--- _id: '12702' abstract: - lang: eng text: Hydrocarbon mixtures are extremely abundant in the Universe, and diamond formation from them can play a crucial role in shaping the interior structure and evolution of planets. With first-principles accuracy, we first estimate the melting line of diamond, and then reveal the nature of chemical bonding in hydrocarbons at extreme conditions. We finally establish the pressure-temperature phase boundary where it is thermodynamically possible for diamond to form from hydrocarbon mixtures with different atomic fractions of carbon. Notably, here we show a depletion zone at pressures above 200 GPa and temperatures below 3000 K-3500 K where diamond formation is thermodynamically favorable regardless of the carbon atomic fraction, due to a phase separation mechanism. The cooler condition of the interior of Neptune compared to Uranus means that the former is much more likely to contain the depletion zone. Our findings can help explain the dichotomy of the two ice giants manifested by the low luminosity of Uranus, and lead to a better understanding of (exo-)planetary formation and evolution. acknowledgement: BC thanks Daan Frenkel for stimulating discussions. We thank Aleks Reinhardt, Daan Frenkel, Marius Millot, Federica Coppari, Rhys Bunting, and Chris J. Pickard for critically reading the manuscript and providing useful suggestions. BC acknowledges resources provided by the Cambridge Tier-2 system operated by the University of Cambridge Research Computing Service funded by EPSRC Tier-2 capital grant EP/P020259/1. SH acknowledges support from LDRD 19-ERD-031 and computing support from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. MB acknowledges support by the European Horizon 2020 program within the Marie Skłodowska-Curie actions (xICE grant number 894725), funding from the NOMIS foundation and computational resources at the North-German Supercomputing Alliance (HLRN) facilities. article_number: '1104' article_processing_charge: No article_type: original author: - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 - first_name: Sebastien full_name: Hamel, Sebastien last_name: Hamel - first_name: Mandy full_name: Bethkenhagen, Mandy id: 201939f4-803f-11ed-ab7e-d8da4bd1517f last_name: Bethkenhagen orcid: 0000-0002-1838-2129 citation: ama: Cheng B, Hamel S, Bethkenhagen M. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nature Communications. 2023;14. doi:10.1038/s41467-023-36841-1 apa: Cheng, B., Hamel, S., & Bethkenhagen, M. (2023). Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-36841-1 chicago: Cheng, Bingqing, Sebastien Hamel, and Mandy Bethkenhagen. “Thermodynamics of Diamond Formation from Hydrocarbon Mixtures in Planets.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-36841-1. ieee: B. Cheng, S. Hamel, and M. Bethkenhagen, “Thermodynamics of diamond formation from hydrocarbon mixtures in planets,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Cheng B, Hamel S, Bethkenhagen M. 2023. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nature Communications. 14, 1104. mla: Cheng, Bingqing, et al. “Thermodynamics of Diamond Formation from Hydrocarbon Mixtures in Planets.” Nature Communications, vol. 14, 1104, Springer Nature, 2023, doi:10.1038/s41467-023-36841-1. short: B. Cheng, S. Hamel, M. Bethkenhagen, Nature Communications 14 (2023). date_created: 2023-03-05T23:01:04Z date_published: 2023-02-27T00:00:00Z date_updated: 2023-08-01T13:36:11Z day: '27' ddc: - '540' department: - _id: BiCh doi: 10.1038/s41467-023-36841-1 external_id: isi: - '000939678300002' pmid: - '36843123' file: - access_level: open_access checksum: 5ff61ad21511950c15abb73b18613883 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T10:58:00Z date_updated: 2023-03-07T10:58:00Z file_id: '12713' file_name: 2023_NatComm_Cheng.pdf file_size: 1946443 relation: main_file success: 1 file_date_updated: 2023-03-07T10:58:00Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 9B861AAC-BA93-11EA-9121-9846C619BF3A name: NOMIS Fellowship Program publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Thermodynamics of diamond formation from hydrocarbon mixtures in planets tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '12719' abstract: - lang: eng text: "Background\r\nEpigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture.\r\n\r\nMethods\r\nFirst, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women’s Health Initiative study).\r\n\r\nResults\r\nThrough the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10−52, and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10−60). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations.\r\n\r\nConclusions\r\nThe integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age." acknowledgement: We are grateful to all the families who took part, the general practitioners, and the Scottish School of Primary Care for their help in recruiting them and the whole GS team that includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, healthcare assistants, and nurses. article_number: '12' article_processing_charge: No article_type: original author: - first_name: Elena full_name: Bernabeu, Elena last_name: Bernabeu - first_name: Daniel L. full_name: Mccartney, Daniel L. last_name: Mccartney - first_name: Danni A. full_name: Gadd, Danni A. last_name: Gadd - first_name: Robert F. full_name: Hillary, Robert F. last_name: Hillary - first_name: Ake T. full_name: Lu, Ake T. last_name: Lu - first_name: Lee full_name: Murphy, Lee last_name: Murphy - first_name: Nicola full_name: Wrobel, Nicola last_name: Wrobel - first_name: Archie full_name: Campbell, Archie last_name: Campbell - first_name: Sarah E. full_name: Harris, Sarah E. last_name: Harris - first_name: David full_name: Liewald, David last_name: Liewald - first_name: Caroline full_name: Hayward, Caroline last_name: Hayward - first_name: Cathie full_name: Sudlow, Cathie last_name: Sudlow - first_name: Simon R. full_name: Cox, Simon R. last_name: Cox - first_name: Kathryn L. full_name: Evans, Kathryn L. last_name: Evans - first_name: Steve full_name: Horvath, Steve last_name: Horvath - first_name: Andrew M. full_name: Mcintosh, Andrew M. last_name: Mcintosh - first_name: Matthew Richard full_name: Robinson, Matthew Richard id: E5D42276-F5DA-11E9-8E24-6303E6697425 last_name: Robinson orcid: 0000-0001-8982-8813 - first_name: Catalina A. full_name: Vallejos, Catalina A. last_name: Vallejos - first_name: Riccardo E. full_name: Marioni, Riccardo E. last_name: Marioni citation: ama: Bernabeu E, Mccartney DL, Gadd DA, et al. Refining epigenetic prediction of chronological and biological age. Genome Medicine. 2023;15. doi:10.1186/s13073-023-01161-y apa: Bernabeu, E., Mccartney, D. L., Gadd, D. A., Hillary, R. F., Lu, A. T., Murphy, L., … Marioni, R. E. (2023). Refining epigenetic prediction of chronological and biological age. Genome Medicine. Springer Nature. https://doi.org/10.1186/s13073-023-01161-y chicago: Bernabeu, Elena, Daniel L. Mccartney, Danni A. Gadd, Robert F. Hillary, Ake T. Lu, Lee Murphy, Nicola Wrobel, et al. “Refining Epigenetic Prediction of Chronological and Biological Age.” Genome Medicine. Springer Nature, 2023. https://doi.org/10.1186/s13073-023-01161-y. ieee: E. Bernabeu et al., “Refining epigenetic prediction of chronological and biological age,” Genome Medicine, vol. 15. Springer Nature, 2023. ista: Bernabeu E, Mccartney DL, Gadd DA, Hillary RF, Lu AT, Murphy L, Wrobel N, Campbell A, Harris SE, Liewald D, Hayward C, Sudlow C, Cox SR, Evans KL, Horvath S, Mcintosh AM, Robinson MR, Vallejos CA, Marioni RE. 2023. Refining epigenetic prediction of chronological and biological age. Genome Medicine. 15, 12. mla: Bernabeu, Elena, et al. “Refining Epigenetic Prediction of Chronological and Biological Age.” Genome Medicine, vol. 15, 12, Springer Nature, 2023, doi:10.1186/s13073-023-01161-y. short: E. Bernabeu, D.L. Mccartney, D.A. Gadd, R.F. Hillary, A.T. Lu, L. Murphy, N. Wrobel, A. Campbell, S.E. Harris, D. Liewald, C. Hayward, C. Sudlow, S.R. Cox, K.L. Evans, S. Horvath, A.M. Mcintosh, M.R. Robinson, C.A. Vallejos, R.E. Marioni, Genome Medicine 15 (2023). date_created: 2023-03-12T23:01:02Z date_published: 2023-02-28T00:00:00Z date_updated: 2023-08-01T13:38:12Z day: '28' ddc: - '570' department: - _id: MaRo doi: 10.1186/s13073-023-01161-y external_id: isi: - '000940286600001' file: - access_level: open_access checksum: 833b837910c4db42fb5f0f34125f77a7 content_type: application/pdf creator: cchlebak date_created: 2023-03-14T10:29:47Z date_updated: 2023-03-14T10:29:47Z file_id: '12722' file_name: 2023_GenomeMed_Bernabeu.pdf file_size: 4275987 relation: main_file success: 1 file_date_updated: 2023-03-14T10:29:47Z has_accepted_license: '1' intvolume: ' 15' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Genome Medicine publication_identifier: eissn: - 1756-994X publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Refining epigenetic prediction of chronological and biological age tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2023' ... --- _id: '12704' abstract: - lang: eng text: Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not come for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off but inflict a net loss when measured in holistic robot performance. This work revisits the robustness-accuracy trade-off in robot learning by systematically analyzing if recent advances in robust training methods and theory in conjunction with adversarial robot learning, are capable of making adversarial training suitable for real-world robot applications. We evaluate three different robot learning tasks ranging from autonomous driving in a high-fidelity environment amenable to sim-to-real deployment to mobile robot navigation and gesture recognition. Our results demonstrate that, while these techniques make incremental improvements on the trade-off on a relative scale, the negative impact on the nominal accuracy caused by adversarial training still outweighs the improved robustness by an order of magnitude. We conclude that although progress is happening, further advances in robust learning methods are necessary before they can benefit robot learning tasks in practice. acknowledgement: "We thank Christoph Lampert for inspiring this work. The\r\nviews and conclusions contained in this document are those of\r\nthe authors and should not be interpreted as representing the\r\nofficial policies, either expressed or implied, of the United States\r\nAir Force or the U.S. Government. The U.S. Government is\r\nauthorized to reproduce and distribute reprints for Government\r\npurposes notwithstanding any copyright notation herein." article_processing_charge: No article_type: original author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Lechner M, Amini A, Rus D, Henzinger TA. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. 2023;8(3):1595-1602. doi:10.1109/LRA.2023.3240930 apa: Lechner, M., Amini, A., Rus, D., & Henzinger, T. A. (2023). Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/LRA.2023.3240930 chicago: Lechner, Mathias, Alexander Amini, Daniela Rus, and Thomas A Henzinger. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” IEEE Robotics and Automation Letters. Institute of Electrical and Electronics Engineers, 2023. https://doi.org/10.1109/LRA.2023.3240930. ieee: M. Lechner, A. Amini, D. Rus, and T. A. Henzinger, “Revisiting the adversarial robustness-accuracy tradeoff in robot learning,” IEEE Robotics and Automation Letters, vol. 8, no. 3. Institute of Electrical and Electronics Engineers, pp. 1595–1602, 2023. ista: Lechner M, Amini A, Rus D, Henzinger TA. 2023. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. 8(3), 1595–1602. mla: Lechner, Mathias, et al. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” IEEE Robotics and Automation Letters, vol. 8, no. 3, Institute of Electrical and Electronics Engineers, 2023, pp. 1595–602, doi:10.1109/LRA.2023.3240930. short: M. Lechner, A. Amini, D. Rus, T.A. Henzinger, IEEE Robotics and Automation Letters 8 (2023) 1595–1602. date_created: 2023-03-05T23:01:04Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-01T13:36:50Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1109/LRA.2023.3240930 external_id: arxiv: - '2204.07373' isi: - '000936534100012' file: - access_level: open_access checksum: 5a75dcd326ea66685de2b1aaec259e85 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T12:22:23Z date_updated: 2023-03-07T12:22:23Z file_id: '12714' file_name: 2023_IEEERobAutLetters_Lechner.pdf file_size: 944052 relation: main_file success: 1 file_date_updated: 2023-03-07T12:22:23Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 1595-1602 publication: IEEE Robotics and Automation Letters publication_identifier: eissn: - 2377-3766 publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' related_material: record: - id: '11366' relation: earlier_version status: public scopus_import: '1' status: public title: Revisiting the adversarial robustness-accuracy tradeoff in robot learning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2023' ... --- _id: '12737' abstract: - lang: eng text: The substitution of heavier, more metallic atoms into classical organic ligand frameworks provides an important strategy for tuning ligand properties, such as ligand bite and donor character, and is the basis for the emerging area of main-group supramolecular chemistry. In this paper, we explore two new ligands [E(2-Me-8-qy)3] [E = Sb (1), Bi (2); qy = quinolyl], allowing a fundamental comparison of their coordination behavior with classical tris(2-pyridyl) ligands of the type [E′(2-py)3] (E = a range of bridgehead atoms and groups, py = pyridyl). A range of new coordination modes to Cu+, Ag+, and Au+ is seen for 1 and 2, in the absence of steric constraints at the bridgehead and with their more remote N-donor atoms. A particular feature is the adaptive nature of these new ligands, with the ability to adjust coordination mode in response to the hard–soft character of coordinated metal ions, influenced also by the character of the bridgehead atom (Sb or Bi). These features can be seen in a comparison between [Cu2{Sb(2-Me-8-qy)3}2](PF6)2 (1·CuPF6) and [Cu{Bi(2-Me-8-qy)3}](PF6) (2·CuPF6), the first containing a dimeric cation in which 1 adopts an unprecedented intramolecular N,N,Sb-coordination mode while in the second, 2 adopts an unusual N,N,(π-)C coordination mode. In contrast, the previously reported analogous ligands [E(6-Me-2-py)3] (E = Sb, Bi; 2-py = 2-pyridyl) show a tris-chelating mode in their complexes with CuPF6, which is typical for the extensive tris(2-pyridyl) family with a range of metals. The greater polarity of the Bi–C bond in 2 results in ligand transfer reactions with Au(I). Although this reactivity is not in itself unusual, the characterization of several products by single-crystal X-ray diffraction provides snapshots of the ligand transfer reaction involved, with one of the products (the bimetallic complex [(BiCl){ClAu2(2-Me-8-qy)3}] (8)) containing a Au2Bi core in which the shortest Au → Bi donor–acceptor bond to date is observed. acknowledgement: The authors thank the Walters-Kundert Studentship of Selwyn College (scholarship for J.E.W.), the Leverhulme Trust (R.G.-R. and D.S.W., grant RPG-2017-146), the Australian Research Council (A.L.C., DE200100450), the Spanish Ministry of Science and Innovation (MCI) and the Spanish Ministry of Science, Innovation and Universities (MCIU) (R.G.-R., PID2021-124691NB-I00, funded by MCIN/AEI/10.13039/501100011033/FEDER, UE and PGC2018-096880-A-I00, MCIU/AEI/FEDER), The University of Valladolid and Santander Bank (Fellowship for A.G.-R.), and the U.K. EPSRC and The Royal Dutch Shell plc. (I-Case award for R.B.J., EP/R511870/1) for financial support. Calculations were carried out on an in-house Odyssey HPC cluster (Cambridge), and the authors are grateful for the calculation time used. article_processing_charge: No article_type: original author: - first_name: Álvaro full_name: García-Romero, Álvaro last_name: García-Romero - first_name: Jessica E. full_name: Waters, Jessica E. last_name: Waters - first_name: Rajesh B full_name: Jethwa, Rajesh B id: 4cc538d5-803f-11ed-ab7e-8139573aad8f last_name: Jethwa orcid: 0000-0002-0404-4356 - first_name: Andrew D. full_name: Bond, Andrew D. last_name: Bond - first_name: Annie L. full_name: Colebatch, Annie L. last_name: Colebatch - first_name: Raúl full_name: García-Rodríguez, Raúl last_name: García-Rodríguez - first_name: Dominic S. full_name: Wright, Dominic S. last_name: Wright citation: ama: García-Romero Á, Waters JE, Jethwa RB, et al. Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals. Inorganic Chemistry. 2023;62(11):4625-4636. doi:10.1021/acs.inorgchem.3c00057 apa: García-Romero, Á., Waters, J. E., Jethwa, R. B., Bond, A. D., Colebatch, A. L., García-Rodríguez, R., & Wright, D. S. (2023). Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals. Inorganic Chemistry. American Chemical Society. https://doi.org/10.1021/acs.inorgchem.3c00057 chicago: García-Romero, Álvaro, Jessica E. Waters, Rajesh B Jethwa, Andrew D. Bond, Annie L. Colebatch, Raúl García-Rodríguez, and Dominic S. Wright. “Highly Adaptive Nature of Group 15 Tris(Quinolyl) Ligands─studies with Coinage Metals.” Inorganic Chemistry. American Chemical Society, 2023. https://doi.org/10.1021/acs.inorgchem.3c00057. ieee: Á. García-Romero et al., “Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals,” Inorganic Chemistry, vol. 62, no. 11. American Chemical Society, pp. 4625–4636, 2023. ista: García-Romero Á, Waters JE, Jethwa RB, Bond AD, Colebatch AL, García-Rodríguez R, Wright DS. 2023. Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals. Inorganic Chemistry. 62(11), 4625–4636. mla: García-Romero, Álvaro, et al. “Highly Adaptive Nature of Group 15 Tris(Quinolyl) Ligands─studies with Coinage Metals.” Inorganic Chemistry, vol. 62, no. 11, American Chemical Society, 2023, pp. 4625–36, doi:10.1021/acs.inorgchem.3c00057. short: Á. García-Romero, J.E. Waters, R.B. Jethwa, A.D. Bond, A.L. Colebatch, R. García-Rodríguez, D.S. Wright, Inorganic Chemistry 62 (2023) 4625–4636. date_created: 2023-03-19T23:00:59Z date_published: 2023-03-08T00:00:00Z date_updated: 2023-08-01T13:42:59Z day: '08' department: - _id: StFr doi: 10.1021/acs.inorgchem.3c00057 external_id: isi: - '000956110300001' pmid: - '36883367' intvolume: ' 62' isi: 1 issue: '11' language: - iso: eng month: '03' oa_version: None page: 4625-4636 pmid: 1 publication: Inorganic Chemistry publication_identifier: eissn: - 1520-510X issn: - 0020-1669 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 62 year: '2023' ... --- _id: '12723' abstract: - lang: eng text: 'Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH3NH3PbBr3 in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k⋅p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order.' article_number: '106901' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Abhishek full_name: Shiva Kumar, Abhishek id: 5e9a6931-eb97-11eb-a6c2-e96f7058d77a last_name: Shiva Kumar - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Younes full_name: Ashourishokri, Younes id: e32c111f-f6e0-11ea-865d-eb955baea334 last_name: Ashourishokri - first_name: Ayan A. full_name: Zhumekenov, Ayan A. last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Volosniev A, Shiva Kumar A, Lorenc D, et al. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 2023;130(10). doi:10.1103/physrevlett.130.106901 apa: Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A. A., Bakr, O. M., … Alpichshev, Z. (2023). Spin-electric coupling in lead halide perovskites. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.130.106901 chicago: Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan A. Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/physrevlett.130.106901. ieee: A. Volosniev et al., “Spin-electric coupling in lead halide perovskites,” Physical Review Letters, vol. 130, no. 10. American Physical Society, 2023. ista: Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov AA, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 130(10), 106901. mla: Volosniev, Artem, et al. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters, vol. 130, no. 10, 106901, American Physical Society, 2023, doi:10.1103/physrevlett.130.106901. short: A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A.A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review Letters 130 (2023). date_created: 2023-03-14T13:11:59Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-08-01T13:39:04Z day: '10' department: - _id: GradSch - _id: ZhAl - _id: MiLe doi: 10.1103/physrevlett.130.106901 external_id: arxiv: - '2203.09443' isi: - '000982435900002' intvolume: ' 130' isi: 1 issue: '10' keyword: - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2203.09443 month: '03' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Spin-electric coupling in lead halide perovskites type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 130 year: '2023' ...