikter, P.T. Nam, M. Porta, B. Schlein, R. Seiringer, Annales Henri Poincaré (2021). date_created: 2021-12-12T23:01:28Z date_published: 2021-12-02T00:00:00Z date_updated: 2023-08-17T06:19:14Z day: '02' department: - _id: RoSe doi: 10.1007/s00023-021-01136-y ec_funded: 1 external_id: arxiv: - '2103.08224' isi: - '000725405700001' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2103.08224 month: '12' oa: 1 oa_version: Preprint project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Annales Henri Poincaré publication_identifier: issn: - 1424-0637 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Bosonization of fermionic many-body dynamics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '10549' abstract: - lang: eng text: We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on \mathbb {R}^d with stationary law (that is spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale \varepsilon >0, we establish homogenization error estimates of the order \varepsilon in case d\geqq 3, and of the order \varepsilon |\log \varepsilon |^{1/2} in case d=2. Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence \varepsilon ^\delta . We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order (L/\varepsilon )^{-d/2} for a representative volume of size L. Our results also hold in the case of systems for which a (small-scale) C^{1,\alpha } regularity theory is available. acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). SN acknowledges partial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 405009441. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Julian L full_name: Fischer, Julian L id: 2C12A0B0-F248-11E8-B48F-1D18A9856A87 last_name: Fischer orcid: 0000-0002-0479-558X - first_name: Stefan full_name: Neukamm, Stefan last_name: Neukamm citation: ama: Fischer JL, Neukamm S. Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems. Archive for Rational Mechanics and Analysis. 2021;242(1):343-452. doi:10.1007/s00205-021-01686-9 apa: Fischer, J. L., & Neukamm, S. (2021). Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-021-01686-9 chicago: Fischer, Julian L, and Stefan Neukamm. “Optimal Homogenization Rates in Stochastic Homogenization of Nonlinear Uniformly Elliptic Equations and Systems.” Archive for Rational Mechanics and Analysis. Springer Nature, 2021. https://doi.org/10.1007/s00205-021-01686-9. ieee: J. L. Fischer and S. Neukamm, “Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems,” Archive for Rational Mechanics and Analysis, vol. 242, no. 1. Springer Nature, pp. 343–452, 2021. ista: Fischer JL, Neukamm S. 2021. Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems. Archive for Rational Mechanics and Analysis. 242(1), 343–452. mla: Fischer, Julian L., and Stefan Neukamm. “Optimal Homogenization Rates in Stochastic Homogenization of Nonlinear Uniformly Elliptic Equations and Systems.” Archive for Rational Mechanics and Analysis, vol. 242, no. 1, Springer Nature, 2021, pp. 343–452, doi:10.1007/s00205-021-01686-9. short: J.L. Fischer, S. Neukamm, Archive for Rational Mechanics and Analysis 242 (2021) 343–452. date_created: 2021-12-16T12:12:33Z date_published: 2021-06-30T00:00:00Z date_updated: 2023-08-17T06:23:21Z day: '30' ddc: - '530' department: - _id: JuFi doi: 10.1007/s00205-021-01686-9 external_id: arxiv: - '1908.02273' isi: - '000668431200001' file: - access_level: open_access checksum: cc830b739aed83ca2e32c4e0ce266a4c content_type: application/pdf creator: cchlebak date_created: 2021-12-16T14:58:08Z date_updated: 2021-12-16T14:58:08Z file_id: '10558' file_name: 2021_ArchRatMechAnalysis_Fischer.pdf file_size: 1640121 relation: main_file success: 1 file_date_updated: 2021-12-16T14:58:08Z has_accepted_license: '1' intvolume: ' 242' isi: 1 issue: '1' keyword: - Mechanical Engineering - Mathematics (miscellaneous) - Analysis language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 343-452 publication: Archive for Rational Mechanics and Analysis publication_identifier: eissn: - 1432-0673 issn: - 0003-9527 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 242 year: '2021' ... --- _id: '10409' abstract: - lang: eng text: We show that Yao’s garbling scheme is adaptively indistinguishable for the class of Boolean circuits of size S and treewidth w with only a SO(w) loss in security. For instance, circuits with constant treewidth are as a result adaptively indistinguishable with only a polynomial loss. This (partially) complements a negative result of Applebaum et al. (Crypto 2013), which showed (assuming one-way functions) that Yao’s garbling scheme cannot be adaptively simulatable. As main technical contributions, we introduce a new pebble game that abstracts out our security reduction and then present a pebbling strategy for this game where the number of pebbles used is roughly O(δwlog(S)) , δ being the fan-out of the circuit. The design of the strategy relies on separators, a graph-theoretic notion with connections to circuit complexity. with only a SO(w) loss in security. For instance, circuits with constant treewidth are as a result adaptively indistinguishable with only a polynomial loss. This (partially) complements a negative result of Applebaum et al. (Crypto 2013), which showed (assuming one-way functions) that Yao’s garbling scheme cannot be adaptively simulatable. As main technical contributions, we introduce a new pebble game that abstracts out our security reduction and then present a pebbling strategy for this game where the number of pebbles used is roughly O(δwlog(S)) , δ being the fan-out of the circuit. The design of the strategy relies on separators, a graph-theoretic notion with connections to circuit complexity. acknowledgement: We are grateful to Daniel Wichs for helpful discussions on the landscape of adaptive security of Yao’s garbling. We would also like to thank Crypto 2021 and TCC 2021 reviewers for their detailed review and suggestions, which helped improve presentation considerably. alternative_title: - LNCS article_processing_charge: No author: - first_name: Chethan full_name: Kamath Hosdurg, Chethan id: 4BD3F30E-F248-11E8-B48F-1D18A9856A87 last_name: Kamath Hosdurg - first_name: Karen full_name: Klein, Karen id: 3E83A2F8-F248-11E8-B48F-1D18A9856A87 last_name: Klein - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Kamath Hosdurg C, Klein K, Pietrzak KZ. On treewidth, separators and Yao’s garbling. In: 19th International Conference. Vol 13043. Springer Nature; 2021:486-517. doi:10.1007/978-3-030-90453-1_17' apa: 'Kamath Hosdurg, C., Klein, K., & Pietrzak, K. Z. (2021). On treewidth, separators and Yao’s garbling. In 19th International Conference (Vol. 13043, pp. 486–517). Raleigh, NC, United States: Springer Nature. https://doi.org/10.1007/978-3-030-90453-1_17' chicago: Kamath Hosdurg, Chethan, Karen Klein, and Krzysztof Z Pietrzak. “On Treewidth, Separators and Yao’s Garbling.” In 19th International Conference, 13043:486–517. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-90453-1_17. ieee: C. Kamath Hosdurg, K. Klein, and K. Z. Pietrzak, “On treewidth, separators and Yao’s garbling,” in 19th International Conference, Raleigh, NC, United States, 2021, vol. 13043, pp. 486–517. ista: 'Kamath Hosdurg C, Klein K, Pietrzak KZ. 2021. On treewidth, separators and Yao’s garbling. 19th International Conference. TCC: Theory of Cryptography, LNCS, vol. 13043, 486–517.' mla: Kamath Hosdurg, Chethan, et al. “On Treewidth, Separators and Yao’s Garbling.” 19th International Conference, vol. 13043, Springer Nature, 2021, pp. 486–517, doi:10.1007/978-3-030-90453-1_17. short: C. Kamath Hosdurg, K. Klein, K.Z. Pietrzak, in:, 19th International Conference, Springer Nature, 2021, pp. 486–517. conference: end_date: 2021-11-11 location: Raleigh, NC, United States name: 'TCC: Theory of Cryptography' start_date: 2021-11-08 date_created: 2021-12-05T23:01:43Z date_published: 2021-11-04T00:00:00Z date_updated: 2023-08-17T06:21:38Z day: '04' department: - _id: KrPi doi: 10.1007/978-3-030-90453-1_17 ec_funded: 1 external_id: isi: - '000728364000017' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2021/926 month: '11' oa: 1 oa_version: Preprint page: 486-517 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 19th International Conference publication_identifier: eissn: - 1611-3349 isbn: - 9-783-0309-0452-4 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '10044' relation: earlier_version status: public scopus_import: '1' status: public title: On treewidth, separators and Yao’s garbling type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: '13043 ' year: '2021' ... --- _id: '10545' abstract: - lang: eng text: Classical models with complex energy landscapes represent a perspective avenue for the near-term application of quantum simulators. Until now, many theoretical works studied the performance of quantum algorithms for models with a unique ground state. However, when the classical problem is in a so-called clustering phase, the ground state manifold is highly degenerate. As an example, we consider a 3-XORSAT model defined on simple hypergraphs. The degeneracy of classical ground state manifold translates into the emergence of an extensive number of Z2 symmetries, which remain intact even in the presence of a quantum transverse magnetic field. We establish a general duality approach that restricts the quantum problem to a given sector of conserved Z2 charges and use it to study how the outcome of the quantum adiabatic algorithm depends on the hypergraph geometry. We show that the tree hypergraph which corresponds to a classically solvable instance of the 3-XORSAT problem features a constant gap, whereas the closed hypergraph encounters a second-order phase transition with a gap vanishing as a power-law in the problem size. The duality developed in this work provides a practical tool for studies of quantum models with classically degenerate energy manifold and reveals potential connections between glasses and gauge theories. acknowledgement: We would like to thank S. De Nicola, A. Michaidilis, T. Gulden, Y. Nez-Fernndez, P. Brighi, and S. Sack for fruitful discussions and valuable feedback on the manuscript. M.S. acknowledges useful discussions with E. Altman, L. Cugliandolo, and C. Laumann. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme Grant Agreement No. 850899. article_number: '062423' article_processing_charge: No article_type: original author: - first_name: Raimel A full_name: Medina Ramos, Raimel A id: CE680B90-D85A-11E9-B684-C920E6697425 last_name: Medina Ramos orcid: 0000-0002-5383-2869 - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Medina Ramos RA, Serbyn M. Duality approach to quantum annealing of the 3-variable exclusive-or satisfiability problem (3-XORSAT). Physical Review A. 2021;104(6). doi:10.1103/physreva.104.062423 apa: Medina Ramos, R. A., & Serbyn, M. (2021). Duality approach to quantum annealing of the 3-variable exclusive-or satisfiability problem (3-XORSAT). Physical Review A. American Physical Society. https://doi.org/10.1103/physreva.104.062423 chicago: Medina Ramos, Raimel A, and Maksym Serbyn. “Duality Approach to Quantum Annealing of the 3-Variable Exclusive-or Satisfiability Problem (3-XORSAT).” Physical Review A. American Physical Society, 2021. https://doi.org/10.1103/physreva.104.062423. ieee: R. A. Medina Ramos and M. Serbyn, “Duality approach to quantum annealing of the 3-variable exclusive-or satisfiability problem (3-XORSAT),” Physical Review A, vol. 104, no. 6. American Physical Society, 2021. ista: Medina Ramos RA, Serbyn M. 2021. Duality approach to quantum annealing of the 3-variable exclusive-or satisfiability problem (3-XORSAT). Physical Review A. 104(6), 062423. mla: Medina Ramos, Raimel A., and Maksym Serbyn. “Duality Approach to Quantum Annealing of the 3-Variable Exclusive-or Satisfiability Problem (3-XORSAT).” Physical Review A, vol. 104, no. 6, 062423, American Physical Society, 2021, doi:10.1103/physreva.104.062423. short: R.A. Medina Ramos, M. Serbyn, Physical Review A 104 (2021). date_created: 2021-12-14T20:46:07Z date_published: 2021-12-14T00:00:00Z date_updated: 2023-08-17T06:22:49Z day: '14' department: - _id: MaSe doi: 10.1103/physreva.104.062423 ec_funded: 1 external_id: arxiv: - '2106.06344' isi: - '000753659200004' intvolume: ' 104' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2106.06344 month: '12' oa: 1 oa_version: Preprint project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Duality approach to quantum annealing of the 3-variable exclusive-or satisfiability problem (3-XORSAT) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 104 year: '2021' ... --- _id: '10554' abstract: - lang: eng text: 'We present DAG-Rider, the first asynchronous Byzantine Atomic Broadcast protocol that achieves optimal resilience, optimal amortized communication complexity, and optimal time complexity. DAG-Rider is post-quantum safe and ensures that all values proposed by correct processes eventually get delivered. We construct DAG-Rider in two layers: In the first layer, processes reliably broadcast their proposals and build a structured Directed Acyclic Graph (DAG) of the communication among them. In the second layer, processes locally observe their DAGs and totally order all proposals with no extra communication.' acknowledgement: "Oded Naor is grateful to the Technion Hiroshi Fujiwara Cyber-Security Research Center for providing a research grant. Part of Oded’s work was done while at Novi Research. This work was funded by the Novi team at Facebook. We also wish to thank the Novi Research team for valuable feedback, and in particular George Danezis, Alberto Sonnino, and Dahlia Malkhi.\r\n" article_processing_charge: No author: - first_name: Idit full_name: Keidar, Idit last_name: Keidar - first_name: Eleftherios full_name: Kokoris Kogias, Eleftherios id: f5983044-d7ef-11ea-ac6d-fd1430a26d30 last_name: Kokoris Kogias - first_name: Oded full_name: Naor, Oded last_name: Naor - first_name: Alexander full_name: Spiegelman, Alexander last_name: Spiegelman citation: ama: 'Keidar I, Kokoris Kogias E, Naor O, Spiegelman A. All You Need is DAG. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing. Association for Computing Machinery; 2021:165-175. doi:10.1145/3465084.3467905' apa: 'Keidar, I., Kokoris Kogias, E., Naor, O., & Spiegelman, A. (2021). All You Need is DAG. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (pp. 165–175). Virtual, Italy: Association for Computing Machinery. https://doi.org/10.1145/3465084.3467905' chicago: Keidar, Idit, Eleftherios Kokoris Kogias, Oded Naor, and Alexander Spiegelman. “All You Need Is DAG.” In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, 165–75. Association for Computing Machinery, 2021. https://doi.org/10.1145/3465084.3467905. ieee: I. Keidar, E. Kokoris Kogias, O. Naor, and A. Spiegelman, “All You Need is DAG,” in Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Virtual, Italy, 2021, pp. 165–175. ista: 'Keidar I, Kokoris Kogias E, Naor O, Spiegelman A. 2021. All You Need is DAG. Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing. PODC: Principles of Distributed Computing, 165–175.' mla: Keidar, Idit, et al. “All You Need Is DAG.” Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2021, pp. 165–75, doi:10.1145/3465084.3467905. short: I. Keidar, E. Kokoris Kogias, O. Naor, A. Spiegelman, in:, Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2021, pp. 165–175. conference: end_date: 2021-07-30 location: Virtual, Italy name: 'PODC: Principles of Distributed Computing' start_date: 2021-07-26 date_created: 2021-12-16T13:21:13Z date_published: 2021-07-21T00:00:00Z date_updated: 2023-08-17T06:24:44Z day: '21' department: - _id: ElKo doi: 10.1145/3465084.3467905 external_id: arxiv: - '2102.08325' isi: - '000744439800016' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2102.08325 month: '07' oa: 1 oa_version: Preprint page: 165-175 publication: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing publication_identifier: isbn: - 978-1-4503-8548-0 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: All You Need is DAG type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ...