--- _id: '12716' abstract: - lang: eng text: "The process of detecting and evaluating sensory information to guide behaviour is termed perceptual decision-making (PDM), and is critical for the ability of an organism to interact with its external world. Individuals with autism, a neurodevelopmental condition primarily characterised by social and communication difficulties, frequently exhibit altered sensory processing and PDM difficulties are widely reported. Recent technological advancements have pushed forward our understanding of the genetic changes accompanying this condition, however our understanding of how these mutations affect the function of specific neuronal circuits and bring about the corresponding behavioural changes remains limited. Here, we use an innate PDM task, the looming avoidance response (LAR) paradigm, to identify a convergent behavioural abnormality across three molecularly distinct genetic mouse models of autism (Cul3, Setd5 and Ptchd1). Although mutant mice can rapidly detect threatening visual stimuli, their responses are consistently delayed, requiring longer to initiate an appropriate response than their wild-type siblings. Mutant animals show abnormal adaptation in both their stimulus- evoked escape responses and exploratory dynamics following repeated stimulus presentations. Similarly delayed behavioural responses are observed in wild-type animals when faced with more ambiguous threats, suggesting the mutant phenotype could arise from a dysfunction in the flexible control of this PDM process.\r\nOur knowledge of the core neuronal circuitry mediating the LAR facilitated a detailed dissection of the neuronal mechanisms underlying the behavioural impairment. In vivo extracellular recording revealed that visual responses were unaffected within a key brain region for the rapid processing of visual threats, the superior colliculus (SC), indicating that the behavioural delay was unlikely to originate from sensory impairments. Delayed behavioural responses were recapitulated in the Setd5 model following optogenetic stimulation of the excitatory output neurons of the SC, which are known to mediate escape initiation through the activation of cells in the underlying dorsal periaqueductal grey (dPAG). In vitro patch-clamp recordings of dPAG cells uncovered a stark hypoexcitability phenotype in two out of the three genetic models investigated (Setd5 and Ptchd1), that in Setd5, is mediated by the misregulation of voltage-gated potassium channels. Overall, our results show that the ability to use visual information to drive efficient escape responses is impaired in three diverse genetic mouse models of autism and that, in one of the models studied, this behavioural delay likely originates from differences in the intrinsic excitability of a key subcortical node, the dPAG. Furthermore, this work showcases the use of an innate behavioural paradigm to mechanistically dissect PDM processes in autism." acknowledged_ssus: - _id: PreCl - _id: Bio - _id: LifeSc - _id: M-Shop - _id: CampIT alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Laura full_name: Burnett, Laura id: 3B717F68-F248-11E8-B48F-1D18A9856A87 last_name: Burnett orcid: 0000-0002-8937-410X citation: ama: Burnett L. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. 2023. doi:10.15479/at:ista:12716 apa: Burnett, L. (2023). To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12716 chicago: Burnett, Laura. “To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12716. ieee: L. Burnett, “To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism,” Institute of Science and Technology Austria, 2023. ista: Burnett L. 2023. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. mla: Burnett, Laura. To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12716. short: L. Burnett, To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism, Institute of Science and Technology Austria, 2023. date_created: 2023-03-08T15:19:45Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-04-05T10:59:04Z day: '10' ddc: - '599' - '573' degree_awarded: PhD department: - _id: GradSch - _id: MaJö doi: 10.15479/at:ista:12716 ec_funded: 1 file: - access_level: closed checksum: 6c6d9cc2c4cdacb74e6b1047a34d7332 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12717' file_name: Burnett_Thesis_2023.docx file_size: 23029260 relation: source_file - access_level: open_access checksum: cebc77705288bf4382db9b3541483cd0 content_type: application/pdf creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12718' file_name: Burnett_Thesis_2023_pdfA.pdf file_size: 11959869 relation: main_file success: 1 file_date_updated: 2023-03-08T15:08:46Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '178' project: - _id: 2634E9D2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '756502' name: Circuits of Visual Attention publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12854' abstract: - lang: eng text: "The main idea behind BUBAAK is to run multiple program analyses in parallel and use runtime monitoring and enforcement to observe and control their progress in real time. The analyses send information about (un)explored states of the program and discovered invariants to a monitor. The monitor processes the received data and can force an analysis to stop the search of certain program parts (which have already been analyzed by other analyses), or to make it utilize a program invariant found by another analysis.\r\nAt SV-COMP 2023, the implementation of data exchange between the monitor and the analyses was not yet completed, which is why BUBAAK only ran several analyses in parallel, without any coordination. Still, BUBAAK won the meta-category FalsificationOverall and placed very well in several other (sub)-categories of the competition." acknowledgement: This work was supported by the ERC-2020-AdG 10102009 grant. alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Henzinger TA. Bubaak: Runtime monitoring of program verifiers. In: Tools and Algorithms for the Construction and Analysis of Systems. Vol 13994. Springer Nature; 2023:535-540. doi:10.1007/978-3-031-30820-8_32' apa: 'Chalupa, M., & Henzinger, T. A. (2023). Bubaak: Runtime monitoring of program verifiers. In Tools and Algorithms for the Construction and Analysis of Systems (Vol. 13994, pp. 535–540). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30820-8_32' chicago: 'Chalupa, Marek, and Thomas A Henzinger. “Bubaak: Runtime Monitoring of Program Verifiers.” In Tools and Algorithms for the Construction and Analysis of Systems, 13994:535–40. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30820-8_32.' ieee: 'M. Chalupa and T. A. Henzinger, “Bubaak: Runtime monitoring of program verifiers,” in Tools and Algorithms for the Construction and Analysis of Systems, Paris, France, 2023, vol. 13994, pp. 535–540.' ista: 'Chalupa M, Henzinger TA. 2023. Bubaak: Runtime monitoring of program verifiers. Tools and Algorithms for the Construction and Analysis of Systems. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 13994, 535–540.' mla: 'Chalupa, Marek, and Thomas A. Henzinger. “Bubaak: Runtime Monitoring of Program Verifiers.” Tools and Algorithms for the Construction and Analysis of Systems, vol. 13994, Springer Nature, 2023, pp. 535–40, doi:10.1007/978-3-031-30820-8_32.' short: M. Chalupa, T.A. Henzinger, in:, Tools and Algorithms for the Construction and Analysis of Systems, Springer Nature, 2023, pp. 535–540. conference: end_date: 2023-04-27 location: Paris, France name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2023-04-22 date_created: 2023-04-20T08:22:53Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-04-25T07:02:43Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30820-8_32 ec_funded: 1 file: - access_level: open_access checksum: 120d2c2a38384058ad0630fdf8288312 content_type: application/pdf creator: dernst date_created: 2023-04-25T06:58:36Z date_updated: 2023-04-25T06:58:36Z file_id: '12864' file_name: 2023_LNCS_Chalupa.pdf file_size: 16096413 relation: main_file success: 1 file_date_updated: 2023-04-25T06:58:36Z has_accepted_license: '1' intvolume: ' 13994' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 535-540 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Tools and Algorithms for the Construction and Analysis of Systems publication_identifier: eisbn: - '9783031308208' eissn: - 1611-3349 isbn: - '9783031308192' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: 'Bubaak: Runtime monitoring of program verifiers' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13994 year: '2023' ... --- _id: '12846' abstract: - lang: eng text: We present a formula for the signed area of a spherical polygon via prequantization. In contrast to the traditional formula based on the Gauss-Bonnet theorem that requires measuring angles, the new formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves and polygons. acknowledgement: The authors acknowledge Chris Wojtan for his continuous support to the present work through discussions and advice. The second author thanks Anna Sisak for a fruitful discussion on prequantum bundles. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA). article_number: '2303.14555' article_processing_charge: No author: - first_name: Albert full_name: Chern, Albert last_name: Chern - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida citation: ama: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv. doi:10.48550/arXiv.2303.14555 apa: Chern, A., & Ishida, S. (n.d.). Area formula for spherical polygons via prequantization. arXiv. https://doi.org/10.48550/arXiv.2303.14555 chicago: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2303.14555. ieee: A. Chern and S. Ishida, “Area formula for spherical polygons via prequantization,” arXiv. . ista: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv, 2303.14555. mla: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, 2303.14555, doi:10.48550/arXiv.2303.14555. short: A. Chern, S. Ishida, ArXiv (n.d.). date_created: 2023-04-18T19:16:06Z date_published: 2023-03-25T00:00:00Z date_updated: 2023-04-25T06:51:21Z day: '25' department: - _id: GradSch - _id: ChWo doi: 10.48550/arXiv.2303.14555 external_id: arxiv: - '2303.14555' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2303.14555 month: '03' oa: 1 oa_version: Preprint project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: arXiv publication_status: submitted status: public title: Area formula for spherical polygons via prequantization type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12856' abstract: - lang: eng text: "As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both.\r\n\r\nWe present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems.\r\nWe implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch." acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093. The authors would like to thank the anonymous FASE reviewers for their valuable feedback and suggestions. alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Stefanie full_name: Muroya Lei, Stefanie id: a376de31-8972-11ed-ae7b-d0251c13c8ff last_name: Muroya Lei - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. Vamos: Middleware for best-effort third-party monitoring. In: Fundamental Approaches to Software Engineering. Vol 13991. Springer Nature; 2023:260-281. doi:10.1007/978-3-031-30826-0_15' apa: 'Chalupa, M., Mühlböck, F., Muroya Lei, S., & Henzinger, T. A. (2023). Vamos: Middleware for best-effort third-party monitoring. In Fundamental Approaches to Software Engineering (Vol. 13991, pp. 260–281). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30826-0_15' chicago: 'Chalupa, Marek, Fabian Mühlböck, Stefanie Muroya Lei, and Thomas A Henzinger. “Vamos: Middleware for Best-Effort Third-Party Monitoring.” In Fundamental Approaches to Software Engineering, 13991:260–81. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30826-0_15.' ieee: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, and T. A. Henzinger, “Vamos: Middleware for best-effort third-party monitoring,” in Fundamental Approaches to Software Engineering, Paris, France, 2023, vol. 13991, pp. 260–281.' ista: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. 2023. Vamos: Middleware for best-effort third-party monitoring. Fundamental Approaches to Software Engineering. FASE: Fundamental Approaches to Software Engineering, LNCS, vol. 13991, 260–281.' mla: 'Chalupa, Marek, et al. “Vamos: Middleware for Best-Effort Third-Party Monitoring.” Fundamental Approaches to Software Engineering, vol. 13991, Springer Nature, 2023, pp. 260–81, doi:10.1007/978-3-031-30826-0_15.' short: M. Chalupa, F. Mühlböck, S. Muroya Lei, T.A. Henzinger, in:, Fundamental Approaches to Software Engineering, Springer Nature, 2023, pp. 260–281. conference: end_date: 2023-04-27 location: Paris, France name: 'FASE: Fundamental Approaches to Software Engineering' start_date: 2023-04-22 date_created: 2023-04-20T08:29:42Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-04-25T07:19:07Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30826-0_15 ec_funded: 1 file: - access_level: open_access checksum: 17a7c8e08be609cf2408d37ea55e322c content_type: application/pdf creator: dernst date_created: 2023-04-25T07:16:36Z date_updated: 2023-04-25T07:16:36Z file_id: '12865' file_name: 2023_LNCS_ChalupaM.pdf file_size: 580828 relation: main_file success: 1 file_date_updated: 2023-04-25T07:16:36Z has_accepted_license: '1' intvolume: ' 13991' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 260-281 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Fundamental Approaches to Software Engineering publication_identifier: eisbn: - '9783031308260' eissn: - 1611-3349 isbn: - '9783031308253' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12407' relation: earlier_version status: public status: public title: 'Vamos: Middleware for best-effort third-party monitoring' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13991 year: '2023' ... --- _id: '12407' abstract: - lang: eng text: "As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both.\r\n\r\nWe present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems.\r\n\r\nWe implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch." acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093. \r\nThe authors would like to thank the anonymous FASE reviewers for their valuable feedback and suggestions." alternative_title: - IST Austria Technical Report article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Stefanie full_name: Muroya Lei, Stefanie id: a376de31-8972-11ed-ae7b-d0251c13c8ff last_name: Muroya Lei - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria; 2023. doi:10.15479/AT:ISTA:12407' apa: 'Chalupa, M., Mühlböck, F., Muroya Lei, S., & Henzinger, T. A. (2023). VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:12407' chicago: 'Chalupa, Marek, Fabian Mühlböck, Stefanie Muroya Lei, and Thomas A Henzinger. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:12407.' ieee: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, and T. A. Henzinger, VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023.' ista: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. 2023. VAMOS: Middleware for Best-Effort Third-Party Monitoring, Institute of Science and Technology Austria, 38p.' mla: 'Chalupa, Marek, et al. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:12407.' short: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, T.A. Henzinger, VAMOS: Middleware for Best-Effort Third-Party Monitoring, Institute of Science and Technology Austria, 2023.' date_created: 2023-01-27T03:18:08Z date_published: 2023-01-27T00:00:00Z date_updated: 2023-04-25T07:19:06Z day: '27' ddc: - '005' department: - _id: ToHe doi: 10.15479/AT:ISTA:12407 ec_funded: 1 file: - access_level: open_access checksum: 55426e463fdeafe9777fc3ff635154c7 content_type: application/pdf creator: fmuehlbo date_created: 2023-01-27T03:18:34Z date_updated: 2023-01-27T03:18:34Z file_id: '12408' file_name: main.pdf file_size: 662409 relation: main_file success: 1 file_date_updated: 2023-01-27T03:18:34Z has_accepted_license: '1' keyword: - runtime monitoring - best effort - third party language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '38' project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication_identifier: eissn: - 2664-1690 publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '12856' relation: later_version status: public status: public title: 'VAMOS: Middleware for Best-Effort Third-Party Monitoring' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ...