--- _id: '6185' abstract: - lang: eng text: For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969). acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). The authors are very grateful to Johannes Alt for numerous discussions on the Dyson equation and for his invaluable help in adjusting [10] to the needs of the present work. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Torben H full_name: Krüger, Torben H id: 3020C786-F248-11E8-B48F-1D18A9856A87 last_name: Krüger orcid: 0000-0002-4821-3297 - first_name: Dominik J full_name: Schröder, Dominik J id: 408ED176-F248-11E8-B48F-1D18A9856A87 last_name: Schröder orcid: 0000-0002-2904-1856 citation: ama: 'Erdös L, Krüger TH, Schröder DJ. Cusp universality for random matrices I: Local law and the complex Hermitian case. Communications in Mathematical Physics. 2020;378:1203-1278. doi:10.1007/s00220-019-03657-4' apa: 'Erdös, L., Krüger, T. H., & Schröder, D. J. (2020). Cusp universality for random matrices I: Local law and the complex Hermitian case. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-019-03657-4' chicago: 'Erdös, László, Torben H Krüger, and Dominik J Schröder. “Cusp Universality for Random Matrices I: Local Law and the Complex Hermitian Case.” Communications in Mathematical Physics. Springer Nature, 2020. https://doi.org/10.1007/s00220-019-03657-4.' ieee: 'L. Erdös, T. H. Krüger, and D. J. Schröder, “Cusp universality for random matrices I: Local law and the complex Hermitian case,” Communications in Mathematical Physics, vol. 378. Springer Nature, pp. 1203–1278, 2020.' ista: 'Erdös L, Krüger TH, Schröder DJ. 2020. Cusp universality for random matrices I: Local law and the complex Hermitian case. Communications in Mathematical Physics. 378, 1203–1278.' mla: 'Erdös, László, et al. “Cusp Universality for Random Matrices I: Local Law and the Complex Hermitian Case.” Communications in Mathematical Physics, vol. 378, Springer Nature, 2020, pp. 1203–78, doi:10.1007/s00220-019-03657-4.' short: L. Erdös, T.H. Krüger, D.J. Schröder, Communications in Mathematical Physics 378 (2020) 1203–1278. date_created: 2019-03-28T10:21:15Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-09-07T12:54:12Z day: '01' ddc: - '530' - '510' department: - _id: LaEr doi: 10.1007/s00220-019-03657-4 ec_funded: 1 external_id: arxiv: - '1809.03971' isi: - '000529483000001' file: - access_level: open_access checksum: c3a683e2afdcea27afa6880b01e53dc2 content_type: application/pdf creator: dernst date_created: 2020-11-18T11:14:37Z date_updated: 2020-11-18T11:14:37Z file_id: '8771' file_name: 2020_CommMathPhysics_Erdoes.pdf file_size: 2904574 relation: main_file success: 1 file_date_updated: 2020-11-18T11:14:37Z has_accepted_license: '1' intvolume: ' 378' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1203-1278 project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Communications in Mathematical Physics publication_identifier: eissn: - 1432-0916 issn: - 0010-3616 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '6179' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Cusp universality for random matrices I: Local law and the complex Hermitian case' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 378 year: '2020' ... --- _id: '7629' abstract: - lang: eng text: "This thesis is based on three main topics: In the first part, we study convergence of discrete gradient flow structures associated with regular finite-volume discretisations of Fokker-Planck equations. We show evolutionary I convergence of the discrete gradient flows to the L2-Wasserstein gradient flow corresponding to the solution of a Fokker-Planck\r\nequation in arbitrary dimension d >= 1. Along the argument, we prove Mosco- and I-convergence results for discrete energy functionals, which are of independent interest for convergence of equivalent gradient flow structures in Hilbert spaces.\r\nThe second part investigates L2-Wasserstein flows on metric graph. The starting point is a Benamou-Brenier formula for the L2-Wasserstein distance, which is proved via a regularisation scheme for solutions of the continuity equation, adapted to the peculiar geometric structure of metric graphs. Based on those results, we show that the L2-Wasserstein space over a metric graph admits a gradient flow which may be identified as a solution of a Fokker-Planck equation.\r\nIn the third part, we focus again on the discrete gradient flows, already encountered in the first part. We propose a variational structure which extends the gradient flow structure to Markov chains violating the detailed-balance conditions. Using this structure, we characterise contraction estimates for the discrete heat flow in terms of convexity of\r\ncorresponding path-dependent energy functionals. In addition, we use this approach to derive several functional inequalities for said functionals." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dominik L full_name: Forkert, Dominik L id: 35C79D68-F248-11E8-B48F-1D18A9856A87 last_name: Forkert citation: ama: Forkert DL. Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains. 2020. doi:10.15479/AT:ISTA:7629 apa: Forkert, D. L. (2020). Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7629 chicago: Forkert, Dominik L. “Gradient Flows in Spaces of Probability Measures for Finite-Volume Schemes, Metric Graphs and Non-Reversible Markov Chains.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7629. ieee: D. L. Forkert, “Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains,” Institute of Science and Technology Austria, 2020. ista: Forkert DL. 2020. Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains. Institute of Science and Technology Austria. mla: Forkert, Dominik L. Gradient Flows in Spaces of Probability Measures for Finite-Volume Schemes, Metric Graphs and Non-Reversible Markov Chains. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7629. short: D.L. Forkert, Gradient Flows in Spaces of Probability Measures for Finite-Volume Schemes, Metric Graphs and Non-Reversible Markov Chains, Institute of Science and Technology Austria, 2020. date_created: 2020-04-02T06:40:23Z date_published: 2020-03-31T00:00:00Z date_updated: 2023-09-07T13:03:12Z day: '31' ddc: - '510' degree_awarded: PhD department: - _id: JaMa doi: 10.15479/AT:ISTA:7629 ec_funded: 1 file: - access_level: open_access checksum: c814a1a6195269ca6fe48b0dca45ae8a content_type: application/pdf creator: dernst date_created: 2020-04-14T10:47:59Z date_updated: 2020-07-14T12:48:01Z file_id: '7657' file_name: Thesis_Forkert_PDFA.pdf file_size: 3297129 relation: main_file - access_level: closed checksum: ceafb53f923d1b5bdf14b2b0f22e4a81 content_type: application/x-zip-compressed creator: dernst date_created: 2020-04-14T10:47:59Z date_updated: 2020-07-14T12:48:01Z file_id: '7658' file_name: Thesis_Forkert_source.zip file_size: 1063908 relation: source_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '154' project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Jan full_name: Maas, Jan id: 4C5696CE-F248-11E8-B48F-1D18A9856A87 last_name: Maas orcid: 0000-0002-0845-1338 title: Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8574' abstract: - lang: eng text: "This thesis concerns itself with the interactions of evolutionary and ecological forces and the consequences on genetic diversity and the ultimate survival of populations. It is important to understand what signals processes \r\nleave on the genome and what we can infer from such data, which is usually abundant but noisy. Furthermore, understanding how and when populations adapt or go extinct is important for practical purposes, such as the genetic management of populations, as well as for theoretical questions, since local adaptation can be the first step toward speciation. \r\nIn Chapter 2, we introduce the method of maximum entropy to approximate the demographic changes of a population in a simple setting, namely the logistic growth model with immigration. We show that this method is not only a powerful \r\ntool in physics but can be gainfully applied in an ecological framework. We investigate how well it approximates the real \r\nbehavior of the system, and find that is does so, even in unexpected situations. Finally, we illustrate how it can model changing environments.\r\nIn Chapter 3, we analyze the co-evolution of allele frequencies and population sizes in an infinite island model.\r\nWe give conditions under which polygenic adaptation to a rare habitat is possible. The model we use is based on the diffusion approximation, considers eco-evolutionary feedback mechanisms (hard selection), and treats both \r\ndrift and environmental fluctuations explicitly. We also look at limiting scenarios, for which we derive analytical expressions. \r\nIn Chapter 4, we present a coalescent based simulation tool to obtain patterns of diversity in a spatially explicit subdivided population, in which the demographic history of each subpopulation can be specified. We compare \r\nthe results to existing predictions, and explore the relative importance of time and space under a variety of spatial arrangements and demographic histories, such as expansion and extinction. \r\nIn the last chapter, we give a brief outlook to further research. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Eniko full_name: Szep, Eniko id: 485BB5A4-F248-11E8-B48F-1D18A9856A87 last_name: Szep citation: ama: Szep E. Local adaptation in metapopulations. 2020. doi:10.15479/AT:ISTA:8574 apa: Szep, E. (2020). Local adaptation in metapopulations. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8574 chicago: Szep, Eniko. “Local Adaptation in Metapopulations.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8574. ieee: E. Szep, “Local adaptation in metapopulations,” Institute of Science and Technology Austria, 2020. ista: Szep E. 2020. Local adaptation in metapopulations. Institute of Science and Technology Austria. mla: Szep, Eniko. Local Adaptation in Metapopulations. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8574. short: E. Szep, Local Adaptation in Metapopulations, Institute of Science and Technology Austria, 2020. date_created: 2020-09-28T07:33:38Z date_published: 2020-09-20T00:00:00Z date_updated: 2023-09-07T13:11:39Z day: '20' ddc: - '570' degree_awarded: PhD department: - _id: NiBa doi: 10.15479/AT:ISTA:8574 file: - access_level: open_access checksum: 20e71f015fbbd78fea708893ad634ed0 content_type: application/pdf creator: dernst date_created: 2020-09-28T07:25:35Z date_updated: 2020-09-28T07:25:35Z file_id: '8575' file_name: thesis_EnikoSzep_final.pdf file_size: 6354833 relation: main_file success: 1 - access_level: closed checksum: a8de2c14a1bb4e53c857787efbb289e1 content_type: application/x-zip-compressed creator: dernst date_created: 2020-09-28T07:25:37Z date_updated: 2020-09-28T07:25:37Z file_id: '8576' file_name: thesisFiles_EnikoSzep.zip file_size: 23020401 relation: source_file file_date_updated: 2020-09-28T07:25:37Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '158' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Local adaptation in metapopulations type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7514' abstract: - lang: eng text: "We study the interacting homogeneous Bose gas in two spatial dimensions in the thermodynamic limit at fixed density. We shall be concerned with some mathematical aspects of this complicated problem in many-body quantum mechanics. More specifically, we consider the dilute limit where the scattering length of the interaction potential, which is a measure for the effective range of the potential, is small compared to the average distance between the particles. We are interested in a setting with positive (i.e., non-zero) temperature. After giving a survey of the relevant literature in the field, we provide some facts and examples to set expectations for the two-dimensional system. The crucial difference to the three-dimensional system is that there is no Bose–Einstein condensate at positive temperature due to the Hohenberg–Mermin–Wagner theorem. However, it turns out that an asymptotic formula for the free energy holds similarly to the three-dimensional case.\r\nWe motivate this formula by considering a toy model with δ interaction potential. By restricting this model Hamiltonian to certain trial states with a quasi-condensate we obtain an upper bound for the free energy that still has the quasi-condensate fraction as a free parameter. When minimizing over the quasi-condensate fraction, we obtain the Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity, which plays an important role in our rigorous contribution. The mathematically rigorous result that we prove concerns the specific free energy in the dilute limit. We give upper and lower bounds on the free energy in terms of the free energy of the non-interacting system and a correction term coming from the interaction. Both bounds match and thus we obtain the leading term of an asymptotic approximation in the dilute limit, provided the thermal wavelength of the particles is of the same order (or larger) than the average distance between the particles. The remarkable feature of this result is its generality: the correction term depends on the interaction potential only through its scattering length and it holds for all nonnegative interaction potentials with finite scattering length that are measurable. In particular, this allows to model an interaction of hard disks." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Simon full_name: Mayer, Simon id: 30C4630A-F248-11E8-B48F-1D18A9856A87 last_name: Mayer citation: ama: Mayer S. The free energy of a dilute two-dimensional Bose gas. 2020. doi:10.15479/AT:ISTA:7514 apa: Mayer, S. (2020). The free energy of a dilute two-dimensional Bose gas. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7514 chicago: Mayer, Simon. “The Free Energy of a Dilute Two-Dimensional Bose Gas.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7514. ieee: S. Mayer, “The free energy of a dilute two-dimensional Bose gas,” Institute of Science and Technology Austria, 2020. ista: Mayer S. 2020. The free energy of a dilute two-dimensional Bose gas. Institute of Science and Technology Austria. mla: Mayer, Simon. The Free Energy of a Dilute Two-Dimensional Bose Gas. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7514. short: S. Mayer, The Free Energy of a Dilute Two-Dimensional Bose Gas, Institute of Science and Technology Austria, 2020. date_created: 2020-02-24T09:17:27Z date_published: 2020-02-24T00:00:00Z date_updated: 2023-09-07T13:12:42Z day: '24' ddc: - '510' degree_awarded: PhD department: - _id: RoSe - _id: GradSch doi: 10.15479/AT:ISTA:7514 ec_funded: 1 file: - access_level: open_access checksum: b4de7579ddc1dbdd44ff3f17c48395f6 content_type: application/pdf creator: dernst date_created: 2020-02-24T09:15:06Z date_updated: 2020-07-14T12:47:59Z file_id: '7515' file_name: thesis.pdf file_size: 1563429 relation: main_file - access_level: closed checksum: ad7425867b52d7d9e72296e87bc9cb67 content_type: application/x-zip-compressed creator: dernst date_created: 2020-02-24T09:15:16Z date_updated: 2020-07-14T12:47:59Z file_id: '7516' file_name: thesis_source.zip file_size: 2028038 relation: source_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '148' project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7524' relation: part_of_dissertation status: public status: public supervisor: - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 title: The free energy of a dilute two-dimensional Bose gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8353' abstract: - lang: eng text: "Mrp (Multi resistance and pH adaptation) are broadly distributed secondary active antiporters that catalyze the transport of monovalent ions such as sodium and potassium outside of the cell coupled to the inward translocation of protons. Mrp antiporters are unique in a way that they are composed of seven subunits (MrpABCDEFG) encoded in a single operon, whereas other antiporters catalyzing the same reaction are mostly encoded by a single gene. Mrp exchangers are crucial for intracellular pH homeostasis and Na+ efflux, essential mechanisms for H+ uptake under alkaline environments and for reduction of the intracellular concentration of toxic cations. Mrp displays no homology to any other monovalent Na+(K+)/H+ antiporters but Mrp subunits have primary sequence similarity to essential redox-driven proton pumps, such as respiratory complex I and membrane-bound hydrogenases. This similarity reinforces the hypothesis that these present day redox-driven proton pumps are descended from the Mrp antiporter. The Mrp structure serves as a model to understand the yet obscure coupling mechanism between ion or electron transfer and proton translocation in this large group of proteins. In the thesis, I am presenting the purification, biochemical analysis, cryo-EM analysis and molecular structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. Numerous conditions were screened to purify Mrp to high homogeneity and to obtain an appropriate distribution of single particles on cryo-EM grids covered with a continuous layer of ultrathin carbon. A preferred particle orientation problem was solved by performing a tilted data collection. The activity assays showed the specific pH-dependent\r\nprofile of secondary active antiporters. The molecular structure shows that Mrp is a dimer of seven-subunit protomers with 50 trans-membrane helices each. The dimer interface is built by many short and tilted transmembrane helices, probably causing a thinning of the bacterial membrane. The surface charge distribution shows an extraordinary asymmetry within each monomer, revealing presumable proton and sodium translocation pathways. The two largest\r\nand homologous Mrp subunits MrpA and MrpD probably translocate one proton each into the cell. The sodium ion is likely being translocated in the opposite direction within the small subunits along a ladder of charged and conserved residues. Based on the structure, we propose a mechanism were the antiport activity is accomplished via electrostatic interactions between the charged cations and key charged residues. The flexible key TM helices coordinate these\r\nelectrostatic interactions, while the membrane thinning between the monomers enables the translocation of sodium across the charged membrane. The entire family of redox-driven proton pumps is likely to perform their mechanism in a likewise manner." acknowledged_ssus: - _id: LifeSc - _id: EM-Fac - _id: ScienComp acknowledgement: "I acknowledge the scientific service units of the IST Austria for providing resources by the Life Science Facility, the Electron Microscopy Facility and the high-performance computer cluster. Special thanks to the cryo-EM specialists Valentin Hodirnau and Daniel Johann Gütl for spending many hours with me in front of the microscope and for supporting me to collect the data presented here. I also want to thank Professor Masahiro Ito for providing plasmid DNA\r\nencoding Mrp from Anoxybacillus flavithermus WK1. I am a recipient of a DOC Fellowship of the Austrian Academy of Sciences." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Julia full_name: Steiner, Julia id: 3BB67EB0-F248-11E8-B48F-1D18A9856A87 last_name: Steiner orcid: 0000-0003-0493-3775 citation: ama: Steiner J. Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. 2020. doi:10.15479/AT:ISTA:8353 apa: Steiner, J. (2020). Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8353 chicago: Steiner, Julia. “Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8353. ieee: J. Steiner, “Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I,” Institute of Science and Technology Austria, 2020. ista: Steiner J. 2020. Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. Institute of Science and Technology Austria. mla: Steiner, Julia. Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8353. short: J. Steiner, Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I, Institute of Science and Technology Austria, 2020. date_created: 2020-09-09T14:27:01Z date_published: 2020-09-09T00:00:00Z date_updated: 2023-09-07T13:14:09Z day: '09' ddc: - '572' degree_awarded: PhD department: - _id: LeSa doi: 10.15479/AT:ISTA:8353 file: - access_level: open_access checksum: 2388d7e6e7a4d364c096fa89f305c3de content_type: application/pdf creator: jsteiner date_created: 2020-09-09T14:22:35Z date_updated: 2021-09-16T12:40:56Z file_id: '8354' file_name: Thesis_Julia_Steiner_pdfA.pdf file_size: 117547589 relation: main_file - access_level: closed checksum: ba112f957b7145462d0ab79044873ee9 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jsteiner date_created: 2020-09-09T14:23:25Z date_updated: 2020-09-15T08:48:37Z file_id: '8355' file_name: Thesis_Julia_Steiner.docx file_size: 223328668 relation: source_file file_date_updated: 2021-09-16T12:40:56Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: None page: '191' project: - _id: 26169496-B435-11E9-9278-68D0E5697425 grant_number: '24741' name: Revealing the functional mechanism of Mrp antiporter, an ancestor of complex I publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8284' relation: part_of_dissertation status: public status: public supervisor: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 title: Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8589' abstract: - lang: eng text: The plant hormone auxin plays indispensable roles in plant growth and development. An essential level of regulation in auxin action is the directional auxin transport within cells. The establishment of auxin gradient in plant tissue has been attributed to local auxin biosynthesis and directional intercellular auxin transport, which both are controlled by various environmental and developmental signals. It is well established that asymmetric auxin distribution in cells is achieved by polarly localized PIN-FORMED (PIN) auxin efflux transporters. Despite the initial insights into cellular mechanisms of PIN polarization obtained from the last decades, the molecular mechanism and specific regulators mediating PIN polarization remains elusive. In this thesis, we aim to find novel players in PIN subcellular polarity regulation during Arabidopsis development. We first characterize the physiological effect of piperonylic acid (PA) on Arabidopsis hypocotyl gravitropic bending and PIN polarization. Secondly, we reveal the importance of SCFTIR1/AFB auxin signaling pathway in shoot gravitropism bending termination. In addition, we also explore the role of myosin XI complex, and actin cytoskeleton in auxin feedback regulation on PIN polarity. In Chapter 1, we give an overview of the current knowledge about PIN-mediated auxin fluxes in various plant tropic responses. In Chapter 2, we study the physiological effect of PA on shoot gravitropic bending. Our results show that PA treatment inhibits auxin-mediated PIN3 repolarization by interfering with PINOID and PIN3 phosphorylation status, ultimately leading to hyperbending hypocotyls. In Chapter 3, we provide evidence to show that the SCFTIR1/AFB nuclear auxin signaling pathway is crucial and required for auxin-mediated PIN3 repolarization and shoot gravitropic bending termination. In Chapter 4, we perform a phosphoproteomics approach and identify the motor protein Myosin XI and its binding protein, the MadB2 family, as an essential regulator of PIN polarity for auxin-canalization related developmental processes. In Chapter 5, we demonstrate the vital role of actin cytoskeleton in auxin feedback on PIN polarity by regulating PIN subcellular trafficking. Overall, the data presented in this PhD thesis brings novel insights into the PIN polar localization regulation that resulted in the (re)establishment of the polar auxin flow and gradient in response to environmental stimuli during plant development. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: I also want to thank the China Scholarship Council for supporting my study during the year from 2015 to 2019. I also want to thank IST facilities – the Bioimaging facility, the media kitchen, the plant facility and all of the campus services, for their support. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han citation: ama: Han H. Novel insights into PIN polarity regulation during Arabidopsis development. 2020. doi:10.15479/AT:ISTA:8589 apa: Han, H. (2020). Novel insights into PIN polarity regulation during Arabidopsis development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8589 chicago: Han, Huibin. “Novel Insights into PIN Polarity Regulation during Arabidopsis Development.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8589. ieee: H. Han, “Novel insights into PIN polarity regulation during Arabidopsis development,” Institute of Science and Technology Austria, 2020. ista: Han H. 2020. Novel insights into PIN polarity regulation during Arabidopsis development. Institute of Science and Technology Austria. mla: Han, Huibin. Novel Insights into PIN Polarity Regulation during Arabidopsis Development. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8589. short: H. Han, Novel Insights into PIN Polarity Regulation during Arabidopsis Development, Institute of Science and Technology Austria, 2020. date_created: 2020-09-30T14:50:51Z date_published: 2020-09-30T00:00:00Z date_updated: 2023-09-07T13:13:05Z day: '30' ddc: - '580' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:8589 file: - access_level: closed checksum: c4bda1947d4c09c428ac9ce667b02327 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2020-09-30T14:50:20Z date_updated: 2020-09-30T14:50:20Z file_id: '8590' file_name: 2020_Han_Thesis.docx file_size: 49198118 relation: source_file - access_level: open_access checksum: 3f4f5d1718c2230adf30639ecaf8a00b content_type: application/pdf creator: dernst date_created: 2020-09-30T14:49:59Z date_updated: 2021-10-01T13:33:02Z file_id: '8591' file_name: 2020_Han_Thesis.pdf file_size: 15513963 relation: main_file file_date_updated: 2021-10-01T13:33:02Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '164' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7643' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Novel insights into PIN polarity regulation during Arabidopsis development type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8284' abstract: - lang: eng text: Multiple resistance and pH adaptation (Mrp) antiporters are multi-subunit Na+ (or K+)/H+ exchangers representing an ancestor of many essential redox-driven proton pumps, such as respiratory complex I. The mechanism of coupling between ion or electron transfer and proton translocation in this large protein family is unknown. Here, we present the structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. It is a dimer of seven-subunit protomers with 50 trans-membrane helices each. Surface charge distribution within each monomer is remarkably asymmetric, revealing probable proton and sodium translocation pathways. On the basis of the structure we propose a mechanism where the coupling between sodium and proton translocation is facilitated by a series of electrostatic interactions between a cation and key charged residues. This mechanism is likely to be applicable to the entire family of redox proton pumps, where electron transfer to substrates replaces cation movements. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc acknowledgement: This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Electron Microscopy Facility (EMF), the Life Science Facility (LSF) and the IST high-performance computing cluster. We thank Dr Victor-Valentin Hodirnau and Daniel Johann Gütl from IST Austria for assistance with collecting cryo-EM data. We thank Prof. Masahiro Ito (Graduate School of Life Sciences, Toyo University, Japan) for a kind provision of plasmid DNA encoding Mrp from A. flavithermus WK1. JS is a recipient of a DOC Fellowship of the Austrian Academy of Sciences at the Institute of Science and Technology, Austria. article_number: e59407 article_processing_charge: No article_type: original author: - first_name: Julia full_name: Steiner, Julia id: 3BB67EB0-F248-11E8-B48F-1D18A9856A87 last_name: Steiner orcid: 0000-0003-0493-3775 - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: Steiner J, Sazanov LA. Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter. eLife. 2020;9. doi:10.7554/eLife.59407 apa: Steiner, J., & Sazanov, L. A. (2020). Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.59407 chicago: Steiner, Julia, and Leonid A Sazanov. “Structure and Mechanism of the Mrp Complex, an Ancient Cation/Proton Antiporter.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/eLife.59407. ieee: J. Steiner and L. A. Sazanov, “Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Steiner J, Sazanov LA. 2020. Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter. eLife. 9, e59407. mla: Steiner, Julia, and Leonid A. Sazanov. “Structure and Mechanism of the Mrp Complex, an Ancient Cation/Proton Antiporter.” ELife, vol. 9, e59407, eLife Sciences Publications, 2020, doi:10.7554/eLife.59407. short: J. Steiner, L.A. Sazanov, ELife 9 (2020). date_created: 2020-08-24T06:24:04Z date_published: 2020-07-31T00:00:00Z date_updated: 2023-09-07T13:14:08Z day: '31' ddc: - '570' department: - _id: LeSa doi: 10.7554/eLife.59407 external_id: isi: - '000562123600001' pmid: - '32735215' file: - access_level: open_access checksum: b3656d14d5ddbb9d26e3074eea2d0c15 content_type: application/pdf creator: cziletti date_created: 2020-08-24T13:31:53Z date_updated: 2020-08-24T13:31:53Z file_id: '8289' file_name: 2020_eLife_Steiner.pdf file_size: 7320493 relation: main_file success: 1 file_date_updated: 2020-08-24T13:31:53Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26169496-B435-11E9-9278-68D0E5697425 grant_number: '24741' name: Revealing the functional mechanism of Mrp antiporter, an ancestor of complex I publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/mystery-of-giant-proton-pump-solved/ record: - id: '8353' relation: dissertation_contains status: public scopus_import: '1' status: public title: Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '8155' abstract: - lang: eng text: "In the thesis we focus on the interplay of the biophysics and evolution of gene regulation. We start by addressing how the type of prokaryotic gene regulation – activation and repression – affects spurious binding to DNA, also known as\r\ntranscriptional crosstalk. We propose that regulatory interference caused by excess regulatory proteins in the dense cellular medium – global crosstalk – could be a factor in determining which type of gene regulatory network is evolutionarily preferred. Next,we use a normative approach in eukaryotic gene regulation to describe minimal\r\nnon-equilibrium enhancer models that optimize so-called regulatory phenotypes. We find a class of models that differ from standard thermodynamic equilibrium models by a single parameter that notably increases the regulatory performance. Next chapter addresses the question of genotype-phenotype-fitness maps of higher dimensional phenotypes. We show that our biophysically realistic approach allows us to understand how the mechanisms of promoter function constrain genotypephenotype maps, and how they affect the evolutionary trajectories of promoters.\r\nIn the last chapter we ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. Using mathematical modeling, we show that amplifications can tune gene expression in many environments, including those where transcription factor-based schemes are\r\nhard to evolve or maintain. " acknowledgement: For the duration of his PhD, Rok was a recipient of a DOC fellowship of the Austrian Academy of Sciences. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 citation: ama: Grah R. Gene regulation across scales – how biophysical constraints shape evolution. 2020. doi:10.15479/AT:ISTA:8155 apa: Grah, R. (2020). Gene regulation across scales – how biophysical constraints shape evolution. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8155 chicago: Grah, Rok. “Gene Regulation across Scales – How Biophysical Constraints Shape Evolution.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8155. ieee: R. Grah, “Gene regulation across scales – how biophysical constraints shape evolution,” Institute of Science and Technology Austria, 2020. ista: Grah R. 2020. Gene regulation across scales – how biophysical constraints shape evolution. Institute of Science and Technology Austria. mla: Grah, Rok. Gene Regulation across Scales – How Biophysical Constraints Shape Evolution. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8155. short: R. Grah, Gene Regulation across Scales – How Biophysical Constraints Shape Evolution, Institute of Science and Technology Austria, 2020. date_created: 2020-07-23T09:51:28Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-09-07T13:13:27Z day: '24' ddc: - '530' - '570' degree_awarded: PhD department: - _id: CaGu - _id: GaTk doi: 10.15479/AT:ISTA:8155 file: - access_level: open_access content_type: application/pdf creator: rgrah date_created: 2020-07-27T12:00:07Z date_updated: 2020-07-27T12:00:07Z file_id: '8176' file_name: Thesis_RokGrah_200727_convertedNew.pdf file_size: 16638998 relation: main_file success: 1 - access_level: closed content_type: application/zip creator: rgrah date_created: 2020-07-27T12:02:23Z date_updated: 2020-07-30T13:04:55Z file_id: '8177' file_name: Thesis_new.zip file_size: 347459978 relation: main_file file_date_updated: 2020-07-30T13:04:55Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '310' project: - _id: 267C84F4-B435-11E9-9278-68D0E5697425 name: Biophysically realistic genotype-phenotype maps for regulatory networks publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7675' relation: part_of_dissertation status: public - id: '7569' relation: part_of_dissertation status: public - id: '7652' relation: part_of_dissertation status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Gene regulation across scales – how biophysical constraints shape evolution type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7643' acknowledgement: 'This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation Programme (ERC grant agreement number 742985), and the Austrian Science Fund (FWF, grant number I 3630-B25) to JF. HH is supported by the China Scholarship Council (CSC scholarship). ' article_processing_charge: No article_type: letter_note author: - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Hana full_name: Rakusova, Hana id: 4CAAA450-78D2-11EA-8E57-B40A396E08BA last_name: Rakusova - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Han H, Rakusova H, Verstraeten I, Zhang Y, Friml J. SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism. Plant Physiology. 2020;183(5):37-40. doi:10.1104/pp.20.00212 apa: Han, H., Rakusova, H., Verstraeten, I., Zhang, Y., & Friml, J. (2020). SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.20.00212 chicago: Han, Huibin, Hana Rakusova, Inge Verstraeten, Yuzhou Zhang, and Jiří Friml. “SCF TIR1/AFB Auxin Signaling for Bending Termination during Shoot Gravitropism.” Plant Physiology. American Society of Plant Biologists, 2020. https://doi.org/10.1104/pp.20.00212. ieee: H. Han, H. Rakusova, I. Verstraeten, Y. Zhang, and J. Friml, “SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism,” Plant Physiology, vol. 183, no. 5. American Society of Plant Biologists, pp. 37–40, 2020. ista: Han H, Rakusova H, Verstraeten I, Zhang Y, Friml J. 2020. SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism. Plant Physiology. 183(5), 37–40. mla: Han, Huibin, et al. “SCF TIR1/AFB Auxin Signaling for Bending Termination during Shoot Gravitropism.” Plant Physiology, vol. 183, no. 5, American Society of Plant Biologists, 2020, pp. 37–40, doi:10.1104/pp.20.00212. short: H. Han, H. Rakusova, I. Verstraeten, Y. Zhang, J. Friml, Plant Physiology 183 (2020) 37–40. date_created: 2020-04-06T10:06:40Z date_published: 2020-05-08T00:00:00Z date_updated: 2023-09-07T13:13:04Z day: '08' department: - _id: JiFr doi: 10.1104/pp.20.00212 ec_funded: 1 external_id: isi: - '000536641800018' pmid: - '32107280' intvolume: ' 183' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1104/pp.20.00212 month: '05' oa: 1 oa_version: Published Version page: 37-40 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' related_material: record: - id: '8589' relation: dissertation_contains status: public scopus_import: '1' status: public title: SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 183 year: '2020' ... --- _id: '7675' abstract: - lang: eng text: 'In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene expression levels that is compatible with in vivo and in vitro bio-physical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In non-equilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal non-equilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in non-equilibrium models is in a tradeoff with gene expression noise, predicting bursty dynamics — an experimentally-observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space to a much smaller subspace that optimally realizes biological function prior to inference from data, our normative approach holds promise for mathematical models in systems biology.' article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 - first_name: Benjamin full_name: Zoller, Benjamin last_name: Zoller - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Grah R, Zoller B, Tkačik G. Normative models of enhancer function. bioRxiv. 2020. doi:10.1101/2020.04.08.029405 apa: Grah, R., Zoller, B., & Tkačik, G. (2020). Normative models of enhancer function. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.04.08.029405 chicago: Grah, Rok, Benjamin Zoller, and Gašper Tkačik. “Normative Models of Enhancer Function.” BioRxiv. Cold Spring Harbor Laboratory, 2020. https://doi.org/10.1101/2020.04.08.029405. ieee: R. Grah, B. Zoller, and G. Tkačik, “Normative models of enhancer function,” bioRxiv. Cold Spring Harbor Laboratory, 2020. ista: Grah R, Zoller B, Tkačik G. 2020. Normative models of enhancer function. bioRxiv, 10.1101/2020.04.08.029405. mla: Grah, Rok, et al. “Normative Models of Enhancer Function.” BioRxiv, Cold Spring Harbor Laboratory, 2020, doi:10.1101/2020.04.08.029405. short: R. Grah, B. Zoller, G. Tkačik, BioRxiv (2020). date_created: 2020-04-23T10:12:51Z date_published: 2020-04-09T00:00:00Z date_updated: 2023-09-07T13:13:26Z day: '09' department: - _id: CaGu - _id: GaTk doi: 10.1101/2020.04.08.029405 language: - iso: eng main_file_link: - open_access: '1' url: 'https://doi.org/10.1101/2020.04.08.029405 ' month: '04' oa: 1 oa_version: Preprint project: - _id: 2665AAFE-B435-11E9-9278-68D0E5697425 grant_number: RGP0034/2018 name: Can evolution minimize spurious signaling crosstalk to reach optimal performance? - _id: 267C84F4-B435-11E9-9278-68D0E5697425 name: Biophysically realistic genotype-phenotype maps for regulatory networks publication: bioRxiv publication_status: published publisher: Cold Spring Harbor Laboratory related_material: record: - id: '8155' relation: dissertation_contains status: public status: public title: Normative models of enhancer function type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7460' abstract: - lang: eng text: "Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications.\r\n\r\nFor the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck orcid: 0000-0002-4672-8297 citation: ama: Ölsböck K. The hole system of triangulated shapes. 2020. doi:10.15479/AT:ISTA:7460 apa: Ölsböck, K. (2020). The hole system of triangulated shapes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7460 chicago: Ölsböck, Katharina. “The Hole System of Triangulated Shapes.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7460. ieee: K. Ölsböck, “The hole system of triangulated shapes,” Institute of Science and Technology Austria, 2020. ista: Ölsböck K. 2020. The hole system of triangulated shapes. Institute of Science and Technology Austria. mla: Ölsböck, Katharina. The Hole System of Triangulated Shapes. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7460. short: K. Ölsböck, The Hole System of Triangulated Shapes, Institute of Science and Technology Austria, 2020. date_created: 2020-02-06T14:56:53Z date_published: 2020-02-10T00:00:00Z date_updated: 2023-09-07T13:15:30Z day: '10' ddc: - '514' degree_awarded: PhD department: - _id: HeEd - _id: GradSch doi: 10.15479/AT:ISTA:7460 file: - access_level: open_access checksum: 1df9f8c530b443c0e63a3f2e4fde412e content_type: application/pdf creator: koelsboe date_created: 2020-02-06T14:43:54Z date_updated: 2020-07-14T12:47:58Z file_id: '7461' file_name: thesis_ist-final_noack.pdf file_size: 76195184 relation: main_file - access_level: closed checksum: 7a52383c812b0be64d3826546509e5a4 content_type: application/x-zip-compressed creator: koelsboe date_created: 2020-02-06T14:52:45Z date_updated: 2020-07-14T12:47:58Z description: latex source files, figures file_id: '7462' file_name: latex-files.zip file_size: 122103715 relation: source_file file_date_updated: 2020-07-14T12:47:58Z has_accepted_license: '1' keyword: - shape reconstruction - hole manipulation - ordered complexes - Alpha complex - Wrap complex - computational topology - Bregman geometry language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '02' oa: 1 oa_version: Published Version page: '155' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6608' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: The hole system of triangulated shapes tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7896' abstract: - lang: eng text: "A search problem lies in the complexity class FNP if a solution to the given instance of the problem can be verified efficiently. The complexity class TFNP consists of all search problems in FNP that are total in the sense that a solution is guaranteed to exist. TFNP contains a host of interesting problems from fields such as algorithmic game theory, computational topology, number theory and combinatorics. Since TFNP is a semantic class, it is unlikely to have a complete problem. Instead, one studies its syntactic subclasses which are defined based on the combinatorial principle used to argue totality. Of particular interest is the subclass PPAD, which contains important problems\r\nlike computing Nash equilibrium for bimatrix games and computational counterparts of several fixed-point theorems as complete. In the thesis, we undertake the study of averagecase hardness of TFNP, and in particular its subclass PPAD.\r\nAlmost nothing was known about average-case hardness of PPAD before a series of recent results showed how to achieve it using a cryptographic primitive called program obfuscation.\r\nHowever, it is currently not known how to construct program obfuscation from standard cryptographic assumptions. Therefore, it is desirable to relax the assumption under which average-case hardness of PPAD can be shown. In the thesis we take a step in this direction. First, we show that assuming the (average-case) hardness of a numbertheoretic\r\nproblem related to factoring of integers, which we call Iterated-Squaring, PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive protocol into a non-interactive one. As a corollary, we obtain average-case hardness for PPAD in the random-oracle model assuming the worst-case hardness of #SAT. Moreover, the above results can all be strengthened to obtain average-case hardness for the class CLS ⊆ PPAD.\r\nOur main technical contribution is constructing incrementally-verifiable procedures for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean that every intermediate state of the computation includes a proof of its correctness, and the proof can be updated and verified in polynomial time. Previous constructions of such procedures relied on strong, non-standard assumptions. Instead, we introduce a technique called recursive proof-merging to obtain the same from weaker assumptions. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Chethan full_name: Kamath Hosdurg, Chethan id: 4BD3F30E-F248-11E8-B48F-1D18A9856A87 last_name: Kamath Hosdurg citation: ama: Kamath Hosdurg C. On the average-case hardness of total search problems. 2020. doi:10.15479/AT:ISTA:7896 apa: Kamath Hosdurg, C. (2020). On the average-case hardness of total search problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7896 chicago: Kamath Hosdurg, Chethan. “On the Average-Case Hardness of Total Search Problems.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7896. ieee: C. Kamath Hosdurg, “On the average-case hardness of total search problems,” Institute of Science and Technology Austria, 2020. ista: Kamath Hosdurg C. 2020. On the average-case hardness of total search problems. Institute of Science and Technology Austria. mla: Kamath Hosdurg, Chethan. On the Average-Case Hardness of Total Search Problems. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7896. short: C. Kamath Hosdurg, On the Average-Case Hardness of Total Search Problems, Institute of Science and Technology Austria, 2020. date_created: 2020-05-26T14:08:55Z date_published: 2020-05-25T00:00:00Z date_updated: 2023-09-07T13:15:55Z day: '25' ddc: - '000' degree_awarded: PhD department: - _id: KrPi doi: 10.15479/AT:ISTA:7896 ec_funded: 1 file: - access_level: open_access checksum: b39e2e1c376f5819b823fb7077491c64 content_type: application/pdf creator: dernst date_created: 2020-05-26T14:08:13Z date_updated: 2020-07-14T12:48:04Z file_id: '7897' file_name: 2020_Thesis_Kamath.pdf file_size: 1622742 relation: main_file - access_level: closed checksum: 8b26ba729c1a85ac6bea775f5d73cdc7 content_type: application/x-zip-compressed creator: dernst date_created: 2020-05-26T14:08:23Z date_updated: 2020-07-14T12:48:04Z file_id: '7898' file_name: Thesis_Kamath.zip file_size: 15301529 relation: source_file file_date_updated: 2020-07-14T12:48:04Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '126' project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6677' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 title: On the average-case hardness of total search problems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7936' abstract: - lang: eng text: 'State-of-the-art detection systems are generally evaluated on their ability to exhaustively retrieve objects densely distributed in the image, across a wide variety of appearances and semantic categories. Orthogonal to this, many real-life object detection applications, for example in remote sensing, instead require dealing with large images that contain only a few small objects of a single class, scattered heterogeneously across the space. In addition, they are often subject to strict computational constraints, such as limited battery capacity and computing power.To tackle these more practical scenarios, we propose a novel flexible detection scheme that efficiently adapts to variable object sizes and densities: We rely on a sequence of detection stages, each of which has the ability to predict groups of objects as well as individuals. Similar to a detection cascade, this multi-stage architecture spares computational effort by discarding large irrelevant regions of the image early during the detection process. The ability to group objects provides further computational and memory savings, as it allows working with lower image resolutions in early stages, where groups are more easily detected than individuals, as they are more salient. We report experimental results on two aerial image datasets, and show that the proposed method is as accurate yet computationally more efficient than standard single-shot detectors, consistently across three different backbone architectures.' article_number: 1716-1725 article_processing_charge: No author: - first_name: Amélie full_name: Royer, Amélie id: 3811D890-F248-11E8-B48F-1D18A9856A87 last_name: Royer orcid: 0000-0002-8407-0705 - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Royer A, Lampert C. Localizing grouped instances for efficient detection in low-resource scenarios. In: IEEE Winter Conference on Applications of Computer Vision. IEEE; 2020. doi:10.1109/WACV45572.2020.9093288' apa: 'Royer, A., & Lampert, C. (2020). Localizing grouped instances for efficient detection in low-resource scenarios. In IEEE Winter Conference on Applications of Computer Vision. Snowmass Village, CO, United States: IEEE. https://doi.org/10.1109/WACV45572.2020.9093288' chicago: Royer, Amélie, and Christoph Lampert. “Localizing Grouped Instances for Efficient Detection in Low-Resource Scenarios.” In IEEE Winter Conference on Applications of Computer Vision. IEEE, 2020. https://doi.org/10.1109/WACV45572.2020.9093288. ieee: A. Royer and C. Lampert, “Localizing grouped instances for efficient detection in low-resource scenarios,” in IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, United States, 2020. ista: 'Royer A, Lampert C. 2020. Localizing grouped instances for efficient detection in low-resource scenarios. IEEE Winter Conference on Applications of Computer Vision. WACV: Winter Conference on Applications of Computer Vision, 1716–1725.' mla: Royer, Amélie, and Christoph Lampert. “Localizing Grouped Instances for Efficient Detection in Low-Resource Scenarios.” IEEE Winter Conference on Applications of Computer Vision, 1716–1725, IEEE, 2020, doi:10.1109/WACV45572.2020.9093288. short: A. Royer, C. Lampert, in:, IEEE Winter Conference on Applications of Computer Vision, IEEE, 2020. conference: end_date: 2020-03-05 location: ' Snowmass Village, CO, United States' name: 'WACV: Winter Conference on Applications of Computer Vision' start_date: 2020-03-01 date_created: 2020-06-07T22:00:53Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-09-07T13:16:17Z day: '01' department: - _id: ChLa doi: 10.1109/WACV45572.2020.9093288 external_id: arxiv: - '2004.12623' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2004.12623 month: '03' oa: 1 oa_version: Preprint publication: IEEE Winter Conference on Applications of Computer Vision publication_identifier: isbn: - '9781728165530' publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '8331' relation: dissertation_contains status: deleted - id: '8390' relation: dissertation_contains status: public scopus_import: 1 status: public title: Localizing grouped instances for efficient detection in low-resource scenarios type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7937' abstract: - lang: eng text: 'Fine-tuning is a popular way of exploiting knowledge contained in a pre-trained convolutional network for a new visual recognition task. However, the orthogonal setting of transferring knowledge from a pretrained network to a visually different yet semantically close source is rarely considered: This commonly happens with real-life data, which is not necessarily as clean as the training source (noise, geometric transformations, different modalities, etc.).To tackle such scenarios, we introduce a new, generalized form of fine-tuning, called flex-tuning, in which any individual unit (e.g. layer) of a network can be tuned, and the most promising one is chosen automatically. In order to make the method appealing for practical use, we propose two lightweight and faster selection procedures that prove to be good approximations in practice. We study these selection criteria empirically across a variety of domain shifts and data scarcity scenarios, and show that fine-tuning individual units, despite its simplicity, yields very good results as an adaptation technique. As it turns out, in contrast to common practice, rather than the last fully-connected unit it is best to tune an intermediate or early one in many domain- shift scenarios, which is accurately detected by flex-tuning.' article_number: 2180-2189 article_processing_charge: No author: - first_name: Amélie full_name: Royer, Amélie id: 3811D890-F248-11E8-B48F-1D18A9856A87 last_name: Royer orcid: 0000-0002-8407-0705 - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Royer A, Lampert C. A flexible selection scheme for minimum-effort transfer learning. In: 2020 IEEE Winter Conference on Applications of Computer Vision. IEEE; 2020. doi:10.1109/WACV45572.2020.9093635' apa: 'Royer, A., & Lampert, C. (2020). A flexible selection scheme for minimum-effort transfer learning. In 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass Village, CO, United States: IEEE. https://doi.org/10.1109/WACV45572.2020.9093635' chicago: Royer, Amélie, and Christoph Lampert. “A Flexible Selection Scheme for Minimum-Effort Transfer Learning.” In 2020 IEEE Winter Conference on Applications of Computer Vision. IEEE, 2020. https://doi.org/10.1109/WACV45572.2020.9093635. ieee: A. Royer and C. Lampert, “A flexible selection scheme for minimum-effort transfer learning,” in 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, United States, 2020. ista: 'Royer A, Lampert C. 2020. A flexible selection scheme for minimum-effort transfer learning. 2020 IEEE Winter Conference on Applications of Computer Vision. WACV: Winter Conference on Applications of Computer Vision, 2180–2189.' mla: Royer, Amélie, and Christoph Lampert. “A Flexible Selection Scheme for Minimum-Effort Transfer Learning.” 2020 IEEE Winter Conference on Applications of Computer Vision, 2180–2189, IEEE, 2020, doi:10.1109/WACV45572.2020.9093635. short: A. Royer, C. Lampert, in:, 2020 IEEE Winter Conference on Applications of Computer Vision, IEEE, 2020. conference: end_date: 2020-03-05 location: Snowmass Village, CO, United States name: 'WACV: Winter Conference on Applications of Computer Vision' start_date: 2020-03-01 date_created: 2020-06-07T22:00:53Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-09-07T13:16:17Z day: '01' department: - _id: ChLa doi: 10.1109/WACV45572.2020.9093635 external_id: arxiv: - '2008.11995' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/2008.11995 month: '03' oa: 1 oa_version: Preprint publication: 2020 IEEE Winter Conference on Applications of Computer Vision publication_identifier: isbn: - '9781728165530' publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '8331' relation: dissertation_contains status: deleted - id: '8390' relation: dissertation_contains status: public scopus_import: '1' status: public title: A flexible selection scheme for minimum-effort transfer learning type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8193' abstract: - lang: eng text: 'Multiple-environment Markov decision processes (MEMDPs) are MDPs equipped with not one, but multiple probabilistic transition functions, which represent the various possible unknown environments. While the previous research on MEMDPs focused on theoretical properties for long-run average payoff, we study them with discounted-sum payoff and focus on their practical advantages and applications. MEMDPs can be viewed as a special case of Partially observable and Mixed observability MDPs: the state of the system is perfectly observable, but not the environment. We show that the specific structure of MEMDPs allows for more efficient algorithmic analysis, in particular for faster belief updates. We demonstrate the applicability of MEMDPs in several domains. In particular, we formalize the sequential decision-making approach to contextual recommendation systems as MEMDPs and substantially improve over the previous MDP approach.' acknowledgement: Krishnendu Chatterjee is supported by the Austrian ScienceFund (FWF) NFN Grant No. S11407-N23 (RiSE/SHiNE),and COST Action GAMENET. Petr Novotn ́y is supported bythe Czech Science Foundation grant No. GJ19-15134Y. article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik - first_name: Deep full_name: Karkhanis, Deep last_name: Karkhanis - first_name: Petr full_name: Novotný, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotný - first_name: Amélie full_name: Royer, Amélie id: 3811D890-F248-11E8-B48F-1D18A9856A87 last_name: Royer orcid: 0000-0002-8407-0705 citation: ama: 'Chatterjee K, Chmelik M, Karkhanis D, Novotný P, Royer A. Multiple-environment Markov decision processes: Efficient analysis and applications. In: Proceedings of the 30th International Conference on Automated Planning and Scheduling. Vol 30. Association for the Advancement of Artificial Intelligence; 2020:48-56.' apa: 'Chatterjee, K., Chmelik, M., Karkhanis, D., Novotný, P., & Royer, A. (2020). Multiple-environment Markov decision processes: Efficient analysis and applications. In Proceedings of the 30th International Conference on Automated Planning and Scheduling (Vol. 30, pp. 48–56). Nancy, France: Association for the Advancement of Artificial Intelligence.' chicago: 'Chatterjee, Krishnendu, Martin Chmelik, Deep Karkhanis, Petr Novotný, and Amélie Royer. “Multiple-Environment Markov Decision Processes: Efficient Analysis and Applications.” In Proceedings of the 30th International Conference on Automated Planning and Scheduling, 30:48–56. Association for the Advancement of Artificial Intelligence, 2020.' ieee: 'K. Chatterjee, M. Chmelik, D. Karkhanis, P. Novotný, and A. Royer, “Multiple-environment Markov decision processes: Efficient analysis and applications,” in Proceedings of the 30th International Conference on Automated Planning and Scheduling, Nancy, France, 2020, vol. 30, pp. 48–56.' ista: 'Chatterjee K, Chmelik M, Karkhanis D, Novotný P, Royer A. 2020. Multiple-environment Markov decision processes: Efficient analysis and applications. Proceedings of the 30th International Conference on Automated Planning and Scheduling. ICAPS: International Conference on Automated Planning and Scheduling vol. 30, 48–56.' mla: 'Chatterjee, Krishnendu, et al. “Multiple-Environment Markov Decision Processes: Efficient Analysis and Applications.” Proceedings of the 30th International Conference on Automated Planning and Scheduling, vol. 30, Association for the Advancement of Artificial Intelligence, 2020, pp. 48–56.' short: K. Chatterjee, M. Chmelik, D. Karkhanis, P. Novotný, A. Royer, in:, Proceedings of the 30th International Conference on Automated Planning and Scheduling, Association for the Advancement of Artificial Intelligence, 2020, pp. 48–56. conference: end_date: 2020-10-30 location: Nancy, France name: 'ICAPS: International Conference on Automated Planning and Scheduling' start_date: 2020-10-26 date_created: 2020-08-02T22:00:58Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-09-07T13:16:18Z day: '01' department: - _id: KrCh intvolume: ' 30' language: - iso: eng month: '06' oa_version: None page: 48-56 project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: Proceedings of the 30th International Conference on Automated Planning and Scheduling publication_identifier: eissn: - '23340843' issn: - '23340835' publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' related_material: record: - id: '8390' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Multiple-environment Markov decision processes: Efficient analysis and applications' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 30 year: '2020' ... --- _id: '8092' abstract: - lang: eng text: Image translation refers to the task of mapping images from a visual domain to another. Given two unpaired collections of images, we aim to learn a mapping between the corpus-level style of each collection, while preserving semantic content shared across the two domains. We introduce xgan, a dual adversarial auto-encoder, which captures a shared representation of the common domain semantic content in an unsupervised way, while jointly learning the domain-to-domain image translations in both directions. We exploit ideas from the domain adaptation literature and define a semantic consistency loss which encourages the learned embedding to preserve semantics shared across domains. We report promising qualitative results for the task of face-to-cartoon translation. The cartoon dataset we collected for this purpose, “CartoonSet”, is also publicly available as a new benchmark for semantic style transfer at https://google.github.io/cartoonset/index.html. article_processing_charge: No author: - first_name: Amélie full_name: Royer, Amélie id: 3811D890-F248-11E8-B48F-1D18A9856A87 last_name: Royer orcid: 0000-0002-8407-0705 - first_name: Konstantinos full_name: Bousmalis, Konstantinos last_name: Bousmalis - first_name: Stephan full_name: Gouws, Stephan last_name: Gouws - first_name: Fred full_name: Bertsch, Fred last_name: Bertsch - first_name: Inbar full_name: Mosseri, Inbar last_name: Mosseri - first_name: Forrester full_name: Cole, Forrester last_name: Cole - first_name: Kevin full_name: Murphy, Kevin last_name: Murphy citation: ama: 'Royer A, Bousmalis K, Gouws S, et al. XGAN: Unsupervised image-to-image translation for many-to-many mappings. In: Singh R, Vatsa M, Patel VM, Ratha N, eds. Domain Adaptation for Visual Understanding. Springer Nature; 2020:33-49. doi:10.1007/978-3-030-30671-7_3' apa: 'Royer, A., Bousmalis, K., Gouws, S., Bertsch, F., Mosseri, I., Cole, F., & Murphy, K. (2020). XGAN: Unsupervised image-to-image translation for many-to-many mappings. In R. Singh, M. Vatsa, V. M. Patel, & N. Ratha (Eds.), Domain Adaptation for Visual Understanding (pp. 33–49). Springer Nature. https://doi.org/10.1007/978-3-030-30671-7_3' chicago: 'Royer, Amélie, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole, and Kevin Murphy. “XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings.” In Domain Adaptation for Visual Understanding, edited by Richa Singh, Mayank Vatsa, Vishal M. Patel, and Nalini Ratha, 33–49. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-30671-7_3.' ieee: 'A. Royer et al., “XGAN: Unsupervised image-to-image translation for many-to-many mappings,” in Domain Adaptation for Visual Understanding, R. Singh, M. Vatsa, V. M. Patel, and N. Ratha, Eds. Springer Nature, 2020, pp. 33–49.' ista: 'Royer A, Bousmalis K, Gouws S, Bertsch F, Mosseri I, Cole F, Murphy K. 2020.XGAN: Unsupervised image-to-image translation for many-to-many mappings. In: Domain Adaptation for Visual Understanding. , 33–49.' mla: 'Royer, Amélie, et al. “XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings.” Domain Adaptation for Visual Understanding, edited by Richa Singh et al., Springer Nature, 2020, pp. 33–49, doi:10.1007/978-3-030-30671-7_3.' short: A. Royer, K. Bousmalis, S. Gouws, F. Bertsch, I. Mosseri, F. Cole, K. Murphy, in:, R. Singh, M. Vatsa, V.M. Patel, N. Ratha (Eds.), Domain Adaptation for Visual Understanding, Springer Nature, 2020, pp. 33–49. date_created: 2020-07-05T22:00:46Z date_published: 2020-01-08T00:00:00Z date_updated: 2023-09-07T13:16:18Z day: '08' department: - _id: ChLa doi: 10.1007/978-3-030-30671-7_3 editor: - first_name: Richa full_name: Singh, Richa last_name: Singh - first_name: Mayank full_name: Vatsa, Mayank last_name: Vatsa - first_name: Vishal M. full_name: Patel, Vishal M. last_name: Patel - first_name: Nalini full_name: Ratha, Nalini last_name: Ratha external_id: arxiv: - '1711.05139' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1711.05139 month: '01' oa: 1 oa_version: Preprint page: 33-49 publication: Domain Adaptation for Visual Understanding publication_identifier: isbn: - '9783030306717' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '8331' relation: dissertation_contains status: deleted - id: '8390' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'XGAN: Unsupervised image-to-image translation for many-to-many mappings' type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7944' abstract: - lang: eng text: "This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph.\r\n\r\nFor triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton.\r\n\r\nIn the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 citation: ama: Masárová Z. Reconfiguration problems. 2020. doi:10.15479/AT:ISTA:7944 apa: Masárová, Z. (2020). Reconfiguration problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7944 chicago: Masárová, Zuzana. “Reconfiguration Problems.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7944. ieee: Z. Masárová, “Reconfiguration problems,” Institute of Science and Technology Austria, 2020. ista: Masárová Z. 2020. Reconfiguration problems. Institute of Science and Technology Austria. mla: Masárová, Zuzana. Reconfiguration Problems. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7944. short: Z. Masárová, Reconfiguration Problems, Institute of Science and Technology Austria, 2020. date_created: 2020-06-08T00:49:46Z date_published: 2020-06-09T00:00:00Z date_updated: 2023-09-07T13:17:37Z day: '09' ddc: - '516' - '514' degree_awarded: PhD department: - _id: HeEd - _id: UlWa doi: 10.15479/AT:ISTA:7944 file: - access_level: open_access checksum: df688bc5a82b50baee0b99d25fc7b7f0 content_type: application/pdf creator: zmasarov date_created: 2020-06-08T00:34:00Z date_updated: 2020-07-14T12:48:05Z file_id: '7945' file_name: THESIS_Zuzka_Masarova.pdf file_size: 13661779 relation: main_file - access_level: closed checksum: 45341a35b8f5529c74010b7af43ac188 content_type: application/zip creator: zmasarov date_created: 2020-06-08T00:35:30Z date_updated: 2020-07-14T12:48:05Z file_id: '7946' file_name: THESIS_Zuzka_Masarova_SOURCE_FILES.zip file_size: 32184006 relation: source_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' keyword: - reconfiguration - reconfiguration graph - triangulations - flip - constrained triangulations - shellability - piecewise-linear balls - token swapping - trees - coloured weighted token swapping language: - iso: eng license: https://creativecommons.org/licenses/by-sa/4.0/ month: '06' oa: 1 oa_version: Published Version page: '160' publication_identifier: isbn: - 978-3-99078-005-3 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7950' relation: part_of_dissertation status: public - id: '5986' relation: part_of_dissertation status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Reconfiguration problems tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8587' abstract: - lang: eng text: Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules. acknowledgement: We are grateful to Areg Ghazaryan for valuable discussions. M.L. acknowledges support from the Austrian Science Fund (FWF) under Project No. P29902-N27 and from the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). G.B. acknowledges support from the Austrian Science Fund (FWF) under Project No. M2461-N27. A.D. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the European Research Council (ERC) Grant Agreement No. 694227 and under the Marie Sklodowska-Curie Grant Agreement No. 836146. R.S. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2111 – 390814868. article_number: '164302' article_processing_charge: No article_type: original author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Andreas full_name: Deuchert, Andreas id: 4DA65CD0-F248-11E8-B48F-1D18A9856A87 last_name: Deuchert orcid: 0000-0003-3146-6746 citation: ama: Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. 2020;152(16). doi:10.1063/1.5144759 apa: Li, X., Yakaboylu, E., Bighin, G., Schmidt, R., Lemeshko, M., & Deuchert, A. (2020). Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/1.5144759 chicago: Li, Xiang, Enderalp Yakaboylu, Giacomo Bighin, Richard Schmidt, Mikhail Lemeshko, and Andreas Deuchert. “Intermolecular Forces and Correlations Mediated by a Phonon Bath.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/1.5144759. ieee: X. Li, E. Yakaboylu, G. Bighin, R. Schmidt, M. Lemeshko, and A. Deuchert, “Intermolecular forces and correlations mediated by a phonon bath,” The Journal of Chemical Physics, vol. 152, no. 16. AIP Publishing, 2020. ista: Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. 2020. Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. 152(16), 164302. mla: Li, Xiang, et al. “Intermolecular Forces and Correlations Mediated by a Phonon Bath.” The Journal of Chemical Physics, vol. 152, no. 16, 164302, AIP Publishing, 2020, doi:10.1063/1.5144759. short: X. Li, E. Yakaboylu, G. Bighin, R. Schmidt, M. Lemeshko, A. Deuchert, The Journal of Chemical Physics 152 (2020). date_created: 2020-09-30T10:33:17Z date_published: 2020-04-27T00:00:00Z date_updated: 2023-09-07T13:16:42Z day: '27' department: - _id: MiLe - _id: RoSe doi: 10.1063/1.5144759 ec_funded: 1 external_id: arxiv: - '1912.02658' isi: - '000530448300001' intvolume: ' 152' isi: 1 issue: '16' keyword: - Physical and Theoretical Chemistry - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.02658 month: '04' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: The Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 issn: - 0021-9606 publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '8958' relation: dissertation_contains status: public status: public title: Intermolecular forces and correlations mediated by a phonon bath type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 152 year: '2020' ... --- _id: '8341' abstract: - lang: eng text: "One of the most striking hallmarks of the eukaryotic cell is the presence of intracellular vesicles and organelles. Each of these membrane-enclosed compartments has a distinct composition of lipids and proteins, which is essential for accurate membrane traffic and homeostasis. Interestingly, their biochemical identities are achieved with the help\r\nof small GTPases of the Rab family, which cycle between GDP- and GTP-bound forms on the selected membrane surface. While this activity switch is well understood for an individual protein, how Rab GTPases collectively transition between states to generate decisive signal propagation in space and time is unclear. In my PhD thesis, I present\r\nin vitro reconstitution experiments with theoretical modeling to systematically study a minimal Rab5 activation network from bottom-up. We find that positive feedback based on known molecular interactions gives rise to bistable GTPase activity switching on system’s scale. Furthermore, we determine that collective transition near the critical\r\npoint is intrinsically stochastic and provide evidence that the inactive Rab5 abundance on the membrane can shape the network response. Finally, we demonstrate that collective switching can spread on the lipid bilayer as a traveling activation wave, representing a possible emergent activity pattern in endosomal maturation. Together, our\r\nfindings reveal new insights into the self-organization properties of signaling networks away from chemical equilibrium. Our work highlights the importance of systematic characterization of biochemical systems in well-defined physiological conditions. This way, we were able to answer long-standing open questions in the field and close the gap between regulatory processes on a molecular scale and emergent responses on system’s level." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: NanoFab acknowledgement: My thanks goes to the Loose lab members, BioImaging, Life Science and Nanofabrication Facilities and the wonderful international community at IST for sharing this experience with me. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Urban full_name: Bezeljak, Urban id: 2A58201A-F248-11E8-B48F-1D18A9856A87 last_name: Bezeljak orcid: 0000-0003-1365-5631 citation: ama: Bezeljak U. In vitro reconstitution of a Rab activation switch. 2020. doi:10.15479/AT:ISTA:8341 apa: Bezeljak, U. (2020). In vitro reconstitution of a Rab activation switch. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8341 chicago: Bezeljak, Urban. “In Vitro Reconstitution of a Rab Activation Switch.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8341. ieee: U. Bezeljak, “In vitro reconstitution of a Rab activation switch,” Institute of Science and Technology Austria, 2020. ista: Bezeljak U. 2020. In vitro reconstitution of a Rab activation switch. Institute of Science and Technology Austria. mla: Bezeljak, Urban. In Vitro Reconstitution of a Rab Activation Switch. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8341. short: U. Bezeljak, In Vitro Reconstitution of a Rab Activation Switch, Institute of Science and Technology Austria, 2020. date_created: 2020-09-08T08:53:53Z date_published: 2020-09-08T00:00:00Z date_updated: 2023-09-07T13:17:06Z day: '08' ddc: - '570' degree_awarded: PhD department: - _id: MaLo doi: 10.15479/AT:ISTA:8341 file: - access_level: closed checksum: 70871b335a595252a66c6bbf0824fb02 content_type: application/x-zip-compressed creator: dernst date_created: 2020-09-08T09:00:29Z date_updated: 2021-09-16T12:49:12Z file_id: '8342' file_name: 2020_Urban_Bezeljak_Thesis_TeX.zip file_size: 65246782 relation: source_file - access_level: open_access checksum: 59a62275088b00b7241e6ff4136434c7 content_type: application/pdf creator: dernst date_created: 2020-09-08T09:00:27Z date_updated: 2021-09-16T12:49:12Z file_id: '8343' file_name: 2020_Urban_Bezeljak_Thesis.pdf file_size: 31259058 relation: main_file file_date_updated: 2021-09-16T12:49:12Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '215' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7580' relation: part_of_dissertation status: public status: public supervisor: - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 title: In vitro reconstitution of a Rab activation switch tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7580' abstract: - lang: eng text: The eukaryotic endomembrane system is controlled by small GTPases of the Rab family, which are activated at defined times and locations in a switch-like manner. While this switch is well understood for an individual protein, how regulatory networks produce intracellular activity patterns is currently not known. Here, we combine in vitro reconstitution experiments with computational modeling to study a minimal Rab5 activation network. We find that the molecular interactions in this system give rise to a positive feedback and bistable collective switching of Rab5. Furthermore, we find that switching near the critical point is intrinsically stochastic and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Notably, we demonstrate that collective switching can spread on the membrane surface as a traveling wave of Rab5 activation. Together, our findings reveal how biochemical signaling networks control vesicle trafficking pathways and how their nonequilibrium properties define the spatiotemporal organization of the cell. acknowledged_ssus: - _id: Bio - _id: LifeSc article_processing_charge: No article_type: original author: - first_name: Urban full_name: Bezeljak, Urban id: 2A58201A-F248-11E8-B48F-1D18A9856A87 last_name: Bezeljak orcid: 0000-0003-1365-5631 - first_name: Hrushikesh full_name: Loya, Hrushikesh last_name: Loya - first_name: Beata M full_name: Kaczmarek, Beata M id: 36FA4AFA-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarek - first_name: Timothy E. full_name: Saunders, Timothy E. last_name: Saunders - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 citation: ama: Bezeljak U, Loya H, Kaczmarek BM, Saunders TE, Loose M. Stochastic activation and bistability in a Rab GTPase regulatory network. Proceedings of the National Academy of Sciences. 2020;117(12):6504-6549. doi:10.1073/pnas.1921027117 apa: Bezeljak, U., Loya, H., Kaczmarek, B. M., Saunders, T. E., & Loose, M. (2020). Stochastic activation and bistability in a Rab GTPase regulatory network. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1921027117 chicago: Bezeljak, Urban, Hrushikesh Loya, Beata M Kaczmarek, Timothy E. Saunders, and Martin Loose. “Stochastic Activation and Bistability in a Rab GTPase Regulatory Network.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.1921027117. ieee: U. Bezeljak, H. Loya, B. M. Kaczmarek, T. E. Saunders, and M. Loose, “Stochastic activation and bistability in a Rab GTPase regulatory network,” Proceedings of the National Academy of Sciences, vol. 117, no. 12. Proceedings of the National Academy of Sciences, pp. 6504–6549, 2020. ista: Bezeljak U, Loya H, Kaczmarek BM, Saunders TE, Loose M. 2020. Stochastic activation and bistability in a Rab GTPase regulatory network. Proceedings of the National Academy of Sciences. 117(12), 6504–6549. mla: Bezeljak, Urban, et al. “Stochastic Activation and Bistability in a Rab GTPase Regulatory Network.” Proceedings of the National Academy of Sciences, vol. 117, no. 12, Proceedings of the National Academy of Sciences, 2020, pp. 6504–49, doi:10.1073/pnas.1921027117. short: U. Bezeljak, H. Loya, B.M. Kaczmarek, T.E. Saunders, M. Loose, Proceedings of the National Academy of Sciences 117 (2020) 6504–6549. date_created: 2020-03-12T05:32:26Z date_published: 2020-03-24T00:00:00Z date_updated: 2023-09-07T13:17:06Z day: '24' department: - _id: MaLo - _id: CaBe doi: 10.1073/pnas.1921027117 external_id: isi: - '000521821800040' intvolume: ' 117' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/776567 month: '03' oa: 1 oa_version: Preprint page: 6504-6549 project: - _id: 2599F062-B435-11E9-9278-68D0E5697425 grant_number: RGY0083/2016 name: Reconstitution of cell polarity and axis determination in a cell-free system publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/proteins-as-molecular-switches/ record: - id: '8341' relation: dissertation_contains status: public scopus_import: '1' status: public title: Stochastic activation and bistability in a Rab GTPase regulatory network type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 117 year: '2020' ...