--- _id: '6089' abstract: - lang: eng text: Pleiotropy is the well-established idea that a single mutation affects multiple phenotypes. If a mutation has opposite effects on fitness when expressed in different contexts, then genetic conflict arises. Pleiotropic conflict is expected to reduce the efficacy of selection by limiting the fixation of beneficial mutations through adaptation, and the removal of deleterious mutations through purifying selection. Although this has been widely discussed, in particular in the context of a putative “gender load,” it has yet to be systematically quantified. In this work, we empirically estimate to which extent different pleiotropic regimes impede the efficacy of selection in Drosophila melanogaster. We use whole-genome polymorphism data from a single African population and divergence data from D. simulans to estimate the fraction of adaptive fixations (α), the rate of adaptation (ωA), and the direction of selection (DoS). After controlling for confounding covariates, we find that the different pleiotropic regimes have a relatively small, but significant, effect on selection efficacy. Specifically, our results suggest that pleiotropic sexual antagonism may restrict the efficacy of selection, but that this conflict can be resolved by limiting the expression of genes to the sex where they are beneficial. Intermediate levels of pleiotropy across tissues and life stages can also lead to maladaptation in D. melanogaster, due to inefficient purifying selection combined with low frequency of mutations that confer a selective advantage. Thus, our study highlights the need to consider the efficacy of selection in the context of antagonistic pleiotropy, and of genetic conflict in general. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: Gemma full_name: Puixeu Sala, Gemma id: 33AB266C-F248-11E8-B48F-1D18A9856A87 last_name: Puixeu Sala orcid: 0000-0001-8330-1754 - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: Fraisse C, Puixeu Sala G, Vicoso B. Pleiotropy modulates the efficacy of selection in drosophila melanogaster. Molecular biology and evolution. 2019;36(3):500-515. doi:10.1093/molbev/msy246 apa: Fraisse, C., Puixeu Sala, G., & Vicoso, B. (2019). Pleiotropy modulates the efficacy of selection in drosophila melanogaster. Molecular Biology and Evolution. Oxford University Press. https://doi.org/10.1093/molbev/msy246 chicago: Fraisse, Christelle, Gemma Puixeu Sala, and Beatriz Vicoso. “Pleiotropy Modulates the Efficacy of Selection in Drosophila Melanogaster.” Molecular Biology and Evolution. Oxford University Press, 2019. https://doi.org/10.1093/molbev/msy246. ieee: C. Fraisse, G. Puixeu Sala, and B. Vicoso, “Pleiotropy modulates the efficacy of selection in drosophila melanogaster,” Molecular biology and evolution, vol. 36, no. 3. Oxford University Press, pp. 500–515, 2019. ista: Fraisse C, Puixeu Sala G, Vicoso B. 2019. Pleiotropy modulates the efficacy of selection in drosophila melanogaster. Molecular biology and evolution. 36(3), 500–515. mla: Fraisse, Christelle, et al. “Pleiotropy Modulates the Efficacy of Selection in Drosophila Melanogaster.” Molecular Biology and Evolution, vol. 36, no. 3, Oxford University Press, 2019, pp. 500–15, doi:10.1093/molbev/msy246. short: C. Fraisse, G. Puixeu Sala, B. Vicoso, Molecular Biology and Evolution 36 (2019) 500–515. date_created: 2019-03-10T22:59:19Z date_published: 2019-03-01T00:00:00Z date_updated: 2024-02-21T13:59:17Z day: '01' department: - _id: BeVi - _id: NiBa doi: 10.1093/molbev/msy246 external_id: isi: - '000462585100006' pmid: - '30590559' intvolume: ' 36' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30590559 month: '03' oa: 1 oa_version: Submitted Version page: 500-515 pmid: 1 project: - _id: 250ED89C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28842-B22 name: Sex chromosome evolution under male- and female- heterogamety publication: Molecular biology and evolution publication_identifier: eissn: - 1537-1719 issn: - 0737-4038 publication_status: published publisher: Oxford University Press quality_controlled: '1' related_material: record: - id: '5757' relation: popular_science status: public scopus_import: '1' status: public title: Pleiotropy modulates the efficacy of selection in drosophila melanogaster type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 36 year: '2019' ... --- _id: '6179' abstract: - lang: eng text: "In the first part of this thesis we consider large random matrices with arbitrary expectation and a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent in the bulk and edge regime. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion.\r\nIn the second part we consider Wigner-type matrices and show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are uni- versal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner- Dyson-Mehta universality conjecture for the last remaining universality type. Our analysis holds not only for exact cusps, but approximate cusps as well, where an ex- tended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp, and extend the fast relaxation to equilibrium of the Dyson Brow- nian motion to the cusp regime.\r\nIn the third and final part we explore the entrywise linear statistics of Wigner ma- trices and identify the fluctuations for a large class of test functions with little regularity. This enables us to study the rectangular Young diagram obtained from the interlacing eigenvalues of the random matrix and its minor, and we find that, despite having the same limit, the fluctuations differ from those of the algebraic Young tableaux equipped with the Plancharel measure." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dominik J full_name: Schröder, Dominik J id: 408ED176-F248-11E8-B48F-1D18A9856A87 last_name: Schröder orcid: 0000-0002-2904-1856 citation: ama: 'Schröder DJ. From Dyson to Pearcey: Universal statistics in random matrix theory. 2019. doi:10.15479/AT:ISTA:th6179' apa: 'Schröder, D. J. (2019). From Dyson to Pearcey: Universal statistics in random matrix theory. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th6179' chicago: 'Schröder, Dominik J. “From Dyson to Pearcey: Universal Statistics in Random Matrix Theory.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:th6179.' ieee: 'D. J. Schröder, “From Dyson to Pearcey: Universal statistics in random matrix theory,” Institute of Science and Technology Austria, 2019.' ista: 'Schröder DJ. 2019. From Dyson to Pearcey: Universal statistics in random matrix theory. Institute of Science and Technology Austria.' mla: 'Schröder, Dominik J. From Dyson to Pearcey: Universal Statistics in Random Matrix Theory. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:th6179.' short: 'D.J. Schröder, From Dyson to Pearcey: Universal Statistics in Random Matrix Theory, Institute of Science and Technology Austria, 2019.' date_created: 2019-03-28T08:58:59Z date_published: 2019-03-18T00:00:00Z date_updated: 2024-02-22T14:34:33Z day: '18' ddc: - '515' - '519' degree_awarded: PhD department: - _id: LaEr doi: 10.15479/AT:ISTA:th6179 ec_funded: 1 file: - access_level: closed checksum: 6926f66f28079a81c4937e3764be00fc content_type: application/x-gzip creator: dernst date_created: 2019-03-28T08:53:52Z date_updated: 2020-07-14T12:47:21Z file_id: '6180' file_name: 2019_Schroeder_Thesis.tar.gz file_size: 7104482 relation: source_file - access_level: open_access checksum: 7d0ebb8d1207e89768cdd497a5bf80fb content_type: application/pdf creator: dernst date_created: 2019-03-28T08:53:52Z date_updated: 2020-07-14T12:47:21Z file_id: '6181' file_name: 2019_Schroeder_Thesis.pdf file_size: 4228794 relation: main_file file_date_updated: 2020-07-14T12:47:21Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '375' project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1144' relation: part_of_dissertation status: public - id: '6186' relation: part_of_dissertation status: public - id: '6185' relation: part_of_dissertation status: public - id: '6182' relation: part_of_dissertation status: public - id: '1012' relation: part_of_dissertation status: public - id: '6184' relation: part_of_dissertation status: public status: public supervisor: - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 title: 'From Dyson to Pearcey: Universal statistics in random matrix theory' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6482' abstract: - lang: eng text: 'Computer vision systems for automatic image categorization have become accurate and reliable enough that they can run continuously for days or even years as components of real-world commercial applications. A major open problem in this context, however, is quality control. Good classification performance can only be expected if systems run under the specific conditions, in particular data distributions, that they were trained for. Surprisingly, none of the currently used deep network architectures have a built-in functionality that could detect if a network operates on data from a distribution it was not trained for, such that potentially a warning to the human users could be triggered. In this work, we describe KS(conf), a procedure for detecting such outside of specifications (out-of-specs) operation, based on statistical testing of the network outputs. We show by extensive experiments using the ImageNet, AwA2 and DAVIS datasets on a variety of ConvNets architectures that KS(conf) reliably detects out-of-specs situations. It furthermore has a number of properties that make it a promising candidate for practical deployment: it is easy to implement, adds almost no overhead to the system, works with all networks, including pretrained ones, and requires no a priori knowledge of how the data distribution could change. ' alternative_title: - LNCS article_processing_charge: No author: - first_name: Rémy full_name: Sun, Rémy last_name: Sun - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Sun R, Lampert C. KS(conf): A light-weight test if a ConvNet operates outside of Its specifications. In: Vol 11269. Springer Nature; 2019:244-259. doi:10.1007/978-3-030-12939-2_18' apa: 'Sun, R., & Lampert, C. (2019). KS(conf): A light-weight test if a ConvNet operates outside of Its specifications (Vol. 11269, pp. 244–259). Presented at the GCPR: Conference on Pattern Recognition, Stuttgart, Germany: Springer Nature. https://doi.org/10.1007/978-3-030-12939-2_18' chicago: 'Sun, Rémy, and Christoph Lampert. “KS(Conf): A Light-Weight Test If a ConvNet Operates Outside of Its Specifications,” 11269:244–59. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-12939-2_18.' ieee: 'R. Sun and C. Lampert, “KS(conf): A light-weight test if a ConvNet operates outside of Its specifications,” presented at the GCPR: Conference on Pattern Recognition, Stuttgart, Germany, 2019, vol. 11269, pp. 244–259.' ista: 'Sun R, Lampert C. 2019. KS(conf): A light-weight test if a ConvNet operates outside of Its specifications. GCPR: Conference on Pattern Recognition, LNCS, vol. 11269, 244–259.' mla: 'Sun, Rémy, and Christoph Lampert. KS(Conf): A Light-Weight Test If a ConvNet Operates Outside of Its Specifications. Vol. 11269, Springer Nature, 2019, pp. 244–59, doi:10.1007/978-3-030-12939-2_18.' short: R. Sun, C. Lampert, in:, Springer Nature, 2019, pp. 244–259. conference: end_date: 2018-10-12 location: Stuttgart, Germany name: 'GCPR: Conference on Pattern Recognition' start_date: 2018-10-09 date_created: 2019-05-24T09:48:36Z date_published: 2019-02-14T00:00:00Z date_updated: 2024-02-22T14:57:29Z day: '14' department: - _id: ChLa doi: 10.1007/978-3-030-12939-2_18 ec_funded: 1 external_id: arxiv: - '1804.04171' intvolume: ' 11269' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.04171 month: '02' oa: 1 oa_version: Preprint page: 244-259 project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: eissn: - 1611-3349 isbn: - '9783030129385' - '9783030129392' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '6944' relation: later_version status: public scopus_import: '1' status: public title: 'KS(conf): A light-weight test if a ConvNet operates outside of Its specifications' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11269 year: '2019' ... --- _id: '6642' abstract: - lang: eng text: We present a thermodynamically based approach to the design of models for viscoelastic fluids with stress diffusion effect. In particular, we show how to add a stress diffusion term to some standard viscoelastic rate-type models (Giesekus, FENE-P, Johnson–Segalman, Phan-Thien–Tanner and Bautista–Manero–Puig) so that the resulting models with the added stress diffusion term are thermodynamically consistent in the sense that they obey the first and the second law of thermodynamics. We point out the potential applications of the provided thermodynamical background in the study of flows of fluids described by the proposed models. article_number: '020002' article_processing_charge: No author: - first_name: Mark full_name: Dostalík, Mark last_name: Dostalík - first_name: Vít full_name: Pruša, Vít last_name: Pruša - first_name: Tomas full_name: Skrivan, Tomas id: 486A5A46-F248-11E8-B48F-1D18A9856A87 last_name: Skrivan citation: ama: 'Dostalík M, Pruša V, Skrivan T. On diffusive variants of some classical viscoelastic rate-type models. In: AIP Conference Proceedings. Vol 2107. AIP Publishing; 2019. doi:10.1063/1.5109493' apa: 'Dostalík, M., Pruša, V., & Skrivan, T. (2019). On diffusive variants of some classical viscoelastic rate-type models. In AIP Conference Proceedings (Vol. 2107). Zlin, Czech Republic: AIP Publishing. https://doi.org/10.1063/1.5109493' chicago: Dostalík, Mark, Vít Pruša, and Tomas Skrivan. “On Diffusive Variants of Some Classical Viscoelastic Rate-Type Models.” In AIP Conference Proceedings, Vol. 2107. AIP Publishing, 2019. https://doi.org/10.1063/1.5109493. ieee: M. Dostalík, V. Pruša, and T. Skrivan, “On diffusive variants of some classical viscoelastic rate-type models,” in AIP Conference Proceedings, Zlin, Czech Republic, 2019, vol. 2107. ista: Dostalík M, Pruša V, Skrivan T. 2019. On diffusive variants of some classical viscoelastic rate-type models. AIP Conference Proceedings. 8th International Conference on Novel Trends in Rheology vol. 2107, 020002. mla: Dostalík, Mark, et al. “On Diffusive Variants of Some Classical Viscoelastic Rate-Type Models.” AIP Conference Proceedings, vol. 2107, 020002, AIP Publishing, 2019, doi:10.1063/1.5109493. short: M. Dostalík, V. Pruša, T. Skrivan, in:, AIP Conference Proceedings, AIP Publishing, 2019. conference: end_date: 2019-07-31 location: Zlin, Czech Republic name: 8th International Conference on Novel Trends in Rheology start_date: 2019-07-30 date_created: 2019-07-15T10:07:09Z date_published: 2019-05-21T00:00:00Z date_updated: 2024-02-28T13:01:28Z day: '21' department: - _id: ChWo doi: 10.1063/1.5109493 external_id: arxiv: - '1902.07983' isi: - '000479303100002' intvolume: ' 2107' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.07983 month: '05' oa: 1 oa_version: Preprint publication: AIP Conference Proceedings publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: On diffusive variants of some classical viscoelastic rate-type models type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2107 year: '2019' ... --- _id: '7226' article_number: '123504' article_processing_charge: No article_type: letter_note author: - first_name: Vojkan full_name: Jaksic, Vojkan last_name: Jaksic - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: 'Jaksic V, Seiringer R. Introduction to the Special Collection: International Congress on Mathematical Physics (ICMP) 2018. Journal of Mathematical Physics. 2019;60(12). doi:10.1063/1.5138135' apa: 'Jaksic, V., & Seiringer, R. (2019). Introduction to the Special Collection: International Congress on Mathematical Physics (ICMP) 2018. Journal of Mathematical Physics. AIP Publishing. https://doi.org/10.1063/1.5138135' chicago: 'Jaksic, Vojkan, and Robert Seiringer. “Introduction to the Special Collection: International Congress on Mathematical Physics (ICMP) 2018.” Journal of Mathematical Physics. AIP Publishing, 2019. https://doi.org/10.1063/1.5138135.' ieee: 'V. Jaksic and R. Seiringer, “Introduction to the Special Collection: International Congress on Mathematical Physics (ICMP) 2018,” Journal of Mathematical Physics, vol. 60, no. 12. AIP Publishing, 2019.' ista: 'Jaksic V, Seiringer R. 2019. Introduction to the Special Collection: International Congress on Mathematical Physics (ICMP) 2018. Journal of Mathematical Physics. 60(12), 123504.' mla: 'Jaksic, Vojkan, and Robert Seiringer. “Introduction to the Special Collection: International Congress on Mathematical Physics (ICMP) 2018.” Journal of Mathematical Physics, vol. 60, no. 12, 123504, AIP Publishing, 2019, doi:10.1063/1.5138135.' short: V. Jaksic, R. Seiringer, Journal of Mathematical Physics 60 (2019). date_created: 2020-01-05T23:00:46Z date_published: 2019-12-01T00:00:00Z date_updated: 2024-02-28T13:01:45Z day: '01' ddc: - '500' department: - _id: RoSe doi: 10.1063/1.5138135 external_id: isi: - '000505529800002' file: - access_level: open_access checksum: bbd12ad1999a9ad7ba4d3c6f2e579c22 content_type: application/pdf creator: dernst date_created: 2020-01-07T14:59:13Z date_updated: 2020-07-14T12:47:54Z file_id: '7244' file_name: 2019_JournalMathPhysics_Jaksic.pdf file_size: 1025015 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 60' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version publication: Journal of Mathematical Physics publication_identifier: issn: - '00222488' publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: 'Introduction to the Special Collection: International Congress on Mathematical Physics (ICMP) 2018' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 60 year: '2019' ... --- _id: '7190' abstract: - lang: eng text: We investigate the ground-state energy of a one-dimensional Fermi gas with two bosonic impurities. We consider spinless fermions with no fermion-fermion interactions. The fermion-impurity and impurity-impurity interactions are modeled with Dirac delta functions. First, we study the case where impurity and fermion have equal masses, and the impurity-impurity two-body interaction is identical to the fermion-impurity interaction, such that the system is solvable with the Bethe ansatz. For attractive interactions, we find that the energy of the impurity-impurity subsystem is below the energy of the bound state that exists without the Fermi gas. We interpret this as a manifestation of attractive boson-boson interactions induced by the fermionic medium, and refer to the impurity-impurity subsystem as an in-medium bound state. For repulsive interactions, we find no in-medium bound states. Second, we construct an effective model to describe these interactions, and compare its predictions to the exact solution. We use this effective model to study nonintegrable systems with unequal masses and/or potentials. We discuss parameter regimes for which impurity-impurity attraction induced by the Fermi gas can lead to the formation of in-medium bound states made of bosons that repel each other in the absence of the Fermi gas. article_number: '033177' article_processing_charge: No article_type: original author: - first_name: D. full_name: Huber, D. last_name: Huber - first_name: H.-W. full_name: Hammer, H.-W. last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Huber D, Hammer H-W, Volosniev A. In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Physical Review Research. 2019;1(3). doi:10.1103/physrevresearch.1.033177 apa: Huber, D., Hammer, H.-W., & Volosniev, A. (2019). In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.1.033177 chicago: Huber, D., H.-W. Hammer, and Artem Volosniev. “In-Medium Bound States of Two Bosonic Impurities in a One-Dimensional Fermi Gas.” Physical Review Research. American Physical Society, 2019. https://doi.org/10.1103/physrevresearch.1.033177. ieee: D. Huber, H.-W. Hammer, and A. Volosniev, “In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas,” Physical Review Research, vol. 1, no. 3. American Physical Society, 2019. ista: Huber D, Hammer H-W, Volosniev A. 2019. In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Physical Review Research. 1(3), 033177. mla: Huber, D., et al. “In-Medium Bound States of Two Bosonic Impurities in a One-Dimensional Fermi Gas.” Physical Review Research, vol. 1, no. 3, 033177, American Physical Society, 2019, doi:10.1103/physrevresearch.1.033177. short: D. Huber, H.-W. Hammer, A. Volosniev, Physical Review Research 1 (2019). date_created: 2019-12-17T13:03:41Z date_published: 2019-12-16T00:00:00Z date_updated: 2024-02-28T13:11:40Z day: '16' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.1.033177 ec_funded: 1 external_id: arxiv: - '1908.02483' file: - access_level: open_access checksum: 382eb67e62a77052a23887332d363f96 content_type: application/pdf creator: dernst date_created: 2019-12-18T07:13:14Z date_updated: 2020-07-14T12:47:52Z file_id: '7193' file_name: 2019_PhysRevResearch_Huber.pdf file_size: 1370022 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' intvolume: ' 1' issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '12' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2019' ... --- _id: '6575' abstract: - lang: eng text: Motivated by recent experimental observations of coherent many-body revivals in a constrained Rydbergatom chain, we construct a weak quasilocal deformation of the Rydberg-blockaded Hamiltonian, whichmakes the revivals virtually perfect. Our analysis suggests the existence of an underlying nonintegrableHamiltonian which supports an emergent SU(2)-spin dynamics within a small subspace of the many-bodyHilbert space. We show that such perfect dynamics necessitates the existence of atypical, nonergodicenergy eigenstates—quantum many-body scars. Furthermore, using these insights, we construct a toymodel that hosts exact quantum many-body scars, providing an intuitive explanation of their origin. Ourresults offer specific routes to enhancing coherent many-body revivals and provide a step towardestablishing the stability of quantum many-body scars in the thermodynamic limit. article_number: '220603' article_processing_charge: No article_type: original author: - first_name: Soonwon full_name: Choi, Soonwon last_name: Choi - first_name: Christopher J. full_name: Turner, Christopher J. last_name: Turner - first_name: Hannes full_name: Pichler, Hannes last_name: Pichler - first_name: Wen Wei full_name: Ho, Wen Wei last_name: Ho - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Zlatko full_name: Papić, Zlatko last_name: Papić - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Mikhail D. full_name: Lukin, Mikhail D. last_name: Lukin - first_name: Dmitry A. full_name: Abanin, Dmitry A. last_name: Abanin citation: ama: Choi S, Turner CJ, Pichler H, et al. Emergent SU(2) dynamics and perfect quantum many-body scars. Physical Review Letters. 2019;122(22). doi:10.1103/PhysRevLett.122.220603 apa: Choi, S., Turner, C. J., Pichler, H., Ho, W. W., Michailidis, A., Papić, Z., … Abanin, D. A. (2019). Emergent SU(2) dynamics and perfect quantum many-body scars. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.122.220603 chicago: Choi, Soonwon, Christopher J. Turner, Hannes Pichler, Wen Wei Ho, Alexios Michailidis, Zlatko Papić, Maksym Serbyn, Mikhail D. Lukin, and Dmitry A. Abanin. “Emergent SU(2) Dynamics and Perfect Quantum Many-Body Scars.” Physical Review Letters. American Physical Society, 2019. https://doi.org/10.1103/PhysRevLett.122.220603. ieee: S. Choi et al., “Emergent SU(2) dynamics and perfect quantum many-body scars,” Physical Review Letters, vol. 122, no. 22. American Physical Society, 2019. ista: Choi S, Turner CJ, Pichler H, Ho WW, Michailidis A, Papić Z, Serbyn M, Lukin MD, Abanin DA. 2019. Emergent SU(2) dynamics and perfect quantum many-body scars. Physical Review Letters. 122(22), 220603. mla: Choi, Soonwon, et al. “Emergent SU(2) Dynamics and Perfect Quantum Many-Body Scars.” Physical Review Letters, vol. 122, no. 22, 220603, American Physical Society, 2019, doi:10.1103/PhysRevLett.122.220603. short: S. Choi, C.J. Turner, H. Pichler, W.W. Ho, A. Michailidis, Z. Papić, M. Serbyn, M.D. Lukin, D.A. Abanin, Physical Review Letters 122 (2019). date_created: 2019-06-23T21:59:13Z date_published: 2019-06-07T00:00:00Z date_updated: 2024-02-28T13:12:22Z day: '07' department: - _id: MaSe doi: 10.1103/PhysRevLett.122.220603 external_id: arxiv: - '1812.05561' isi: - '000470885800005' intvolume: ' 122' isi: 1 issue: '22' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1812.05561 month: '06' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - '10797114' issn: - '00319007' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Emergent SU(2) dynamics and perfect quantum many-body scars type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 122 year: '2019' ... --- _id: '6092' abstract: - lang: eng text: In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital angular momentum, and lattice degrees of freedom, understanding which is key for molecular magnets, nano-magneto-mechanics, spintronics, and ultrafast magnetism. Until now, the timescales of electron-to-lattice angular momentum transfer remain unclear, since modeling this process on a microscopic level requires the addition of an infinite amount of quantum angular momenta. We show that this problem can be solved by reformulating it in terms of the recently discovered angulon quasiparticles, which results in a rotationally invariant quantum many-body theory. In particular, we demonstrate that nonperturbative effects take place even if the electron-phonon coupling is weak and give rise to angular momentum transfer on femtosecond timescales. article_number: '064428' article_processing_charge: No author: - first_name: Johann H full_name: Mentink, Johann H last_name: Mentink - first_name: Mikhail full_name: Katsnelson, Mikhail last_name: Katsnelson - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Mentink JH, Katsnelson M, Lemeshko M. Quantum many-body dynamics of the Einstein-de Haas effect. Physical Review B. 2019;99(6). doi:10.1103/PhysRevB.99.064428 apa: Mentink, J. H., Katsnelson, M., & Lemeshko, M. (2019). Quantum many-body dynamics of the Einstein-de Haas effect. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.99.064428 chicago: Mentink, Johann H, Mikhail Katsnelson, and Mikhail Lemeshko. “Quantum Many-Body Dynamics of the Einstein-de Haas Effect.” Physical Review B. American Physical Society, 2019. https://doi.org/10.1103/PhysRevB.99.064428. ieee: J. H. Mentink, M. Katsnelson, and M. Lemeshko, “Quantum many-body dynamics of the Einstein-de Haas effect,” Physical Review B, vol. 99, no. 6. American Physical Society, 2019. ista: Mentink JH, Katsnelson M, Lemeshko M. 2019. Quantum many-body dynamics of the Einstein-de Haas effect. Physical Review B. 99(6), 064428. mla: Mentink, Johann H., et al. “Quantum Many-Body Dynamics of the Einstein-de Haas Effect.” Physical Review B, vol. 99, no. 6, 064428, American Physical Society, 2019, doi:10.1103/PhysRevB.99.064428. short: J.H. Mentink, M. Katsnelson, M. Lemeshko, Physical Review B 99 (2019). date_created: 2019-03-10T22:59:20Z date_published: 2019-02-01T00:00:00Z date_updated: 2024-02-28T13:11:54Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevB.99.064428 external_id: arxiv: - '1802.01638' isi: - '000459223400004' intvolume: ' 99' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1802.01638 month: '02' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review B publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum many-body dynamics of the Einstein-de Haas effect type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2019' ... --- _id: '6090' abstract: - lang: eng text: Cells need to reliably sense external ligand concentrations to achieve various biological functions such as chemotaxis or signaling. The molecular recognition of ligands by surface receptors is degenerate in many systems, leading to crosstalk between ligand-receptor pairs. Crosstalk is often thought of as a deviation from optimal specific recognition, as the binding of noncognate ligands can interfere with the detection of the receptor's cognate ligand, possibly leading to a false triggering of a downstream signaling pathway. Here we quantify the optimal precision of sensing the concentrations of multiple ligands by a collection of promiscuous receptors. We demonstrate that crosstalk can improve precision in concentration sensing and discrimination tasks. To achieve superior precision, the additional information about ligand concentrations contained in short binding events of the noncognate ligand should be exploited. We present a proofreading scheme to realize an approximate estimation of multiple ligand concentrations that reaches a precision close to the derived optimal bounds. Our results help rationalize the observed ubiquity of receptor crosstalk in molecular sensing. article_number: '022423' article_processing_charge: No author: - first_name: Martín full_name: Carballo-Pacheco, Martín last_name: Carballo-Pacheco - first_name: Jonathan full_name: Desponds, Jonathan last_name: Desponds - first_name: Tatyana full_name: Gavrilchenko, Tatyana last_name: Gavrilchenko - first_name: Andreas full_name: Mayer, Andreas last_name: Mayer - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak - first_name: Gautam full_name: Reddy, Gautam last_name: Reddy - first_name: Ilya full_name: Nemenman, Ilya last_name: Nemenman - first_name: Thierry full_name: Mora, Thierry last_name: Mora citation: ama: Carballo-Pacheco M, Desponds J, Gavrilchenko T, et al. Receptor crosstalk improves concentration sensing of multiple ligands. Physical Review E. 2019;99(2). doi:10.1103/PhysRevE.99.022423 apa: Carballo-Pacheco, M., Desponds, J., Gavrilchenko, T., Mayer, A., Prizak, R., Reddy, G., … Mora, T. (2019). Receptor crosstalk improves concentration sensing of multiple ligands. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.99.022423 chicago: Carballo-Pacheco, Martín, Jonathan Desponds, Tatyana Gavrilchenko, Andreas Mayer, Roshan Prizak, Gautam Reddy, Ilya Nemenman, and Thierry Mora. “Receptor Crosstalk Improves Concentration Sensing of Multiple Ligands.” Physical Review E. American Physical Society, 2019. https://doi.org/10.1103/PhysRevE.99.022423. ieee: M. Carballo-Pacheco et al., “Receptor crosstalk improves concentration sensing of multiple ligands,” Physical Review E, vol. 99, no. 2. American Physical Society, 2019. ista: Carballo-Pacheco M, Desponds J, Gavrilchenko T, Mayer A, Prizak R, Reddy G, Nemenman I, Mora T. 2019. Receptor crosstalk improves concentration sensing of multiple ligands. Physical Review E. 99(2), 022423. mla: Carballo-Pacheco, Martín, et al. “Receptor Crosstalk Improves Concentration Sensing of Multiple Ligands.” Physical Review E, vol. 99, no. 2, 022423, American Physical Society, 2019, doi:10.1103/PhysRevE.99.022423. short: M. Carballo-Pacheco, J. Desponds, T. Gavrilchenko, A. Mayer, R. Prizak, G. Reddy, I. Nemenman, T. Mora, Physical Review E 99 (2019). date_created: 2019-03-10T22:59:20Z date_published: 2019-02-26T00:00:00Z date_updated: 2024-02-28T13:12:06Z day: '26' department: - _id: NiBa - _id: GaTk doi: 10.1103/PhysRevE.99.022423 external_id: isi: - '000459916500007' intvolume: ' 99' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/448118v1.abstract month: '02' oa: 1 oa_version: Preprint publication: Physical Review E publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Receptor crosstalk improves concentration sensing of multiple ligands type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2019' ... --- _id: '6786' abstract: - lang: eng text: Dipolar coupling plays a fundamental role in the interaction between electrically or magnetically polarized species such as magnetic atoms and dipolar molecules in a gas or dipolar excitons in the solid state. Unlike Coulomb or contactlike interactions found in many atomic, molecular, and condensed-matter systems, this interaction is long-ranged and highly anisotropic, as it changes from repulsive to attractive depending on the relative positions and orientation of the dipoles. Because of this unique property, many exotic, symmetry-breaking collective states have been recently predicted for cold dipolar gases, but only a few have been experimentally detected and only in dilute atomic dipolar Bose-Einstein condensates. Here, we report on the first observation of attractive dipolar coupling between excitonic dipoles using a new design of stacked semiconductor bilayers. We show that the presence of a dipolar exciton fluid in one bilayer modifies the spatial distribution and increases the binding energy of excitonic dipoles in a vertically remote layer. The binding energy changes are explained using a many-body polaron model describing the deformation of the exciton cloud due to its interaction with a remote dipolar exciton. The surprising nonmonotonic dependence on the cloud density indicates the important role of dipolar correlations, which is unique to dense, strongly interacting dipolar solid-state systems. Our concept provides a route for the realization of dipolar lattices with strong anisotropic interactions in semiconductor systems, which open the way for the observation of theoretically predicted new and exotic collective phases, as well as for engineering and sensing their collective excitations. article_number: '021026' article_processing_charge: No article_type: original author: - first_name: Colin full_name: Hubert, Colin last_name: Hubert - first_name: Yifat full_name: Baruchi, Yifat last_name: Baruchi - first_name: Yotam full_name: Mazuz-Harpaz, Yotam last_name: Mazuz-Harpaz - first_name: Kobi full_name: Cohen, Kobi last_name: Cohen - first_name: Klaus full_name: Biermann, Klaus last_name: Biermann - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Ken full_name: West, Ken last_name: West - first_name: Loren full_name: Pfeiffer, Loren last_name: Pfeiffer - first_name: Ronen full_name: Rapaport, Ronen last_name: Rapaport - first_name: Paulo full_name: Santos, Paulo last_name: Santos citation: ama: Hubert C, Baruchi Y, Mazuz-Harpaz Y, et al. Attractive dipolar coupling between stacked exciton fluids. Physical Review X. 2019;9(2). doi:10.1103/PhysRevX.9.021026 apa: Hubert, C., Baruchi, Y., Mazuz-Harpaz, Y., Cohen, K., Biermann, K., Lemeshko, M., … Santos, P. (2019). Attractive dipolar coupling between stacked exciton fluids. Physical Review X. American Physical Society. https://doi.org/10.1103/PhysRevX.9.021026 chicago: Hubert, Colin, Yifat Baruchi, Yotam Mazuz-Harpaz, Kobi Cohen, Klaus Biermann, Mikhail Lemeshko, Ken West, Loren Pfeiffer, Ronen Rapaport, and Paulo Santos. “Attractive Dipolar Coupling between Stacked Exciton Fluids.” Physical Review X. American Physical Society, 2019. https://doi.org/10.1103/PhysRevX.9.021026. ieee: C. Hubert et al., “Attractive dipolar coupling between stacked exciton fluids,” Physical Review X, vol. 9, no. 2. American Physical Society, 2019. ista: Hubert C, Baruchi Y, Mazuz-Harpaz Y, Cohen K, Biermann K, Lemeshko M, West K, Pfeiffer L, Rapaport R, Santos P. 2019. Attractive dipolar coupling between stacked exciton fluids. Physical Review X. 9(2), 021026. mla: Hubert, Colin, et al. “Attractive Dipolar Coupling between Stacked Exciton Fluids.” Physical Review X, vol. 9, no. 2, 021026, American Physical Society, 2019, doi:10.1103/PhysRevX.9.021026. short: C. Hubert, Y. Baruchi, Y. Mazuz-Harpaz, K. Cohen, K. Biermann, M. Lemeshko, K. West, L. Pfeiffer, R. Rapaport, P. Santos, Physical Review X 9 (2019). date_created: 2019-08-11T21:59:20Z date_published: 2019-05-08T00:00:00Z date_updated: 2024-02-28T13:12:48Z day: '08' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevX.9.021026 external_id: arxiv: - '1807.11238' isi: - '000467402900001' file: - access_level: open_access checksum: 065ff82ee4a1d2c3773ce4b76ff4213c content_type: application/pdf creator: dernst date_created: 2019-08-12T12:14:18Z date_updated: 2020-07-14T12:47:40Z file_id: '6802' file_name: 2019_PhysReviewX_Hubert.pdf file_size: 1193550 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review X publication_identifier: eissn: - 2160-3308 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Attractive dipolar coupling between stacked exciton fluids tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2019' ... --- _id: '7013' abstract: - lang: eng text: Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic quantum matter. Motivated by the recent experimental progress in realizing disordered and interacting chains of superconducting transmon devices, we study the bosonic many-body localization phase transition using the methods of exact diagonalization as well as matrix product state dynamics. We estimate the location of transition separating the ergodic and the many-body localized phases as a function of the disorder strength and the many-body on-site interaction strength. The main difference between the bosonic model realized by superconducting circuits and similar fermionic model is that the effect of the on-site interaction is stronger due to the possibility of multiple excitations occupying the same site. The phase transition is found to be robust upon including longer-range hopping and interaction terms present in the experiments. Furthermore, we calculate experimentally relevant local observables and show that their temporal fluctuations can be used to distinguish between the dynamics of Anderson insulator, many-body localization, and delocalized phases. While we consider unitary dynamics, neglecting the effects of dissipation, decoherence, and measurement back action, the timescales on which the dynamics is unitary are sufficient for observation of characteristic dynamics in the many-body localized phase. Moreover, the experimentally available disorder strength and interactions allow for tuning the many-body localization phase transition, thus making the arrays of superconducting circuit devices a promising platform for exploring localization physics and phase transition. article_number: '134504' article_processing_charge: No article_type: original author: - first_name: Tuure full_name: Orell, Tuure last_name: Orell - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Matti full_name: Silveri, Matti last_name: Silveri citation: ama: Orell T, Michailidis A, Serbyn M, Silveri M. Probing the many-body localization phase transition with superconducting circuits. Physical Review B. 2019;100(13). doi:10.1103/physrevb.100.134504 apa: Orell, T., Michailidis, A., Serbyn, M., & Silveri, M. (2019). Probing the many-body localization phase transition with superconducting circuits. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.100.134504 chicago: Orell, Tuure, Alexios Michailidis, Maksym Serbyn, and Matti Silveri. “Probing the Many-Body Localization Phase Transition with Superconducting Circuits.” Physical Review B. American Physical Society, 2019. https://doi.org/10.1103/physrevb.100.134504. ieee: T. Orell, A. Michailidis, M. Serbyn, and M. Silveri, “Probing the many-body localization phase transition with superconducting circuits,” Physical Review B, vol. 100, no. 13. American Physical Society, 2019. ista: Orell T, Michailidis A, Serbyn M, Silveri M. 2019. Probing the many-body localization phase transition with superconducting circuits. Physical Review B. 100(13), 134504. mla: Orell, Tuure, et al. “Probing the Many-Body Localization Phase Transition with Superconducting Circuits.” Physical Review B, vol. 100, no. 13, 134504, American Physical Society, 2019, doi:10.1103/physrevb.100.134504. short: T. Orell, A. Michailidis, M. Serbyn, M. Silveri, Physical Review B 100 (2019). date_created: 2019-11-13T08:25:48Z date_published: 2019-10-01T00:00:00Z date_updated: 2024-02-28T13:13:13Z day: '01' department: - _id: MaSe doi: 10.1103/physrevb.100.134504 external_id: arxiv: - '1907.04043' isi: - '000489036500004' intvolume: ' 100' isi: 1 issue: '13' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.04043 month: '10' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Probing the many-body localization phase transition with superconducting circuits type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 100 year: '2019' ... --- _id: '7200' abstract: - lang: eng text: Recent scanning tunneling microscopy experiments in NbN thin disordered superconducting films found an emergent inhomogeneity at the scale of tens of nanometers. This inhomogeneity is mirrored by an apparent dimensional crossover in the paraconductivity measured in transport above the superconducting critical temperature Tc. This behavior was interpreted in terms of an anomalous diffusion of fluctuating Cooper pairs that display a quasiconfinement (i.e., a slowing down of their diffusive dynamics) on length scales shorter than the inhomogeneity identified by tunneling experiments. Here, we assume this anomalous diffusive behavior of fluctuating Cooper pairs and calculate the effect of these fluctuations on the electron density of states above Tc. We find that the density of states is substantially suppressed up to temperatures well above Tc. This behavior, which is closely reminiscent of a pseudogap, only arises from the anomalous diffusion of fluctuating Cooper pairs in the absence of stable preformed pairs, setting the stage for an intermediate behavior between the two common paradigms in the superconducting-insulator transition, namely, the localization of Cooper pairs (the so-called bosonic scenario) and the breaking of Cooper pairs into unpaired electrons due to strong disorder (the so-called fermionic scenario). article_number: '174518' article_processing_charge: No article_type: original author: - first_name: Pietro full_name: Brighi, Pietro id: 4115AF5C-F248-11E8-B48F-1D18A9856A87 last_name: Brighi orcid: 0000-0002-7969-2729 - first_name: Marco full_name: Grilli, Marco last_name: Grilli - first_name: Brigitte full_name: Leridon, Brigitte last_name: Leridon - first_name: Sergio full_name: Caprara, Sergio last_name: Caprara citation: ama: Brighi P, Grilli M, Leridon B, Caprara S. Effect of anomalous diffusion of fluctuating Cooper pairs on the density of states of superconducting NbN thin films. Physical Review B. 2019;100(17). doi:10.1103/PhysRevB.100.174518 apa: Brighi, P., Grilli, M., Leridon, B., & Caprara, S. (2019). Effect of anomalous diffusion of fluctuating Cooper pairs on the density of states of superconducting NbN thin films. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.100.174518 chicago: Brighi, Pietro, Marco Grilli, Brigitte Leridon, and Sergio Caprara. “Effect of Anomalous Diffusion of Fluctuating Cooper Pairs on the Density of States of Superconducting NbN Thin Films.” Physical Review B. American Physical Society, 2019. https://doi.org/10.1103/PhysRevB.100.174518. ieee: P. Brighi, M. Grilli, B. Leridon, and S. Caprara, “Effect of anomalous diffusion of fluctuating Cooper pairs on the density of states of superconducting NbN thin films,” Physical Review B, vol. 100, no. 17. American Physical Society, 2019. ista: Brighi P, Grilli M, Leridon B, Caprara S. 2019. Effect of anomalous diffusion of fluctuating Cooper pairs on the density of states of superconducting NbN thin films. Physical Review B. 100(17), 174518. mla: Brighi, Pietro, et al. “Effect of Anomalous Diffusion of Fluctuating Cooper Pairs on the Density of States of Superconducting NbN Thin Films.” Physical Review B, vol. 100, no. 17, 174518, American Physical Society, 2019, doi:10.1103/PhysRevB.100.174518. short: P. Brighi, M. Grilli, B. Leridon, S. Caprara, Physical Review B 100 (2019). date_created: 2019-12-22T23:00:41Z date_published: 2019-11-25T00:00:00Z date_updated: 2024-02-28T13:14:08Z day: '25' department: - _id: MaSe doi: 10.1103/PhysRevB.100.174518 external_id: arxiv: - '1907.13579' isi: - '000498845700006' intvolume: ' 100' isi: 1 issue: '17' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.13579 month: '11' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Effect of anomalous diffusion of fluctuating Cooper pairs on the density of states of superconducting NbN thin films type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 100 year: '2019' ... --- _id: '6779' abstract: - lang: eng text: "Recent studies suggest that unstable recurrent solutions of the Navier-Stokes equation provide new insights\r\ninto dynamics of turbulent flows. In this study, we compute an extensive network of dynamical connections\r\nbetween such solutions in a weakly turbulent quasi-two-dimensional Kolmogorov flow that lies in the inversion symmetric subspace. In particular, we find numerous isolated heteroclinic connections between different\r\ntypes of solutions—equilibria, periodic, and quasiperiodic orbits—as well as continua of connections forming\r\nhigher-dimensional connecting manifolds. We also compute a homoclinic connection of a periodic orbit and\r\nprovide strong evidence that the associated homoclinic tangle forms the chaotic repeller that underpins transient\r\nturbulence in the symmetric subspace." article_number: '013112' article_processing_charge: No article_type: original author: - first_name: Balachandra full_name: Suri, Balachandra id: 47A5E706-F248-11E8-B48F-1D18A9856A87 last_name: Suri - first_name: Ravi Kumar full_name: Pallantla, Ravi Kumar last_name: Pallantla - first_name: Michael F. full_name: Schatz, Michael F. last_name: Schatz - first_name: Roman O. full_name: Grigoriev, Roman O. last_name: Grigoriev citation: ama: Suri B, Pallantla RK, Schatz MF, Grigoriev RO. Heteroclinic and homoclinic connections in a Kolmogorov-like flow. Physical Review E. 2019;100(1). doi:10.1103/physreve.100.013112 apa: Suri, B., Pallantla, R. K., Schatz, M. F., & Grigoriev, R. O. (2019). Heteroclinic and homoclinic connections in a Kolmogorov-like flow. Physical Review E. American Physical Society. https://doi.org/10.1103/physreve.100.013112 chicago: Suri, Balachandra, Ravi Kumar Pallantla, Michael F. Schatz, and Roman O. Grigoriev. “Heteroclinic and Homoclinic Connections in a Kolmogorov-like Flow.” Physical Review E. American Physical Society, 2019. https://doi.org/10.1103/physreve.100.013112. ieee: B. Suri, R. K. Pallantla, M. F. Schatz, and R. O. Grigoriev, “Heteroclinic and homoclinic connections in a Kolmogorov-like flow,” Physical Review E, vol. 100, no. 1. American Physical Society, 2019. ista: Suri B, Pallantla RK, Schatz MF, Grigoriev RO. 2019. Heteroclinic and homoclinic connections in a Kolmogorov-like flow. Physical Review E. 100(1), 013112. mla: Suri, Balachandra, et al. “Heteroclinic and Homoclinic Connections in a Kolmogorov-like Flow.” Physical Review E, vol. 100, no. 1, 013112, American Physical Society, 2019, doi:10.1103/physreve.100.013112. short: B. Suri, R.K. Pallantla, M.F. Schatz, R.O. Grigoriev, Physical Review E 100 (2019). date_created: 2019-08-09T09:40:41Z date_published: 2019-07-25T00:00:00Z date_updated: 2024-02-28T13:13:00Z day: '25' ddc: - '532' department: - _id: BjHo doi: 10.1103/physreve.100.013112 ec_funded: 1 external_id: arxiv: - '1907.05860' isi: - '000477911800012' intvolume: ' 100' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.05860 month: '07' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review E publication_identifier: eissn: - 2470-0053 issn: - 2470-0045 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Heteroclinic and homoclinic connections in a Kolmogorov-like flow type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 100 year: '2019' ... --- _id: '7015' abstract: - lang: eng text: We modify the "floating crystal" trial state for the classical homogeneous electron gas (also known as jellium), in order to suppress the boundary charge fluctuations that are known to lead to a macroscopic increase of the energy. The argument is to melt a thin layer of the crystal close to the boundary and consequently replace it by an incompressible fluid. With the aid of this trial state we show that three different definitions of the ground-state energy of jellium coincide. In the first point of view the electrons are placed in a neutralizing uniform background. In the second definition there is no background but the electrons are submitted to the constraint that their density is constant, as is appropriate in density functional theory. Finally, in the third system each electron interacts with a periodic image of itself; that is, periodic boundary conditions are imposed on the interaction potential. article_number: '035127' article_processing_charge: No article_type: original author: - first_name: Mathieu full_name: Lewin, Mathieu last_name: Lewin - first_name: Elliott H. full_name: Lieb, Elliott H. last_name: Lieb - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Lewin M, Lieb EH, Seiringer R. Floating Wigner crystal with no boundary charge fluctuations. Physical Review B. 2019;100(3). doi:10.1103/physrevb.100.035127 apa: Lewin, M., Lieb, E. H., & Seiringer, R. (2019). Floating Wigner crystal with no boundary charge fluctuations. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.100.035127 chicago: Lewin, Mathieu, Elliott H. Lieb, and Robert Seiringer. “Floating Wigner Crystal with No Boundary Charge Fluctuations.” Physical Review B. American Physical Society, 2019. https://doi.org/10.1103/physrevb.100.035127. ieee: M. Lewin, E. H. Lieb, and R. Seiringer, “Floating Wigner crystal with no boundary charge fluctuations,” Physical Review B, vol. 100, no. 3. American Physical Society, 2019. ista: Lewin M, Lieb EH, Seiringer R. 2019. Floating Wigner crystal with no boundary charge fluctuations. Physical Review B. 100(3), 035127. mla: Lewin, Mathieu, et al. “Floating Wigner Crystal with No Boundary Charge Fluctuations.” Physical Review B, vol. 100, no. 3, 035127, American Physical Society, 2019, doi:10.1103/physrevb.100.035127. short: M. Lewin, E.H. Lieb, R. Seiringer, Physical Review B 100 (2019). date_created: 2019-11-13T08:41:48Z date_published: 2019-07-25T00:00:00Z date_updated: 2024-02-28T13:13:23Z day: '25' department: - _id: RoSe doi: 10.1103/physrevb.100.035127 ec_funded: 1 external_id: arxiv: - '1905.09138' isi: - '000477888200001' intvolume: ' 100' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.09138 month: '07' oa: 1 oa_version: Preprint project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Floating Wigner crystal with no boundary charge fluctuations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 100 year: '2019' ... --- _id: '7145' abstract: - lang: eng text: End-to-end correlated bound states are investigated in superconductor-semiconductor hybrid nanowires at zero magnetic field. Peaks in subgap conductance are independently identified from each wire end, and a cross-correlation function is computed that counts end-to-end coincidences, averaging over thousands of subgap features. Strong correlations in a short, 300-nm device are reduced by a factor of 4 in a long, 900-nm device. In addition, subgap conductance distributions are investigated, and correlations between the left and right distributions are identified based on their mutual information. article_number: '205412' article_processing_charge: No article_type: original author: - first_name: G. L. R. full_name: Anselmetti, G. L. R. last_name: Anselmetti - first_name: E. A. full_name: Martinez, E. A. last_name: Martinez - first_name: G. C. full_name: Ménard, G. C. last_name: Ménard - first_name: D. full_name: Puglia, D. last_name: Puglia - first_name: F. K. full_name: Malinowski, F. K. last_name: Malinowski - first_name: J. S. full_name: Lee, J. S. last_name: Lee - first_name: S. full_name: Choi, S. last_name: Choi - first_name: M. full_name: Pendharkar, M. last_name: Pendharkar - first_name: C. J. full_name: Palmstrøm, C. J. last_name: Palmstrøm - first_name: C. M. full_name: Marcus, C. M. last_name: Marcus - first_name: L. full_name: Casparis, L. last_name: Casparis - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Anselmetti GLR, Martinez EA, Ménard GC, et al. End-to-end correlated subgap states in hybrid nanowires. Physical Review B. 2019;100(20). doi:10.1103/physrevb.100.205412 apa: Anselmetti, G. L. R., Martinez, E. A., Ménard, G. C., Puglia, D., Malinowski, F. K., Lee, J. S., … Higginbotham, A. P. (2019). End-to-end correlated subgap states in hybrid nanowires. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.100.205412 chicago: Anselmetti, G. L. R., E. A. Martinez, G. C. Ménard, D. Puglia, F. K. Malinowski, J. S. Lee, S. Choi, et al. “End-to-End Correlated Subgap States in Hybrid Nanowires.” Physical Review B. American Physical Society, 2019. https://doi.org/10.1103/physrevb.100.205412. ieee: G. L. R. Anselmetti et al., “End-to-end correlated subgap states in hybrid nanowires,” Physical Review B, vol. 100, no. 20. American Physical Society, 2019. ista: Anselmetti GLR, Martinez EA, Ménard GC, Puglia D, Malinowski FK, Lee JS, Choi S, Pendharkar M, Palmstrøm CJ, Marcus CM, Casparis L, Higginbotham AP. 2019. End-to-end correlated subgap states in hybrid nanowires. Physical Review B. 100(20), 205412. mla: Anselmetti, G. L. R., et al. “End-to-End Correlated Subgap States in Hybrid Nanowires.” Physical Review B, vol. 100, no. 20, 205412, American Physical Society, 2019, doi:10.1103/physrevb.100.205412. short: G.L.R. Anselmetti, E.A. Martinez, G.C. Ménard, D. Puglia, F.K. Malinowski, J.S. Lee, S. Choi, M. Pendharkar, C.J. Palmstrøm, C.M. Marcus, L. Casparis, A.P. Higginbotham, Physical Review B 100 (2019). date_created: 2019-12-04T16:02:25Z date_published: 2019-11-15T00:00:00Z date_updated: 2024-02-28T13:13:51Z day: '15' department: - _id: AnHi doi: 10.1103/physrevb.100.205412 external_id: arxiv: - '1908.05549' isi: - '000495967500006' intvolume: ' 100' isi: 1 issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.05549 month: '11' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: End-to-end correlated subgap states in hybrid nanowires type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 100 year: '2019' ... --- _id: '5906' abstract: - lang: eng text: We introduce a simple, exactly solvable strong-randomness renormalization group (RG) model for the many-body localization (MBL) transition in one dimension. Our approach relies on a family of RG flows parametrized by the asymmetry between thermal and localized phases. We identify the physical MBL transition in the limit of maximal asymmetry, reflecting the instability of MBL against rare thermal inclusions. We find a critical point that is localized with power-law distributed thermal inclusions. The typical size of critical inclusions remains finite at the transition, while the average size is logarithmically diverging. We propose a two-parameter scaling theory for the many-body localization transition that falls into the Kosterlitz-Thouless universality class, with the MBL phase corresponding to a stable line of fixed points with multifractal behavior. article_number: '040601' article_processing_charge: No article_type: original author: - first_name: Anna full_name: Goremykina, Anna last_name: Goremykina - first_name: Romain full_name: Vasseur, Romain last_name: Vasseur - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Goremykina A, Vasseur R, Serbyn M. Analytically solvable renormalization group for the many-body localization transition. Physical Review Letters. 2019;122(4). doi:10.1103/physrevlett.122.040601 apa: Goremykina, A., Vasseur, R., & Serbyn, M. (2019). Analytically solvable renormalization group for the many-body localization transition. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.122.040601 chicago: Goremykina, Anna, Romain Vasseur, and Maksym Serbyn. “Analytically Solvable Renormalization Group for the Many-Body Localization Transition.” Physical Review Letters. American Physical Society, 2019. https://doi.org/10.1103/physrevlett.122.040601. ieee: A. Goremykina, R. Vasseur, and M. Serbyn, “Analytically solvable renormalization group for the many-body localization transition,” Physical Review Letters, vol. 122, no. 4. American Physical Society, 2019. ista: Goremykina A, Vasseur R, Serbyn M. 2019. Analytically solvable renormalization group for the many-body localization transition. Physical Review Letters. 122(4), 040601. mla: Goremykina, Anna, et al. “Analytically Solvable Renormalization Group for the Many-Body Localization Transition.” Physical Review Letters, vol. 122, no. 4, 040601, American Physical Society, 2019, doi:10.1103/physrevlett.122.040601. short: A. Goremykina, R. Vasseur, M. Serbyn, Physical Review Letters 122 (2019). date_created: 2019-02-01T08:22:28Z date_published: 2019-02-01T00:00:00Z date_updated: 2024-02-28T13:13:38Z day: '01' department: - _id: MaSe doi: 10.1103/physrevlett.122.040601 external_id: arxiv: - '1807.04285' isi: - '000456783700001' intvolume: ' 122' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1807.04285 month: '02' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Analytically solvable renormalization group for the many-body localization transition type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 122 year: '2019' ... --- _id: '6632' abstract: - lang: eng text: We consider a two-component Bose gas in two dimensions at a low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, interspecies interactions induce a nondissipative drag between the two superfluid flows (Andreev-Bashkin effect). We show that this behavior leads to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend the renormalization of the superfluid densities at finite temperature using the renormalization-group approach and find that the vortices of one component have a large influence on the superfluid properties of the other, mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other, leading to a locking phenomenon for the critical temperatures of the two gases. article_number: '063627' article_processing_charge: No author: - first_name: Volker full_name: Karle, Volker last_name: Karle - first_name: Nicolò full_name: Defenu, Nicolò last_name: Defenu - first_name: Tilman full_name: Enss, Tilman last_name: Enss citation: ama: Karle V, Defenu N, Enss T. Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A. 2019;99(6). doi:10.1103/PhysRevA.99.063627 apa: Karle, V., Defenu, N., & Enss, T. (2019). Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.99.063627 chicago: Karle, Volker, Nicolò Defenu, and Tilman Enss. “Coupled Superfluidity of Binary Bose Mixtures in Two Dimensions.” Physical Review A. American Physical Society, 2019. https://doi.org/10.1103/PhysRevA.99.063627. ieee: V. Karle, N. Defenu, and T. Enss, “Coupled superfluidity of binary Bose mixtures in two dimensions,” Physical Review A, vol. 99, no. 6. American Physical Society, 2019. ista: Karle V, Defenu N, Enss T. 2019. Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A. 99(6), 063627. mla: Karle, Volker, et al. “Coupled Superfluidity of Binary Bose Mixtures in Two Dimensions.” Physical Review A, vol. 99, no. 6, 063627, American Physical Society, 2019, doi:10.1103/PhysRevA.99.063627. short: V. Karle, N. Defenu, T. Enss, Physical Review A 99 (2019). date_created: 2019-07-14T21:59:17Z date_published: 2019-06-28T00:00:00Z date_updated: 2024-02-28T13:12:34Z day: '28' department: - _id: MiLe doi: 10.1103/PhysRevA.99.063627 external_id: arxiv: - '1903.06759' isi: - '000473133600007' intvolume: ' 99' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.06759 month: '06' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - '24699934' issn: - '24699926' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Coupled superfluidity of binary Bose mixtures in two dimensions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2019' ... --- _id: '7396' abstract: - lang: eng text: The angular momentum of molecules, or, equivalently, their rotation in three-dimensional space, is ideally suited for quantum control. Molecular angular momentum is naturally quantized, time evolution is governed by a well-known Hamiltonian with only a few accurately known parameters, and transitions between rotational levels can be driven by external fields from various parts of the electromagnetic spectrum. Control over the rotational motion can be exerted in one-, two-, and many-body scenarios, thereby allowing one to probe Anderson localization, target stereoselectivity of bimolecular reactions, or encode quantum information to name just a few examples. The corresponding approaches to quantum control are pursued within separate, and typically disjoint, subfields of physics, including ultrafast science, cold collisions, ultracold gases, quantum information science, and condensed-matter physics. It is the purpose of this review to present the various control phenomena, which all rely on the same underlying physics, within a unified framework. To this end, recall the Hamiltonian for free rotations, assuming the rigid rotor approximation to be valid, and summarize the different ways for a rotor to interact with external electromagnetic fields. These interactions can be exploited for control—from achieving alignment, orientation, or laser cooling in a one-body framework, steering bimolecular collisions, or realizing a quantum computer or quantum simulator in the many-body setting. article_number: '035005 ' article_processing_charge: No article_type: original author: - first_name: Christiane P. full_name: Koch, Christiane P. last_name: Koch - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Dominique full_name: Sugny, Dominique last_name: Sugny citation: ama: Koch CP, Lemeshko M, Sugny D. Quantum control of molecular rotation. Reviews of Modern Physics. 2019;91(3). doi:10.1103/revmodphys.91.035005 apa: Koch, C. P., Lemeshko, M., & Sugny, D. (2019). Quantum control of molecular rotation. Reviews of Modern Physics. American Physical Society. https://doi.org/10.1103/revmodphys.91.035005 chicago: Koch, Christiane P., Mikhail Lemeshko, and Dominique Sugny. “Quantum Control of Molecular Rotation.” Reviews of Modern Physics. American Physical Society, 2019. https://doi.org/10.1103/revmodphys.91.035005. ieee: C. P. Koch, M. Lemeshko, and D. Sugny, “Quantum control of molecular rotation,” Reviews of Modern Physics, vol. 91, no. 3. American Physical Society, 2019. ista: Koch CP, Lemeshko M, Sugny D. 2019. Quantum control of molecular rotation. Reviews of Modern Physics. 91(3), 035005. mla: Koch, Christiane P., et al. “Quantum Control of Molecular Rotation.” Reviews of Modern Physics, vol. 91, no. 3, 035005, American Physical Society, 2019, doi:10.1103/revmodphys.91.035005. short: C.P. Koch, M. Lemeshko, D. Sugny, Reviews of Modern Physics 91 (2019). date_created: 2020-01-29T16:04:19Z date_published: 2019-09-18T00:00:00Z date_updated: 2024-02-28T13:15:33Z day: '18' department: - _id: MiLe doi: 10.1103/revmodphys.91.035005 external_id: arxiv: - '1810.11338' isi: - '000486661700001' intvolume: ' 91' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.11338 month: '09' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Reviews of Modern Physics publication_identifier: eissn: - 1539-0756 issn: - 0034-6861 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum control of molecular rotation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 91 year: '2019' ... --- _id: '7606' abstract: - lang: eng text: We derive a tight lower bound on equivocation (conditional entropy), or equivalently a tight upper bound on mutual information between a signal variable and channel outputs. The bound is in terms of the joint distribution of the signals and maximum a posteriori decodes (most probable signals given channel output). As part of our derivation, we describe the key properties of the distribution of signals, channel outputs and decodes, that minimizes equivocation and maximizes mutual information. This work addresses a problem in data analysis, where mutual information between signals and decodes is sometimes used to lower bound the mutual information between signals and channel outputs. Our result provides a corresponding upper bound. article_number: '8989292' article_processing_charge: No author: - first_name: Michal full_name: Hledik, Michal id: 4171253A-F248-11E8-B48F-1D18A9856A87 last_name: Hledik - first_name: Thomas R full_name: Sokolowski, Thomas R id: 3E999752-F248-11E8-B48F-1D18A9856A87 last_name: Sokolowski orcid: 0000-0002-1287-3779 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: 'Hledik M, Sokolowski TR, Tkačik G. A tight upper bound on mutual information. In: IEEE Information Theory Workshop, ITW 2019. IEEE; 2019. doi:10.1109/ITW44776.2019.8989292' apa: 'Hledik, M., Sokolowski, T. R., & Tkačik, G. (2019). A tight upper bound on mutual information. In IEEE Information Theory Workshop, ITW 2019. Visby, Sweden: IEEE. https://doi.org/10.1109/ITW44776.2019.8989292' chicago: Hledik, Michal, Thomas R Sokolowski, and Gašper Tkačik. “A Tight Upper Bound on Mutual Information.” In IEEE Information Theory Workshop, ITW 2019. IEEE, 2019. https://doi.org/10.1109/ITW44776.2019.8989292. ieee: M. Hledik, T. R. Sokolowski, and G. Tkačik, “A tight upper bound on mutual information,” in IEEE Information Theory Workshop, ITW 2019, Visby, Sweden, 2019. ista: Hledik M, Sokolowski TR, Tkačik G. 2019. A tight upper bound on mutual information. IEEE Information Theory Workshop, ITW 2019. Information Theory Workshop, 8989292. mla: Hledik, Michal, et al. “A Tight Upper Bound on Mutual Information.” IEEE Information Theory Workshop, ITW 2019, 8989292, IEEE, 2019, doi:10.1109/ITW44776.2019.8989292. short: M. Hledik, T.R. Sokolowski, G. Tkačik, in:, IEEE Information Theory Workshop, ITW 2019, IEEE, 2019. conference: end_date: 2019-08-28 location: Visby, Sweden name: Information Theory Workshop start_date: 2019-08-25 date_created: 2020-03-22T23:00:47Z date_published: 2019-08-01T00:00:00Z date_updated: 2024-03-06T14:22:51Z day: '01' department: - _id: GaTk doi: 10.1109/ITW44776.2019.8989292 ec_funded: 1 external_id: arxiv: - '1812.01475' isi: - '000540384500015' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1812.01475 month: '08' oa: 1 oa_version: Preprint project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: IEEE Information Theory Workshop, ITW 2019 publication_identifier: isbn: - '9781538669006' publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '15020' relation: dissertation_contains status: public scopus_import: '1' status: public title: A tight upper bound on mutual information type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6933' abstract: - lang: eng text: "We design fast deterministic algorithms for distance computation in the CONGESTED CLIQUE model. Our key contributions include:\r\n\r\n - A (2+ε)-approximation for all-pairs shortest paths problem in O(log²n / ε) rounds on unweighted undirected graphs. With a small additional additive factor, this also applies for weighted graphs. This is the first sub-polynomial constant-factor approximation for APSP in this model.\r\n - A (1+ε)-approximation for multi-source shortest paths problem from O(√n) sources in O(log² n / ε) rounds on weighted undirected graphs. This is the first sub-polynomial algorithm obtaining this approximation for a set of sources of polynomial size.\r\n\r\nOur main techniques are new distance tools that are obtained via improved algorithms for sparse matrix multiplication, which we leverage to construct efficient hopsets and shortest paths. Furthermore, our techniques extend to additional distance problems for which we improve upon the state-of-the-art, including diameter approximation, and an exact single-source shortest paths algorithm for weighted undirected graphs in Õ(n^{1/6}) rounds." article_processing_charge: No author: - first_name: Keren full_name: Censor-Hillel, Keren last_name: Censor-Hillel - first_name: Michal full_name: Dory, Michal last_name: Dory - first_name: Janne full_name: Korhonen, Janne id: C5402D42-15BC-11E9-A202-CA2BE6697425 last_name: Korhonen - first_name: Dean full_name: Leitersdorf, Dean last_name: Leitersdorf citation: ama: 'Censor-Hillel K, Dory M, Korhonen J, Leitersdorf D. Fast approximate shortest paths in the congested clique. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin. ACM; 2019:74-83. doi:10.1145/3293611.3331633' apa: 'Censor-Hillel, K., Dory, M., Korhonen, J., & Leitersdorf, D. (2019). Fast approximate shortest paths in the congested clique. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin (pp. 74–83). Toronto, ON, Canada: ACM. https://doi.org/10.1145/3293611.3331633' chicago: Censor-Hillel, Keren, Michal Dory, Janne Korhonen, and Dean Leitersdorf. “Fast Approximate Shortest Paths in the Congested Clique.” In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin, 74–83. ACM, 2019. https://doi.org/10.1145/3293611.3331633. ieee: K. Censor-Hillel, M. Dory, J. Korhonen, and D. Leitersdorf, “Fast approximate shortest paths in the congested clique,” in Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin, Toronto, ON, Canada, 2019, pp. 74–83. ista: 'Censor-Hillel K, Dory M, Korhonen J, Leitersdorf D. 2019. Fast approximate shortest paths in the congested clique. Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin. PODC: Symposium on Principles of Distributed Computing, 74–83.' mla: Censor-Hillel, Keren, et al. “Fast Approximate Shortest Paths in the Congested Clique.” Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin, ACM, 2019, pp. 74–83, doi:10.1145/3293611.3331633. short: K. Censor-Hillel, M. Dory, J. Korhonen, D. Leitersdorf, in:, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin, ACM, 2019, pp. 74–83. conference: end_date: 2019-08-02 location: Toronto, ON, Canada name: 'PODC: Symposium on Principles of Distributed Computing' start_date: 2019-07-29 date_created: 2019-10-08T12:48:42Z date_published: 2019-08-01T00:00:00Z date_updated: 2024-03-07T14:43:38Z day: '01' department: - _id: DaAl doi: 10.1145/3293611.3331633 external_id: arxiv: - '1903.05956' isi: - '000570442000011' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.05956 month: '08' oa: 1 oa_version: Preprint page: 74-83 publication: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin publication_identifier: isbn: - '9781450362177' publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '7939' relation: later_version status: public scopus_import: '1' status: public title: Fast approximate shortest paths in the congested clique type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2019' ...