--- _id: '14514' abstract: - lang: eng text: 'The elastic Leidenfrost effect occurs when a vaporizable soft solid is lowered onto a hot surface. Evaporative flow couples to elastic deformation, giving spontaneous bouncing or steady-state floating. The effect embodies an unexplored interplay between thermodynamics, elasticity, and lubrication: despite being observed, its basic theoretical description remains a challenge. Here, we provide a theory of elastic Leidenfrost floating. As weight increases, a rigid solid sits closer to the hot surface. By contrast, we discover an elasticity-dominated regime where the heavier the solid, the higher it floats. This geometry-governed behavior is reminiscent of the dynamics of large liquid Leidenfrost drops. We show that this elastic regime is characterized by Hertzian behavior of the solid’s underbelly and derive how the float height scales with materials parameters. Introducing a dimensionless elastic Leidenfrost number, we capture the crossover between rigid and Hertzian behavior. Our results provide theoretical underpinning for recent experiments, and point to the design of novel soft machines.' acknowledgement: "We are grateful to Dominic Vella, Jens Eggers, John Kolinski, Joshua Dijksman, and Daniel Bonn for insightful discussions. J. B. and A. S. acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC) through New Investigator Award No. EP/\r\nT000961/1. A. S. acknowledges the support of Royal Society under Grant No. RGS/R2/202135. J. E. S. acknowledges EPSRC Grants No. EP/N016602/1, EP/S022848/1, EP/S029966/1, and EP/P031684/1." article_number: '168201' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Jack full_name: Binysh, Jack last_name: Binysh - first_name: Indrajit full_name: Chakraborty, Indrajit last_name: Chakraborty - first_name: Mykyta V. full_name: Chubynsky, Mykyta V. last_name: Chubynsky - first_name: Vicente L full_name: Diaz Melian, Vicente L id: b6798902-eea0-11ea-9cbc-a8e14286c631 last_name: Diaz Melian - first_name: Scott R full_name: Waitukaitis, Scott R id: 3A1FFC16-F248-11E8-B48F-1D18A9856A87 last_name: Waitukaitis orcid: 0000-0002-2299-3176 - first_name: James E. full_name: Sprittles, James E. last_name: Sprittles - first_name: Anton full_name: Souslov, Anton last_name: Souslov citation: ama: Binysh J, Chakraborty I, Chubynsky MV, et al. Modeling Leidenfrost levitation of soft elastic solids. Physical Review Letters. 2023;131(16). doi:10.1103/PhysRevLett.131.168201 apa: Binysh, J., Chakraborty, I., Chubynsky, M. V., Diaz Melian, V. L., Waitukaitis, S. R., Sprittles, J. E., & Souslov, A. (2023). Modeling Leidenfrost levitation of soft elastic solids. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.131.168201 chicago: Binysh, Jack, Indrajit Chakraborty, Mykyta V. Chubynsky, Vicente L Diaz Melian, Scott R Waitukaitis, James E. Sprittles, and Anton Souslov. “Modeling Leidenfrost Levitation of Soft Elastic Solids.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/PhysRevLett.131.168201. ieee: J. Binysh et al., “Modeling Leidenfrost levitation of soft elastic solids,” Physical Review Letters, vol. 131, no. 16. American Physical Society, 2023. ista: Binysh J, Chakraborty I, Chubynsky MV, Diaz Melian VL, Waitukaitis SR, Sprittles JE, Souslov A. 2023. Modeling Leidenfrost levitation of soft elastic solids. Physical Review Letters. 131(16), 168201. mla: Binysh, Jack, et al. “Modeling Leidenfrost Levitation of Soft Elastic Solids.” Physical Review Letters, vol. 131, no. 16, 168201, American Physical Society, 2023, doi:10.1103/PhysRevLett.131.168201. short: J. Binysh, I. Chakraborty, M.V. Chubynsky, V.L. Diaz Melian, S.R. Waitukaitis, J.E. Sprittles, A. Souslov, Physical Review Letters 131 (2023). date_created: 2023-11-12T23:00:55Z date_published: 2023-10-20T00:00:00Z date_updated: 2023-11-13T09:21:30Z day: '20' ddc: - '530' department: - _id: ScWa doi: 10.1103/PhysRevLett.131.168201 file: - access_level: open_access checksum: 1a419e25b762aadffbcc8eb2e609bd97 content_type: application/pdf creator: dernst date_created: 2023-11-13T09:12:58Z date_updated: 2023-11-13T09:12:58Z file_id: '14524' file_name: 2023_PhysRevLetters_Binysh.pdf file_size: 724098 relation: main_file success: 1 file_date_updated: 2023-11-13T09:12:58Z has_accepted_license: '1' intvolume: ' 131' issue: '16' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '10' oa: 1 oa_version: Published Version publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '14523' relation: research_data status: public scopus_import: '1' status: public title: Modeling Leidenfrost levitation of soft elastic solids tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 131 year: '2023' ... --- _id: '14523' abstract: - lang: eng text: see Readme file article_processing_charge: No author: - first_name: Jack full_name: Binysh, Jack last_name: Binysh - first_name: Indrajit full_name: Chakraborty, Indrajit last_name: Chakraborty - first_name: Mykyta full_name: Chubynsky, Mykyta last_name: Chubynsky - first_name: Vicente L full_name: Diaz Melian, Vicente L id: b6798902-eea0-11ea-9cbc-a8e14286c631 last_name: Diaz Melian - first_name: Scott R full_name: Waitukaitis, Scott R id: 3A1FFC16-F248-11E8-B48F-1D18A9856A87 last_name: Waitukaitis orcid: 0000-0002-2299-3176 - first_name: James full_name: Sprittles, James last_name: Sprittles - first_name: Anton full_name: Souslov, Anton last_name: Souslov citation: ama: 'Binysh J, Chakraborty I, Chubynsky M, et al. SouslovLab/PRL2023-ModellingLeidenfrostLevitationofSoftElasticSolids: v1.0.1. 2023. doi:10.5281/ZENODO.8329143' apa: 'Binysh, J., Chakraborty, I., Chubynsky, M., Diaz Melian, V. L., Waitukaitis, S. R., Sprittles, J., & Souslov, A. (2023). SouslovLab/PRL2023-ModellingLeidenfrostLevitationofSoftElasticSolids: v1.0.1. Zenodo. https://doi.org/10.5281/ZENODO.8329143' chicago: 'Binysh, Jack, Indrajit Chakraborty, Mykyta Chubynsky, Vicente L Diaz Melian, Scott R Waitukaitis, James Sprittles, and Anton Souslov. “SouslovLab/PRL2023-ModellingLeidenfrostLevitationofSoftElasticSolids: V1.0.1.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.8329143.' ieee: 'J. Binysh et al., “SouslovLab/PRL2023-ModellingLeidenfrostLevitationofSoftElasticSolids: v1.0.1.” Zenodo, 2023.' ista: 'Binysh J, Chakraborty I, Chubynsky M, Diaz Melian VL, Waitukaitis SR, Sprittles J, Souslov A. 2023. SouslovLab/PRL2023-ModellingLeidenfrostLevitationofSoftElasticSolids: v1.0.1, Zenodo, 10.5281/ZENODO.8329143.' mla: 'Binysh, Jack, et al. SouslovLab/PRL2023-ModellingLeidenfrostLevitationofSoftElasticSolids: V1.0.1. Zenodo, 2023, doi:10.5281/ZENODO.8329143.' short: J. Binysh, I. Chakraborty, M. Chubynsky, V.L. Diaz Melian, S.R. Waitukaitis, J. Sprittles, A. Souslov, (2023). date_created: 2023-11-13T09:12:11Z date_published: 2023-09-08T00:00:00Z date_updated: 2023-11-13T09:21:31Z day: '08' ddc: - '530' department: - _id: ScWa doi: 10.5281/ZENODO.8329143 main_file_link: - open_access: '1' url: https://doi.org/10.5281/ZENODO.8329143 month: '09' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '14514' relation: used_in_publication status: public status: public title: 'SouslovLab/PRL2023-ModellingLeidenfrostLevitationofSoftElasticSolids: v1.0.1' type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14518' abstract: - lang: eng text: We consider bidding games, a class of two-player zero-sum graph games. The game proceeds as follows. Both players have bounded budgets. A token is placed on a vertex of a graph, in each turn the players simultaneously submit bids, and the higher bidder moves the token, where we break bidding ties in favor of Player 1. Player 1 wins the game iff the token visits a designated target vertex. We consider, for the first time, poorman discrete-bidding in which the granularity of the bids is restricted and the higher bid is paid to the bank. Previous work either did not impose granularity restrictions or considered Richman bidding (bids are paid to the opponent). While the latter mechanisms are technically more accessible, the former is more appealing from a practical standpoint. Our study focuses on threshold budgets, which is the necessary and sufficient initial budget required for Player 1 to ensure winning against a given Player 2 budget. We first show existence of thresholds. In DAGs, we show that threshold budgets can be approximated with error bounds by thresholds under continuous-bidding and that they exhibit a periodic behavior. We identify closed-form solutions in special cases. We implement and experiment with an algorithm to find threshold budgets. acknowledgement: This research was supported in part by ISF grant no. 1679/21, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie Grant Agreement No. 665385. article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Tobias full_name: Meggendorfer, Tobias id: b21b0c15-30a2-11eb-80dc-f13ca25802e1 last_name: Meggendorfer orcid: 0000-0002-1712-2165 - first_name: Suman full_name: Sadhukhan, Suman last_name: Sadhukhan - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Avni G, Meggendorfer T, Sadhukhan S, Tkadlec J, Zikelic D. Reachability poorman discrete-bidding games. In: Frontiers in Artificial Intelligence and Applications. Vol 372. IOS Press; 2023:141-148. doi:10.3233/FAIA230264' apa: 'Avni, G., Meggendorfer, T., Sadhukhan, S., Tkadlec, J., & Zikelic, D. (2023). Reachability poorman discrete-bidding games. In Frontiers in Artificial Intelligence and Applications (Vol. 372, pp. 141–148). Krakow, Poland: IOS Press. https://doi.org/10.3233/FAIA230264' chicago: Avni, Guy, Tobias Meggendorfer, Suman Sadhukhan, Josef Tkadlec, and Dorde Zikelic. “Reachability Poorman Discrete-Bidding Games.” In Frontiers in Artificial Intelligence and Applications, 372:141–48. IOS Press, 2023. https://doi.org/10.3233/FAIA230264. ieee: G. Avni, T. Meggendorfer, S. Sadhukhan, J. Tkadlec, and D. Zikelic, “Reachability poorman discrete-bidding games,” in Frontiers in Artificial Intelligence and Applications, Krakow, Poland, 2023, vol. 372, pp. 141–148. ista: 'Avni G, Meggendorfer T, Sadhukhan S, Tkadlec J, Zikelic D. 2023. Reachability poorman discrete-bidding games. Frontiers in Artificial Intelligence and Applications. ECAI: European Conference on Artificial Intelligence vol. 372, 141–148.' mla: Avni, Guy, et al. “Reachability Poorman Discrete-Bidding Games.” Frontiers in Artificial Intelligence and Applications, vol. 372, IOS Press, 2023, pp. 141–48, doi:10.3233/FAIA230264. short: G. Avni, T. Meggendorfer, S. Sadhukhan, J. Tkadlec, D. Zikelic, in:, Frontiers in Artificial Intelligence and Applications, IOS Press, 2023, pp. 141–148. conference: end_date: 2023-10-04 location: Krakow, Poland name: 'ECAI: European Conference on Artificial Intelligence' start_date: 2023-09-30 date_created: 2023-11-12T23:00:56Z date_published: 2023-09-28T00:00:00Z date_updated: 2023-11-13T10:18:45Z day: '28' ddc: - '000' department: - _id: ToHe - _id: KrCh doi: 10.3233/FAIA230264 ec_funded: 1 external_id: arxiv: - '2307.15218' file: - access_level: open_access checksum: 1390ca38480fa4cf286b0f1a42e8c12f content_type: application/pdf creator: dernst date_created: 2023-11-13T10:16:10Z date_updated: 2023-11-13T10:16:10Z file_id: '14529' file_name: 2023_FAIA_Avni.pdf file_size: 501011 relation: main_file success: 1 file_date_updated: 2023-11-13T10:16:10Z has_accepted_license: '1' intvolume: ' 372' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '09' oa: 1 oa_version: Published Version page: 141-148 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Frontiers in Artificial Intelligence and Applications publication_identifier: isbn: - '9781643684369' issn: - 0922-6389 publication_status: published publisher: IOS Press quality_controlled: '1' scopus_import: '1' status: public title: Reachability poorman discrete-bidding games tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 372 year: '2023' ... --- _id: '13096' abstract: - lang: eng text: Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1,2,3,4,5,6,7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death. acknowledged_ssus: - _id: NMR - _id: LifeSc acknowledgement: "This work was supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy EXC 2075–390740016 and the Stuttgart Center for Simulation Science (SC SimTech) to K.P., by ERC-CoG 770988 (InflamCellDeath) and SNF Project funding (310030B_198005, 310030B_192523) to P.B., by the Swiss Nanoscience Institute and the Swiss National Science Foundation via the NCCR AntiResist (180541) to S.H. and the NCCR Molecular Systems Engineering (51NF40-205608) to D.J.M., by the Helmholtz Young Investigator Program of the Helmholtz Association to C.S., by the SNF Professorship funding (PP00P3_198903) to C.P., EMBO postdoctoral fellowship ALTF 27-2022 to E.H. and by the Scientific Service Units of IST Austria through resources provided by the NMR and Life Science Facilities to P.S. Molecular dynamics simulations were performed on the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research. The authors thank the BioEM Lab of the Biozentrum, University of Basel for support; V. Mack, K. Shkarina and J. Fricke for technical support; D. Ricklin and S. Vogt for peptide synthesis; P. Pelczar for support with animals; S.-J. Marrink and P. Telles de Souza for supply with Martini3 parameters and scripts; and P. Radler und M. Loose for help with QCM. Fig. 4g and Extended Data Fig. 1a were in part created with BioRender.com.\r\nOpen access funding provided by University of Basel." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Morris full_name: Degen, Morris last_name: Degen - first_name: José Carlos full_name: Santos, José Carlos last_name: Santos - first_name: Kristyna full_name: Pluhackova, Kristyna last_name: Pluhackova - first_name: Gonzalo full_name: Cebrero, Gonzalo last_name: Cebrero - first_name: Saray full_name: Ramos, Saray last_name: Ramos - first_name: Gytis full_name: Jankevicius, Gytis last_name: Jankevicius - first_name: Ella full_name: Hartenian, Ella last_name: Hartenian - first_name: Undina full_name: Guillerm, Undina id: bb74f472-ae54-11eb-9835-bc9c22fb1183 last_name: Guillerm - first_name: Stefania A. full_name: Mari, Stefania A. last_name: Mari - first_name: Bastian full_name: Kohl, Bastian last_name: Kohl - first_name: Daniel J. full_name: Müller, Daniel J. last_name: Müller - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 - first_name: Timm full_name: Maier, Timm last_name: Maier - first_name: Camilo full_name: Perez, Camilo last_name: Perez - first_name: Christian full_name: Sieben, Christian last_name: Sieben - first_name: Petr full_name: Broz, Petr last_name: Broz - first_name: Sebastian full_name: Hiller, Sebastian last_name: Hiller citation: ama: Degen M, Santos JC, Pluhackova K, et al. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature. 2023;618:1065-1071. doi:10.1038/s41586-023-05991-z apa: Degen, M., Santos, J. C., Pluhackova, K., Cebrero, G., Ramos, S., Jankevicius, G., … Hiller, S. (2023). Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature. Springer Nature. https://doi.org/10.1038/s41586-023-05991-z chicago: Degen, Morris, José Carlos Santos, Kristyna Pluhackova, Gonzalo Cebrero, Saray Ramos, Gytis Jankevicius, Ella Hartenian, et al. “Structural Basis of NINJ1-Mediated Plasma Membrane Rupture in Cell Death.” Nature. Springer Nature, 2023. https://doi.org/10.1038/s41586-023-05991-z. ieee: M. Degen et al., “Structural basis of NINJ1-mediated plasma membrane rupture in cell death,” Nature, vol. 618. Springer Nature, pp. 1065–1071, 2023. ista: Degen M, Santos JC, Pluhackova K, Cebrero G, Ramos S, Jankevicius G, Hartenian E, Guillerm U, Mari SA, Kohl B, Müller DJ, Schanda P, Maier T, Perez C, Sieben C, Broz P, Hiller S. 2023. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature. 618, 1065–1071. mla: Degen, Morris, et al. “Structural Basis of NINJ1-Mediated Plasma Membrane Rupture in Cell Death.” Nature, vol. 618, Springer Nature, 2023, pp. 1065–71, doi:10.1038/s41586-023-05991-z. short: M. Degen, J.C. Santos, K. Pluhackova, G. Cebrero, S. Ramos, G. Jankevicius, E. Hartenian, U. Guillerm, S.A. Mari, B. Kohl, D.J. Müller, P. Schanda, T. Maier, C. Perez, C. Sieben, P. Broz, S. Hiller, Nature 618 (2023) 1065–1071. date_created: 2023-05-28T22:01:04Z date_published: 2023-06-29T00:00:00Z date_updated: 2023-11-14T11:49:21Z day: '29' ddc: - '570' department: - _id: PaSc doi: 10.1038/s41586-023-05991-z external_id: isi: - '000991386800011' file: - access_level: open_access checksum: 0fab69252453bff1de7f0e2eceb76d34 content_type: application/pdf creator: dernst date_created: 2023-11-14T11:48:18Z date_updated: 2023-11-14T11:48:18Z file_id: '14533' file_name: 2023_Nature_Degen.pdf file_size: 12292188 relation: main_file success: 1 file_date_updated: 2023-11-14T11:48:18Z has_accepted_license: '1' intvolume: ' 618' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1065-1071 publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Structural basis of NINJ1-mediated plasma membrane rupture in cell death tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 618 year: '2023' ... --- _id: '13041' abstract: - lang: eng text: A series of triarylamines was synthesised and screened for their suitability as catholytes in redox flow batteries using cyclic voltammetry (CV). Tris(4-aminophenyl)amine was found to be the strongest candidate. Solubility and initial electrochemical performance were promising; however, polymerisation was observed during electrochemical cycling leading to rapid capacity fade prescribed to a loss of accessible active material and the limitation of ion transport processes within the cell. A mixed electrolyte system of H3PO4 and HCl was found to inhibit polymerisation producing oligomers that consumed less active material reducing rates of degradation in the redox flow battery. Under these conditions Coulombic efficiency improved by over 4 %, the maximum number of cycles more than quadrupled and an additional theoretical capacity of 20 % was accessed. This paper is, to our knowledge, the first example of triarylamines as catholytes in all-aqueous redox flow batteries and emphasises the impact supporting electrolytes can have on electrochemical performance. acknowledgement: The authors (N.L.F and R.B.J) would like to acknowledge the funding contributions of Shell and the EPRSC via I–Case studentships (grants no. EP/V519662/1 and EP/R511870/1 respectively). T.I would like to thank the ERC advanced Investigator Grant for CPG (EC H2020 835073). Thank you to Zhen Wang from the University of Cambridge for measuring GPC, the Yusuf Hamied Department of Chemistry's mass spectrometry service for MS measurements and analysis and Dr Andrew Bond from the University of Cambridge for XRD measurement and analysis. article_number: e202300128 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Nadia L. full_name: Farag, Nadia L. last_name: Farag - first_name: Rajesh B full_name: Jethwa, Rajesh B id: 4cc538d5-803f-11ed-ab7e-8139573aad8f last_name: Jethwa orcid: 0000-0002-0404-4356 - first_name: Alice E. full_name: Beardmore, Alice E. last_name: Beardmore - first_name: Teresa full_name: Insinna, Teresa last_name: Insinna - first_name: Christopher A. full_name: O'Keefe, Christopher A. last_name: O'Keefe - first_name: Peter A.A. full_name: Klusener, Peter A.A. last_name: Klusener - first_name: Clare P. full_name: Grey, Clare P. last_name: Grey - first_name: Dominic S. full_name: Wright, Dominic S. last_name: Wright citation: ama: Farag NL, Jethwa RB, Beardmore AE, et al. Triarylamines as catholytes in aqueous organic redox flow batteries. ChemSusChem. 2023;16(13). doi:10.1002/cssc.202300128 apa: Farag, N. L., Jethwa, R. B., Beardmore, A. E., Insinna, T., O’Keefe, C. A., Klusener, P. A. A., … Wright, D. S. (2023). Triarylamines as catholytes in aqueous organic redox flow batteries. ChemSusChem. Wiley. https://doi.org/10.1002/cssc.202300128 chicago: Farag, Nadia L., Rajesh B Jethwa, Alice E. Beardmore, Teresa Insinna, Christopher A. O’Keefe, Peter A.A. Klusener, Clare P. Grey, and Dominic S. Wright. “Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries.” ChemSusChem. Wiley, 2023. https://doi.org/10.1002/cssc.202300128. ieee: N. L. Farag et al., “Triarylamines as catholytes in aqueous organic redox flow batteries,” ChemSusChem, vol. 16, no. 13. Wiley, 2023. ista: Farag NL, Jethwa RB, Beardmore AE, Insinna T, O’Keefe CA, Klusener PAA, Grey CP, Wright DS. 2023. Triarylamines as catholytes in aqueous organic redox flow batteries. ChemSusChem. 16(13), e202300128. mla: Farag, Nadia L., et al. “Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries.” ChemSusChem, vol. 16, no. 13, e202300128, Wiley, 2023, doi:10.1002/cssc.202300128. short: N.L. Farag, R.B. Jethwa, A.E. Beardmore, T. Insinna, C.A. O’Keefe, P.A.A. Klusener, C.P. Grey, D.S. Wright, ChemSusChem 16 (2023). date_created: 2023-05-21T22:01:05Z date_published: 2023-07-06T00:00:00Z date_updated: 2023-11-14T11:28:23Z day: '06' ddc: - '540' department: - _id: StFr doi: 10.1002/cssc.202300128 external_id: isi: - '000985051300001' pmid: - '36970847' file: - access_level: open_access checksum: efa0713289995af83a2147b3e8e1d6a6 content_type: application/pdf creator: dernst date_created: 2023-11-14T11:27:16Z date_updated: 2023-11-14T11:27:16Z file_id: '14532' file_name: 2023_ChemSusChem_Farag.pdf file_size: 1168683 relation: main_file success: 1 file_date_updated: 2023-11-14T11:27:16Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '13' language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 publication: ChemSusChem publication_identifier: eissn: - 1864-564X issn: - 1864-5631 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Triarylamines as catholytes in aqueous organic redox flow batteries tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2023' ... --- _id: '13118' abstract: - lang: eng text: Under high pressures and temperatures, molecular systems with substantial polarization charges, such as ammonia and water, are predicted to form superionic phases and dense fluid states with dissociating molecules and high electrical conductivity. This behaviour potentially plays a role in explaining the origin of the multipolar magnetic fields of Uranus and Neptune, whose mantles are thought to result from a mixture of H2O, NH3 and CH4 ices. Determining the stability domain, melting curve and electrical conductivity of these superionic phases is therefore crucial for modelling planetary interiors and dynamos. Here we report the melting curve of superionic ammonia up to 300 GPa from laser-driven shock compression of pre-compressed samples and atomistic calculations. We show that ammonia melts at lower temperatures than water above 100 GPa and that fluid ammonia’s electrical conductivity exceeds that of water at conditions predicted by hot, super-adiabatic models for Uranus and Neptune, and enhances the conductivity in their fluid water-rich dynamo layers. acknowledgement: We acknowledge the crucial contribution of the LULI2000 laser and support teams to the success of the experiments. We also thank S. Brygoo and P. Loubeyre for useful discussions. This research was supported by the French National Research Agency (ANR) through the projects POMPEI (grant no. ANR-16-CE31-0008) and SUPER-ICES (grant ANR-15-CE30-008-01), and by the PLAS@PAR Federation. M.F. and R.R. gratefully acknowledge support by the DFG within the Research Unit FOR 2440. M.B. was supported by the European Union within the Marie Skłodowska-Curie actions (xICE grant 894725) and the NOMIS foundation. The DFT-MD calculations were performed at the North-German Supercomputing Alliance facilities. article_processing_charge: No article_type: original author: - first_name: J.-A. full_name: Hernandez, J.-A. last_name: Hernandez - first_name: Mandy full_name: Bethkenhagen, Mandy id: 201939f4-803f-11ed-ab7e-d8da4bd1517f last_name: Bethkenhagen orcid: 0000-0002-1838-2129 - first_name: S. full_name: Ninet, S. last_name: Ninet - first_name: M. full_name: French, M. last_name: French - first_name: A. full_name: Benuzzi-Mounaix, A. last_name: Benuzzi-Mounaix - first_name: F. full_name: Datchi, F. last_name: Datchi - first_name: M. full_name: Guarguaglini, M. last_name: Guarguaglini - first_name: F. full_name: Lefevre, F. last_name: Lefevre - first_name: F. full_name: Occelli, F. last_name: Occelli - first_name: R. full_name: Redmer, R. last_name: Redmer - first_name: T. full_name: Vinci, T. last_name: Vinci - first_name: A. full_name: Ravasio, A. last_name: Ravasio citation: ama: Hernandez J-A, Bethkenhagen M, Ninet S, et al. Melting curve of superionic ammonia at planetary interior conditions. Nature Physics. 2023;19:1280-1285. doi:10.1038/s41567-023-02074-8 apa: Hernandez, J.-A., Bethkenhagen, M., Ninet, S., French, M., Benuzzi-Mounaix, A., Datchi, F., … Ravasio, A. (2023). Melting curve of superionic ammonia at planetary interior conditions. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02074-8 chicago: Hernandez, J.-A., Mandy Bethkenhagen, S. Ninet, M. French, A. Benuzzi-Mounaix, F. Datchi, M. Guarguaglini, et al. “Melting Curve of Superionic Ammonia at Planetary Interior Conditions.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-02074-8. ieee: J.-A. Hernandez et al., “Melting curve of superionic ammonia at planetary interior conditions,” Nature Physics, vol. 19. Springer Nature, pp. 1280–1285, 2023. ista: Hernandez J-A, Bethkenhagen M, Ninet S, French M, Benuzzi-Mounaix A, Datchi F, Guarguaglini M, Lefevre F, Occelli F, Redmer R, Vinci T, Ravasio A. 2023. Melting curve of superionic ammonia at planetary interior conditions. Nature Physics. 19, 1280–1285. mla: Hernandez, J. A., et al. “Melting Curve of Superionic Ammonia at Planetary Interior Conditions.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1280–85, doi:10.1038/s41567-023-02074-8. short: J.-A. Hernandez, M. Bethkenhagen, S. Ninet, M. French, A. Benuzzi-Mounaix, F. Datchi, M. Guarguaglini, F. Lefevre, F. Occelli, R. Redmer, T. Vinci, A. Ravasio, Nature Physics 19 (2023) 1280–1285. date_created: 2023-06-04T22:01:02Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-11-14T12:58:31Z day: '01' department: - _id: BiCh doi: 10.1038/s41567-023-02074-8 external_id: isi: - '000996921200001' intvolume: ' 19' isi: 1 language: - iso: eng month: '09' oa_version: None page: 1280-1285 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: 10.1038/s41567-023-02130-3 scopus_import: '1' status: public title: Melting curve of superionic ammonia at planetary interior conditions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '13119' abstract: - lang: eng text: A density wave (DW) is a fundamental type of long-range order in quantum matter tied to self-organization into a crystalline structure. The interplay of DW order with superfluidity can lead to complex scenarios that pose a great challenge to theoretical analysis. In the past decades, tunable quantum Fermi gases have served as model systems for exploring the physics of strongly interacting fermions, including most notably magnetic ordering1, pairing and superfluidity2, and the crossover from a Bardeen–Cooper–Schrieffer superfluid to a Bose–Einstein condensate3. Here, we realize a Fermi gas featuring both strong, tunable contact interactions and photon-mediated, spatially structured long-range interactions in a transversely driven high-finesse optical cavity. Above a critical long-range interaction strength, DW order is stabilized in the system, which we identify via its superradiant light-scattering properties. We quantitatively measure the variation of the onset of DW order as the contact interaction is varied across the Bardeen–Cooper–Schrieffer superfluid and Bose–Einstein condensate crossover, in qualitative agreement with a mean-field theory. The atomic DW susceptibility varies over an order of magnitude upon tuning the strength and the sign of the long-range interactions below the self-ordering threshold, demonstrating independent and simultaneous control over the contact and long-range interactions. Therefore, our experimental setup provides a fully tunable and microscopically controllable platform for the experimental study of the interplay of superfluidity and DW order. acknowledgement: Open access funding provided by EPFL Lausanne.We acknowledge discussions with T. Donner and T. Esslinger. We thank G. del Pace and T. Bühler for their assistance in the final stages of the experiment. We acknowledge funding from the European Research Council under the European Union Horizon 2020 Research and Innovation Programme (Grant no. 714309) and the Swiss National Science Foundation (Grant no. 184654). F.M. acknowledges financial support from the Austrian Science Fund (Stand-Alone Project P 35891-N). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Victor full_name: Helson, Victor last_name: Helson - first_name: Timo full_name: Zwettler, Timo last_name: Zwettler - first_name: Farokh full_name: Mivehvar, Farokh last_name: Mivehvar - first_name: Elvia full_name: Colella, Elvia last_name: Colella - first_name: Kevin Etienne Robert full_name: Roux, Kevin Etienne Robert id: 53f93ea2-803f-11ed-ab7e-b283135794ef last_name: Roux - first_name: Hideki full_name: Konishi, Hideki last_name: Konishi - first_name: Helmut full_name: Ritsch, Helmut last_name: Ritsch - first_name: Jean Philippe full_name: Brantut, Jean Philippe last_name: Brantut citation: ama: Helson V, Zwettler T, Mivehvar F, et al. Density-wave ordering in a unitary Fermi gas with photon-mediated interactions. Nature. 2023;618:716-720. doi:10.1038/s41586-023-06018-3 apa: Helson, V., Zwettler, T., Mivehvar, F., Colella, E., Roux, K. E. R., Konishi, H., … Brantut, J. P. (2023). Density-wave ordering in a unitary Fermi gas with photon-mediated interactions. Nature. Springer Nature. https://doi.org/10.1038/s41586-023-06018-3 chicago: Helson, Victor, Timo Zwettler, Farokh Mivehvar, Elvia Colella, Kevin Etienne Robert Roux, Hideki Konishi, Helmut Ritsch, and Jean Philippe Brantut. “Density-Wave Ordering in a Unitary Fermi Gas with Photon-Mediated Interactions.” Nature. Springer Nature, 2023. https://doi.org/10.1038/s41586-023-06018-3. ieee: V. Helson et al., “Density-wave ordering in a unitary Fermi gas with photon-mediated interactions,” Nature, vol. 618. Springer Nature, pp. 716–720, 2023. ista: Helson V, Zwettler T, Mivehvar F, Colella E, Roux KER, Konishi H, Ritsch H, Brantut JP. 2023. Density-wave ordering in a unitary Fermi gas with photon-mediated interactions. Nature. 618, 716–720. mla: Helson, Victor, et al. “Density-Wave Ordering in a Unitary Fermi Gas with Photon-Mediated Interactions.” Nature, vol. 618, Springer Nature, 2023, pp. 716–20, doi:10.1038/s41586-023-06018-3. short: V. Helson, T. Zwettler, F. Mivehvar, E. Colella, K.E.R. Roux, H. Konishi, H. Ritsch, J.P. Brantut, Nature 618 (2023) 716–720. date_created: 2023-06-04T22:01:03Z date_published: 2023-06-22T00:00:00Z date_updated: 2023-11-14T13:02:50Z day: '22' ddc: - '530' department: - _id: GeKa doi: 10.1038/s41586-023-06018-3 external_id: isi: - '001001139300008' file: - access_level: open_access checksum: 4887a296e3b6f54e8c0b946cbfd24f49 content_type: application/pdf creator: dernst date_created: 2023-11-14T13:00:19Z date_updated: 2023-11-14T13:00:19Z file_id: '14534' file_name: 2023_Nature_Helson.pdf file_size: 8156497 relation: main_file success: 1 file_date_updated: 2023-11-14T13:00:19Z has_accepted_license: '1' intvolume: ' 618' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 716-720 publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Density-wave ordering in a unitary Fermi gas with photon-mediated interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 618 year: '2023' ... --- _id: '12911' abstract: - lang: eng text: 'This paper establishes new connections between many-body quantum systems, One-body Reduced Density Matrices Functional Theory (1RDMFT) and Optimal Transport (OT), by interpreting the problem of computing the ground-state energy of a finite-dimensional composite quantum system at positive temperature as a non-commutative entropy regularized Optimal Transport problem. We develop a new approach to fully characterize the dual-primal solutions in such non-commutative setting. The mathematical formalism is particularly relevant in quantum chemistry: numerical realizations of the many-electron ground-state energy can be computed via a non-commutative version of Sinkhorn algorithm. Our approach allows to prove convergence and robustness of this algorithm, which, to our best knowledge, were unknown even in the two marginal case. Our methods are based on a priori estimates in the dual problem, which we believe to be of independent interest. Finally, the above results are extended in 1RDMFT setting, where bosonic or fermionic symmetry conditions are enforced on the problem.' acknowledgement: "This work started when A.G. was visiting the Erwin Schrödinger Institute and then continued when D.F. and L.P visited the Theoretical Chemistry Department of the Vrije Universiteit Amsterdam. The authors thank the hospitality of both places and, especially, P. Gori-Giorgi and K. Giesbertz for fruitful discussions and literature suggestions in the early state of the project. The authors also thank J. Maas and R. Seiringer for their feedback and useful comments to a first draft of the article. Finally, we acknowledge the high quality review done by the anonymous referee of our paper, who we would like to thank for the excellent work and constructive feedback.\r\nD.F acknowledges support by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreements No 716117 and No 694227). A.G. acknowledges funding by the HORIZON EUROPE European Research Council under H2020/MSCA-IF “OTmeetsDFT” [grant ID: 795942] as well as partial support of his research by the Canada Research Chairs Program (ID 2021-00234) and Natural Sciences and Engineering Research Council of Canada, RGPIN-2022-05207. L.P. acknowledges support by the Austrian Science Fund (FWF), grants No W1245 and No F65, and by the Deutsche Forschungsgemeinschaft (DFG) - Project number 390685813." article_number: '109963' article_processing_charge: No article_type: original author: - first_name: Dario full_name: Feliciangeli, Dario id: 41A639AA-F248-11E8-B48F-1D18A9856A87 last_name: Feliciangeli orcid: 0000-0003-0754-8530 - first_name: Augusto full_name: Gerolin, Augusto last_name: Gerolin - first_name: Lorenzo full_name: Portinale, Lorenzo id: 30AD2CBC-F248-11E8-B48F-1D18A9856A87 last_name: Portinale citation: ama: Feliciangeli D, Gerolin A, Portinale L. A non-commutative entropic optimal transport approach to quantum composite systems at positive temperature. Journal of Functional Analysis. 2023;285(4). doi:10.1016/j.jfa.2023.109963 apa: Feliciangeli, D., Gerolin, A., & Portinale, L. (2023). A non-commutative entropic optimal transport approach to quantum composite systems at positive temperature. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2023.109963 chicago: Feliciangeli, Dario, Augusto Gerolin, and Lorenzo Portinale. “A Non-Commutative Entropic Optimal Transport Approach to Quantum Composite Systems at Positive Temperature.” Journal of Functional Analysis. Elsevier, 2023. https://doi.org/10.1016/j.jfa.2023.109963. ieee: D. Feliciangeli, A. Gerolin, and L. Portinale, “A non-commutative entropic optimal transport approach to quantum composite systems at positive temperature,” Journal of Functional Analysis, vol. 285, no. 4. Elsevier, 2023. ista: Feliciangeli D, Gerolin A, Portinale L. 2023. A non-commutative entropic optimal transport approach to quantum composite systems at positive temperature. Journal of Functional Analysis. 285(4), 109963. mla: Feliciangeli, Dario, et al. “A Non-Commutative Entropic Optimal Transport Approach to Quantum Composite Systems at Positive Temperature.” Journal of Functional Analysis, vol. 285, no. 4, 109963, Elsevier, 2023, doi:10.1016/j.jfa.2023.109963. short: D. Feliciangeli, A. Gerolin, L. Portinale, Journal of Functional Analysis 285 (2023). date_created: 2023-05-07T22:01:02Z date_published: 2023-08-15T00:00:00Z date_updated: 2023-11-14T13:21:01Z day: '15' department: - _id: RoSe - _id: JaMa doi: 10.1016/j.jfa.2023.109963 ec_funded: 1 external_id: arxiv: - '2106.11217' isi: - '000990804300001' intvolume: ' 285' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2106.11217 month: '08' oa: 1 oa_version: Preprint project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 260482E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: ' F06504' name: Taming Complexity in Partial Di erential Systems publication: Journal of Functional Analysis publication_identifier: eissn: - 1096-0783 issn: - 0022-1236 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '9792' relation: earlier_version status: public scopus_import: '1' status: public title: A non-commutative entropic optimal transport approach to quantum composite systems at positive temperature type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 285 year: '2023' ... --- _id: '13177' abstract: - lang: eng text: In this note we study the eigenvalue growth of infinite graphs with discrete spectrum. We assume that the corresponding Dirichlet forms satisfy certain Sobolev-type inequalities and that the total measure is finite. In this sense, the associated operators on these graphs display similarities to elliptic operators on bounded domains in the continuum. Specifically, we prove lower bounds on the eigenvalue growth and show by examples that corresponding upper bounds cannot be established. acknowledgement: The second author was supported by the priority program SPP2026 of the German Research Foundation (DFG). The fourth author was supported by the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes) and by the German Research Foundation (DFG) via RTG 1523/2. article_processing_charge: No article_type: original author: - first_name: Bobo full_name: Hua, Bobo last_name: Hua - first_name: Matthias full_name: Keller, Matthias last_name: Keller - first_name: Michael full_name: Schwarz, Michael last_name: Schwarz - first_name: Melchior full_name: Wirth, Melchior id: 88644358-0A0E-11EA-8FA5-49A33DDC885E last_name: Wirth orcid: 0000-0002-0519-4241 citation: ama: Hua B, Keller M, Schwarz M, Wirth M. Sobolev-type inequalities and eigenvalue growth on graphs with finite measure. Proceedings of the American Mathematical Society. 2023;151(8):3401-3414. doi:10.1090/proc/14361 apa: Hua, B., Keller, M., Schwarz, M., & Wirth, M. (2023). Sobolev-type inequalities and eigenvalue growth on graphs with finite measure. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/14361 chicago: Hua, Bobo, Matthias Keller, Michael Schwarz, and Melchior Wirth. “Sobolev-Type Inequalities and Eigenvalue Growth on Graphs with Finite Measure.” Proceedings of the American Mathematical Society. American Mathematical Society, 2023. https://doi.org/10.1090/proc/14361. ieee: B. Hua, M. Keller, M. Schwarz, and M. Wirth, “Sobolev-type inequalities and eigenvalue growth on graphs with finite measure,” Proceedings of the American Mathematical Society, vol. 151, no. 8. American Mathematical Society, pp. 3401–3414, 2023. ista: Hua B, Keller M, Schwarz M, Wirth M. 2023. Sobolev-type inequalities and eigenvalue growth on graphs with finite measure. Proceedings of the American Mathematical Society. 151(8), 3401–3414. mla: Hua, Bobo, et al. “Sobolev-Type Inequalities and Eigenvalue Growth on Graphs with Finite Measure.” Proceedings of the American Mathematical Society, vol. 151, no. 8, American Mathematical Society, 2023, pp. 3401–14, doi:10.1090/proc/14361. short: B. Hua, M. Keller, M. Schwarz, M. Wirth, Proceedings of the American Mathematical Society 151 (2023) 3401–3414. date_created: 2023-07-02T22:00:43Z date_published: 2023-08-01T00:00:00Z date_updated: 2023-11-14T13:07:09Z day: '01' department: - _id: JaMa doi: 10.1090/proc/14361 external_id: arxiv: - '1804.08353' isi: - '000988204400001' intvolume: ' 151' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.1804.08353' month: '08' oa: 1 oa_version: Preprint page: 3401-3414 publication: Proceedings of the American Mathematical Society publication_identifier: eissn: - 1088-6826 issn: - 0002-9939 publication_status: published publisher: American Mathematical Society quality_controlled: '1' scopus_import: '1' status: public title: Sobolev-type inequalities and eigenvalue growth on graphs with finite measure type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 151 year: '2023' ... --- _id: '14558' abstract: - lang: eng text: "n the dynamic minimum set cover problem, the challenge is to minimize the update time while guaranteeing a close-to-optimal min{O(log n), f} approximation factor. (Throughout, n, m, f , and C are parameters denoting the maximum number of elements, the number of sets, the frequency, and the cost range.) In the high-frequency range, when f = Ω(log n) , this was achieved by a deterministic O(log n) -approximation algorithm with O(f log n) amortized update time by Gupta et al. [Online and dynamic algorithms for set cover, in Proceedings STOC 2017, ACM, pp. 537–550]. In this paper we consider the low-frequency range, when f = O(log n) , and obtain deterministic algorithms with a (1 + ∈)f -approximation ratio and the following guarantees on the update time. (1) O ((f/∈)-log(Cn)) amortized update time: Prior to our work, the best approximation ratio guaranteed by deterministic algorithms was O(f2) of Bhattacharya, Henzinger, and Italiano [Design of dynamic algorithms via primal-dual method, in Proceedings ICALP 2015, Springer, pp. 206–218]. In contrast, the only result with O(f) -approximation was that of Abboud et al. [Dynamic set cover: Improved algorithms and lower bounds, in Proceedings STOC 2019, ACM, pp. 114–125], who designed a randomized (1+∈)f -approximation algorithm with amortized update time. (2) O(f2/∈3 + (f/∈2).logC) amortized update time: This result improves the above update time bound for most values of f\r\n in the low-frequency range, i.e., f=o(log n) . It is also the first result that is independent of m\r\n and n. It subsumes the constant amortized update time of Bhattacharya and Kulkarni [Deterministically maintaining a (2 + ∈) -approximate minimum vertex cover in O(1/∈2) amortized update time, in Proceedings SODA 2019, SIAM, pp. 1872–1885] for unweighted dynamic vertex cover (i.e., when f = 2 and C = 1). (3) O((f/∈3).log2(Cn)) worst-case update time: No nontrivial worst-case update time was previously known for the dynamic set cover problem. Our bound subsumes and improves by a logarithmic factor the O(log3n/poly (∈)) \r\n worst-case update time for the unweighted dynamic vertex cover problem (i.e., when f = 2\r\n and C =1) of Bhattacharya, Henzinger, and Nanongkai [Fully dynamic approximate maximum matching and minimum vertex cover in O(log3)n worst case update time, in Proceedings SODA 2017, SIAM, pp. 470–489]. We achieve our results via the primal-dual approach, by maintaining a fractional packing solution as a dual certificate. Prior work in dynamic algorithms that employs the primal-dual approach uses a local update scheme that maintains relaxed complementary slackness conditions for every set. For our first result we use instead a global update scheme that does not always maintain complementary slackness conditions. For our second result we combine the global and the local update schema. To achieve our third result we use a hierarchy of background schedulers. It is an interesting open question whether this background scheduler technique can also be used to transform algorithms with amortized running time bounds into algorithms with worst-case running time bounds." acknowledgement: "This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grants 715672 and\r\n101019564 ``The Design of Modern Fully Dynamic Data Structures (MoDynStruct)\"\") and from the Engineering and Physical Sciences Research Council, UK (EPSRC) under grant EP/S03353X/1. The second author was also supported by the Austrian Science Fund (FWF) project ``Fast Algorithms for a Reactive Network Layer (ReactNet),\"\" P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020--2024, project ``Static and Dynamic Hierarchical Graph Decompositions,\"\"I 5982-N, and project Z 422-N. The third author was also supported by the Swedish Research Council (Reg. No. 2015-04659). The fourth author was also supported by the Science and Technology Development Fund (FDCT), Macau SAR (file 0014/2022/AFJ, 0085/2022/A, 0143/2020/A3, and SKL-IOTSC-2021-2023)." article_processing_charge: No article_type: original author: - first_name: Sayan full_name: Bhattacharya, Sayan last_name: Bhattacharya - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Danupon full_name: Nanongkai, Danupon last_name: Nanongkai - first_name: Xiaowei full_name: Wu, Xiaowei last_name: Wu citation: ama: Bhattacharya S, Henzinger MH, Nanongkai D, Wu X. Deterministic near-optimal approximation algorithms for dynamic set cover. SIAM Journal on Computing. 2023;52(5):1132-1192. doi:10.1137/21M1428649 apa: Bhattacharya, S., Henzinger, M. H., Nanongkai, D., & Wu, X. (2023). Deterministic near-optimal approximation algorithms for dynamic set cover. SIAM Journal on Computing. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/21M1428649 chicago: Bhattacharya, Sayan, Monika H Henzinger, Danupon Nanongkai, and Xiaowei Wu. “Deterministic Near-Optimal Approximation Algorithms for Dynamic Set Cover.” SIAM Journal on Computing. Society for Industrial and Applied Mathematics, 2023. https://doi.org/10.1137/21M1428649. ieee: S. Bhattacharya, M. H. Henzinger, D. Nanongkai, and X. Wu, “Deterministic near-optimal approximation algorithms for dynamic set cover,” SIAM Journal on Computing, vol. 52, no. 5. Society for Industrial and Applied Mathematics, pp. 1132–1192, 2023. ista: Bhattacharya S, Henzinger MH, Nanongkai D, Wu X. 2023. Deterministic near-optimal approximation algorithms for dynamic set cover. SIAM Journal on Computing. 52(5), 1132–1192. mla: Bhattacharya, Sayan, et al. “Deterministic Near-Optimal Approximation Algorithms for Dynamic Set Cover.” SIAM Journal on Computing, vol. 52, no. 5, Society for Industrial and Applied Mathematics, 2023, pp. 1132–92, doi:10.1137/21M1428649. short: S. Bhattacharya, M.H. Henzinger, D. Nanongkai, X. Wu, SIAM Journal on Computing 52 (2023) 1132–1192. date_created: 2023-11-19T23:00:56Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-11-20T08:21:07Z day: '01' department: - _id: MoHe doi: 10.1137/21M1428649 ec_funded: 1 intvolume: ' 52' issue: '5' language: - iso: eng month: '10' oa_version: None page: 1132-1192 project: - _id: bd9ca328-d553-11ed-ba76-dc4f890cfe62 call_identifier: H2020 grant_number: '101019564' name: The design and evaluation of modern fully dynamic data structures - _id: bd9e3a2e-d553-11ed-ba76-8aa684ce17fe grant_number: 'P33775 ' name: Fast Algorithms for a Reactive Network Layer - _id: 34def286-11ca-11ed-8bc3-da5948e1613c grant_number: Z00422 name: Wittgenstein Award - Monika Henzinger - _id: bda196b2-d553-11ed-ba76-8e8ee6c21103 grant_number: I05982 name: Static and Dynamic Hierarchical Graph Decompositions publication: SIAM Journal on Computing publication_identifier: eissn: - 1095-7111 issn: - 0097-5397 publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: Deterministic near-optimal approximation algorithms for dynamic set cover type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 52 year: '2023' ... --- _id: '14559' abstract: - lang: eng text: We consider the problem of learning control policies in discrete-time stochastic systems which guarantee that the system stabilizes within some specified stabilization region with probability 1. Our approach is based on the novel notion of stabilizing ranking supermartingales (sRSMs) that we introduce in this work. Our sRSMs overcome the limitation of methods proposed in previous works whose applicability is restricted to systems in which the stabilizing region cannot be left once entered under any control policy. We present a learning procedure that learns a control policy together with an sRSM that formally certifies probability 1 stability, both learned as neural networks. We show that this procedure can also be adapted to formally verifying that, under a given Lipschitz continuous control policy, the stochastic system stabilizes within some stabilizing region with probability 1. Our experimental evaluation shows that our learning procedure can successfully learn provably stabilizing policies in practice. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - LNCS article_processing_charge: No author: - first_name: Matin full_name: Ansaripour, Matin last_name: Ansaripour - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Ansaripour M, Chatterjee K, Henzinger TA, Lechner M, Zikelic D. Learning provably stabilizing neural controllers for discrete-time stochastic systems. In: 21st International Symposium on Automated Technology for Verification and Analysis. Vol 14215. Springer Nature; 2023:357-379. doi:10.1007/978-3-031-45329-8_17' apa: 'Ansaripour, M., Chatterjee, K., Henzinger, T. A., Lechner, M., & Zikelic, D. (2023). Learning provably stabilizing neural controllers for discrete-time stochastic systems. In 21st International Symposium on Automated Technology for Verification and Analysis (Vol. 14215, pp. 357–379). Singapore, Singapore: Springer Nature. https://doi.org/10.1007/978-3-031-45329-8_17' chicago: Ansaripour, Matin, Krishnendu Chatterjee, Thomas A Henzinger, Mathias Lechner, and Dorde Zikelic. “Learning Provably Stabilizing Neural Controllers for Discrete-Time Stochastic Systems.” In 21st International Symposium on Automated Technology for Verification and Analysis, 14215:357–79. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-45329-8_17. ieee: M. Ansaripour, K. Chatterjee, T. A. Henzinger, M. Lechner, and D. Zikelic, “Learning provably stabilizing neural controllers for discrete-time stochastic systems,” in 21st International Symposium on Automated Technology for Verification and Analysis, Singapore, Singapore, 2023, vol. 14215, pp. 357–379. ista: 'Ansaripour M, Chatterjee K, Henzinger TA, Lechner M, Zikelic D. 2023. Learning provably stabilizing neural controllers for discrete-time stochastic systems. 21st International Symposium on Automated Technology for Verification and Analysis. ATVA: Automated Technology for Verification and Analysis, LNCS, vol. 14215, 357–379.' mla: Ansaripour, Matin, et al. “Learning Provably Stabilizing Neural Controllers for Discrete-Time Stochastic Systems.” 21st International Symposium on Automated Technology for Verification and Analysis, vol. 14215, Springer Nature, 2023, pp. 357–79, doi:10.1007/978-3-031-45329-8_17. short: M. Ansaripour, K. Chatterjee, T.A. Henzinger, M. Lechner, D. Zikelic, in:, 21st International Symposium on Automated Technology for Verification and Analysis, Springer Nature, 2023, pp. 357–379. conference: end_date: 2023-10-27 location: Singapore, Singapore name: 'ATVA: Automated Technology for Verification and Analysis' start_date: 2023-10-24 date_created: 2023-11-19T23:00:56Z date_published: 2023-10-22T00:00:00Z date_updated: 2023-11-20T08:30:20Z day: '22' department: - _id: ToHe - _id: KrCh doi: 10.1007/978-3-031-45329-8_17 ec_funded: 1 intvolume: ' 14215' language: - iso: eng month: '10' oa_version: None page: 357-379 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 21st International Symposium on Automated Technology for Verification and Analysis publication_identifier: eissn: - 1611-3349 isbn: - '9783031453281' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Learning provably stabilizing neural controllers for discrete-time stochastic systems type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14215 year: '2023' ... --- _id: '14554' abstract: - lang: eng text: 'The Regularised Inertial Dean–Kawasaki model (RIDK) – introduced by the authors and J. Zimmer in earlier works – is a nonlinear stochastic PDE capturing fluctuations around the meanfield limit for large-scale particle systems in both particle density and momentum density. We focus on the following two aspects. Firstly, we set up a Discontinuous Galerkin (DG) discretisation scheme for the RIDK model: we provide suitable definitions of numerical fluxes at the interface of the mesh elements which are consistent with the wave-type nature of the RIDK model and grant stability of the simulations, and we quantify the rate of convergence in mean square to the continuous RIDK model. Secondly, we introduce modifications of the RIDK model in order to preserve positivity of the density (such a feature only holds in a “high-probability sense” for the original RIDK model). By means of numerical simulations, we show that the modifications lead to physically realistic and positive density profiles. In one case, subject to additional regularity constraints, we also prove positivity. Finally, we present an application of our methodology to a system of diffusing and reacting particles. Our Python code is available in open-source format.' acknowledgement: "The authors thank the anonymous referees for their careful reading of the manuscript and their\r\nvaluable suggestions. FC gratefully acknowledges funding from the Austrian Science Fund (FWF) through the project F65, and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 754411 (the latter funding source covered the first part of this project)." article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Federico full_name: Cornalba, Federico id: 2CEB641C-A400-11E9-A717-D712E6697425 last_name: Cornalba orcid: 0000-0002-6269-5149 - first_name: Tony full_name: Shardlow, Tony last_name: Shardlow citation: ama: 'Cornalba F, Shardlow T. The regularised inertial Dean’ Kawasaki equation: Discontinuous Galerkin approximation and modelling for low-density regime. ESAIM: Mathematical Modelling and Numerical Analysis. 2023;57(5):3061-3090. doi:10.1051/m2an/2023077' apa: 'Cornalba, F., & Shardlow, T. (2023). The regularised inertial Dean’ Kawasaki equation: Discontinuous Galerkin approximation and modelling for low-density regime. ESAIM: Mathematical Modelling and Numerical Analysis. EDP Sciences. https://doi.org/10.1051/m2an/2023077' chicago: 'Cornalba, Federico, and Tony Shardlow. “The Regularised Inertial Dean’ Kawasaki Equation: Discontinuous Galerkin Approximation and Modelling for Low-Density Regime.” ESAIM: Mathematical Modelling and Numerical Analysis. EDP Sciences, 2023. https://doi.org/10.1051/m2an/2023077.' ieee: 'F. Cornalba and T. Shardlow, “The regularised inertial Dean’ Kawasaki equation: Discontinuous Galerkin approximation and modelling for low-density regime,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 57, no. 5. EDP Sciences, pp. 3061–3090, 2023.' ista: 'Cornalba F, Shardlow T. 2023. The regularised inertial Dean’ Kawasaki equation: Discontinuous Galerkin approximation and modelling for low-density regime. ESAIM: Mathematical Modelling and Numerical Analysis. 57(5), 3061–3090.' mla: 'Cornalba, Federico, and Tony Shardlow. “The Regularised Inertial Dean’ Kawasaki Equation: Discontinuous Galerkin Approximation and Modelling for Low-Density Regime.” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 57, no. 5, EDP Sciences, 2023, pp. 3061–90, doi:10.1051/m2an/2023077.' short: 'F. Cornalba, T. Shardlow, ESAIM: Mathematical Modelling and Numerical Analysis 57 (2023) 3061–3090.' date_created: 2023-11-19T23:00:55Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-11-20T08:38:47Z day: '01' ddc: - '510' department: - _id: JuFi doi: 10.1051/m2an/2023077 ec_funded: 1 file: - access_level: open_access checksum: 3aef1475b1882c8dec112df9a5167c39 content_type: application/pdf creator: dernst date_created: 2023-11-20T08:34:57Z date_updated: 2023-11-20T08:34:57Z file_id: '14560' file_name: 2023_ESAIM_Cornalba.pdf file_size: 1508534 relation: main_file success: 1 file_date_updated: 2023-11-20T08:34:57Z has_accepted_license: '1' intvolume: ' 57' issue: '5' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 3061-3090 project: - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 'ESAIM: Mathematical Modelling and Numerical Analysis' publication_identifier: eissn: - 2804-7214 issn: - 2822-7840 publication_status: published publisher: EDP Sciences quality_controlled: '1' related_material: link: - relation: software url: https://github.com/tonyshardlow/RIDK-FD scopus_import: '1' status: public title: 'The regularised inertial Dean'' Kawasaki equation: Discontinuous Galerkin approximation and modelling for low-density regime' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 57 year: '2023' ... --- _id: '14556' abstract: - lang: eng text: Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach. acknowledgement: 'We are grateful to two referees and Luke Holman for valuable comments on a previous version of our manuscript. This paper was conceived at the ESEB Progress Meeting ‘Disentangling neutral versus adaptive evolution in chromosomal inversions’, organized by ELB, KJ and TF and held at Tjärnö Marine Laboratory (Sweden) between 28 February and 3 March 2022. We are indebted to ESEB for sponsoring our workshop and to the following funding bodies for supporting our research: ERC AdG 101055327 to NHB; Swedish Research Council (VR) 2018-03695 and Leverhulme Trust RPG-2021-141 to RKB; Fundação para a Ciência e a Tecnologia (FCT) contract 2020.00275.CEECIND and research project PTDC/BIA-1232 EVL/1614/2021 to RF; Fundação para a Ciência e a Tecnologia (FCT) junior researcher contract CEECIND/02616/2018 to IF; Swiss National Science Foundation (SNSF) Ambizione #PZ00P3_185952 to KJG; National Science Foundation NSF-OCE 2043905 and NSF-DEB 1655701 to KEL; Swiss National Science Foundation (SNSF) 310030_204681 to CLP; Swedish Research Council (VR) 2021-05243 to MR; Norwegian Research Council grant 315287 to AMW; Swiss National Science Foundation (SNSF) 31003A-182262 and FZEB-0-214654 to TF. We also thank Luca Ferretti for the discussion and Eliane Zinn (Flatt lab) for help with reference formatting.' article_number: '14242' article_processing_charge: No article_type: review author: - first_name: Emma L. full_name: Berdan, Emma L. last_name: Berdan - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Roger full_name: Butlin, Roger last_name: Butlin - first_name: Brian full_name: Charlesworth, Brian last_name: Charlesworth - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Inês full_name: Fragata, Inês last_name: Fragata - first_name: Kimberly J. full_name: Gilbert, Kimberly J. last_name: Gilbert - first_name: Paul full_name: Jay, Paul last_name: Jay - first_name: Martin full_name: Kapun, Martin last_name: Kapun - first_name: Katie E. full_name: Lotterhos, Katie E. last_name: Lotterhos - first_name: Claire full_name: Mérot, Claire last_name: Mérot - first_name: Esra full_name: Durmaz Mitchell, Esra last_name: Durmaz Mitchell - first_name: Marta full_name: Pascual, Marta last_name: Pascual - first_name: Catherine L. full_name: Peichel, Catherine L. last_name: Peichel - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Stephen W. full_name: Schaeffer, Stephen W. last_name: Schaeffer - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Thomas full_name: Flatt, Thomas last_name: Flatt citation: ama: Berdan EL, Barton NH, Butlin R, et al. How chromosomal inversions reorient the evolutionary process. Journal of Evolutionary Biology. 2023. doi:10.1111/jeb.14242 apa: Berdan, E. L., Barton, N. H., Butlin, R., Charlesworth, B., Faria, R., Fragata, I., … Flatt, T. (2023). How chromosomal inversions reorient the evolutionary process. Journal of Evolutionary Biology. Wiley. https://doi.org/10.1111/jeb.14242 chicago: Berdan, Emma L., Nicholas H Barton, Roger Butlin, Brian Charlesworth, Rui Faria, Inês Fragata, Kimberly J. Gilbert, et al. “How Chromosomal Inversions Reorient the Evolutionary Process.” Journal of Evolutionary Biology. Wiley, 2023. https://doi.org/10.1111/jeb.14242. ieee: E. L. Berdan et al., “How chromosomal inversions reorient the evolutionary process,” Journal of Evolutionary Biology. Wiley, 2023. ista: Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. 2023. How chromosomal inversions reorient the evolutionary process. Journal of Evolutionary Biology., 14242. mla: Berdan, Emma L., et al. “How Chromosomal Inversions Reorient the Evolutionary Process.” Journal of Evolutionary Biology, 14242, Wiley, 2023, doi:10.1111/jeb.14242. short: E.L. Berdan, N.H. Barton, R. Butlin, B. Charlesworth, R. Faria, I. Fragata, K.J. Gilbert, P. Jay, M. Kapun, K.E. Lotterhos, C. Mérot, E. Durmaz Mitchell, M. Pascual, C.L. Peichel, M. Rafajlović, A.M. Westram, S.W. Schaeffer, K. Johannesson, T. Flatt, Journal of Evolutionary Biology (2023). date_created: 2023-11-19T23:00:55Z date_published: 2023-11-08T00:00:00Z date_updated: 2023-11-20T08:51:09Z day: '08' ddc: - '570' department: - _id: NiBa doi: 10.1111/jeb.14242 has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/jeb.14242 month: '11' oa: 1 oa_version: Published Version publication: Journal of Evolutionary Biology publication_identifier: eissn: - 1420-9101 issn: - 1010-061X publication_status: epub_ahead publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: How chromosomal inversions reorient the evolutionary process tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14555' abstract: - lang: eng text: The intricate regulatory processes behind actin polymerization play a crucial role in cellular biology, including essential mechanisms such as cell migration or cell division. However, the self-organizing principles governing actin polymerization are still poorly understood. In this perspective article, we compare the Belousov-Zhabotinsky (BZ) reaction, a classic and well understood chemical oscillator known for its self-organizing spatiotemporal dynamics, with the excitable dynamics of polymerizing actin. While the BZ reaction originates from the domain of inorganic chemistry, it shares remarkable similarities with actin polymerization, including the characteristic propagating waves, which are influenced by geometry and external fields, and the emergent collective behavior. Starting with a general description of emerging patterns, we elaborate on single droplets or cell-level dynamics, the influence of geometric confinements and conclude with collective interactions. Comparing these two systems sheds light on the universal nature of self-organization principles in both living and inanimate systems. acknowledgement: The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article. article_number: '1287420' article_processing_charge: Yes article_type: original author: - first_name: Michael full_name: Riedl, Michael id: 3BE60946-F248-11E8-B48F-1D18A9856A87 last_name: Riedl orcid: 0000-0003-4844-6311 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Riedl M, Sixt MK. The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction. Frontiers in Cell and Developmental Biology. 2023;11. doi:10.3389/fcell.2023.1287420 apa: Riedl, M., & Sixt, M. K. (2023). The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction. Frontiers in Cell and Developmental Biology. Frontiers. https://doi.org/10.3389/fcell.2023.1287420 chicago: Riedl, Michael, and Michael K Sixt. “The Excitable Nature of Polymerizing Actin and the Belousov-Zhabotinsky Reaction.” Frontiers in Cell and Developmental Biology. Frontiers, 2023. https://doi.org/10.3389/fcell.2023.1287420. ieee: M. Riedl and M. K. Sixt, “The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction,” Frontiers in Cell and Developmental Biology, vol. 11. Frontiers, 2023. ista: Riedl M, Sixt MK. 2023. The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction. Frontiers in Cell and Developmental Biology. 11, 1287420. mla: Riedl, Michael, and Michael K. Sixt. “The Excitable Nature of Polymerizing Actin and the Belousov-Zhabotinsky Reaction.” Frontiers in Cell and Developmental Biology, vol. 11, 1287420, Frontiers, 2023, doi:10.3389/fcell.2023.1287420. short: M. Riedl, M.K. Sixt, Frontiers in Cell and Developmental Biology 11 (2023). date_created: 2023-11-19T23:00:55Z date_published: 2023-10-31T00:00:00Z date_updated: 2023-11-20T08:44:17Z day: '31' ddc: - '570' department: - _id: MiSi doi: 10.3389/fcell.2023.1287420 file: - access_level: open_access checksum: 61857fc3ebf019354932e7ee684658ce content_type: application/pdf creator: dernst date_created: 2023-11-20T08:41:15Z date_updated: 2023-11-20T08:41:15Z file_id: '14561' file_name: 2023_FrontiersCellDevBio_Riedl.pdf file_size: 2047622 relation: main_file success: 1 file_date_updated: 2023-11-20T08:41:15Z has_accepted_license: '1' intvolume: ' 11' language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: Frontiers in Cell and Developmental Biology publication_identifier: eissn: - 2296-634X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2023' ... --- _id: '14543' abstract: - lang: eng text: The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins, and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Utilizing exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with YnMyr chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), with ages ranging from 1 to 50 years old, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%), and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%), and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%), and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each), as well as hypertrophy of the clava (24%) were common neuroimaging findings. acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism, and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localisation and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-Myristoylation was similarly affected in acbd6-deficient zebrafish and Xenopus tropicalis models, including Fus, Marcks, and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders. article_number: awad380 article_processing_charge: No article_type: original author: - first_name: Rauan full_name: Kaiyrzhanov, Rauan last_name: Kaiyrzhanov - first_name: Aboulfazl full_name: Rad, Aboulfazl last_name: Rad - first_name: Sheng-Jia full_name: Lin, Sheng-Jia last_name: Lin - first_name: Aida full_name: Bertoli-Avella, Aida last_name: Bertoli-Avella - first_name: Wouter W full_name: Kallemeijn, Wouter W last_name: Kallemeijn - first_name: Annie full_name: Godwin, Annie last_name: Godwin - first_name: Maha S full_name: Zaki, Maha S last_name: Zaki - first_name: Kevin full_name: Huang, Kevin id: 3b3d2888-1ff6-11ee-9fa6-8f209ca91fe3 last_name: Huang orcid: 0000-0002-2512-7812 - first_name: Tracy full_name: Lau, Tracy last_name: Lau - first_name: Cassidy full_name: Petree, Cassidy last_name: Petree - first_name: Stephanie full_name: Efthymiou, Stephanie last_name: Efthymiou - first_name: Ehsan full_name: Ghayoor Karimiani, Ehsan last_name: Ghayoor Karimiani - first_name: Maja full_name: Hempel, Maja last_name: Hempel - first_name: Elizabeth A full_name: Normand, Elizabeth A last_name: Normand - first_name: Sabine full_name: Rudnik-Schöneborn, Sabine last_name: Rudnik-Schöneborn - first_name: Ulrich A full_name: Schatz, Ulrich A last_name: Schatz - first_name: Marc P full_name: Baggelaar, Marc P last_name: Baggelaar - first_name: Muhammad full_name: Ilyas, Muhammad last_name: Ilyas - first_name: Tipu full_name: Sultan, Tipu last_name: Sultan - first_name: Javeria Raza full_name: Alvi, Javeria Raza last_name: Alvi - first_name: Manizha full_name: Ganieva, Manizha last_name: Ganieva - first_name: Ben full_name: Fowler, Ben last_name: Fowler - first_name: Ruxandra full_name: Aanicai, Ruxandra last_name: Aanicai - first_name: Gulsen full_name: Akay Tayfun, Gulsen last_name: Akay Tayfun - first_name: Abdulaziz full_name: Al Saman, Abdulaziz last_name: Al Saman - first_name: Abdulrahman full_name: Alswaid, Abdulrahman last_name: Alswaid - first_name: Nafise full_name: Amiri, Nafise last_name: Amiri - first_name: Nilufar full_name: Asilova, Nilufar last_name: Asilova - first_name: Vorasuk full_name: Shotelersuk, Vorasuk last_name: Shotelersuk - first_name: Patra full_name: Yeetong, Patra last_name: Yeetong - first_name: Matloob full_name: Azam, Matloob last_name: Azam - first_name: Meisam full_name: Babaei, Meisam last_name: Babaei - first_name: Gholamreza full_name: Bahrami Monajemi, Gholamreza last_name: Bahrami Monajemi - first_name: Pouria full_name: Mohammadi, Pouria last_name: Mohammadi - first_name: Saeed full_name: Samie, Saeed last_name: Samie - first_name: Selina Husna full_name: Banu, Selina Husna last_name: Banu - first_name: Jorge Pinto full_name: Basto, Jorge Pinto last_name: Basto - first_name: Fanny full_name: Kortüm, Fanny last_name: Kortüm - first_name: Mislen full_name: Bauer, Mislen last_name: Bauer - first_name: Peter full_name: Bauer, Peter last_name: Bauer - first_name: Christian full_name: Beetz, Christian last_name: Beetz - first_name: Masoud full_name: Garshasbi, Masoud last_name: Garshasbi - first_name: Awatif full_name: Hameed Issa, Awatif last_name: Hameed Issa - first_name: Wafaa full_name: Eyaid, Wafaa last_name: Eyaid - first_name: Hind full_name: Ahmed, Hind last_name: Ahmed - first_name: Narges full_name: Hashemi, Narges last_name: Hashemi - first_name: Kazem full_name: Hassanpour, Kazem last_name: Hassanpour - first_name: Isabella full_name: Herman, Isabella last_name: Herman - first_name: Sherozjon full_name: Ibrohimov, Sherozjon last_name: Ibrohimov - first_name: Ban A full_name: Abdul-Majeed, Ban A last_name: Abdul-Majeed - first_name: Maria full_name: Imdad, Maria last_name: Imdad - first_name: Maksudjon full_name: Isrofilov, Maksudjon last_name: Isrofilov - first_name: Qassem full_name: Kaiyal, Qassem last_name: Kaiyal - first_name: Suliman full_name: Khan, Suliman last_name: Khan - first_name: Brian full_name: Kirmse, Brian last_name: Kirmse - first_name: Janet full_name: Koster, Janet last_name: Koster - first_name: Charles Marques full_name: Lourenço, Charles Marques last_name: Lourenço - first_name: Tadahiro full_name: Mitani, Tadahiro last_name: Mitani - first_name: Oana full_name: Moldovan, Oana last_name: Moldovan - first_name: David full_name: Murphy, David last_name: Murphy - first_name: Maryam full_name: Najafi, Maryam last_name: Najafi - first_name: Davut full_name: Pehlivan, Davut last_name: Pehlivan - first_name: Maria Eugenia full_name: Rocha, Maria Eugenia last_name: Rocha - first_name: Vincenzo full_name: Salpietro, Vincenzo last_name: Salpietro - first_name: Miriam full_name: Schmidts, Miriam last_name: Schmidts - first_name: Adel full_name: Shalata, Adel last_name: Shalata - first_name: Mohammad full_name: Mahroum, Mohammad last_name: Mahroum - first_name: Jawabreh Kassem full_name: Talbeya, Jawabreh Kassem last_name: Talbeya - first_name: Robert W full_name: Taylor, Robert W last_name: Taylor - first_name: Dayana full_name: Vazquez, Dayana last_name: Vazquez - first_name: Annalisa full_name: Vetro, Annalisa last_name: Vetro - first_name: Hans R full_name: Waterham, Hans R last_name: Waterham - first_name: Mashaya full_name: Zaman, Mashaya last_name: Zaman - first_name: Tina A full_name: Schrader, Tina A last_name: Schrader - first_name: Wendy K full_name: Chung, Wendy K last_name: Chung - first_name: Renzo full_name: Guerrini, Renzo last_name: Guerrini - first_name: James R full_name: Lupski, James R last_name: Lupski - first_name: Joseph full_name: Gleeson, Joseph last_name: Gleeson - first_name: Mohnish full_name: Suri, Mohnish last_name: Suri - first_name: Yalda full_name: Jamshidi, Yalda last_name: Jamshidi - first_name: Kailash P full_name: Bhatia, Kailash P last_name: Bhatia - first_name: Barbara full_name: Vona, Barbara last_name: Vona - first_name: Michael full_name: Schrader, Michael last_name: Schrader - first_name: Mariasavina full_name: Severino, Mariasavina last_name: Severino - first_name: Matthew full_name: Guille, Matthew last_name: Guille - first_name: Edward W full_name: Tate, Edward W last_name: Tate - first_name: Gaurav K full_name: Varshney, Gaurav K last_name: Varshney - first_name: Henry full_name: Houlden, Henry last_name: Houlden - first_name: Reza full_name: Maroofian, Reza last_name: Maroofian citation: ama: Kaiyrzhanov R, Rad A, Lin S-J, et al. Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders. Brain. 2023. doi:10.1093/brain/awad380 apa: Kaiyrzhanov, R., Rad, A., Lin, S.-J., Bertoli-Avella, A., Kallemeijn, W. W., Godwin, A., … Maroofian, R. (2023). Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders. Brain. Oxford University Press. https://doi.org/10.1093/brain/awad380 chicago: Kaiyrzhanov, Rauan, Aboulfazl Rad, Sheng-Jia Lin, Aida Bertoli-Avella, Wouter W Kallemeijn, Annie Godwin, Maha S Zaki, et al. “Bi-Allelic ACBD6 Variants Lead to a Neurodevelopmental Syndrome with Progressive and Complex Movement Disorders.” Brain. Oxford University Press, 2023. https://doi.org/10.1093/brain/awad380. ieee: R. Kaiyrzhanov et al., “Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders,” Brain. Oxford University Press, 2023. ista: Kaiyrzhanov R, Rad A, Lin S-J, Bertoli-Avella A, Kallemeijn WW, Godwin A, Zaki MS, Huang K, Lau T, Petree C, Efthymiou S, Ghayoor Karimiani E, Hempel M, Normand EA, Rudnik-Schöneborn S, Schatz UA, Baggelaar MP, Ilyas M, Sultan T, Alvi JR, Ganieva M, Fowler B, Aanicai R, Akay Tayfun G, Al Saman A, Alswaid A, Amiri N, Asilova N, Shotelersuk V, Yeetong P, Azam M, Babaei M, Bahrami Monajemi G, Mohammadi P, Samie S, Banu SH, Basto JP, Kortüm F, Bauer M, Bauer P, Beetz C, Garshasbi M, Hameed Issa A, Eyaid W, Ahmed H, Hashemi N, Hassanpour K, Herman I, Ibrohimov S, Abdul-Majeed BA, Imdad M, Isrofilov M, Kaiyal Q, Khan S, Kirmse B, Koster J, Lourenço CM, Mitani T, Moldovan O, Murphy D, Najafi M, Pehlivan D, Rocha ME, Salpietro V, Schmidts M, Shalata A, Mahroum M, Talbeya JK, Taylor RW, Vazquez D, Vetro A, Waterham HR, Zaman M, Schrader TA, Chung WK, Guerrini R, Lupski JR, Gleeson J, Suri M, Jamshidi Y, Bhatia KP, Vona B, Schrader M, Severino M, Guille M, Tate EW, Varshney GK, Houlden H, Maroofian R. 2023. Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders. Brain., awad380. mla: Kaiyrzhanov, Rauan, et al. “Bi-Allelic ACBD6 Variants Lead to a Neurodevelopmental Syndrome with Progressive and Complex Movement Disorders.” Brain, awad380, Oxford University Press, 2023, doi:10.1093/brain/awad380. short: R. Kaiyrzhanov, A. Rad, S.-J. Lin, A. Bertoli-Avella, W.W. Kallemeijn, A. Godwin, M.S. Zaki, K. Huang, T. Lau, C. Petree, S. Efthymiou, E. Ghayoor Karimiani, M. Hempel, E.A. Normand, S. Rudnik-Schöneborn, U.A. Schatz, M.P. Baggelaar, M. Ilyas, T. Sultan, J.R. Alvi, M. Ganieva, B. Fowler, R. Aanicai, G. Akay Tayfun, A. Al Saman, A. Alswaid, N. Amiri, N. Asilova, V. Shotelersuk, P. Yeetong, M. Azam, M. Babaei, G. Bahrami Monajemi, P. Mohammadi, S. Samie, S.H. Banu, J.P. Basto, F. Kortüm, M. Bauer, P. Bauer, C. Beetz, M. Garshasbi, A. Hameed Issa, W. Eyaid, H. Ahmed, N. Hashemi, K. Hassanpour, I. Herman, S. Ibrohimov, B.A. Abdul-Majeed, M. Imdad, M. Isrofilov, Q. Kaiyal, S. Khan, B. Kirmse, J. Koster, C.M. Lourenço, T. Mitani, O. Moldovan, D. Murphy, M. Najafi, D. Pehlivan, M.E. Rocha, V. Salpietro, M. Schmidts, A. Shalata, M. Mahroum, J.K. Talbeya, R.W. Taylor, D. Vazquez, A. Vetro, H.R. Waterham, M. Zaman, T.A. Schrader, W.K. Chung, R. Guerrini, J.R. Lupski, J. Gleeson, M. Suri, Y. Jamshidi, K.P. Bhatia, B. Vona, M. Schrader, M. Severino, M. Guille, E.W. Tate, G.K. Varshney, H. Houlden, R. Maroofian, Brain (2023). date_created: 2023-11-16T12:36:51Z date_published: 2023-11-10T00:00:00Z date_updated: 2023-11-20T10:17:32Z day: '10' department: - _id: GradSch doi: 10.1093/brain/awad380 extern: '1' keyword: - Neurology (clinical) language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/brain/awad380 month: '11' oa: 1 oa_version: Submitted Version publication: Brain publication_identifier: eissn: - 1460-2156 issn: - 0006-8950 publication_status: epub_ahead publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14542' abstract: - lang: eng text: "It is a remarkable property of BCS theory that the ratio of the energy gap at zero temperature Ξ\r\n and the critical temperature Tc is (approximately) given by a universal constant, independent of the microscopic details of the fermionic interaction. This universality has rigorously been proven quite recently in three spatial dimensions and three different limiting regimes: weak coupling, low density and high density. The goal of this short note is to extend the universal behavior to lower dimensions d=1,2 and give an exemplary proof in the weak coupling limit." acknowledgement: We thank Robert Seiringer for comments on the paper. J. H. gratefully acknowledges partial financial support by the ERC Advanced Grant “RMTBeyond”No. 101020331.This research was funded in part by the Austrian Science Fund (FWF) grantnumber I6427. article_number: '2360005 ' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Sven Joscha full_name: Henheik, Sven Joscha id: 31d731d7-d235-11ea-ad11-b50331c8d7fb last_name: Henheik orcid: 0000-0003-1106-327X - first_name: Asbjørn Bækgaard full_name: Lauritsen, Asbjørn Bækgaard id: e1a2682f-dc8d-11ea-abe3-81da9ac728f1 last_name: Lauritsen orcid: 0000-0003-4476-2288 - first_name: Barbara full_name: Roos, Barbara id: 5DA90512-D80F-11E9-8994-2E2EE6697425 last_name: Roos orcid: 0000-0002-9071-5880 citation: ama: Henheik SJ, Lauritsen AB, Roos B. Universality in low-dimensional BCS theory. Reviews in Mathematical Physics. 2023. doi:10.1142/s0129055x2360005x apa: Henheik, S. J., Lauritsen, A. B., & Roos, B. (2023). Universality in low-dimensional BCS theory. Reviews in Mathematical Physics. World Scientific Publishing. https://doi.org/10.1142/s0129055x2360005x chicago: Henheik, Sven Joscha, Asbjørn Bækgaard Lauritsen, and Barbara Roos. “Universality in Low-Dimensional BCS Theory.” Reviews in Mathematical Physics. World Scientific Publishing, 2023. https://doi.org/10.1142/s0129055x2360005x. ieee: S. J. Henheik, A. B. Lauritsen, and B. Roos, “Universality in low-dimensional BCS theory,” Reviews in Mathematical Physics. World Scientific Publishing, 2023. ista: Henheik SJ, Lauritsen AB, Roos B. 2023. Universality in low-dimensional BCS theory. Reviews in Mathematical Physics., 2360005. mla: Henheik, Sven Joscha, et al. “Universality in Low-Dimensional BCS Theory.” Reviews in Mathematical Physics, 2360005, World Scientific Publishing, 2023, doi:10.1142/s0129055x2360005x. short: S.J. Henheik, A.B. Lauritsen, B. Roos, Reviews in Mathematical Physics (2023). date_created: 2023-11-15T23:48:14Z date_published: 2023-10-31T00:00:00Z date_updated: 2023-11-20T10:04:38Z day: '31' department: - _id: GradSch - _id: LaEr - _id: RoSe doi: 10.1142/s0129055x2360005x ec_funded: 1 external_id: arxiv: - '2301.05621' has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1142/S0129055X2360005X month: '10' oa: 1 oa_version: Published Version project: - _id: 62796744-2b32-11ec-9570-940b20777f1d call_identifier: H2020 grant_number: '101020331' name: Random matrices beyond Wigner-Dyson-Mehta - _id: bda63fe5-d553-11ed-ba76-a16e3d2f256b grant_number: I06427 name: Mathematical Challenges in BCS Theory of Superconductivity publication: Reviews in Mathematical Physics publication_identifier: eissn: - 1793-6659 issn: - 0129-055X publication_status: epub_ahead publisher: World Scientific Publishing quality_controlled: '1' scopus_import: '1' status: public title: Universality in low-dimensional BCS theory tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14553' abstract: - lang: eng text: Quantum state tomography is an essential component of modern quantum technology. In application to continuous-variable harmonic-oscillator systems, such as the electromagnetic field, existing tomography methods typically reconstruct the state in discrete bases, and are hence limited to states with relatively low amplitudes and energies. Here, we overcome this limitation by utilizing a feed-forward neural network to obtain the density matrix directly in the continuous position basis. An important benefit of our approach is the ability to choose specific regions in the phase space for detailed reconstruction. This results in a relatively slow scaling of the amount of resources required for the reconstruction with the state amplitude, and hence allows us to dramatically increase the range of amplitudes accessible with our method. article_number: '042430' article_processing_charge: No article_type: original author: - first_name: Ekaterina full_name: Fedotova, Ekaterina id: c1bea5e1-878e-11ee-9dff-d7404e4422ab last_name: Fedotova orcid: 0000-0001-7242-015X - first_name: Nikolai full_name: Kuznetsov, Nikolai last_name: Kuznetsov - first_name: Egor full_name: Tiunov, Egor last_name: Tiunov - first_name: A. E. full_name: Ulanov, A. E. last_name: Ulanov - first_name: A. I. full_name: Lvovsky, A. I. last_name: Lvovsky citation: ama: Fedotova E, Kuznetsov N, Tiunov E, Ulanov AE, Lvovsky AI. Continuous-variable quantum tomography of high-amplitude states. Physical Review A. 2023;108(4). doi:10.1103/PhysRevA.108.042430 apa: Fedotova, E., Kuznetsov, N., Tiunov, E., Ulanov, A. E., & Lvovsky, A. I. (2023). Continuous-variable quantum tomography of high-amplitude states. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.108.042430 chicago: Fedotova, Ekaterina, Nikolai Kuznetsov, Egor Tiunov, A. E. Ulanov, and A. I. Lvovsky. “Continuous-Variable Quantum Tomography of High-Amplitude States.” Physical Review A. American Physical Society, 2023. https://doi.org/10.1103/PhysRevA.108.042430. ieee: E. Fedotova, N. Kuznetsov, E. Tiunov, A. E. Ulanov, and A. I. Lvovsky, “Continuous-variable quantum tomography of high-amplitude states,” Physical Review A, vol. 108, no. 4. American Physical Society, 2023. ista: Fedotova E, Kuznetsov N, Tiunov E, Ulanov AE, Lvovsky AI. 2023. Continuous-variable quantum tomography of high-amplitude states. Physical Review A. 108(4), 042430. mla: Fedotova, Ekaterina, et al. “Continuous-Variable Quantum Tomography of High-Amplitude States.” Physical Review A, vol. 108, no. 4, 042430, American Physical Society, 2023, doi:10.1103/PhysRevA.108.042430. short: E. Fedotova, N. Kuznetsov, E. Tiunov, A.E. Ulanov, A.I. Lvovsky, Physical Review A 108 (2023). date_created: 2023-11-19T23:00:54Z date_published: 2023-10-30T00:00:00Z date_updated: 2023-11-20T10:26:51Z day: '30' department: - _id: JoFi doi: 10.1103/PhysRevA.108.042430 external_id: arxiv: - '2212.07406' intvolume: ' 108' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2212.07406 month: '10' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Continuous-variable quantum tomography of high-amplitude states type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ... --- _id: '14557' abstract: - lang: eng text: Motivated by a problem posed in [10], we investigate the closure operators of the category SLatt of join semilattices and its subcategory SLattO of join semilattices with bottom element. In particular, we show that there are only finitely many closure operators of both categories, and provide a complete classification. We use this result to deduce the known fact that epimorphisms of SLatt and SLattO are surjective. We complement the paper with two different proofs of this result using either generators or Isbell’s zigzag theorem. acknowledgement: "The first and second named authors are members of GNSAGA – INdAM.\r\nThe third named author was supported by the FWF Grant, Project number I4245–N35" article_processing_charge: No article_type: original author: - first_name: D. full_name: Dikranjan, D. last_name: Dikranjan - first_name: A. full_name: Giordano Bruno, A. last_name: Giordano Bruno - first_name: Nicolò full_name: Zava, Nicolò id: c8b3499c-7a77-11eb-b046-aa368cbbf2ad last_name: Zava orcid: 0000-0001-8686-1888 citation: ama: Dikranjan D, Giordano Bruno A, Zava N. Epimorphisms and closure operators of categories of semilattices. Quaestiones Mathematicae. 2023;46(S1):191-221. doi:10.2989/16073606.2023.2247731 apa: Dikranjan, D., Giordano Bruno, A., & Zava, N. (2023). Epimorphisms and closure operators of categories of semilattices. Quaestiones Mathematicae. Taylor & Francis. https://doi.org/10.2989/16073606.2023.2247731 chicago: Dikranjan, D., A. Giordano Bruno, and Nicolò Zava. “Epimorphisms and Closure Operators of Categories of Semilattices.” Quaestiones Mathematicae. Taylor & Francis, 2023. https://doi.org/10.2989/16073606.2023.2247731. ieee: D. Dikranjan, A. Giordano Bruno, and N. Zava, “Epimorphisms and closure operators of categories of semilattices,” Quaestiones Mathematicae, vol. 46, no. S1. Taylor & Francis, pp. 191–221, 2023. ista: Dikranjan D, Giordano Bruno A, Zava N. 2023. Epimorphisms and closure operators of categories of semilattices. Quaestiones Mathematicae. 46(S1), 191–221. mla: Dikranjan, D., et al. “Epimorphisms and Closure Operators of Categories of Semilattices.” Quaestiones Mathematicae, vol. 46, no. S1, Taylor & Francis, 2023, pp. 191–221, doi:10.2989/16073606.2023.2247731. short: D. Dikranjan, A. Giordano Bruno, N. Zava, Quaestiones Mathematicae 46 (2023) 191–221. date_created: 2023-11-19T23:00:55Z date_published: 2023-11-01T00:00:00Z date_updated: 2023-11-20T09:24:48Z day: '01' department: - _id: HeEd doi: 10.2989/16073606.2023.2247731 intvolume: ' 46' issue: S1 language: - iso: eng month: '11' oa_version: None page: 191-221 project: - _id: 26AD5D90-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I04245 name: Algebraic Footprints of Geometric Features in Homology publication: Quaestiones Mathematicae publication_identifier: eissn: - 1727-933X issn: - 1607-3606 publication_status: published publisher: Taylor & Francis quality_controlled: '1' scopus_import: '1' status: public title: Epimorphisms and closure operators of categories of semilattices type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 46 year: '2023' ... --- _id: '14552' abstract: - lang: eng text: Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth. acknowledgement: The authors acknowledge funding for central project coordination from NSF Research Coordination Network grant DEB-2203582; the Ecology, Evolution, and Behavior Program at Michigan State University; and AgBioResearch at Michigan State University. Site-specific funding is listed in the supplementary materials. article_processing_charge: No article_type: original author: - first_name: M. L. full_name: Robinson, M. L. last_name: Robinson - first_name: P. G. full_name: Hahn, P. G. last_name: Hahn - first_name: B. D. full_name: Inouye, B. D. last_name: Inouye - first_name: N. full_name: Underwood, N. last_name: Underwood - first_name: S. R. full_name: Whitehead, S. R. last_name: Whitehead - first_name: K. C. full_name: Abbott, K. C. last_name: Abbott - first_name: E. M. full_name: Bruna, E. M. last_name: Bruna - first_name: N. I. full_name: Cacho, N. I. last_name: Cacho - first_name: L. A. full_name: Dyer, L. A. last_name: Dyer - first_name: L. full_name: Abdala-Roberts, L. last_name: Abdala-Roberts - first_name: W. J. full_name: Allen, W. J. last_name: Allen - first_name: J. F. full_name: Andrade, J. F. last_name: Andrade - first_name: D. F. full_name: Angulo, D. F. last_name: Angulo - first_name: D. full_name: Anjos, D. last_name: Anjos - first_name: D. N. full_name: Anstett, D. N. last_name: Anstett - first_name: R. full_name: Bagchi, R. last_name: Bagchi - first_name: S. full_name: Bagchi, S. last_name: Bagchi - first_name: M. full_name: Barbosa, M. last_name: Barbosa - first_name: S. full_name: Barrett, S. last_name: Barrett - first_name: Carina full_name: Baskett, Carina id: 3B4A7CE2-F248-11E8-B48F-1D18A9856A87 last_name: Baskett orcid: 0000-0002-7354-8574 - first_name: E. full_name: Ben-Simchon, E. last_name: Ben-Simchon - first_name: K. J. full_name: Bloodworth, K. J. last_name: Bloodworth - first_name: J. L. full_name: Bronstein, J. L. last_name: Bronstein - first_name: Y. M. full_name: Buckley, Y. M. last_name: Buckley - first_name: K. T. full_name: Burghardt, K. T. last_name: Burghardt - first_name: C. full_name: Bustos-Segura, C. last_name: Bustos-Segura - first_name: E. S. full_name: Calixto, E. S. last_name: Calixto - first_name: R. L. full_name: Carvalho, R. L. last_name: Carvalho - first_name: B. full_name: Castagneyrol, B. last_name: Castagneyrol - first_name: M. C. full_name: Chiuffo, M. C. last_name: Chiuffo - first_name: D. full_name: Cinoğlu, D. last_name: Cinoğlu - first_name: E. full_name: Cinto Mejía, E. last_name: Cinto Mejía - first_name: M. C. full_name: Cock, M. C. last_name: Cock - first_name: R. full_name: Cogni, R. last_name: Cogni - first_name: O. L. full_name: Cope, O. L. last_name: Cope - first_name: T. full_name: Cornelissen, T. last_name: Cornelissen - first_name: D. R. full_name: Cortez, D. R. last_name: Cortez - first_name: D. W. full_name: Crowder, D. W. last_name: Crowder - first_name: C. full_name: Dallstream, C. last_name: Dallstream - first_name: W. full_name: Dáttilo, W. last_name: Dáttilo - first_name: J. K. full_name: Davis, J. K. last_name: Davis - first_name: R. D. full_name: Dimarco, R. D. last_name: Dimarco - first_name: H. E. full_name: Dole, H. E. last_name: Dole - first_name: I. N. full_name: Egbon, I. N. last_name: Egbon - first_name: M. full_name: Eisenring, M. last_name: Eisenring - first_name: A. full_name: Ejomah, A. last_name: Ejomah - first_name: B. D. full_name: Elderd, B. D. last_name: Elderd - first_name: M. J. full_name: Endara, M. J. last_name: Endara - first_name: M. D. full_name: Eubanks, M. D. last_name: Eubanks - first_name: S. E. full_name: Everingham, S. E. last_name: Everingham - first_name: K. N. full_name: Farah, K. N. last_name: Farah - first_name: R. P. full_name: Farias, R. P. last_name: Farias - first_name: A. P. full_name: Fernandes, A. P. last_name: Fernandes - first_name: G. W. full_name: Fernandes, G. W. last_name: Fernandes - first_name: M. full_name: Ferrante, M. last_name: Ferrante - first_name: A. full_name: Finn, A. last_name: Finn - first_name: G. A. full_name: Florjancic, G. A. last_name: Florjancic - first_name: M. L. full_name: Forister, M. L. last_name: Forister - first_name: Q. N. full_name: Fox, Q. N. last_name: Fox - first_name: E. full_name: Frago, E. last_name: Frago - first_name: F. M. full_name: França, F. M. last_name: França - first_name: A. S. full_name: Getman-Pickering, A. S. last_name: Getman-Pickering - first_name: Z. full_name: Getman-Pickering, Z. last_name: Getman-Pickering - first_name: E. full_name: Gianoli, E. last_name: Gianoli - first_name: B. full_name: Gooden, B. last_name: Gooden - first_name: M. M. full_name: Gossner, M. M. last_name: Gossner - first_name: K. A. full_name: Greig, K. A. last_name: Greig - first_name: S. full_name: Gripenberg, S. last_name: Gripenberg - first_name: R. full_name: Groenteman, R. last_name: Groenteman - first_name: P. full_name: Grof-Tisza, P. last_name: Grof-Tisza - first_name: N. full_name: Haack, N. last_name: Haack - first_name: L. full_name: Hahn, L. last_name: Hahn - first_name: S. M. full_name: Haq, S. M. last_name: Haq - first_name: A. M. full_name: Helms, A. M. last_name: Helms - first_name: J. full_name: Hennecke, J. last_name: Hennecke - first_name: S. L. full_name: Hermann, S. L. last_name: Hermann - first_name: L. M. full_name: Holeski, L. M. last_name: Holeski - first_name: S. full_name: Holm, S. last_name: Holm - first_name: M. C. full_name: Hutchinson, M. C. last_name: Hutchinson - first_name: E. E. full_name: Jackson, E. E. last_name: Jackson - first_name: S. full_name: Kagiya, S. last_name: Kagiya - first_name: A. full_name: Kalske, A. last_name: Kalske - first_name: M. full_name: Kalwajtys, M. last_name: Kalwajtys - first_name: R. full_name: Karban, R. last_name: Karban - first_name: R. full_name: Kariyat, R. last_name: Kariyat - first_name: T. full_name: Keasar, T. last_name: Keasar - first_name: M. F. full_name: Kersch-Becker, M. F. last_name: Kersch-Becker - first_name: H. M. full_name: Kharouba, H. M. last_name: Kharouba - first_name: T. N. full_name: Kim, T. N. last_name: Kim - first_name: D. M. full_name: Kimuyu, D. M. last_name: Kimuyu - first_name: J. full_name: Kluse, J. last_name: Kluse - first_name: S. E. full_name: Koerner, S. E. last_name: Koerner - first_name: K. J. full_name: Komatsu, K. J. last_name: Komatsu - first_name: S. full_name: Krishnan, S. last_name: Krishnan - first_name: M. full_name: Laihonen, M. last_name: Laihonen - first_name: L. full_name: Lamelas-López, L. last_name: Lamelas-López - first_name: M. C. full_name: Lascaleia, M. C. last_name: Lascaleia - first_name: N. full_name: Lecomte, N. last_name: Lecomte - first_name: C. R. full_name: Lehn, C. R. last_name: Lehn - first_name: X. full_name: Li, X. last_name: Li - first_name: R. L. full_name: Lindroth, R. L. last_name: Lindroth - first_name: E. F. full_name: Lopresti, E. F. last_name: Lopresti - first_name: M. full_name: Losada, M. last_name: Losada - first_name: A. M. full_name: Louthan, A. M. last_name: Louthan - first_name: V. J. full_name: Luizzi, V. J. last_name: Luizzi - first_name: S. C. full_name: Lynch, S. C. last_name: Lynch - first_name: J. S. full_name: Lynn, J. S. last_name: Lynn - first_name: N. J. full_name: Lyon, N. J. last_name: Lyon - first_name: L. F. full_name: Maia, L. F. last_name: Maia - first_name: R. A. full_name: Maia, R. A. last_name: Maia - first_name: T. L. full_name: Mannall, T. L. last_name: Mannall - first_name: B. S. full_name: Martin, B. S. last_name: Martin - first_name: T. J. full_name: Massad, T. J. last_name: Massad - first_name: A. C. full_name: Mccall, A. C. last_name: Mccall - first_name: K. full_name: Mcgurrin, K. last_name: Mcgurrin - first_name: A. C. full_name: Merwin, A. C. last_name: Merwin - first_name: Z. full_name: Mijango-Ramos, Z. last_name: Mijango-Ramos - first_name: C. H. full_name: Mills, C. H. last_name: Mills - first_name: A. T. full_name: Moles, A. T. last_name: Moles - first_name: C. M. full_name: Moore, C. M. last_name: Moore - first_name: X. full_name: Moreira, X. last_name: Moreira - first_name: C. R. full_name: Morrison, C. R. last_name: Morrison - first_name: M. C. full_name: Moshobane, M. C. last_name: Moshobane - first_name: A. full_name: Muola, A. last_name: Muola - first_name: R. full_name: Nakadai, R. last_name: Nakadai - first_name: K. full_name: Nakajima, K. last_name: Nakajima - first_name: S. full_name: Novais, S. last_name: Novais - first_name: C. O. full_name: Ogbebor, C. O. last_name: Ogbebor - first_name: H. full_name: Ohsaki, H. last_name: Ohsaki - first_name: V. S. full_name: Pan, V. S. last_name: Pan - first_name: N. A. full_name: Pardikes, N. A. last_name: Pardikes - first_name: M. full_name: Pareja, M. last_name: Pareja - first_name: N. full_name: Parthasarathy, N. last_name: Parthasarathy - first_name: R. R. full_name: Pawar, R. R. last_name: Pawar - first_name: Q. full_name: Paynter, Q. last_name: Paynter - first_name: I. S. full_name: Pearse, I. S. last_name: Pearse - first_name: R. M. full_name: Penczykowski, R. M. last_name: Penczykowski - first_name: A. A. full_name: Pepi, A. A. last_name: Pepi - first_name: C. C. full_name: Pereira, C. C. last_name: Pereira - first_name: S. S. full_name: Phartyal, S. S. last_name: Phartyal - first_name: F. I. full_name: Piper, F. I. last_name: Piper - first_name: K. full_name: Poveda, K. last_name: Poveda - first_name: E. G. full_name: Pringle, E. G. last_name: Pringle - first_name: J. full_name: Puy, J. last_name: Puy - first_name: T. full_name: Quijano, T. last_name: Quijano - first_name: C. full_name: Quintero, C. last_name: Quintero - first_name: S. full_name: Rasmann, S. last_name: Rasmann - first_name: C. full_name: Rosche, C. last_name: Rosche - first_name: L. Y. full_name: Rosenheim, L. Y. last_name: Rosenheim - first_name: J. A. full_name: Rosenheim, J. A. last_name: Rosenheim - first_name: J. B. full_name: Runyon, J. B. last_name: Runyon - first_name: A. full_name: Sadeh, A. last_name: Sadeh - first_name: Y. full_name: Sakata, Y. last_name: Sakata - first_name: D. M. full_name: Salcido, D. M. last_name: Salcido - first_name: C. full_name: Salgado-Luarte, C. last_name: Salgado-Luarte - first_name: B. A. full_name: Santos, B. A. last_name: Santos - first_name: Y. full_name: Sapir, Y. last_name: Sapir - first_name: Y. full_name: Sasal, Y. last_name: Sasal - first_name: Y. full_name: Sato, Y. last_name: Sato - first_name: M. full_name: Sawant, M. last_name: Sawant - first_name: H. full_name: Schroeder, H. last_name: Schroeder - first_name: I. full_name: Schumann, I. last_name: Schumann - first_name: M. full_name: Segoli, M. last_name: Segoli - first_name: H. full_name: Segre, H. last_name: Segre - first_name: O. full_name: Shelef, O. last_name: Shelef - first_name: N. full_name: Shinohara, N. last_name: Shinohara - first_name: R. P. full_name: Singh, R. P. last_name: Singh - first_name: D. S. full_name: Smith, D. S. last_name: Smith - first_name: M. full_name: Sobral, M. last_name: Sobral - first_name: G. C. full_name: Stotz, G. C. last_name: Stotz - first_name: A. J.M. full_name: Tack, A. J.M. last_name: Tack - first_name: M. full_name: Tayal, M. last_name: Tayal - first_name: J. F. full_name: Tooker, J. F. last_name: Tooker - first_name: D. full_name: Torrico-Bazoberry, D. last_name: Torrico-Bazoberry - first_name: K. full_name: Tougeron, K. last_name: Tougeron - first_name: A. M. full_name: Trowbridge, A. M. last_name: Trowbridge - first_name: S. full_name: Utsumi, S. last_name: Utsumi - first_name: O. full_name: Uyi, O. last_name: Uyi - first_name: J. L. full_name: Vaca-Uribe, J. L. last_name: Vaca-Uribe - first_name: A. full_name: Valtonen, A. last_name: Valtonen - first_name: L. J.A. full_name: Van Dijk, L. J.A. last_name: Van Dijk - first_name: V. full_name: Vandvik, V. last_name: Vandvik - first_name: J. full_name: Villellas, J. last_name: Villellas - first_name: L. P. full_name: Waller, L. P. last_name: Waller - first_name: M. G. full_name: Weber, M. G. last_name: Weber - first_name: A. full_name: Yamawo, A. last_name: Yamawo - first_name: S. full_name: Yim, S. last_name: Yim - first_name: P. L. full_name: Zarnetske, P. L. last_name: Zarnetske - first_name: L. N. full_name: Zehr, L. N. last_name: Zehr - first_name: Z. full_name: Zhong, Z. last_name: Zhong - first_name: W. C. full_name: Wetzel, W. C. last_name: Wetzel citation: ama: Robinson ML, Hahn PG, Inouye BD, et al. Plant size, latitude, and phylogeny explain within-population variability in herbivory. Science. 2023;382(6671):679-683. doi:10.1126/science.adh8830 apa: Robinson, M. L., Hahn, P. G., Inouye, B. D., Underwood, N., Whitehead, S. R., Abbott, K. C., … Wetzel, W. C. (2023). Plant size, latitude, and phylogeny explain within-population variability in herbivory. Science. AAAS. https://doi.org/10.1126/science.adh8830 chicago: Robinson, M. L., P. G. Hahn, B. D. Inouye, N. Underwood, S. R. Whitehead, K. C. Abbott, E. M. Bruna, et al. “Plant Size, Latitude, and Phylogeny Explain within-Population Variability in Herbivory.” Science. AAAS, 2023. https://doi.org/10.1126/science.adh8830. ieee: M. L. Robinson et al., “Plant size, latitude, and phylogeny explain within-population variability in herbivory,” Science, vol. 382, no. 6671. AAAS, pp. 679–683, 2023. ista: Robinson ML et al. 2023. Plant size, latitude, and phylogeny explain within-population variability in herbivory. Science. 382(6671), 679–683. mla: Robinson, M. L., et al. “Plant Size, Latitude, and Phylogeny Explain within-Population Variability in Herbivory.” Science, vol. 382, no. 6671, AAAS, 2023, pp. 679–83, doi:10.1126/science.adh8830. short: M.L. Robinson, P.G. Hahn, B.D. Inouye, N. Underwood, S.R. Whitehead, K.C. Abbott, E.M. Bruna, N.I. Cacho, L.A. Dyer, L. Abdala-Roberts, W.J. Allen, J.F. Andrade, D.F. Angulo, D. Anjos, D.N. Anstett, R. Bagchi, S. Bagchi, M. Barbosa, S. Barrett, C. Baskett, E. Ben-Simchon, K.J. Bloodworth, J.L. Bronstein, Y.M. Buckley, K.T. Burghardt, C. Bustos-Segura, E.S. Calixto, R.L. Carvalho, B. Castagneyrol, M.C. Chiuffo, D. Cinoğlu, E. Cinto Mejía, M.C. Cock, R. Cogni, O.L. Cope, T. Cornelissen, D.R. Cortez, D.W. Crowder, C. Dallstream, W. Dáttilo, J.K. Davis, R.D. Dimarco, H.E. Dole, I.N. Egbon, M. Eisenring, A. Ejomah, B.D. Elderd, M.J. Endara, M.D. Eubanks, S.E. Everingham, K.N. Farah, R.P. Farias, A.P. Fernandes, G.W. Fernandes, M. Ferrante, A. Finn, G.A. Florjancic, M.L. Forister, Q.N. Fox, E. Frago, F.M. França, A.S. Getman-Pickering, Z. Getman-Pickering, E. Gianoli, B. Gooden, M.M. Gossner, K.A. Greig, S. Gripenberg, R. Groenteman, P. Grof-Tisza, N. Haack, L. Hahn, S.M. Haq, A.M. Helms, J. Hennecke, S.L. Hermann, L.M. Holeski, S. Holm, M.C. Hutchinson, E.E. Jackson, S. Kagiya, A. Kalske, M. Kalwajtys, R. Karban, R. Kariyat, T. Keasar, M.F. Kersch-Becker, H.M. Kharouba, T.N. Kim, D.M. Kimuyu, J. Kluse, S.E. Koerner, K.J. Komatsu, S. Krishnan, M. Laihonen, L. Lamelas-López, M.C. Lascaleia, N. Lecomte, C.R. Lehn, X. Li, R.L. Lindroth, E.F. Lopresti, M. Losada, A.M. Louthan, V.J. Luizzi, S.C. Lynch, J.S. Lynn, N.J. Lyon, L.F. Maia, R.A. Maia, T.L. Mannall, B.S. Martin, T.J. Massad, A.C. Mccall, K. Mcgurrin, A.C. Merwin, Z. Mijango-Ramos, C.H. Mills, A.T. Moles, C.M. Moore, X. Moreira, C.R. Morrison, M.C. Moshobane, A. Muola, R. Nakadai, K. Nakajima, S. Novais, C.O. Ogbebor, H. Ohsaki, V.S. Pan, N.A. Pardikes, M. Pareja, N. Parthasarathy, R.R. Pawar, Q. Paynter, I.S. Pearse, R.M. Penczykowski, A.A. Pepi, C.C. Pereira, S.S. Phartyal, F.I. Piper, K. Poveda, E.G. Pringle, J. Puy, T. Quijano, C. Quintero, S. Rasmann, C. Rosche, L.Y. Rosenheim, J.A. Rosenheim, J.B. Runyon, A. Sadeh, Y. Sakata, D.M. Salcido, C. Salgado-Luarte, B.A. Santos, Y. Sapir, Y. Sasal, Y. Sato, M. Sawant, H. Schroeder, I. Schumann, M. Segoli, H. Segre, O. Shelef, N. Shinohara, R.P. Singh, D.S. Smith, M. Sobral, G.C. Stotz, A.J.M. Tack, M. Tayal, J.F. Tooker, D. Torrico-Bazoberry, K. Tougeron, A.M. Trowbridge, S. Utsumi, O. Uyi, J.L. Vaca-Uribe, A. Valtonen, L.J.A. Van Dijk, V. Vandvik, J. Villellas, L.P. Waller, M.G. Weber, A. Yamawo, S. Yim, P.L. Zarnetske, L.N. Zehr, Z. Zhong, W.C. Wetzel, Science 382 (2023) 679–683. date_created: 2023-11-19T23:00:54Z date_published: 2023-11-09T00:00:00Z date_updated: 2023-11-20T11:17:34Z day: '09' department: - _id: NiBa doi: 10.1126/science.adh8830 external_id: pmid: - '37943897' intvolume: ' 382' issue: '6671' language: - iso: eng month: '11' oa_version: None page: 679-683 pmid: 1 publication: Science publication_identifier: eissn: - 1095-9203 publication_status: published publisher: AAAS quality_controlled: '1' related_material: record: - id: '14579' relation: research_data status: public scopus_import: '1' status: public title: Plant size, latitude, and phylogeny explain within-population variability in herbivory type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 382 year: '2023' ... --- _id: '14551' abstract: - lang: eng text: Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across generations despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed by genetic or epigenetic inheritance also remains mysterious. Here, we show that MET1 de novo activity, which is enhanced by existing proximate methylation, seeds and stabilizes mCG in Arabidopsis thaliana genes. MET1 activity is restricted by active demethylation and suppressed by histone variant H2A.Z, producing localized mCG patterns. Based on these observations, we develop a stochastic mathematical model that precisely recapitulates mCG inheritance dynamics and predicts intragenic mCG patterns and their population-scale variation given only CG site spacing. Our results demonstrate that intragenic mCG establishment, inheritance, and variance constitute a unified epigenetic process, revealing that intragenic mCG undergoes large, millennia-long epigenetic fluctuations and can therefore mediate evolution on this timescale. acknowledgement: We would like to thank Xiaoqi Feng, Ander Movilla Miangolarra, and Suzanne de Bruijn for discussions. This work was supported by BBSRC Institute Strategic Programme GEN (BB/P013511/1) to M.H. and D.Z. and by a European Research Council grant MaintainMeth (725746) to D.Z. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Amy full_name: Briffa, Amy last_name: Briffa - first_name: Elizabeth full_name: Hollwey, Elizabeth id: b8c4f54b-e484-11eb-8fdc-a54df64ef6dd last_name: Hollwey - first_name: Zaigham full_name: Shahzad, Zaigham last_name: Shahzad - first_name: Jonathan D. full_name: Moore, Jonathan D. last_name: Moore - first_name: David B. full_name: Lyons, David B. last_name: Lyons - first_name: Martin full_name: Howard, Martin last_name: Howard - first_name: Daniel full_name: Zilberman, Daniel id: 6973db13-dd5f-11ea-814e-b3e5455e9ed1 last_name: Zilberman orcid: 0000-0002-0123-8649 citation: ama: Briffa A, Hollwey E, Shahzad Z, et al. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Systems. 2023;14(11):953-967. doi:10.1016/j.cels.2023.10.007 apa: Briffa, A., Hollwey, E., Shahzad, Z., Moore, J. D., Lyons, D. B., Howard, M., & Zilberman, D. (2023). Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Systems. Elsevier. https://doi.org/10.1016/j.cels.2023.10.007 chicago: Briffa, Amy, Elizabeth Hollwey, Zaigham Shahzad, Jonathan D. Moore, David B. Lyons, Martin Howard, and Daniel Zilberman. “Millennia-Long Epigenetic Fluctuations Generate Intragenic DNA Methylation Variance in Arabidopsis Populations.” Cell Systems. Elsevier, 2023. https://doi.org/10.1016/j.cels.2023.10.007. ieee: A. Briffa et al., “Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations,” Cell Systems, vol. 14, no. 11. Elsevier, pp. 953–967, 2023. ista: Briffa A, Hollwey E, Shahzad Z, Moore JD, Lyons DB, Howard M, Zilberman D. 2023. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Systems. 14(11), 953–967. mla: Briffa, Amy, et al. “Millennia-Long Epigenetic Fluctuations Generate Intragenic DNA Methylation Variance in Arabidopsis Populations.” Cell Systems, vol. 14, no. 11, Elsevier, 2023, pp. 953–67, doi:10.1016/j.cels.2023.10.007. short: A. Briffa, E. Hollwey, Z. Shahzad, J.D. Moore, D.B. Lyons, M. Howard, D. Zilberman, Cell Systems 14 (2023) 953–967. date_created: 2023-11-19T23:00:54Z date_published: 2023-11-15T00:00:00Z date_updated: 2023-11-20T11:24:34Z day: '15' ddc: - '570' department: - _id: DaZi doi: 10.1016/j.cels.2023.10.007 ec_funded: 1 external_id: pmid: - '37944515' file: - access_level: open_access checksum: 101fdac59e6f1102d68ef91f2b5bd51a content_type: application/pdf creator: dernst date_created: 2023-11-20T11:22:52Z date_updated: 2023-11-20T11:22:52Z file_id: '14580' file_name: 2023_CellSystems_Briffa.pdf file_size: 5587897 relation: main_file success: 1 file_date_updated: 2023-11-20T11:22:52Z has_accepted_license: '1' intvolume: ' 14' issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 953-967 pmid: 1 project: - _id: 62935a00-2b32-11ec-9570-eff30fa39068 call_identifier: H2020 grant_number: '725746' name: Quantitative analysis of DNA methylation maintenance with chromatin publication: Cell Systems publication_identifier: eissn: - 2405-4720 issn: - 2405-4712 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ...