--- _id: '1934' abstract: - lang: eng text: The plant hormones auxin and cytokinin mutually coordinate their activities to control various aspects of development [1-9], and their crosstalk occurs at multiple levels [10, 11]. Cytokinin-mediated modulation of auxin transport provides an efficient means to regulate auxin distribution in plant organs. Here, we demonstrate that cytokinin does not merely control the overall auxin flow capacity, but might also act as a polarizing cue and control the auxin stream directionality during plant organogenesis. Cytokinin enhances the PIN-FORMED1 (PIN1) auxin transporter depletion at specific polar domains, thus rearranging the cellular PIN polarities and directly regulating the auxin flow direction. This selective cytokinin sensitivity correlates with the PIN protein phosphorylation degree. PIN1 phosphomimicking mutations, as well as enhanced phosphorylation in plants with modulated activities of PIN-specific kinases and phosphatases, desensitize PIN1 to cytokinin. Our results reveal conceptually novel, cytokinin-driven polarization mechanism that operates in developmental processes involving rapid auxin stream redirection, such as lateral root organogenesis, in which a gradual PIN polarity switch defines the growth axis of the newly formed organ. author: - first_name: Peter full_name: Marhavy, Peter id: 3F45B078-F248-11E8-B48F-1D18A9856A87 last_name: Marhavy orcid: 0000-0001-5227-5741 - first_name: Jérôme full_name: Duclercq, Jérôme last_name: Duclercq - first_name: Benjamin full_name: Weller, Benjamin last_name: Weller - first_name: Elena full_name: Feraru, Elena last_name: Feraru - first_name: Agnieszka full_name: Bielach, Agnieszka last_name: Bielach - first_name: Remko full_name: Offringa, Remko last_name: Offringa - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Claus full_name: Schwechheimer, Claus last_name: Schwechheimer - first_name: Angus full_name: Murphy, Angus last_name: Murphy - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Marhavý P, Duclercq J, Weller B, et al. Cytokinin controls polarity of PIN1-dependent Auxin transport during lateral root organogenesis. Current Biology. 2014;24(9):1031-1037. doi:10.1016/j.cub.2014.04.002 apa: Marhavý, P., Duclercq, J., Weller, B., Feraru, E., Bielach, A., Offringa, R., … Benková, E. (2014). Cytokinin controls polarity of PIN1-dependent Auxin transport during lateral root organogenesis. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2014.04.002 chicago: Marhavý, Peter, Jérôme Duclercq, Benjamin Weller, Elena Feraru, Agnieszka Bielach, Remko Offringa, Jiří Friml, Claus Schwechheimer, Angus Murphy, and Eva Benková. “Cytokinin Controls Polarity of PIN1-Dependent Auxin Transport during Lateral Root Organogenesis.” Current Biology. Cell Press, 2014. https://doi.org/10.1016/j.cub.2014.04.002. ieee: P. Marhavý et al., “Cytokinin controls polarity of PIN1-dependent Auxin transport during lateral root organogenesis,” Current Biology, vol. 24, no. 9. Cell Press, pp. 1031–1037, 2014. ista: Marhavý P, Duclercq J, Weller B, Feraru E, Bielach A, Offringa R, Friml J, Schwechheimer C, Murphy A, Benková E. 2014. Cytokinin controls polarity of PIN1-dependent Auxin transport during lateral root organogenesis. Current Biology. 24(9), 1031–1037. mla: Marhavý, Peter, et al. “Cytokinin Controls Polarity of PIN1-Dependent Auxin Transport during Lateral Root Organogenesis.” Current Biology, vol. 24, no. 9, Cell Press, 2014, pp. 1031–37, doi:10.1016/j.cub.2014.04.002. short: P. Marhavý, J. Duclercq, B. Weller, E. Feraru, A. Bielach, R. Offringa, J. Friml, C. Schwechheimer, A. Murphy, E. Benková, Current Biology 24 (2014) 1031–1037. date_created: 2018-12-11T11:54:48Z date_published: 2014-05-05T00:00:00Z date_updated: 2021-01-12T06:54:10Z day: '05' department: - _id: EvBe - _id: JiFr doi: 10.1016/j.cub.2014.04.002 ec_funded: 1 intvolume: ' 24' issue: '9' language: - iso: eng month: '05' oa_version: None page: 1031 - 1037 project: - _id: 253FCA6A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '207362' name: Hormonal cross-talk in plant organogenesis publication: Current Biology publication_status: published publisher: Cell Press publist_id: '5160' quality_controlled: '1' scopus_import: 1 status: public title: Cytokinin controls polarity of PIN1-dependent Auxin transport during lateral root organogenesis type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2014' ... --- _id: '1932' abstract: - lang: eng text: The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations. acknowledgement: "Funded by National Institutes of Health. Grant Numbers: R01GM076041, R01GM104040 \r\n\r\nSimons Foundation\r\n\r\n" author: - first_name: Meredith full_name: Trotter, Meredith last_name: Trotter - first_name: Daniel full_name: Weissman, Daniel id: 2D0CE020-F248-11E8-B48F-1D18A9856A87 last_name: Weissman - first_name: Grant full_name: Peterson, Grant last_name: Peterson - first_name: Kayla full_name: Peck, Kayla last_name: Peck - first_name: Joanna full_name: Masel, Joanna last_name: Masel citation: ama: Trotter M, Weissman D, Peterson G, Peck K, Masel J. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution. 2014;68(12):3357-3367. doi:10.1111/evo.12517 apa: Trotter, M., Weissman, D., Peterson, G., Peck, K., & Masel, J. (2014). Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution. Wiley-Blackwell. https://doi.org/10.1111/evo.12517 chicago: Trotter, Meredith, Daniel Weissman, Grant Peterson, Kayla Peck, and Joanna Masel. “Cryptic Genetic Variation Can Make "Irreducible Complexity" a Common Mode of Adaptation in Sexual Populations.” Evolution. Wiley-Blackwell, 2014. https://doi.org/10.1111/evo.12517. ieee: M. Trotter, D. Weissman, G. Peterson, K. Peck, and J. Masel, “Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations,” Evolution, vol. 68, no. 12. Wiley-Blackwell, pp. 3357–3367, 2014. ista: Trotter M, Weissman D, Peterson G, Peck K, Masel J. 2014. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution. 68(12), 3357–3367. mla: Trotter, Meredith, et al. “Cryptic Genetic Variation Can Make "Irreducible Complexity" a Common Mode of Adaptation in Sexual Populations.” Evolution, vol. 68, no. 12, Wiley-Blackwell, 2014, pp. 3357–67, doi:10.1111/evo.12517. short: M. Trotter, D. Weissman, G. Peterson, K. Peck, J. Masel, Evolution 68 (2014) 3357–3367. date_created: 2018-12-11T11:54:47Z date_published: 2014-12-01T00:00:00Z date_updated: 2021-01-12T06:54:10Z day: '01' department: - _id: NiBa doi: 10.1111/evo.12517 ec_funded: 1 intvolume: ' 68' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1310.6077 month: '12' oa: 1 oa_version: Submitted Version page: 3357 - 3367 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Evolution publication_status: published publisher: Wiley-Blackwell publist_id: '5162' quality_controlled: '1' scopus_import: 1 status: public title: Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 68 year: '2014' ... --- _id: '1930' abstract: - lang: eng text: (Figure Presented) Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications. acknowledgement: RTRA Digiteoproject; ERC grant; SNF award; Intel Doctoral Fellowship; MPC-VCC author: - first_name: David full_name: Günther, David last_name: Günther - first_name: Alec full_name: Jacobson, Alec last_name: Jacobson - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Hans full_name: Seidel, Hans last_name: Seidel - first_name: Olga full_name: Sorkine Hornung, Olga last_name: Sorkine Hornung - first_name: Tino full_name: Weinkauf, Tino last_name: Weinkauf citation: ama: Günther D, Jacobson A, Reininghaus J, Seidel H, Sorkine Hornung O, Weinkauf T. Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. 2014;20(12):2585-2594. doi:10.1109/TVCG.2014.2346432 apa: Günther, D., Jacobson, A., Reininghaus, J., Seidel, H., Sorkine Hornung, O., & Weinkauf, T. (2014). Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2014.2346432 chicago: Günther, David, Alec Jacobson, Jan Reininghaus, Hans Seidel, Olga Sorkine Hornung, and Tino Weinkauf. “Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2014. https://doi.org/10.1109/TVCG.2014.2346432. ieee: D. Günther, A. Jacobson, J. Reininghaus, H. Seidel, O. Sorkine Hornung, and T. Weinkauf, “Fast and memory-efficient topological denoising of 2D and 3D scalar fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12. IEEE, pp. 2585–2594, 2014. ista: Günther D, Jacobson A, Reininghaus J, Seidel H, Sorkine Hornung O, Weinkauf T. 2014. Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. 20(12), 2585–2594. mla: Günther, David, et al. “Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, IEEE, 2014, pp. 2585–94, doi:10.1109/TVCG.2014.2346432. short: D. Günther, A. Jacobson, J. Reininghaus, H. Seidel, O. Sorkine Hornung, T. Weinkauf, IEEE Transactions on Visualization and Computer Graphics 20 (2014) 2585–2594. date_created: 2018-12-11T11:54:46Z date_published: 2014-12-31T00:00:00Z date_updated: 2021-01-12T06:54:09Z day: '31' department: - _id: HeEd doi: 10.1109/TVCG.2014.2346432 intvolume: ' 20' issue: '12' language: - iso: eng month: '12' oa_version: None page: 2585 - 2594 publication: IEEE Transactions on Visualization and Computer Graphics publication_status: published publisher: IEEE publist_id: '5164' quality_controlled: '1' scopus_import: 1 status: public title: Fast and memory-efficient topological denoising of 2D and 3D scalar fields type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2014' ... --- _id: '1933' abstract: - lang: eng text: The development of the vertebrate brain requires an exquisite balance between proliferation and differentiation of neural progenitors. Notch signaling plays a pivotal role in regulating this balance, yet the interaction between signaling and receiving cells remains poorly understood. We have found that numerous nascent neurons and/or intermediate neurogenic progenitors expressing the ligand of Notch retain apical endfeet transiently at the ventricular lumen that form adherens junctions (AJs) with the endfeet of progenitors. Forced detachment of the apical endfeet of those differentiating cells by disrupting AJs resulted in precocious neurogenesis that was preceded by the downregulation of Notch signaling. Both Notch1 and its ligand Dll1 are distributed around AJs in the apical endfeet, and these proteins physically interact with ZO-1, a constituent of the AJ. Furthermore, live imaging of a fluorescently tagged Notch1 demonstrated its trafficking from the apical endfoot to the nucleus upon cleavage. Our results identified the apical endfoot as the central site of active Notch signaling to securely prohibit inappropriate differentiation of neural progenitors. author: - first_name: Jun full_name: Hatakeyama, Jun last_name: Hatakeyama - first_name: Yoshio full_name: Wakamatsu, Yoshio last_name: Wakamatsu - first_name: Akira full_name: Nagafuchi, Akira last_name: Nagafuchi - first_name: Ryoichiro full_name: Kageyama, Ryoichiro last_name: Kageyama - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Kenji full_name: Shimamura, Kenji last_name: Shimamura citation: ama: Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development. 2014;141(8):1671-1682. doi:10.1242/dev.102988 apa: Hatakeyama, J., Wakamatsu, Y., Nagafuchi, A., Kageyama, R., Shigemoto, R., & Shimamura, K. (2014). Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development. Company of Biologists. https://doi.org/10.1242/dev.102988 chicago: Hatakeyama, Jun, Yoshio Wakamatsu, Akira Nagafuchi, Ryoichiro Kageyama, Ryuichi Shigemoto, and Kenji Shimamura. “Cadherin-Based Adhesions in the Apical Endfoot Are Required for Active Notch Signaling to Control Neurogenesis in Vertebrates.” Development. Company of Biologists, 2014. https://doi.org/10.1242/dev.102988. ieee: J. Hatakeyama, Y. Wakamatsu, A. Nagafuchi, R. Kageyama, R. Shigemoto, and K. Shimamura, “Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates,” Development, vol. 141, no. 8. Company of Biologists, pp. 1671–1682, 2014. ista: Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. 2014. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development. 141(8), 1671–1682. mla: Hatakeyama, Jun, et al. “Cadherin-Based Adhesions in the Apical Endfoot Are Required for Active Notch Signaling to Control Neurogenesis in Vertebrates.” Development, vol. 141, no. 8, Company of Biologists, 2014, pp. 1671–82, doi:10.1242/dev.102988. short: J. Hatakeyama, Y. Wakamatsu, A. Nagafuchi, R. Kageyama, R. Shigemoto, K. Shimamura, Development 141 (2014) 1671–1682. date_created: 2018-12-11T11:54:47Z date_published: 2014-04-01T00:00:00Z date_updated: 2021-01-12T06:54:10Z day: '01' department: - _id: RySh doi: 10.1242/dev.102988 intvolume: ' 141' issue: '8' language: - iso: eng month: '04' oa_version: None page: 1671 - 1682 publication: Development publication_status: published publisher: Company of Biologists publist_id: '5161' quality_controlled: '1' scopus_import: 1 status: public title: Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 141 year: '2014' ... --- _id: '1931' abstract: - lang: eng text: A wealth of experimental evidence suggests that working memory circuits preferentially represent information that is behaviorally relevant. Still, we are missing a mechanistic account of how these representations come about. Here we provide a simple explanation for a range of experimental findings, in light of prefrontal circuits adapting to task constraints by reward-dependent learning. In particular, we model a neural network shaped by reward-modulated spike-timing dependent plasticity (r-STDP) and homeostatic plasticity (intrinsic excitability and synaptic scaling). We show that the experimentally-observed neural representations naturally emerge in an initially unstructured circuit as it learns to solve several working memory tasks. These results point to a critical, and previously unappreciated, role for reward-dependent learning in shaping prefrontal cortex activity. acknowledgement: Supported in part by EC MEXT project PLICON and the LOEWE-Program “Neuronal Coordination Research Focus Frankfurt” (NeFF). Jochen Triesch was supported by the Quandt foundation. article_number: '57' author: - first_name: Cristina full_name: Savin, Cristina id: 3933349E-F248-11E8-B48F-1D18A9856A87 last_name: Savin - first_name: Jochen full_name: Triesch, Jochen last_name: Triesch citation: ama: Savin C, Triesch J. Emergence of task-dependent representations in working memory circuits. Frontiers in Computational Neuroscience. 2014;8(MAY). doi:10.3389/fncom.2014.00057 apa: Savin, C., & Triesch, J. (2014). Emergence of task-dependent representations in working memory circuits. Frontiers in Computational Neuroscience. Frontiers Research Foundation. https://doi.org/10.3389/fncom.2014.00057 chicago: Savin, Cristina, and Jochen Triesch. “Emergence of Task-Dependent Representations in Working Memory Circuits.” Frontiers in Computational Neuroscience. Frontiers Research Foundation, 2014. https://doi.org/10.3389/fncom.2014.00057. ieee: C. Savin and J. Triesch, “Emergence of task-dependent representations in working memory circuits,” Frontiers in Computational Neuroscience, vol. 8, no. MAY. Frontiers Research Foundation, 2014. ista: Savin C, Triesch J. 2014. Emergence of task-dependent representations in working memory circuits. Frontiers in Computational Neuroscience. 8(MAY), 57. mla: Savin, Cristina, and Jochen Triesch. “Emergence of Task-Dependent Representations in Working Memory Circuits.” Frontiers in Computational Neuroscience, vol. 8, no. MAY, 57, Frontiers Research Foundation, 2014, doi:10.3389/fncom.2014.00057. short: C. Savin, J. Triesch, Frontiers in Computational Neuroscience 8 (2014). date_created: 2018-12-11T11:54:46Z date_published: 2014-05-28T00:00:00Z date_updated: 2021-01-12T06:54:09Z day: '28' department: - _id: GaTk doi: 10.3389/fncom.2014.00057 intvolume: ' 8' issue: MAY language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035833/ month: '05' oa: 1 oa_version: Submitted Version publication: Frontiers in Computational Neuroscience publication_status: published publisher: Frontiers Research Foundation publist_id: '5163' quality_controlled: '1' scopus_import: 1 status: public title: Emergence of task-dependent representations in working memory circuits type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2014' ... --- _id: '1937' abstract: - lang: eng text: We prove the edge universality of the beta ensembles for any β ≥ 1, provided that the limiting spectrum is supported on a single interval, and the external potential is C4 and regular. We also prove that the edge universality holds for generalized Wigner matrices for all symmetry classes. Moreover, our results allow us to extend bulk universality for beta ensembles from analytic potentials to potentials in class C4. author: - first_name: Paul full_name: Bourgade, Paul last_name: Bourgade - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Horngtzer full_name: Yau, Horngtzer last_name: Yau citation: ama: Bourgade P, Erdös L, Yau H. Edge universality of beta ensembles. Communications in Mathematical Physics. 2014;332(1):261-353. doi:10.1007/s00220-014-2120-z apa: Bourgade, P., Erdös, L., & Yau, H. (2014). Edge universality of beta ensembles. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-014-2120-z chicago: Bourgade, Paul, László Erdös, and Horngtzer Yau. “Edge Universality of Beta Ensembles.” Communications in Mathematical Physics. Springer, 2014. https://doi.org/10.1007/s00220-014-2120-z. ieee: P. Bourgade, L. Erdös, and H. Yau, “Edge universality of beta ensembles,” Communications in Mathematical Physics, vol. 332, no. 1. Springer, pp. 261–353, 2014. ista: Bourgade P, Erdös L, Yau H. 2014. Edge universality of beta ensembles. Communications in Mathematical Physics. 332(1), 261–353. mla: Bourgade, Paul, et al. “Edge Universality of Beta Ensembles.” Communications in Mathematical Physics, vol. 332, no. 1, Springer, 2014, pp. 261–353, doi:10.1007/s00220-014-2120-z. short: P. Bourgade, L. Erdös, H. Yau, Communications in Mathematical Physics 332 (2014) 261–353. date_created: 2018-12-11T11:54:48Z date_published: 2014-11-01T00:00:00Z date_updated: 2021-01-12T06:54:12Z day: '01' department: - _id: LaEr doi: 10.1007/s00220-014-2120-z intvolume: ' 332' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1306.5728 month: '11' oa: 1 oa_version: Submitted Version page: 261 - 353 project: - _id: 25BDE9A4-B435-11E9-9278-68D0E5697425 grant_number: SFB-TR3-TP10B name: Glutamaterge synaptische Übertragung und Plastizität in hippocampalen Mikroschaltkreisen publication: Communications in Mathematical Physics publication_status: published publisher: Springer publist_id: '5158' quality_controlled: '1' scopus_import: 1 status: public title: Edge universality of beta ensembles type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 332 year: '2014' ... --- _id: '1981' abstract: - lang: eng text: Variation in mitochondrial DNA is often assumed to be neutral and is used to construct the genealogical relationships among populations and species. However, if extant variation is the result of episodes of positive selection, these genealogies may be incorrect, although this information itself may provide biologically and evolutionary meaningful information. In fact, positive Darwinian selection has been detected in the mitochondrial-encoded subunits that comprise complex I from diverse taxa with seemingly dissimilar bioenergetic life histories, but the functional implications of the selected sites are unknown. Complex I produces roughly 40% of the proton flux that is used to synthesize ATP from ADP, and a functional model based on the high-resolution structure of complex I described a unique biomechanical apparatus for proton translocation. We reported positive selection at sites in this apparatus during the evolution of Pacific salmon, and it appeared this was also the case in published reports from other taxa, but a comparison among studies was difficult because different statistical tests were used to detect selection and oftentimes, specific sites were not reported. Here we review the literature of positive selection in mitochondrial genomes, the statistical tests used to detect selection, and the structural and functional models that are currently available to study the physiological implications of selection. We then search for signatures of positive selection among the coding mitochondrial genomes of 237 species with a common set of tests and verify that the ND5 subunit of complex I is a repeated target of positive Darwinian selection in diverse taxa. We propose a novel hypothesis to explain the results based on their bioenergetic life histories and provide a guide for laboratory and field studies to test this hypothesis. acknowledgement: Funded by University of Alaska Center for Global Change Student Research Cooperative Institute for Alaska Research and the Rasmuson Foundation author: - first_name: Michael full_name: Garvin, Michael R last_name: Garvin - first_name: Joseph full_name: Bielawski, Joseph P last_name: Bielawski - first_name: Leonid A full_name: Leonid Sazanov id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 - first_name: Anthony full_name: Gharrett, Anthony J last_name: Gharrett citation: ama: Garvin M, Bielawski J, Sazanov LA, Gharrett A. Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. Journal of Zoological Systematics and Evolutionary Research. 2014;53(1):1-17. doi:10.1111/jzs.12079 apa: Garvin, M., Bielawski, J., Sazanov, L. A., & Gharrett, A. (2014). Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. Journal of Zoological Systematics and Evolutionary Research. Wiley-Blackwell. https://doi.org/10.1111/jzs.12079 chicago: Garvin, Michael, Joseph Bielawski, Leonid A Sazanov, and Anthony Gharrett. “Review and Meta-Analysis of Natural Selection in Mitochondrial Complex I in Metazoans.” Journal of Zoological Systematics and Evolutionary Research. Wiley-Blackwell, 2014. https://doi.org/10.1111/jzs.12079. ieee: M. Garvin, J. Bielawski, L. A. Sazanov, and A. Gharrett, “Review and meta-analysis of natural selection in mitochondrial complex I in metazoans,” Journal of Zoological Systematics and Evolutionary Research, vol. 53, no. 1. Wiley-Blackwell, pp. 1–17, 2014. ista: Garvin M, Bielawski J, Sazanov LA, Gharrett A. 2014. Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. Journal of Zoological Systematics and Evolutionary Research. 53(1), 1–17. mla: Garvin, Michael, et al. “Review and Meta-Analysis of Natural Selection in Mitochondrial Complex I in Metazoans.” Journal of Zoological Systematics and Evolutionary Research, vol. 53, no. 1, Wiley-Blackwell, 2014, pp. 1–17, doi:10.1111/jzs.12079. short: M. Garvin, J. Bielawski, L.A. Sazanov, A. Gharrett, Journal of Zoological Systematics and Evolutionary Research 53 (2014) 1–17. date_created: 2018-12-11T11:55:02Z date_published: 2014-02-01T00:00:00Z date_updated: 2019-04-26T07:22:06Z day: '01' doi: 10.1111/jzs.12079 extern: 1 intvolume: ' 53' issue: '1' month: '02' page: 1 - 17 publication: Journal of Zoological Systematics and Evolutionary Research publication_status: published publisher: Wiley-Blackwell publist_id: '5102' quality_controlled: 0 status: public title: Review and meta-analysis of natural selection in mitochondrial complex I in metazoans type: review volume: 53 year: '2014' ... --- _id: '1980' abstract: - lang: eng text: Non-proton pumping type II NADH dehydrogenase (NDH-2) plays a central role in the respiratory metabolism of bacteria, and in the mitochondria of fungi, plants and protists. The lack of NDH-2 in mammalian mitochondria and its essentiality in important bacterial pathogens suggests these enzymes may represent a potential new drug target to combat microbial pathogens. Here, we report the first crystal structure of a bacterial NDH-2 enzyme at 2.5Å resolution from Caldalkalibacillus thermarum. The NDH-2 structure reveals a homodimeric organization that has a unique dimer interface. NDH-2 is localized to the cytoplasmic membrane by two separated C-terminal membrane-anchoring regions that are essential for membrane localization and FAD binding, but not NDH-2 dimerization. Comparison of bacterial NDH-2 with the yeast NADH dehydrogenase (Ndi1) structure revealed non-overlapping binding sites for quinone and NADH in the bacterial enzyme. The bacterial NDH-2 structure establishes a framework for the structure-based design of small-molecule inhibitors. acknowledgement: Funded by Health Research Council of New Zealand Royal Society of New Zealand University of Otago New Zealand Synchrotron Group author: - first_name: Adam full_name: 'Heikal, Adam ' last_name: Heikal - first_name: Yoshio full_name: Nakatani, Yoshio last_name: Nakatani - first_name: Elyse full_name: Dunn, Elyse A last_name: Dunn - first_name: Marion full_name: Weimar, Marion R last_name: Weimar - first_name: Catherine full_name: Day, Catherine last_name: Day - first_name: Edward full_name: Baker, Edward N last_name: Baker - first_name: Shaun full_name: Lott, Shaun J last_name: Lott - first_name: Leonid A full_name: Leonid Sazanov id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 - first_name: Gregory full_name: Cook, Gregory last_name: Cook citation: ama: 'Heikal A, Nakatani Y, Dunn E, et al. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Molecular Microbiology. 2014;91(5):950-964. doi:10.1111/mmi.12507' apa: 'Heikal, A., Nakatani, Y., Dunn, E., Weimar, M., Day, C., Baker, E., … Cook, G. (2014). Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Molecular Microbiology. Wiley-Blackwell. https://doi.org/10.1111/mmi.12507' chicago: 'Heikal, Adam, Yoshio Nakatani, Elyse Dunn, Marion Weimar, Catherine Day, Edward Baker, Shaun Lott, Leonid A Sazanov, and Gregory Cook. “Structure of the Bacterial Type II NADH Dehydrogenase: A Monotopic Membrane Protein with an Essential Role in Energy Generation.” Molecular Microbiology. Wiley-Blackwell, 2014. https://doi.org/10.1111/mmi.12507.' ieee: 'A. Heikal et al., “Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation,” Molecular Microbiology, vol. 91, no. 5. Wiley-Blackwell, pp. 950–964, 2014.' ista: 'Heikal A, Nakatani Y, Dunn E, Weimar M, Day C, Baker E, Lott S, Sazanov LA, Cook G. 2014. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Molecular Microbiology. 91(5), 950–964.' mla: 'Heikal, Adam, et al. “Structure of the Bacterial Type II NADH Dehydrogenase: A Monotopic Membrane Protein with an Essential Role in Energy Generation.” Molecular Microbiology, vol. 91, no. 5, Wiley-Blackwell, 2014, pp. 950–64, doi:10.1111/mmi.12507.' short: A. Heikal, Y. Nakatani, E. Dunn, M. Weimar, C. Day, E. Baker, S. Lott, L.A. Sazanov, G. Cook, Molecular Microbiology 91 (2014) 950–964. date_created: 2018-12-11T11:55:01Z date_published: 2014-03-01T00:00:00Z date_updated: 2021-01-12T06:54:29Z day: '01' doi: 10.1111/mmi.12507 extern: 1 intvolume: ' 91' issue: '5' month: '03' page: 950 - 964 publication: Molecular Microbiology publication_status: published publisher: Wiley-Blackwell publist_id: '5103' quality_controlled: 0 status: public title: 'Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation' type: journal_article volume: 91 year: '2014' ... --- _id: '1979' abstract: - lang: eng text: NADH-ubiquinone oxidoreductase (complex I) is the first and largest enzyme in the respiratory chain of mitochondria and many bacteria. It couples the transfer of two electrons between NADH and ubiquinone to the translocation of four protons across the membrane. Complex I is an L-shaped assembly formed by the hydrophilic (peripheral) arm, containing all the redox centres performing electron transfer and the membrane arm, containing proton-translocating machinery. Mitochondrial complex I consists of 44 subunits of about 1 MDa in total, whilst the prokaryotic enzyme is simpler and generally consists of 14 conserved “core” subunits. Recently we have determined the first atomic structure of the entire complex I, using the enzyme from Thermus thermophilus (536 kDa, 16 subunits, 9 Fe-S clusters, 64 TM helices). Structure suggests a unique coupling mechanism, with redox energy of electron transfer driving proton translocation via long-range (up to ~200 Å) conformational changes. It resembles a steam engine, with coupling elements (akin to coupling rods) linking parts of this molecular machine. author: - first_name: Leonid A full_name: Leonid Sazanov id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: Sazanov LA. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. Journal of Bioenergetics and Biomembranes. 2014;46(4):247-253. doi:10.1007/s10863-014-9554-z apa: Sazanov, L. A. (2014). The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. Journal of Bioenergetics and Biomembranes. Springer. https://doi.org/10.1007/s10863-014-9554-z chicago: Sazanov, Leonid A. “The Mechanism of Coupling between Electron Transfer and Proton Translocation in Respiratory Complex I.” Journal of Bioenergetics and Biomembranes. Springer, 2014. https://doi.org/10.1007/s10863-014-9554-z. ieee: L. A. Sazanov, “The mechanism of coupling between electron transfer and proton translocation in respiratory complex I,” Journal of Bioenergetics and Biomembranes, vol. 46, no. 4. Springer, pp. 247–253, 2014. ista: Sazanov LA. 2014. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. Journal of Bioenergetics and Biomembranes. 46(4), 247–253. mla: Sazanov, Leonid A. “The Mechanism of Coupling between Electron Transfer and Proton Translocation in Respiratory Complex I.” Journal of Bioenergetics and Biomembranes, vol. 46, no. 4, Springer, 2014, pp. 247–53, doi:10.1007/s10863-014-9554-z. short: L.A. Sazanov, Journal of Bioenergetics and Biomembranes 46 (2014) 247–253. date_created: 2018-12-11T11:55:01Z date_published: 2014-08-01T00:00:00Z date_updated: 2021-01-12T06:54:28Z day: '01' doi: 10.1007/s10863-014-9554-z extern: 1 intvolume: ' 46' issue: '4' month: '08' page: 247 - 253 publication: Journal of Bioenergetics and Biomembranes publication_status: published publisher: Springer publist_id: '5104' quality_controlled: 0 status: public title: The mechanism of coupling between electron transfer and proton translocation in respiratory complex I type: journal_article volume: 46 year: '2014' ... --- _id: '1989' abstract: - lang: eng text: During animal cell division, the cleavage furrow is positioned by microtubules that signal to the actin cortex at the cell midplane. We developed a cell-free system to recapitulate cytokinesis signaling using cytoplasmic extract from Xenopus eggs. Microtubules grew out as asters from artificial centrosomes and met to organize antiparallel overlap zones. These zones blocked the interpenetration of neighboring asters and recruited cytokinesis midzone proteins, including the chromosomal passenger complex (CPC) and centralspindlin. The CPC was transported to overlap zones, which required two motor proteins, Kif4A and a Kif20A paralog. Using supported lipid bilayers to mimic the plasma membrane, we observed the recruitment of cleavage furrow markers, including an active RhoA reporter, at microtubule overlaps. This system opens further approaches to understanding the biophysics of cytokinesis signaling. acknowledgement: 'This work was supported by NIH grant GM39565 (T.J.M.); MBL fellowships from the Evans Foundation, MBL Associates, and the Colwin Fund (T.J.M. and C.M.F.); HFSP fellowship LT000466/2012-L (M.L.); and NIH grant GM103785 (M.W.). ' author: - first_name: Phuong full_name: Nguyen, Phuong A last_name: Nguyen - first_name: Aaron full_name: Groen, Aaron C last_name: Groen - first_name: Martin full_name: Martin Loose id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Keisuke full_name: 'Ishihara, Keisuke ' last_name: Ishihara - first_name: Martin full_name: 'Wühr, Martin ' last_name: Wühr - first_name: Christine full_name: Field, Christine M last_name: Field - first_name: Timothy full_name: Mitchison, Timothy J last_name: Mitchison citation: ama: Nguyen P, Groen A, Loose M, et al. Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science. 2014;346(6206):244-247. doi:10.1126/science.1256773 apa: Nguyen, P., Groen, A., Loose, M., Ishihara, K., Wühr, M., Field, C., & Mitchison, T. (2014). Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.1256773 chicago: Nguyen, Phuong, Aaron Groen, Martin Loose, Keisuke Ishihara, Martin Wühr, Christine Field, and Timothy Mitchison. “Spatial Organization of Cytokinesis Signaling Reconstituted in a Cell-Free System.” Science. American Association for the Advancement of Science, 2014. https://doi.org/10.1126/science.1256773. ieee: P. Nguyen et al., “Spatial organization of cytokinesis signaling reconstituted in a cell-free system,” Science, vol. 346, no. 6206. American Association for the Advancement of Science, pp. 244–247, 2014. ista: Nguyen P, Groen A, Loose M, Ishihara K, Wühr M, Field C, Mitchison T. 2014. Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science. 346(6206), 244–247. mla: Nguyen, Phuong, et al. “Spatial Organization of Cytokinesis Signaling Reconstituted in a Cell-Free System.” Science, vol. 346, no. 6206, American Association for the Advancement of Science, 2014, pp. 244–47, doi:10.1126/science.1256773. short: P. Nguyen, A. Groen, M. Loose, K. Ishihara, M. Wühr, C. Field, T. Mitchison, Science 346 (2014) 244–247. date_created: 2018-12-11T11:55:04Z date_published: 2014-10-10T00:00:00Z date_updated: 2021-01-12T06:54:32Z day: '10' doi: 10.1126/science.1256773 extern: 1 intvolume: ' 346' issue: '6206' month: '10' page: 244 - 247 publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '5093' quality_controlled: 0 status: public title: Spatial organization of cytokinesis signaling reconstituted in a cell-free system type: journal_article volume: 346 year: '2014' ... --- _id: '1990' abstract: - lang: eng text: 'Bacterial cytokinesis is commonly initiated by the Z-ring, a cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin superfamily GTPase, which is recruited to the membrane by the actin-related protein FtsA. Both proteins are required for the formation of the Z-ring, but if and how they influence each other''s assembly dynamics is not known. Here, we reconstituted FtsA-dependent recruitment of FtsZ polymers to supported membranes, where both proteins self-organize into complex patterns, such as fast-moving filament bundles and chirally rotating rings. Using fluorescence microscopy and biochemical perturbations, we found that these large-scale rearrangements of FtsZ emerge from its polymerization dynamics and a dual, antagonistic role of FtsA: recruitment of FtsZ filaments to the membrane and negative regulation of FtsZ organization. Our findings provide a model for the initial steps of bacterial cell division and illustrate how dynamic polymers can self-organize into large-scale structures.' acknowledgement: M.L. is supported by fellowships from EMBO (ALTF 394-2011) and HFSP (LT000466/2012). Cytoskeleton dynamics research in the T.J.M. group is supported by NIH-GM39565. author: - first_name: Martin full_name: Martin Loose id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Timothy full_name: Mitchison, Timothy J last_name: Mitchison citation: ama: Loose M, Mitchison T. The bacterial cell division proteins ftsA and ftsZ self-organize into dynamic cytoskeletal patterns. Nature Cell Biology. 2014;16(1):38-46. doi:10.1038/ncb2885 apa: Loose, M., & Mitchison, T. (2014). The bacterial cell division proteins ftsA and ftsZ self-organize into dynamic cytoskeletal patterns. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb2885 chicago: Loose, Martin, and Timothy Mitchison. “The Bacterial Cell Division Proteins FtsA and FtsZ Self-Organize into Dynamic Cytoskeletal Patterns.” Nature Cell Biology. Nature Publishing Group, 2014. https://doi.org/10.1038/ncb2885. ieee: M. Loose and T. Mitchison, “The bacterial cell division proteins ftsA and ftsZ self-organize into dynamic cytoskeletal patterns,” Nature Cell Biology, vol. 16, no. 1. Nature Publishing Group, pp. 38–46, 2014. ista: Loose M, Mitchison T. 2014. The bacterial cell division proteins ftsA and ftsZ self-organize into dynamic cytoskeletal patterns. Nature Cell Biology. 16(1), 38–46. mla: Loose, Martin, and Timothy Mitchison. “The Bacterial Cell Division Proteins FtsA and FtsZ Self-Organize into Dynamic Cytoskeletal Patterns.” Nature Cell Biology, vol. 16, no. 1, Nature Publishing Group, 2014, pp. 38–46, doi:10.1038/ncb2885. short: M. Loose, T. Mitchison, Nature Cell Biology 16 (2014) 38–46. date_created: 2018-12-11T11:55:05Z date_published: 2014-01-01T00:00:00Z date_updated: 2021-01-12T06:54:33Z day: '01' doi: 10.1038/ncb2885 extern: 1 intvolume: ' 16' issue: '1' month: '01' page: 38 - 46 publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '5094' quality_controlled: 0 status: public title: The bacterial cell division proteins ftsA and ftsZ self-organize into dynamic cytoskeletal patterns type: journal_article volume: 16 year: '2014' ... --- _id: '1996' abstract: - lang: eng text: Auxin polar transport, local maxima, and gradients have become an importantmodel system for studying self-organization. Auxin distribution is regulated by auxin-dependent positive feedback loops that are not well-understood at the molecular level. Previously, we showed the involvement of the RHO of Plants (ROP) effector INTERACTOR of CONSTITUTIVELY active ROP 1 (ICR1) in regulation of auxin transport and that ICR1 levels are posttranscriptionally repressed at the site of maximum auxin accumulation at the root tip. Here, we show that bimodal regulation of ICR1 levels by auxin is essential for regulating formation of auxin local maxima and gradients. ICR1 levels increase concomitant with increase in auxin response in lateral root primordia, cotyledon tips, and provascular tissues. However, in the embryo hypophysis and root meristem, when auxin exceeds critical levels, ICR1 is rapidly destabilized by an SCF(TIR1/AFB) [SKP, Cullin, F-box (transport inhibitor response 1/auxin signaling F-box protein)]-dependent auxin signaling mechanism. Furthermore, ectopic expression of ICR1 in the embryo hypophysis resulted in reduction of auxin accumulation and concomitant root growth arrest. ICR1 disappeared during root regeneration and lateral root initiation concomitantly with the formation of a local auxin maximum in response to external auxin treatments and transiently after gravitropic stimulation. Destabilization of ICR1 was impaired after inhibition of auxin transport and signaling, proteasome function, and protein synthesis. A mathematical model based on these findings shows that an in vivo-like auxin distribution, rootward auxin flux, and shootward reflux can be simulated without assuming preexisting tissue polarity. Our experimental results and mathematical modeling indicate that regulation of auxin distribution is tightly associated with auxin-dependent ICR1 levels. author: - first_name: Ora full_name: Hazak, Ora last_name: Hazak - first_name: Uri full_name: Obolski, Uri last_name: Obolski - first_name: Tomas full_name: Prat, Tomas id: 3DA3BFEE-F248-11E8-B48F-1D18A9856A87 last_name: Prat - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Lilach full_name: Hadany, Lilach last_name: Hadany - first_name: Shaul full_name: Yalovsky, Shaul last_name: Yalovsky citation: ama: Hazak O, Obolski U, Prat T, Friml J, Hadany L, Yalovsky S. Bimodal regulation of ICR1 levels generates self-organizing auxin distribution. PNAS. 2014;111(50):E5471-E5479. doi:10.1073/pnas.1413918111 apa: Hazak, O., Obolski, U., Prat, T., Friml, J., Hadany, L., & Yalovsky, S. (2014). Bimodal regulation of ICR1 levels generates self-organizing auxin distribution. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1413918111 chicago: Hazak, Ora, Uri Obolski, Tomas Prat, Jiří Friml, Lilach Hadany, and Shaul Yalovsky. “Bimodal Regulation of ICR1 Levels Generates Self-Organizing Auxin Distribution.” PNAS. National Academy of Sciences, 2014. https://doi.org/10.1073/pnas.1413918111. ieee: O. Hazak, U. Obolski, T. Prat, J. Friml, L. Hadany, and S. Yalovsky, “Bimodal regulation of ICR1 levels generates self-organizing auxin distribution,” PNAS, vol. 111, no. 50. National Academy of Sciences, pp. E5471–E5479, 2014. ista: Hazak O, Obolski U, Prat T, Friml J, Hadany L, Yalovsky S. 2014. Bimodal regulation of ICR1 levels generates self-organizing auxin distribution. PNAS. 111(50), E5471–E5479. mla: Hazak, Ora, et al. “Bimodal Regulation of ICR1 Levels Generates Self-Organizing Auxin Distribution.” PNAS, vol. 111, no. 50, National Academy of Sciences, 2014, pp. E5471–79, doi:10.1073/pnas.1413918111. short: O. Hazak, U. Obolski, T. Prat, J. Friml, L. Hadany, S. Yalovsky, PNAS 111 (2014) E5471–E5479. date_created: 2018-12-11T11:55:07Z date_published: 2014-12-16T00:00:00Z date_updated: 2021-01-12T06:54:35Z day: '16' department: - _id: JiFr doi: 10.1073/pnas.1413918111 intvolume: ' 111' issue: '50' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273421/ month: '12' oa: 1 oa_version: Submitted Version page: E5471 - E5479 publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '5083' quality_controlled: '1' scopus_import: 1 status: public title: Bimodal regulation of ICR1 levels generates self-organizing auxin distribution type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 111 year: '2014' ... --- _id: '1994' abstract: - lang: eng text: The emergence and radiation of multicellular land plants was driven by crucial innovations to their body plans [1]. The directional transport of the phytohormone auxin represents a key, plant-specific mechanism for polarization and patterning in complex seed plants [2-5]. Here, we show that already in the early diverging land plant lineage, as exemplified by the moss Physcomitrella patens, auxin transport by PIN transporters is operational and diversified into ER-localized and plasma membrane-localized PIN proteins. Gain-of-function and loss-of-function analyses revealed that PIN-dependent intercellular auxin transport in Physcomitrella mediates crucial developmental transitions in tip-growing filaments and waves of polarization and differentiation in leaf-like structures. Plasma membrane PIN proteins localize in a polar manner to the tips of moss filaments, revealing an unexpected relation between polarization mechanisms in moss tip-growing cells and multicellular tissues of seed plants. Our results trace the origins of polarization and auxin-mediated patterning mechanisms and highlight the crucial role of polarized auxin transport during the evolution of multicellular land plants. author: - first_name: Tom full_name: Viaene, Tom last_name: Viaene - first_name: Katarina full_name: Landberg, Katarina last_name: Landberg - first_name: Mattias full_name: Thelander, Mattias last_name: Thelander - first_name: Eva full_name: Medvecka, Eva last_name: Medvecka - first_name: Eric full_name: Pederson, Eric last_name: Pederson - first_name: Elena full_name: Feraru, Elena last_name: Feraru - first_name: Endymion full_name: Cooper, Endymion last_name: Cooper - first_name: Mansour full_name: Karimi, Mansour last_name: Karimi - first_name: Charles full_name: Delwiche, Charles last_name: Delwiche - first_name: Karin full_name: Ljung, Karin last_name: Ljung - first_name: Markus full_name: Geisler, Markus last_name: Geisler - first_name: Eva full_name: Sundberg, Eva last_name: Sundberg - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Viaene T, Landberg K, Thelander M, et al. Directional auxin transport mechanisms in early diverging land plants. Current Biology. 2014;24(23):2786-2791. doi:10.1016/j.cub.2014.09.056 apa: Viaene, T., Landberg, K., Thelander, M., Medvecka, E., Pederson, E., Feraru, E., … Friml, J. (2014). Directional auxin transport mechanisms in early diverging land plants. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2014.09.056 chicago: Viaene, Tom, Katarina Landberg, Mattias Thelander, Eva Medvecka, Eric Pederson, Elena Feraru, Endymion Cooper, et al. “Directional Auxin Transport Mechanisms in Early Diverging Land Plants.” Current Biology. Cell Press, 2014. https://doi.org/10.1016/j.cub.2014.09.056. ieee: T. Viaene et al., “Directional auxin transport mechanisms in early diverging land plants,” Current Biology, vol. 24, no. 23. Cell Press, pp. 2786–2791, 2014. ista: Viaene T, Landberg K, Thelander M, Medvecka E, Pederson E, Feraru E, Cooper E, Karimi M, Delwiche C, Ljung K, Geisler M, Sundberg E, Friml J. 2014. Directional auxin transport mechanisms in early diverging land plants. Current Biology. 24(23), 2786–2791. mla: Viaene, Tom, et al. “Directional Auxin Transport Mechanisms in Early Diverging Land Plants.” Current Biology, vol. 24, no. 23, Cell Press, 2014, pp. 2786–91, doi:10.1016/j.cub.2014.09.056. short: T. Viaene, K. Landberg, M. Thelander, E. Medvecka, E. Pederson, E. Feraru, E. Cooper, M. Karimi, C. Delwiche, K. Ljung, M. Geisler, E. Sundberg, J. Friml, Current Biology 24 (2014) 2786–2791. date_created: 2018-12-11T11:55:06Z date_published: 2014-12-01T00:00:00Z date_updated: 2021-01-12T06:54:34Z day: '01' department: - _id: JiFr doi: 10.1016/j.cub.2014.09.056 ec_funded: 1 intvolume: ' 24' issue: '23' language: - iso: eng month: '12' oa_version: None page: 2786 - 2791 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Current Biology publication_status: published publisher: Cell Press publist_id: '5088' quality_controlled: '1' scopus_import: 1 status: public title: Directional auxin transport mechanisms in early diverging land plants type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2014' ... --- _id: '1995' abstract: - lang: eng text: 'Optical transport represents a natural route towards fast communications, and it is currently used in large scale data transfer. The progressive miniaturization of devices for information processing calls for the microscopic tailoring of light transport and confinement at length scales appropriate for upcoming technologies. With this goal in mind, we present a theoretical analysis of a one-dimensional Fabry-Perot interferometer built with two highly saturable nonlinear mirrors: a pair of two-level systems. Our approach captures nonlinear and nonreciprocal effects of light transport that were not reported previously. Remarkably, we show that such an elementary device can operate as a microscopic integrated optical rectifier.' article_number: '243601' author: - first_name: Filippo full_name: Fratini, Filippo last_name: Fratini - first_name: Eduardo full_name: Mascarenhas, Eduardo last_name: Mascarenhas - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: Jean full_name: Poizat, Jean last_name: Poizat - first_name: Daniel full_name: Valente, Daniel last_name: Valente - first_name: Alexia full_name: Auffèves, Alexia last_name: Auffèves - first_name: Dario full_name: Gerace, Dario last_name: Gerace - first_name: Marcelo full_name: Santos, Marcelo last_name: Santos citation: ama: 'Fratini F, Mascarenhas E, Safari L, et al. Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification. Physical Review Letters. 2014;113(24). doi:10.1103/PhysRevLett.113.243601' apa: 'Fratini, F., Mascarenhas, E., Safari, L., Poizat, J., Valente, D., Auffèves, A., … Santos, M. (2014). Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.113.243601' chicago: 'Fratini, Filippo, Eduardo Mascarenhas, Laleh Safari, Jean Poizat, Daniel Valente, Alexia Auffèves, Dario Gerace, and Marcelo Santos. “Fabry-Perot Interferometer with Quantum Mirrors: Nonlinear Light Transport and Rectification.” Physical Review Letters. American Physical Society, 2014. https://doi.org/10.1103/PhysRevLett.113.243601.' ieee: 'F. Fratini et al., “Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification,” Physical Review Letters, vol. 113, no. 24. American Physical Society, 2014.' ista: 'Fratini F, Mascarenhas E, Safari L, Poizat J, Valente D, Auffèves A, Gerace D, Santos M. 2014. Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification. Physical Review Letters. 113(24), 243601.' mla: 'Fratini, Filippo, et al. “Fabry-Perot Interferometer with Quantum Mirrors: Nonlinear Light Transport and Rectification.” Physical Review Letters, vol. 113, no. 24, 243601, American Physical Society, 2014, doi:10.1103/PhysRevLett.113.243601.' short: F. Fratini, E. Mascarenhas, L. Safari, J. Poizat, D. Valente, A. Auffèves, D. Gerace, M. Santos, Physical Review Letters 113 (2014). date_created: 2018-12-11T11:55:06Z date_published: 2014-12-08T00:00:00Z date_updated: 2021-01-12T06:54:34Z day: '08' department: - _id: MiLe doi: 10.1103/PhysRevLett.113.243601 ec_funded: 1 intvolume: ' 113' issue: '24' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1410.5972 month: '12' oa: 1 oa_version: Submitted Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '5085' quality_controlled: '1' scopus_import: 1 status: public title: 'Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification' type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 113 year: '2014' ... --- _id: '1998' abstract: - lang: eng text: Immune systems are able to protect the body against secondary infection with the same parasite. In insect colonies, this protection is not restricted to the level of the individual organism, but also occurs at the societal level. Here, we review recent evidence for and insights into the mechanisms underlying individual and social immunisation in insects. We disentangle general immune-protective effects from specific immune memory (priming), and examine immunisation in the context of the lifetime of an individual and that of a colony, and of transgenerational immunisation that benefits offspring. When appropriate, we discuss parallels with disease defence strategies in human societies. We propose that recurrent parasitic threats have shaped the evolution of both the individual immune systems and colony-level social immunity in insects. acknowledgement: "This work was funded by an ERC Starting Grant by the European Research Council (to S.C.) and the ISTFELLOW program (Co-fund Marie Curie Actions of the European Commission; to L.M.).\r\nWe thank Christopher D. Pull, Sophie A.O. Armitage, Hinrich Schulenburg, Line V. Ugelvig, Matthias Konrad, Matthias Fürst, Miriam Stock, Barbara Casillas-Perez and three anonymous referees for comments on the manuscript. " author: - first_name: Leila full_name: El Masri, Leila id: 349A6E66-F248-11E8-B48F-1D18A9856A87 last_name: El Masri - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: El Masri L, Cremer S. Individual and social immunisation in insects. Trends in Immunology. 2014;35(10):471-482. doi:10.1016/j.it.2014.08.005 apa: El Masri, L., & Cremer, S. (2014). Individual and social immunisation in insects. Trends in Immunology. Elsevier. https://doi.org/10.1016/j.it.2014.08.005 chicago: El Masri, Leila, and Sylvia Cremer. “Individual and Social Immunisation in Insects.” Trends in Immunology. Elsevier, 2014. https://doi.org/10.1016/j.it.2014.08.005. ieee: L. El Masri and S. Cremer, “Individual and social immunisation in insects,” Trends in Immunology, vol. 35, no. 10. Elsevier, pp. 471–482, 2014. ista: El Masri L, Cremer S. 2014. Individual and social immunisation in insects. Trends in Immunology. 35(10), 471–482. mla: El Masri, Leila, and Sylvia Cremer. “Individual and Social Immunisation in Insects.” Trends in Immunology, vol. 35, no. 10, Elsevier, 2014, pp. 471–82, doi:10.1016/j.it.2014.08.005. short: L. El Masri, S. Cremer, Trends in Immunology 35 (2014) 471–482. date_created: 2018-12-11T11:55:07Z date_published: 2014-10-01T00:00:00Z date_updated: 2021-01-12T06:54:35Z day: '01' department: - _id: SyCr doi: 10.1016/j.it.2014.08.005 intvolume: ' 35' issue: '10' language: - iso: eng month: '10' oa_version: None page: 471 - 482 publication: Trends in Immunology publication_status: published publisher: Elsevier publist_id: '5081' quality_controlled: '1' scopus_import: 1 status: public title: Individual and social immunisation in insects type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2014' ... --- _id: '2002' abstract: - lang: eng text: Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outsideout patch recordings from CA1 pyramidal neuron axons revealed a high density of a-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron-O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron-interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits. article_number: '0113124' author: - first_name: Sooyun full_name: Kim, Sooyun id: 394AB1C8-F248-11E8-B48F-1D18A9856A87 last_name: Kim citation: ama: Kim S. Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus. PLoS One. 2014;9(11). doi:10.1371/journal.pone.0113124 apa: Kim, S. (2014). Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0113124 chicago: Kim, Sooyun. “Action Potential Modulation in CA1 Pyramidal Neuron Axons Facilitates OLM Interneuron Activation in Recurrent Inhibitory Microcircuits of Rat Hippocampus.” PLoS One. Public Library of Science, 2014. https://doi.org/10.1371/journal.pone.0113124. ieee: S. Kim, “Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus,” PLoS One, vol. 9, no. 11. Public Library of Science, 2014. ista: Kim S. 2014. Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus. PLoS One. 9(11), 0113124. mla: Kim, Sooyun. “Action Potential Modulation in CA1 Pyramidal Neuron Axons Facilitates OLM Interneuron Activation in Recurrent Inhibitory Microcircuits of Rat Hippocampus.” PLoS One, vol. 9, no. 11, 0113124, Public Library of Science, 2014, doi:10.1371/journal.pone.0113124. short: S. Kim, PLoS One 9 (2014). date_created: 2018-12-11T11:55:09Z date_published: 2014-11-19T00:00:00Z date_updated: 2021-01-12T06:54:39Z day: '19' ddc: - '570' department: - _id: PeJo doi: 10.1371/journal.pone.0113124 ec_funded: 1 file: - access_level: open_access checksum: 85e4f4ea144f827272aaf376b2830564 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:52Z date_updated: 2020-07-14T12:45:24Z file_id: '5107' file_name: IST-2016-434-v1+1_journal.pone.0113124.pdf file_size: 5179993 relation: main_file file_date_updated: 2020-07-14T12:45:24Z has_accepted_license: '1' intvolume: ' 9' issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25C0F108-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '268548' name: Nanophysiology of fast-spiking, parvalbumin-expressing GABAergic interneurons publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '5074' pubrep_id: '434' quality_controlled: '1' scopus_import: 1 status: public title: Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2014' ... --- _id: '2003' abstract: - lang: eng text: Learning can be facilitated by previous knowledge when it is organized into relational representations forming schemas. In this issue of Neuron, McKenzie et al. (2014) demonstrate that the hippocampus rapidly forms interrelated, hierarchical memory representations to support schema-based learning. author: - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: O’Neill J, Csicsvari JL. Learning by example in the hippocampus. Neuron. 2014;83(1):8-10. doi:10.1016/j.neuron.2014.06.013 apa: O’Neill, J., & Csicsvari, J. L. (2014). Learning by example in the hippocampus. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2014.06.013 chicago: O’Neill, Joseph, and Jozsef L Csicsvari. “Learning by Example in the Hippocampus.” Neuron. Elsevier, 2014. https://doi.org/10.1016/j.neuron.2014.06.013. ieee: J. O’Neill and J. L. Csicsvari, “Learning by example in the hippocampus,” Neuron, vol. 83, no. 1. Elsevier, pp. 8–10, 2014. ista: O’Neill J, Csicsvari JL. 2014. Learning by example in the hippocampus. Neuron. 83(1), 8–10. mla: O’Neill, Joseph, and Jozsef L. Csicsvari. “Learning by Example in the Hippocampus.” Neuron, vol. 83, no. 1, Elsevier, 2014, pp. 8–10, doi:10.1016/j.neuron.2014.06.013. short: J. O’Neill, J.L. Csicsvari, Neuron 83 (2014) 8–10. date_created: 2018-12-11T11:55:09Z date_published: 2014-07-02T00:00:00Z date_updated: 2021-01-12T06:54:39Z day: '02' department: - _id: JoCs doi: 10.1016/j.neuron.2014.06.013 intvolume: ' 83' issue: '1' language: - iso: eng month: '07' oa_version: None page: 8 - 10 publication: Neuron publication_status: published publisher: Elsevier publist_id: '5073' quality_controlled: '1' scopus_import: 1 status: public title: Learning by example in the hippocampus type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 83 year: '2014' ... --- _id: '2011' abstract: - lang: eng text: The protection of privacy of individual-level information in genome-wide association study (GWAS) databases has been a major concern of researchers following the publication of “an attack” on GWAS data by Homer et al. (2008). Traditional statistical methods for confidentiality and privacy protection of statistical databases do not scale well to deal with GWAS data, especially in terms of guarantees regarding protection from linkage to external information. The more recent concept of differential privacy, introduced by the cryptographic community, is an approach that provides a rigorous definition of privacy with meaningful privacy guarantees in the presence of arbitrary external information, although the guarantees may come at a serious price in terms of data utility. Building on such notions, Uhler et al. (2013) proposed new methods to release aggregate GWAS data without compromising an individual’s privacy. We extend the methods developed in Uhler et al. (2013) for releasing differentially-private χ2χ2-statistics by allowing for arbitrary number of cases and controls, and for releasing differentially-private allelic test statistics. We also provide a new interpretation by assuming the controls’ data are known, which is a realistic assumption because some GWAS use publicly available data as controls. We assess the performance of the proposed methods through a risk-utility analysis on a real data set consisting of DNA samples collected by the Wellcome Trust Case Control Consortium and compare the methods with the differentially-private release mechanism proposed by Johnson and Shmatikov (2013). acknowledgement: This research was partially supported by NSF Awards EMSW21-RTG and BCS-0941518 to the Department of Statistics at Carnegie Mellon University, and by NSF Grant BCS-0941553 to the Department of Statistics at Pennsylvania State University. This work was also supported in part by the National Center for Research Resources, Grant UL1 RR033184, and is now at the National Center for Advancing Translational Sciences, Grant UL1 TR000127 to Pennsylvania State University. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NSF and NIH. author: - first_name: Fei full_name: Yu, Fei last_name: Yu - first_name: Stephen full_name: Fienberg, Stephen last_name: Fienberg - first_name: Alexandra full_name: Slaković, Alexandra last_name: Slaković - first_name: Caroline full_name: Uhler, Caroline id: 49ADD78E-F248-11E8-B48F-1D18A9856A87 last_name: Uhler orcid: 0000-0002-7008-0216 citation: ama: Yu F, Fienberg S, Slaković A, Uhler C. Scalable privacy-preserving data sharing methodology for genome-wide association studies. Journal of Biomedical Informatics. 2014;50:133-141. doi:10.1016/j.jbi.2014.01.008 apa: Yu, F., Fienberg, S., Slaković, A., & Uhler, C. (2014). Scalable privacy-preserving data sharing methodology for genome-wide association studies. Journal of Biomedical Informatics. Elsevier. https://doi.org/10.1016/j.jbi.2014.01.008 chicago: Yu, Fei, Stephen Fienberg, Alexandra Slaković, and Caroline Uhler. “Scalable Privacy-Preserving Data Sharing Methodology for Genome-Wide Association Studies.” Journal of Biomedical Informatics. Elsevier, 2014. https://doi.org/10.1016/j.jbi.2014.01.008. ieee: F. Yu, S. Fienberg, A. Slaković, and C. Uhler, “Scalable privacy-preserving data sharing methodology for genome-wide association studies,” Journal of Biomedical Informatics, vol. 50. Elsevier, pp. 133–141, 2014. ista: Yu F, Fienberg S, Slaković A, Uhler C. 2014. Scalable privacy-preserving data sharing methodology for genome-wide association studies. Journal of Biomedical Informatics. 50, 133–141. mla: Yu, Fei, et al. “Scalable Privacy-Preserving Data Sharing Methodology for Genome-Wide Association Studies.” Journal of Biomedical Informatics, vol. 50, Elsevier, 2014, pp. 133–41, doi:10.1016/j.jbi.2014.01.008. short: F. Yu, S. Fienberg, A. Slaković, C. Uhler, Journal of Biomedical Informatics 50 (2014) 133–141. date_created: 2018-12-11T11:55:12Z date_published: 2014-08-01T00:00:00Z date_updated: 2021-01-12T06:54:42Z day: '01' department: - _id: CaUh doi: 10.1016/j.jbi.2014.01.008 intvolume: ' 50' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1401.5193 month: '08' oa: 1 oa_version: Submitted Version page: 133 - 141 publication: Journal of Biomedical Informatics publication_status: published publisher: Elsevier publist_id: '5065' quality_controlled: '1' scopus_import: 1 status: public title: Scalable privacy-preserving data sharing methodology for genome-wide association studies type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 50 year: '2014' ... --- _id: '2005' abstract: - lang: eng text: By eliciting a natural exploratory behavior in rats, head scanning, a study reveals that hippocampal place cells form new, stable firing fields in those locations where the behavior has just occurred. author: - first_name: David full_name: Dupret, David last_name: Dupret - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Dupret D, Csicsvari JL. Turning heads to remember places. Nature Neuroscience. 2014;17(5):643-644. doi:10.1038/nn.3700 apa: Dupret, D., & Csicsvari, J. L. (2014). Turning heads to remember places. Nature Neuroscience. Nature Publishing Group. https://doi.org/10.1038/nn.3700 chicago: Dupret, David, and Jozsef L Csicsvari. “Turning Heads to Remember Places.” Nature Neuroscience. Nature Publishing Group, 2014. https://doi.org/10.1038/nn.3700. ieee: D. Dupret and J. L. Csicsvari, “Turning heads to remember places,” Nature Neuroscience, vol. 17, no. 5. Nature Publishing Group, pp. 643–644, 2014. ista: Dupret D, Csicsvari JL. 2014. Turning heads to remember places. Nature Neuroscience. 17(5), 643–644. mla: Dupret, David, and Jozsef L. Csicsvari. “Turning Heads to Remember Places.” Nature Neuroscience, vol. 17, no. 5, Nature Publishing Group, 2014, pp. 643–44, doi:10.1038/nn.3700. short: D. Dupret, J.L. Csicsvari, Nature Neuroscience 17 (2014) 643–644. date_created: 2018-12-11T11:55:09Z date_published: 2014-04-25T00:00:00Z date_updated: 2021-01-12T06:54:40Z day: '25' department: - _id: JoCs doi: 10.1038/nn.3700 intvolume: ' 17' issue: '5' language: - iso: eng month: '04' oa_version: None page: 643 - 644 publication: Nature Neuroscience publication_status: published publisher: Nature Publishing Group publist_id: '5071' quality_controlled: '1' scopus_import: 1 status: public title: Turning heads to remember places type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2014' ... --- _id: '2007' abstract: - lang: eng text: Maximum likelihood estimation under relational models, with or without the overall effect. For more information see the reference manual article_processing_charge: No author: - first_name: Anna full_name: Klimova, Anna id: 31934120-F248-11E8-B48F-1D18A9856A87 last_name: Klimova - first_name: Tamás full_name: Rudas, Tamás last_name: Rudas citation: ama: 'Klimova A, Rudas T. gIPFrm: Generalized iterative proportional fitting for relational models. 2014.' apa: 'Klimova, A., & Rudas, T. (2014). gIPFrm: Generalized iterative proportional fitting for relational models. The Comprehensive R Archive Network.' chicago: 'Klimova, Anna, and Tamás Rudas. “GIPFrm: Generalized Iterative Proportional Fitting for Relational Models.” The Comprehensive R Archive Network, 2014.' ieee: 'A. Klimova and T. Rudas, “gIPFrm: Generalized iterative proportional fitting for relational models.” The Comprehensive R Archive Network, 2014.' ista: 'Klimova A, Rudas T. 2014. gIPFrm: Generalized iterative proportional fitting for relational models, The Comprehensive R Archive Network.' mla: 'Klimova, Anna, and Tamás Rudas. GIPFrm: Generalized Iterative Proportional Fitting for Relational Models. The Comprehensive R Archive Network, 2014.' short: A. Klimova, T. Rudas, (2014). date_created: 2018-12-11T11:55:10Z date_published: 2014-03-20T00:00:00Z date_updated: 2022-08-26T08:12:12Z day: '20' department: - _id: CaUh main_file_link: - open_access: '1' url: 'https://CRAN.R-project.org/package=gIPFrm ' month: '03' oa: 1 oa_version: Published Version publisher: The Comprehensive R Archive Network publist_id: '5069' status: public title: 'gIPFrm: Generalized iterative proportional fitting for relational models' type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2014' ...