--- _id: '10862' abstract: - lang: eng text: We consider the sum of two large Hermitian matrices A and B with a Haar unitary conjugation bringing them into a general relative position. We prove that the eigenvalue density on the scale slightly above the local eigenvalue spacing is asymptotically given by the free additive convolution of the laws of A and B as the dimension of the matrix increases. This implies optimal rigidity of the eigenvalues and optimal rate of convergence in Voiculescu's theorem. Our previous works [4], [5] established these results in the bulk spectrum, the current paper completely settles the problem at the spectral edges provided they have the typical square-root behavior. The key element of our proof is to compensate the deterioration of the stability of the subordination equations by sharp error estimates that properly account for the local density near the edge. Our results also hold if the Haar unitary matrix is replaced by the Haar orthogonal matrix. acknowledgement: Partially supported by ERC Advanced Grant RANMAT No. 338804. article_number: '108639' article_processing_charge: No article_type: original author: - first_name: Zhigang full_name: Bao, Zhigang id: 442E6A6C-F248-11E8-B48F-1D18A9856A87 last_name: Bao orcid: 0000-0003-3036-1475 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Kevin full_name: Schnelli, Kevin last_name: Schnelli citation: ama: Bao Z, Erdös L, Schnelli K. Spectral rigidity for addition of random matrices at the regular edge. Journal of Functional Analysis. 2020;279(7). doi:10.1016/j.jfa.2020.108639 apa: Bao, Z., Erdös, L., & Schnelli, K. (2020). Spectral rigidity for addition of random matrices at the regular edge. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2020.108639 chicago: Bao, Zhigang, László Erdös, and Kevin Schnelli. “Spectral Rigidity for Addition of Random Matrices at the Regular Edge.” Journal of Functional Analysis. Elsevier, 2020. https://doi.org/10.1016/j.jfa.2020.108639. ieee: Z. Bao, L. Erdös, and K. Schnelli, “Spectral rigidity for addition of random matrices at the regular edge,” Journal of Functional Analysis, vol. 279, no. 7. Elsevier, 2020. ista: Bao Z, Erdös L, Schnelli K. 2020. Spectral rigidity for addition of random matrices at the regular edge. Journal of Functional Analysis. 279(7), 108639. mla: Bao, Zhigang, et al. “Spectral Rigidity for Addition of Random Matrices at the Regular Edge.” Journal of Functional Analysis, vol. 279, no. 7, 108639, Elsevier, 2020, doi:10.1016/j.jfa.2020.108639. short: Z. Bao, L. Erdös, K. Schnelli, Journal of Functional Analysis 279 (2020). date_created: 2022-03-18T10:18:59Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-24T14:08:42Z day: '15' department: - _id: LaEr doi: 10.1016/j.jfa.2020.108639 ec_funded: 1 external_id: arxiv: - '1708.01597' isi: - '000559623200009' intvolume: ' 279' isi: 1 issue: '7' keyword: - Analysis language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1708.01597 month: '10' oa: 1 oa_version: Preprint project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Journal of Functional Analysis publication_identifier: issn: - 0022-1236 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Spectral rigidity for addition of random matrices at the regular edge type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 279 year: '2020' ... --- _id: '10867' abstract: - lang: eng text: In this paper we find a tight estimate for Gromov’s waist of the balls in spaces of constant curvature, deduce the estimates for the balls in Riemannian manifolds with upper bounds on the curvature (CAT(ϰ)-spaces), and establish similar result for normed spaces. acknowledgement: ' Supported by the Russian Foundation for Basic Research grant 18-01-00036.' article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Karasev R. Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. 2020;2020(3):669-697. doi:10.1093/imrn/rny037 apa: Akopyan, A., & Karasev, R. (2020). Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rny037 chicago: Akopyan, Arseniy, and Roman Karasev. “Waist of Balls in Hyperbolic and Spherical Spaces.” International Mathematics Research Notices. Oxford University Press, 2020. https://doi.org/10.1093/imrn/rny037. ieee: A. Akopyan and R. Karasev, “Waist of balls in hyperbolic and spherical spaces,” International Mathematics Research Notices, vol. 2020, no. 3. Oxford University Press, pp. 669–697, 2020. ista: Akopyan A, Karasev R. 2020. Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. 2020(3), 669–697. mla: Akopyan, Arseniy, and Roman Karasev. “Waist of Balls in Hyperbolic and Spherical Spaces.” International Mathematics Research Notices, vol. 2020, no. 3, Oxford University Press, 2020, pp. 669–97, doi:10.1093/imrn/rny037. short: A. Akopyan, R. Karasev, International Mathematics Research Notices 2020 (2020) 669–697. date_created: 2022-03-18T11:39:30Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-24T14:19:55Z day: '01' department: - _id: HeEd doi: 10.1093/imrn/rny037 external_id: arxiv: - '1702.07513' isi: - '000522852700002' intvolume: ' 2020' isi: 1 issue: '3' keyword: - General Mathematics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.07513 month: '02' oa: 1 oa_version: Preprint page: 669-697 publication: International Mathematics Research Notices publication_identifier: eissn: - 1687-0247 issn: - 1073-7928 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Waist of balls in hyperbolic and spherical spaces type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2020 year: '2020' ... --- _id: '9799' abstract: - lang: eng text: Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: John J. full_name: Welch, John J. last_name: Welch citation: ama: Fraisse C, Welch JJ. Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes. 2020. doi:10.6084/m9.figshare.7957469.v1 apa: Fraisse, C., & Welch, J. J. (2020). Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes. Royal Society of London. https://doi.org/10.6084/m9.figshare.7957469.v1 chicago: Fraisse, Christelle, and John J. Welch. “Simulation Code for Fig S1 from the Distribution of Epistasis on Simple Fitness Landscapes.” Royal Society of London, 2020. https://doi.org/10.6084/m9.figshare.7957469.v1. ieee: C. Fraisse and J. J. Welch, “Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes.” Royal Society of London, 2020. ista: Fraisse C, Welch JJ. 2020. Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes, Royal Society of London, 10.6084/m9.figshare.7957469.v1. mla: Fraisse, Christelle, and John J. Welch. Simulation Code for Fig S1 from the Distribution of Epistasis on Simple Fitness Landscapes. Royal Society of London, 2020, doi:10.6084/m9.figshare.7957469.v1. short: C. Fraisse, J.J. Welch, (2020). date_created: 2021-08-06T11:26:57Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-25T10:34:41Z day: '15' department: - _id: BeVi - _id: NiBa doi: 10.6084/m9.figshare.7957469.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.7957469.v1 month: '10' oa: 1 oa_version: Published Version publisher: Royal Society of London related_material: record: - id: '6467' relation: used_in_publication status: public status: public title: Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '9798' abstract: - lang: eng text: Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: John J. full_name: Welch, John J. last_name: Welch citation: ama: Fraisse C, Welch JJ. Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes. 2020. doi:10.6084/m9.figshare.7957472.v1 apa: Fraisse, C., & Welch, J. J. (2020). Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes. Royal Society of London. https://doi.org/10.6084/m9.figshare.7957472.v1 chicago: Fraisse, Christelle, and John J. Welch. “Simulation Code for Fig S2 from the Distribution of Epistasis on Simple Fitness Landscapes.” Royal Society of London, 2020. https://doi.org/10.6084/m9.figshare.7957472.v1. ieee: C. Fraisse and J. J. Welch, “Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes.” Royal Society of London, 2020. ista: Fraisse C, Welch JJ. 2020. Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes, Royal Society of London, 10.6084/m9.figshare.7957472.v1. mla: Fraisse, Christelle, and John J. Welch. Simulation Code for Fig S2 from the Distribution of Epistasis on Simple Fitness Landscapes. Royal Society of London, 2020, doi:10.6084/m9.figshare.7957472.v1. short: C. Fraisse, J.J. Welch, (2020). date_created: 2021-08-06T11:18:15Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-25T10:34:41Z day: '15' department: - _id: BeVi - _id: NiBa doi: 10.6084/m9.figshare.7957472.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.7957472.v1 month: '10' oa: 1 oa_version: Published Version publisher: Royal Society of London related_material: record: - id: '6467' relation: used_in_publication status: public status: public title: Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '6488' abstract: - lang: eng text: We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish. article_number: '2050006' article_processing_charge: No article_type: original author: - first_name: Giorgio full_name: Cipolloni, Giorgio id: 42198EFA-F248-11E8-B48F-1D18A9856A87 last_name: Cipolloni orcid: 0000-0002-4901-7992 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 citation: ama: 'Cipolloni G, Erdös L. Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices. Random Matrices: Theory and Application. 2020;9(3). doi:10.1142/S2010326320500069' apa: 'Cipolloni, G., & Erdös, L. (2020). Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices. Random Matrices: Theory and Application. World Scientific Publishing. https://doi.org/10.1142/S2010326320500069' chicago: 'Cipolloni, Giorgio, and László Erdös. “Fluctuations for Differences of Linear Eigenvalue Statistics for Sample Covariance Matrices.” Random Matrices: Theory and Application. World Scientific Publishing, 2020. https://doi.org/10.1142/S2010326320500069.' ieee: 'G. Cipolloni and L. Erdös, “Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices,” Random Matrices: Theory and Application, vol. 9, no. 3. World Scientific Publishing, 2020.' ista: 'Cipolloni G, Erdös L. 2020. Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices. Random Matrices: Theory and Application. 9(3), 2050006.' mla: 'Cipolloni, Giorgio, and László Erdös. “Fluctuations for Differences of Linear Eigenvalue Statistics for Sample Covariance Matrices.” Random Matrices: Theory and Application, vol. 9, no. 3, 2050006, World Scientific Publishing, 2020, doi:10.1142/S2010326320500069.' short: 'G. Cipolloni, L. Erdös, Random Matrices: Theory and Application 9 (2020).' date_created: 2019-05-26T21:59:14Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-08-28T08:38:48Z day: '01' department: - _id: LaEr doi: 10.1142/S2010326320500069 ec_funded: 1 external_id: arxiv: - '1806.08751' isi: - '000547464400001' intvolume: ' 9' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.08751 month: '07' oa: 1 oa_version: Preprint project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 'Random Matrices: Theory and Application' publication_identifier: eissn: - '20103271' issn: - '20103263' publication_status: published publisher: World Scientific Publishing quality_controlled: '1' scopus_import: '1' status: public title: Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '8746' abstract: - lang: eng text: "Research in the field of colloidal semiconductor nanocrystals (NCs) has progressed tremendously, mostly because of their exceptional optoelectronic properties. Core@shell NCs, in which one or more inorganic layers overcoat individual NCs, recently received significant attention due to their remarkable optical characteristics. Reduced Auger recombination, suppressed blinking, and enhanced carrier multiplication are among the merits of core@shell NCs. Despite their importance in device development, the influence of the shell and the surface modification of the core@shell NC assemblies on the charge carrier transport remains a pertinent research objective. Type-II PbTe@PbS core@shell NCs, in which exclusive electron transport was demonstrated, still exhibit instability of their electron \r\n ransport. Here, we demonstrate the enhancement of electron transport and stability in PbTe@PbS core@shell NC assemblies using iodide as a surface passivating ligand. The combination of the PbS shelling and the use of the iodide ligand contributes to the addition of one mobile electron for each core@shell NC. Furthermore, both electron mobility and on/off current modulation ratio values of the core@shell NC field-effect transistor are steady with the usage of iodide. Excellent stability in these exclusively electron-transporting core@shell NCs paves the way for their utilization in electronic devices. " acknowledgement: "This work was partly supported by Grants-in-Aid for Scientific Research by Young Scientist A (KAKENHI Wakate-A) No.\r\nJP17H04802, Grants-in-Aid for Scientific Research No. JP19H05602 from the Japan Society for the Promotion of Science, and RIKEN Incentive Research Grant (Shoreikadai) 2016. M.V.K. and M.I. acknowledge financial support from the European Union (EU) via FP7 ERC Starting Grant 2012 (Project NANOSOLID, GA No. 306733) and ETH Zurich via ETH career seed grant (No. SEED-18 16-2). We acknowledge Mrs. T. Kikitsu and Dr. D. Hashizume (RIKEN-CEMS) for access to the transmission electron microscope facility." article_number: '173101' article_processing_charge: No article_type: original author: - first_name: Retno full_name: Miranti, Retno last_name: Miranti - first_name: Ricky Dwi full_name: Septianto, Ricky Dwi last_name: Septianto - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Maksym V. full_name: Kovalenko, Maksym V. last_name: Kovalenko - first_name: Nobuhiro full_name: Matsushita, Nobuhiro last_name: Matsushita - first_name: Yoshihiro full_name: Iwasa, Yoshihiro last_name: Iwasa - first_name: Satria Zulkarnaen full_name: Bisri, Satria Zulkarnaen last_name: Bisri citation: ama: Miranti R, Septianto RD, Ibáñez M, et al. Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids. Applied Physics Letters. 2020;117(17). doi:10.1063/5.0025965 apa: Miranti, R., Septianto, R. D., Ibáñez, M., Kovalenko, M. V., Matsushita, N., Iwasa, Y., & Bisri, S. Z. (2020). Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids. Applied Physics Letters. AIP Publishing. https://doi.org/10.1063/5.0025965 chicago: Miranti, Retno, Ricky Dwi Septianto, Maria Ibáñez, Maksym V. Kovalenko, Nobuhiro Matsushita, Yoshihiro Iwasa, and Satria Zulkarnaen Bisri. “Electron Transport in Iodide-Capped Core@shell PbTe@PbS Colloidal Nanocrystal Solids.” Applied Physics Letters. AIP Publishing, 2020. https://doi.org/10.1063/5.0025965. ieee: R. Miranti et al., “Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids,” Applied Physics Letters, vol. 117, no. 17. AIP Publishing, 2020. ista: Miranti R, Septianto RD, Ibáñez M, Kovalenko MV, Matsushita N, Iwasa Y, Bisri SZ. 2020. Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids. Applied Physics Letters. 117(17), 173101. mla: Miranti, Retno, et al. “Electron Transport in Iodide-Capped Core@shell PbTe@PbS Colloidal Nanocrystal Solids.” Applied Physics Letters, vol. 117, no. 17, 173101, AIP Publishing, 2020, doi:10.1063/5.0025965. short: R. Miranti, R.D. Septianto, M. Ibáñez, M.V. Kovalenko, N. Matsushita, Y. Iwasa, S.Z. Bisri, Applied Physics Letters 117 (2020). date_created: 2020-11-09T08:05:43Z date_published: 2020-10-26T00:00:00Z date_updated: 2023-09-05T11:57:23Z day: '26' department: - _id: MaIb doi: 10.1063/5.0025965 external_id: isi: - '000591639700001' intvolume: ' 117' isi: 1 issue: '17' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1063/5.0025965 month: '10' oa: 1 oa_version: Published Version publication: Applied Physics Letters publication_identifier: eissn: - 1077-3118 issn: - 0003-6951 publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 117 year: '2020' ... --- _id: '7985' abstract: - lang: eng text: The goal of limiting global warming to 1.5 °C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal–air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal–air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li–O2 cells but include Na–O2, K–O2, and Mg–O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li–O2 cells. acknowledgement: "S.A.F. is indebted to the European Research Council (ERC) under the European Union’s\r\nHorizon 2020 research and innovation programme (grant agreement No 636069)." article_processing_charge: No article_type: review author: - first_name: WJ full_name: Kwak, WJ last_name: Kwak - first_name: D full_name: Sharon, D last_name: Sharon - first_name: C full_name: Xia, C last_name: Xia - first_name: H full_name: Kim, H last_name: Kim - first_name: LR full_name: Johnson, LR last_name: Johnson - first_name: PG full_name: Bruce, PG last_name: Bruce - first_name: LF full_name: Nazar, LF last_name: Nazar - first_name: YK full_name: Sun, YK last_name: Sun - first_name: AA full_name: Frimer, AA last_name: Frimer - first_name: M full_name: Noked, M last_name: Noked - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 - first_name: D full_name: Aurbach, D last_name: Aurbach citation: ama: 'Kwak W, Sharon D, Xia C, et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chemical Reviews. 2020;120(14):6626-6683. doi:10.1021/acs.chemrev.9b00609' apa: 'Kwak, W., Sharon, D., Xia, C., Kim, H., Johnson, L., Bruce, P., … Aurbach, D. (2020). Lithium-oxygen batteries and related systems: Potential, status, and future. Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.9b00609' chicago: 'Kwak, WJ, D Sharon, C Xia, H Kim, LR Johnson, PG Bruce, LF Nazar, et al. “Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future.” Chemical Reviews. American Chemical Society, 2020. https://doi.org/10.1021/acs.chemrev.9b00609.' ieee: 'W. Kwak et al., “Lithium-oxygen batteries and related systems: Potential, status, and future,” Chemical Reviews, vol. 120, no. 14. American Chemical Society, pp. 6626–6683, 2020.' ista: 'Kwak W, Sharon D, Xia C, Kim H, Johnson L, Bruce P, Nazar L, Sun Y, Frimer A, Noked M, Freunberger SA, Aurbach D. 2020. Lithium-oxygen batteries and related systems: Potential, status, and future. Chemical Reviews. 120(14), 6626–6683.' mla: 'Kwak, WJ, et al. “Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future.” Chemical Reviews, vol. 120, no. 14, American Chemical Society, 2020, pp. 6626–83, doi:10.1021/acs.chemrev.9b00609.' short: W. Kwak, D. Sharon, C. Xia, H. Kim, L. Johnson, P. Bruce, L. Nazar, Y. Sun, A. Frimer, M. Noked, S.A. Freunberger, D. Aurbach, Chemical Reviews 120 (2020) 6626–6683. date_created: 2020-06-19T08:42:47Z date_published: 2020-03-05T00:00:00Z date_updated: 2023-09-05T12:04:28Z day: '05' ddc: - '540' department: - _id: StFr doi: 10.1021/acs.chemrev.9b00609 external_id: isi: - '000555413600008' pmid: - '32134255' file: - access_level: open_access checksum: 1a683353d46c5841c8bb2ee0a56ac7be content_type: application/pdf creator: sfreunbe date_created: 2020-06-29T16:36:01Z date_updated: 2020-07-14T12:48:06Z file_id: '8060' file_name: ChemRev_final.pdf file_size: 8525678 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 120' isi: 1 issue: '14' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version page: 6626-6683 pmid: 1 publication: Chemical Reviews publication_identifier: eissn: - 1520-6890 issn: - 0009-2665 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Lithium-oxygen batteries and related systems: Potential, status, and future' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 120 year: '2020' ... --- _id: '8721' abstract: - lang: eng text: Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: 'We acknowledge M. Glanc and Y. Zhang for providing entryclones; Vienna Biocenter Core Facilities (VBCF) for recombinantprotein production and purification; Vienna Biocenter Massspectrometry Facility, Bioimaging, and Life Science Facilities at IST Austria and Proteomics Core Facility CEITEC for a great assistance.Funding:This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 742985) and Austrian Science Fund (FWF): I 3630-B25 to J.F.and by grants from the Austrian Academy of Science through the Gregor Mendel Institute (Y.B.) and the Austrian Agency for International Cooperation in Education and Research (D.D.); the Netherlands Organization for Scientific Research (NWO; VIDI-864.13.001) (W.S.); the Research Foundation–Flanders (FWO;Odysseus II G0D0515N) and a European Research Council grant (ERC; StG TORPEDO; 714055) to B.D.R., B.Y., and E.M.; and the Hertha Firnberg Programme postdoctoral fellowship (T-947) from the FWF Austrian Science Fund to E.S.-L.; J.H. is the recipient of a DOC Fellowship of the Austrian Academy of Sciences at IST Austria.' article_processing_charge: No article_type: original author: - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Tomas full_name: Prat, Tomas id: 3DA3BFEE-F248-11E8-B48F-1D18A9856A87 last_name: Prat - first_name: N full_name: Rydza, N last_name: Rydza - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: David full_name: Domjan, David id: C684CD7A-257E-11EA-9B6F-D8588B4F947F last_name: Domjan orcid: 0000-0003-2267-106X - first_name: E full_name: Mazur, E last_name: Mazur - first_name: E full_name: Smakowska-Luzan, E last_name: Smakowska-Luzan - first_name: W full_name: Smet, W last_name: Smet - first_name: E full_name: Mor, E last_name: Mor - first_name: J full_name: Nolf, J last_name: Nolf - first_name: B full_name: Yang, B last_name: Yang - first_name: W full_name: Grunewald, W last_name: Grunewald - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: Y full_name: Belkhadir, Y last_name: Belkhadir - first_name: B full_name: De Rybel, B last_name: De Rybel - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Hajny J, Prat T, Rydza N, et al. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science. 2020;370(6516):550-557. doi:10.1126/science.aba3178 apa: Hajny, J., Prat, T., Rydza, N., Rodriguez Solovey, L., Tan, S., Verstraeten, I., … Friml, J. (2020). Receptor kinase module targets PIN-dependent auxin transport during canalization. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aba3178 chicago: Hajny, Jakub, Tomas Prat, N Rydza, Lesia Rodriguez Solovey, Shutang Tan, Inge Verstraeten, David Domjan, et al. “Receptor Kinase Module Targets PIN-Dependent Auxin Transport during Canalization.” Science. American Association for the Advancement of Science, 2020. https://doi.org/10.1126/science.aba3178. ieee: J. Hajny et al., “Receptor kinase module targets PIN-dependent auxin transport during canalization,” Science, vol. 370, no. 6516. American Association for the Advancement of Science, pp. 550–557, 2020. ista: Hajny J, Prat T, Rydza N, Rodriguez Solovey L, Tan S, Verstraeten I, Domjan D, Mazur E, Smakowska-Luzan E, Smet W, Mor E, Nolf J, Yang B, Grunewald W, Molnar G, Belkhadir Y, De Rybel B, Friml J. 2020. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science. 370(6516), 550–557. mla: Hajny, Jakub, et al. “Receptor Kinase Module Targets PIN-Dependent Auxin Transport during Canalization.” Science, vol. 370, no. 6516, American Association for the Advancement of Science, 2020, pp. 550–57, doi:10.1126/science.aba3178. short: J. Hajny, T. Prat, N. Rydza, L. Rodriguez Solovey, S. Tan, I. Verstraeten, D. Domjan, E. Mazur, E. Smakowska-Luzan, W. Smet, E. Mor, J. Nolf, B. Yang, W. Grunewald, G. Molnar, Y. Belkhadir, B. De Rybel, J. Friml, Science 370 (2020) 550–557. date_created: 2020-11-02T10:04:46Z date_published: 2020-10-30T00:00:00Z date_updated: 2023-09-05T12:02:35Z day: '30' department: - _id: JiFr doi: 10.1126/science.aba3178 ec_funded: 1 external_id: isi: - '000583031800041' pmid: - '33122378' intvolume: ' 370' isi: 1 issue: '6516' language: - iso: eng main_file_link: - open_access: '1' url: https://europepmc.org/article/MED/33122378#free-full-text month: '10' oa: 1 oa_version: Published Version page: 550-557 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 2699E3D2-B435-11E9-9278-68D0E5697425 grant_number: '25239' name: Cell surface receptor complexes for PIN polarity and auxin-mediated development publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/molecular-compass-for-cell-orientation/ scopus_import: '1' status: public title: Receptor kinase module targets PIN-dependent auxin transport during canalization type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 370 year: '2020' ... --- _id: '7968' abstract: - lang: eng text: Organic materials are known to feature long spin-diffusion times, originating in a generally small spin–orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire’s axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Yossi full_name: Paltiel, Yossi last_name: Paltiel - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Ghazaryan A, Paltiel Y, Lemeshko M. Analytic model of chiral-induced spin selectivity. The Journal of Physical Chemistry C. 2020;124(21):11716-11721. doi:10.1021/acs.jpcc.0c02584 apa: Ghazaryan, A., Paltiel, Y., & Lemeshko, M. (2020). Analytic model of chiral-induced spin selectivity. The Journal of Physical Chemistry C. American Chemical Society. https://doi.org/10.1021/acs.jpcc.0c02584 chicago: Ghazaryan, Areg, Yossi Paltiel, and Mikhail Lemeshko. “Analytic Model of Chiral-Induced Spin Selectivity.” The Journal of Physical Chemistry C. American Chemical Society, 2020. https://doi.org/10.1021/acs.jpcc.0c02584. ieee: A. Ghazaryan, Y. Paltiel, and M. Lemeshko, “Analytic model of chiral-induced spin selectivity,” The Journal of Physical Chemistry C, vol. 124, no. 21. American Chemical Society, pp. 11716–11721, 2020. ista: Ghazaryan A, Paltiel Y, Lemeshko M. 2020. Analytic model of chiral-induced spin selectivity. The Journal of Physical Chemistry C. 124(21), 11716–11721. mla: Ghazaryan, Areg, et al. “Analytic Model of Chiral-Induced Spin Selectivity.” The Journal of Physical Chemistry C, vol. 124, no. 21, American Chemical Society, 2020, pp. 11716–21, doi:10.1021/acs.jpcc.0c02584. short: A. Ghazaryan, Y. Paltiel, M. Lemeshko, The Journal of Physical Chemistry C 124 (2020) 11716–11721. date_created: 2020-06-16T14:29:59Z date_published: 2020-05-04T00:00:00Z date_updated: 2023-09-05T12:07:15Z day: '04' ddc: - '530' department: - _id: MiLe doi: 10.1021/acs.jpcc.0c02584 ec_funded: 1 external_id: isi: - '000614616200006' file: - access_level: open_access checksum: 25932bb1d0b0a955be0bea4d17facd49 content_type: application/pdf creator: kschuh date_created: 2020-10-20T14:39:47Z date_updated: 2020-10-20T14:39:47Z file_id: '8683' file_name: 2020_PhysChemC_Ghazaryan.pdf file_size: 1543429 relation: main_file success: 1 file_date_updated: 2020-10-20T14:39:47Z has_accepted_license: '1' intvolume: ' 124' isi: 1 issue: '21' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '05' oa: 1 oa_version: Published Version page: 11716-11721 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: The Journal of Physical Chemistry C publication_identifier: eissn: - 1932-7455 issn: - 1932-7447 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Analytic model of chiral-induced spin selectivity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 124 year: '2020' ... --- _id: '10866' abstract: - lang: eng text: Recent discoveries have shown that, when two layers of van der Waals (vdW) materials are superimposed with a relative twist angle between them, the electronic properties of the coupled system can be dramatically altered. Here, we demonstrate that a similar concept can be extended to the optics realm, particularly to propagating phonon polaritons–hybrid light-matter interactions. To do this, we fabricate stacks composed of two twisted slabs of a vdW crystal (α-MoO3) supporting anisotropic phonon polaritons (PhPs), and image the propagation of the latter when launched by localized sources. Our images reveal that, under a critical angle, the PhPs isofrequency curve undergoes a topological transition, in which the propagation of PhPs is strongly guided (canalization regime) along predetermined directions without geometric spreading. These results demonstrate a new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nanoimaging, (bio)-sensing, or heat management. acknowledgement: "J.T.-G. and G.Á.-P. acknowledge support through the Severo Ochoa Program from the\r\nGovernment of the Principality of Asturias (nos. PA-18-PF-BP17-126 and PA20-PF-BP19-053,\r\nrespectively). J. M-S acknowledges financial support through the Ramón y Cajal Program from\r\nthe Government of Spain (RYC2018-026196-I). A.Y.N. acknowledges the Spanish Ministry of\r\nScience, Innovation and Universities (national project no. MAT201788358-C3-3-R). P.A.-G.\r\nacknowledges support from the European Research Council under starting grant no. 715496,\r\n2DNANOPTICA." article_processing_charge: No article_type: original author: - first_name: Jiahua full_name: Duan, Jiahua last_name: Duan - first_name: Nathaniel full_name: Capote-Robayna, Nathaniel last_name: Capote-Robayna - first_name: Javier full_name: Taboada-Gutiérrez, Javier last_name: Taboada-Gutiérrez - first_name: Gonzalo full_name: Álvarez-Pérez, Gonzalo last_name: Álvarez-Pérez - first_name: Ivan full_name: Prieto Gonzalez, Ivan id: 2A307FE2-F248-11E8-B48F-1D18A9856A87 last_name: Prieto Gonzalez orcid: 0000-0002-7370-5357 - first_name: Javier full_name: Martín-Sánchez, Javier last_name: Martín-Sánchez - first_name: Alexey Y. full_name: Nikitin, Alexey Y. last_name: Nikitin - first_name: Pablo full_name: Alonso-González, Pablo last_name: Alonso-González citation: ama: 'Duan J, Capote-Robayna N, Taboada-Gutiérrez J, et al. Twisted nano-optics: Manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Letters. 2020;20(7):5323-5329. doi:10.1021/acs.nanolett.0c01673' apa: 'Duan, J., Capote-Robayna, N., Taboada-Gutiérrez, J., Álvarez-Pérez, G., Prieto Gonzalez, I., Martín-Sánchez, J., … Alonso-González, P. (2020). Twisted nano-optics: Manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.0c01673' chicago: 'Duan, Jiahua, Nathaniel Capote-Robayna, Javier Taboada-Gutiérrez, Gonzalo Álvarez-Pérez, Ivan Prieto Gonzalez, Javier Martín-Sánchez, Alexey Y. Nikitin, and Pablo Alonso-González. “Twisted Nano-Optics: Manipulating Light at the Nanoscale with Twisted Phonon Polaritonic Slabs.” Nano Letters. American Chemical Society, 2020. https://doi.org/10.1021/acs.nanolett.0c01673.' ieee: 'J. Duan et al., “Twisted nano-optics: Manipulating light at the nanoscale with twisted phonon polaritonic slabs,” Nano Letters, vol. 20, no. 7. American Chemical Society, pp. 5323–5329, 2020.' ista: 'Duan J, Capote-Robayna N, Taboada-Gutiérrez J, Álvarez-Pérez G, Prieto Gonzalez I, Martín-Sánchez J, Nikitin AY, Alonso-González P. 2020. Twisted nano-optics: Manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Letters. 20(7), 5323–5329.' mla: 'Duan, Jiahua, et al. “Twisted Nano-Optics: Manipulating Light at the Nanoscale with Twisted Phonon Polaritonic Slabs.” Nano Letters, vol. 20, no. 7, American Chemical Society, 2020, pp. 5323–29, doi:10.1021/acs.nanolett.0c01673.' short: J. Duan, N. Capote-Robayna, J. Taboada-Gutiérrez, G. Álvarez-Pérez, I. Prieto Gonzalez, J. Martín-Sánchez, A.Y. Nikitin, P. Alonso-González, Nano Letters 20 (2020) 5323–5329. date_created: 2022-03-18T11:37:38Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-09-05T12:05:58Z day: '01' department: - _id: NanoFab doi: 10.1021/acs.nanolett.0c01673 external_id: arxiv: - '2004.14599' isi: - '000548893200082' pmid: - '32530634' intvolume: ' 20' isi: 1 issue: '7' keyword: - Mechanical Engineering - Condensed Matter Physics - General Materials Science - General Chemistry - Bioengineering language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2004.14599 month: '07' oa: 1 oa_version: Preprint page: 5323-5329 pmid: 1 publication: Nano Letters publication_identifier: eissn: - 1530-6992 issn: - 1530-6984 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Twisted nano-optics: Manipulating light at the nanoscale with twisted phonon polaritonic slabs' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 20 year: '2020' ... --- _id: '8588' abstract: - lang: eng text: Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys. Rev. X 9, 021026 (2019)]. acknowledgement: "We thank W. Kaganer for discussions and for comment on the manuscript. We acknowledge the financial support from the German-Israeli Foundation (GIF), grant agreement I-1277-303.10/2014. M.L. acknowledges support by the Austrian Science Fund (FWF), under project No. P29902-N27, and by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). A.G. acknowledges support by the European Unions Horizon 2020 research and innovation\r\nprogram under the Marie Skodowska-Curie grant agreement No 754411. P.V.S acknowledges financial support\r\nfrom the Deutsche Forschungsgemeinschaft (DFG) under\r\nProject No. SA 598/12-1." article_number: '045307' article_processing_charge: No article_type: original author: - first_name: C. full_name: Hubert, C. last_name: Hubert - first_name: K. full_name: Cohen, K. last_name: Cohen - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: R. full_name: Rapaport, R. last_name: Rapaport - first_name: P. V. full_name: Santos, P. V. last_name: Santos citation: ama: Hubert C, Cohen K, Ghazaryan A, Lemeshko M, Rapaport R, Santos PV. Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids. Physical Review B. 2020;102(4). doi:10.1103/physrevb.102.045307 apa: Hubert, C., Cohen, K., Ghazaryan, A., Lemeshko, M., Rapaport, R., & Santos, P. V. (2020). Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.102.045307 chicago: Hubert, C., K. Cohen, Areg Ghazaryan, Mikhail Lemeshko, R. Rapaport, and P. V. Santos. “Attractive Interactions, Molecular Complexes, and Polarons in Coupled Dipolar Exciton Fluids.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.102.045307. ieee: C. Hubert, K. Cohen, A. Ghazaryan, M. Lemeshko, R. Rapaport, and P. V. Santos, “Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids,” Physical Review B, vol. 102, no. 4. American Physical Society, 2020. ista: Hubert C, Cohen K, Ghazaryan A, Lemeshko M, Rapaport R, Santos PV. 2020. Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids. Physical Review B. 102(4), 045307. mla: Hubert, C., et al. “Attractive Interactions, Molecular Complexes, and Polarons in Coupled Dipolar Exciton Fluids.” Physical Review B, vol. 102, no. 4, 045307, American Physical Society, 2020, doi:10.1103/physrevb.102.045307. short: C. Hubert, K. Cohen, A. Ghazaryan, M. Lemeshko, R. Rapaport, P.V. Santos, Physical Review B 102 (2020). date_created: 2020-09-30T10:33:43Z date_published: 2020-07-21T00:00:00Z date_updated: 2023-09-05T12:12:10Z day: '21' department: - _id: MiLe doi: 10.1103/physrevb.102.045307 ec_funded: 1 external_id: arxiv: - '1910.06015' isi: - '000550579100004' intvolume: ' 102' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1910.06015 month: '07' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 102 year: '2020' ... --- _id: '8769' abstract: - lang: eng text: One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas. acknowledgement: "We are grateful to M. Correggi, A. Deuchert, and P. Schmelcher for valuable discussions. We also thank the anonymous referees for helping to clarify a few important points in the experimental realization. A.G. acknowledges support by the European Unions Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement\r\nNo 754411. D.L. acknowledges financial support from the Goran Gustafsson Foundation (grant no. 1804) and LMU Munich. R.S., M.L., and N.R. gratefully acknowledge financial support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 694227, No 801770, and No 758620, respectively)." article_number: '144109' article_processing_charge: No article_type: original author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: D. full_name: Lundholm, D. last_name: Lundholm - first_name: N. full_name: Rougerie, N. last_name: Rougerie - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Yakaboylu E, Ghazaryan A, Lundholm D, Rougerie N, Lemeshko M, Seiringer R. Quantum impurity model for anyons. Physical Review B. 2020;102(14). doi:10.1103/physrevb.102.144109 apa: Yakaboylu, E., Ghazaryan, A., Lundholm, D., Rougerie, N., Lemeshko, M., & Seiringer, R. (2020). Quantum impurity model for anyons. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.102.144109 chicago: Yakaboylu, Enderalp, Areg Ghazaryan, D. Lundholm, N. Rougerie, Mikhail Lemeshko, and Robert Seiringer. “Quantum Impurity Model for Anyons.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.102.144109. ieee: E. Yakaboylu, A. Ghazaryan, D. Lundholm, N. Rougerie, M. Lemeshko, and R. Seiringer, “Quantum impurity model for anyons,” Physical Review B, vol. 102, no. 14. American Physical Society, 2020. ista: Yakaboylu E, Ghazaryan A, Lundholm D, Rougerie N, Lemeshko M, Seiringer R. 2020. Quantum impurity model for anyons. Physical Review B. 102(14), 144109. mla: Yakaboylu, Enderalp, et al. “Quantum Impurity Model for Anyons.” Physical Review B, vol. 102, no. 14, 144109, American Physical Society, 2020, doi:10.1103/physrevb.102.144109. short: E. Yakaboylu, A. Ghazaryan, D. Lundholm, N. Rougerie, M. Lemeshko, R. Seiringer, Physical Review B 102 (2020). date_created: 2020-11-18T07:34:17Z date_published: 2020-10-01T00:00:00Z date_updated: 2023-09-05T12:12:30Z day: '01' department: - _id: MiLe - _id: RoSe doi: 10.1103/physrevb.102.144109 ec_funded: 1 external_id: arxiv: - '1912.07890' isi: - '000582563300001' intvolume: ' 102' isi: 1 issue: '14' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.07890 month: '10' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum impurity model for anyons type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 102 year: '2020' ... --- _id: '7971' abstract: - lang: eng text: Multilayer graphene lattices allow for an additional tunability of the band structure by the strong perpendicular electric field. In particular, the emergence of the new multiple Dirac points in ABA stacked trilayer graphene subject to strong transverse electric fields was proposed theoretically and confirmed experimentally. These new Dirac points dubbed “gullies” emerge from the interplay between strong electric field and trigonal warping. In this work, we first characterize the properties of new emergent Dirac points and show that the electric field can be used to tune the distance between gullies in the momentum space. We demonstrate that the band structure has multiple Lifshitz transitions and higher-order singularity of “monkey saddle” type. Following the characterization of the band structure, we consider the spectrum of Landau levels and structure of their wave functions. In the limit of strong electric fields when gullies are well separated in momentum space, they give rise to triply degenerate Landau levels. In the second part of this work, we investigate how degeneracy between three gully Landau levels is lifted in the presence of interactions. Within the Hartree-Fock approximation we show that the symmetry breaking state interpolates between the fully gully polarized state that breaks C3 symmetry at high displacement field and the gully symmetric state when the electric field is decreased. The discontinuous transition between these two states is driven by enhanced intergully tunneling and exchange. We conclude by outlining specific experimental predictions for the existence of such a symmetry-breaking state. article_number: '245411' article_processing_charge: No article_type: original author: - first_name: Peng full_name: Rao, Peng id: 47C23AC6-02D0-11E9-BD0E-99399A5D3DEB last_name: Rao orcid: 0000-0003-1250-0021 - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Rao P, Serbyn M. Gully quantum Hall ferromagnetism in biased trilayer graphene. Physical Review B. 2020;101(24). doi:10.1103/physrevb.101.245411 apa: Rao, P., & Serbyn, M. (2020). Gully quantum Hall ferromagnetism in biased trilayer graphene. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.101.245411 chicago: Rao, Peng, and Maksym Serbyn. “Gully Quantum Hall Ferromagnetism in Biased Trilayer Graphene.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.101.245411. ieee: P. Rao and M. Serbyn, “Gully quantum Hall ferromagnetism in biased trilayer graphene,” Physical Review B, vol. 101, no. 24. American Physical Society, 2020. ista: Rao P, Serbyn M. 2020. Gully quantum Hall ferromagnetism in biased trilayer graphene. Physical Review B. 101(24), 245411. mla: Rao, Peng, and Maksym Serbyn. “Gully Quantum Hall Ferromagnetism in Biased Trilayer Graphene.” Physical Review B, vol. 101, no. 24, 245411, American Physical Society, 2020, doi:10.1103/physrevb.101.245411. short: P. Rao, M. Serbyn, Physical Review B 101 (2020). date_created: 2020-06-17T14:52:06Z date_published: 2020-06-15T00:00:00Z date_updated: 2023-09-05T12:11:37Z day: '15' department: - _id: MaSe doi: 10.1103/physrevb.101.245411 external_id: isi: - '000538715500010' intvolume: ' 101' isi: 1 issue: '24' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2002.05739 month: '06' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Gully quantum Hall ferromagnetism in biased trilayer graphene type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 101 year: '2020' ... --- _id: '8634' abstract: - lang: eng text: In laboratory studies and numerical simulations, we observe clear signatures of unstable time-periodic solutions in a moderately turbulent quasi-two-dimensional flow. We validate the dynamical relevance of such solutions by demonstrating that turbulent flows in both experiment and numerics transiently display time-periodic dynamics when they shadow unstable periodic orbits (UPOs). We show that UPOs we computed are also statistically significant, with turbulent flows spending a sizable fraction of the total time near these solutions. As a result, the average rates of energy input and dissipation for the turbulent flow and frequently visited UPOs differ only by a few percent. acknowledgement: M. F. S. and R. O. G. acknowledge funding from the National Science Foundation (CMMI-1234436, DMS1125302, CMMI-1725587) and Defense Advanced Research Projects Agency (HR0011-16-2-0033). B. S.has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007–2013/ under REA Grant Agreement No. 291734. article_number: '064501' article_processing_charge: No article_type: original author: - first_name: Balachandra full_name: Suri, Balachandra id: 47A5E706-F248-11E8-B48F-1D18A9856A87 last_name: Suri - first_name: Logan full_name: Kageorge, Logan last_name: Kageorge - first_name: Roman O. full_name: Grigoriev, Roman O. last_name: Grigoriev - first_name: Michael F. full_name: Schatz, Michael F. last_name: Schatz citation: ama: Suri B, Kageorge L, Grigoriev RO, Schatz MF. Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits. Physical Review Letters. 2020;125(6). doi:10.1103/physrevlett.125.064501 apa: Suri, B., Kageorge, L., Grigoriev, R. O., & Schatz, M. F. (2020). Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.125.064501 chicago: Suri, Balachandra, Logan Kageorge, Roman O. Grigoriev, and Michael F. Schatz. “Capturing Turbulent Dynamics and Statistics in Experiments with Unstable Periodic Orbits.” Physical Review Letters. American Physical Society, 2020. https://doi.org/10.1103/physrevlett.125.064501. ieee: B. Suri, L. Kageorge, R. O. Grigoriev, and M. F. Schatz, “Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits,” Physical Review Letters, vol. 125, no. 6. American Physical Society, 2020. ista: Suri B, Kageorge L, Grigoriev RO, Schatz MF. 2020. Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits. Physical Review Letters. 125(6), 064501. mla: Suri, Balachandra, et al. “Capturing Turbulent Dynamics and Statistics in Experiments with Unstable Periodic Orbits.” Physical Review Letters, vol. 125, no. 6, 064501, American Physical Society, 2020, doi:10.1103/physrevlett.125.064501. short: B. Suri, L. Kageorge, R.O. Grigoriev, M.F. Schatz, Physical Review Letters 125 (2020). date_created: 2020-10-08T17:27:32Z date_published: 2020-08-05T00:00:00Z date_updated: 2023-09-05T12:08:29Z day: '05' department: - _id: BjHo doi: 10.1103/physrevlett.125.064501 ec_funded: 1 external_id: arxiv: - '2008.02367' isi: - '000555785600005' intvolume: ' 125' isi: 1 issue: '6' keyword: - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2008.02367 month: '08' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 125 year: '2020' ... --- _id: '7949' abstract: - lang: eng text: Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance. acknowledgement: We thank Maria Njo, Sarah De Cokere, Marieke Mispelaere and Darren Wells, for practical assistance, Daniël Van Damme for assistance with image analysis, Marnik Vuylsteke for advice on statistics, Catherine Perrot-Rechenmann for useful discussions, Steffen Lau for critical reading oft he manuscript, and Philip Benfey, Gerd Jürgens, Philippe Nacry, Frederik Börnke, and Frans Tax for sharing materials. article_processing_charge: No article_type: original author: - first_name: S full_name: Smith, S last_name: Smith - first_name: S full_name: Zhu, S last_name: Zhu - first_name: L full_name: Joos, L last_name: Joos - first_name: I full_name: Roberts, I last_name: Roberts - first_name: N full_name: Nikonorova, N last_name: Nikonorova - first_name: LD full_name: Vu, LD last_name: Vu - first_name: E full_name: Stes, E last_name: Stes - first_name: H full_name: Cho, H last_name: Cho - first_name: A full_name: Larrieu, A last_name: Larrieu - first_name: W full_name: Xuan, W last_name: Xuan - first_name: B full_name: Goodall, B last_name: Goodall - first_name: B full_name: van de Cotte, B last_name: van de Cotte - first_name: JM full_name: Waite, JM last_name: Waite - first_name: A full_name: Rigal, A last_name: Rigal - first_name: SR full_name: R Harborough, SR last_name: R Harborough - first_name: G full_name: Persiau, G last_name: Persiau - first_name: S full_name: Vanneste, S last_name: Vanneste - first_name: GK full_name: Kirschner, GK last_name: Kirschner - first_name: E full_name: Vandermarliere, E last_name: Vandermarliere - first_name: L full_name: Martens, L last_name: Martens - first_name: Y full_name: Stahl, Y last_name: Stahl - first_name: D full_name: Audenaert, D last_name: Audenaert - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: G full_name: Felix, G last_name: Felix - first_name: R full_name: Simon, R last_name: Simon - first_name: M full_name: Bennett, M last_name: Bennett - first_name: A full_name: Bishopp, A last_name: Bishopp - first_name: G full_name: De Jaeger, G last_name: De Jaeger - first_name: K full_name: Ljung, K last_name: Ljung - first_name: S full_name: Kepinski, S last_name: Kepinski - first_name: S full_name: Robert, S last_name: Robert - first_name: J full_name: Nemhauser, J last_name: Nemhauser - first_name: I full_name: Hwang, I last_name: Hwang - first_name: K full_name: Gevaert, K last_name: Gevaert - first_name: T full_name: Beeckman, T last_name: Beeckman - first_name: I full_name: De Smet, I last_name: De Smet citation: ama: Smith S, Zhu S, Joos L, et al. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. 2020;19(8):1248-1262. doi:10.1074/mcp.ra119.001826 apa: Smith, S., Zhu, S., Joos, L., Roberts, I., Nikonorova, N., Vu, L., … De Smet, I. (2020). The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. American Society for Biochemistry and Molecular Biology. https://doi.org/10.1074/mcp.ra119.001826 chicago: Smith, S, S Zhu, L Joos, I Roberts, N Nikonorova, LD Vu, E Stes, et al. “The CEP5 Peptide Promotes Abiotic Stress Tolerance, as Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis.” Molecular & Cellular Proteomics. American Society for Biochemistry and Molecular Biology, 2020. https://doi.org/10.1074/mcp.ra119.001826. ieee: S. Smith et al., “The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis,” Molecular & Cellular Proteomics, vol. 19, no. 8. American Society for Biochemistry and Molecular Biology, pp. 1248–1262, 2020. ista: Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu L, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite J, Rigal A, R Harborough S, Persiau G, Vanneste S, Kirschner G, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett M, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I. 2020. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. 19(8), 1248–1262. mla: Smith, S., et al. “The CEP5 Peptide Promotes Abiotic Stress Tolerance, as Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis.” Molecular & Cellular Proteomics, vol. 19, no. 8, American Society for Biochemistry and Molecular Biology, 2020, pp. 1248–62, doi:10.1074/mcp.ra119.001826. short: S. Smith, S. Zhu, L. Joos, I. Roberts, N. Nikonorova, L. Vu, E. Stes, H. Cho, A. Larrieu, W. Xuan, B. Goodall, B. van de Cotte, J. Waite, A. Rigal, S. R Harborough, G. Persiau, S. Vanneste, G. Kirschner, E. Vandermarliere, L. Martens, Y. Stahl, D. Audenaert, J. Friml, G. Felix, R. Simon, M. Bennett, A. Bishopp, G. De Jaeger, K. Ljung, S. Kepinski, S. Robert, J. Nemhauser, I. Hwang, K. Gevaert, T. Beeckman, I. De Smet, Molecular & Cellular Proteomics 19 (2020) 1248–1262. date_created: 2020-06-08T10:10:53Z date_published: 2020-08-01T00:00:00Z date_updated: 2023-09-05T12:17:46Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1074/mcp.ra119.001826 external_id: isi: - '000561114000001' pmid: - '32404488' file: - access_level: open_access checksum: 3f3f37b4a1ba2cfd270fc7733dd89680 content_type: application/pdf creator: kschuh date_created: 2021-05-05T10:10:14Z date_updated: 2021-05-05T10:10:14Z file_id: '9373' file_name: 2020_MCP_Smith.pdf file_size: 1632311 relation: main_file success: 1 file_date_updated: 2021-05-05T10:10:14Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '8' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 1248-1262 pmid: 1 publication: Molecular & Cellular Proteomics publication_identifier: eissn: - 1535-9484 publication_status: published publisher: American Society for Biochemistry and Molecular Biology quality_controlled: '1' scopus_import: '1' status: public title: The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 19 year: '2020' ... --- _id: '7619' abstract: - lang: eng text: Cell polarity is a fundamental feature of all multicellular organisms. In plants, prominent cell polarity markers are PIN auxin transporters crucial for plant development. To identify novel components involved in cell polarity establishment and maintenance, we carried out a forward genetic screening with PIN2:PIN1-HA;pin2 Arabidopsis plants, which ectopically express predominantly basally localized PIN1 in the root epidermal cells leading to agravitropic root growth. From the screen, we identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused PIN1-HA polarity switch from basal to apical side of root epidermal cells. Complementation experiments established the repp12 causative mutation as an amino acid substitution in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase with predicted function in vesicle formation. ala3 T-DNA mutants show defects in many auxin-regulated processes, in asymmetric auxin distribution and in PIN trafficking. Analysis of quintuple and sextuple mutants confirmed a crucial role of ALA proteins in regulating plant development and in PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with GNOM and BIG3 ARF GEFs. Taken together, our results identified ALA3 flippase as an important interactor and regulator of ARF GEF functioning in PIN polarity, trafficking and auxin-mediated development. acknowledged_ssus: - _id: Bio article_processing_charge: No article_type: original author: - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Petra full_name: Marhavá, Petra id: 44E59624-F248-11E8-B48F-1D18A9856A87 last_name: Marhavá - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Vendula full_name: Pukyšová, Vendula last_name: Pukyšová - first_name: Adrià Sans full_name: Sánchez, Adrià Sans last_name: Sánchez - first_name: Vivek Kumar full_name: Raxwal, Vivek Kumar last_name: Raxwal - first_name: Christian S. full_name: Hardtke, Christian S. last_name: Hardtke - first_name: Tomasz full_name: Nodzynski, Tomasz last_name: Nodzynski - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang X, Adamowski M, Marhavá P, et al. Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. 2020;32(5):1644-1664. doi:10.1105/tpc.19.00869 apa: Zhang, X., Adamowski, M., Marhavá, P., Tan, S., Zhang, Y., Rodriguez Solovey, L., … Friml, J. (2020). Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.19.00869 chicago: Zhang, Xixi, Maciek Adamowski, Petra Marhavá, Shutang Tan, Yuzhou Zhang, Lesia Rodriguez Solovey, Marta Zwiewka, et al. “Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters.” The Plant Cell. American Society of Plant Biologists, 2020. https://doi.org/10.1105/tpc.19.00869. ieee: X. Zhang et al., “Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters,” The Plant Cell, vol. 32, no. 5. American Society of Plant Biologists, pp. 1644–1664, 2020. ista: Zhang X, Adamowski M, Marhavá P, Tan S, Zhang Y, Rodriguez Solovey L, Zwiewka M, Pukyšová V, Sánchez AS, Raxwal VK, Hardtke CS, Nodzynski T, Friml J. 2020. Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. 32(5), 1644–1664. mla: Zhang, Xixi, et al. “Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters.” The Plant Cell, vol. 32, no. 5, American Society of Plant Biologists, 2020, pp. 1644–64, doi:10.1105/tpc.19.00869. short: X. Zhang, M. Adamowski, P. Marhavá, S. Tan, Y. Zhang, L. Rodriguez Solovey, M. Zwiewka, V. Pukyšová, A.S. Sánchez, V.K. Raxwal, C.S. Hardtke, T. Nodzynski, J. Friml, The Plant Cell 32 (2020) 1644–1664. date_created: 2020-03-28T07:39:22Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-09-05T12:21:06Z day: '01' department: - _id: JiFr doi: 10.1105/tpc.19.00869 ec_funded: 1 external_id: isi: - '000545741500030' pmid: - '32193204' intvolume: ' 32' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1105/tpc.19.00869 month: '05' oa: 1 oa_version: Published Version page: 1644-1664 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: The Plant Cell publication_identifier: eissn: - 1532-298X issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' scopus_import: '1' status: public title: Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2020' ... --- _id: '8607' abstract: - lang: eng text: Clathrin-mediated endocytosis (CME) and its core endocytic machinery are evolutionarily conserved across all eukaryotes. In mammals, the heterotetrameric adaptor protein complex-2 (AP-2) sorts plasma membrane (PM) cargoes into vesicles through the recognition of motifs based on tyrosine or di-leucine in their cytoplasmic tails. However, in plants, very little is known on how PM proteins are sorted for CME and whether similar motifs are required. In Arabidopsis thaliana, the brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), undergoes endocytosis that depends on clathrin and AP-2. Here we demonstrate that BRI1 binds directly to the medium AP-2 subunit, AP2M. The cytoplasmic domain of BRI1 contains five putative canonical surface-exposed tyrosine-based endocytic motifs. The tyrosine-to-phenylalanine substitution in Y898KAI reduced BRI1 internalization without affecting its kinase activity. Consistently, plants carrying the BRI1Y898F mutation were hypersensitive to BRs. Our study demonstrates that AP-2-dependent internalization of PM proteins via the recognition of functional tyrosine motifs also operates in plants. article_processing_charge: No article_type: original author: - first_name: D full_name: Liu, D last_name: Liu - first_name: R full_name: Kumar, R last_name: Kumar - first_name: Claus full_name: LAN, Claus last_name: LAN - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: W full_name: Siao, W last_name: Siao - first_name: I full_name: Vanhoutte, I last_name: Vanhoutte - first_name: P full_name: Wang, P last_name: Wang - first_name: KW full_name: Bender, KW last_name: Bender - first_name: K full_name: Yperman, K last_name: Yperman - first_name: S full_name: Martins, S last_name: Martins - first_name: X full_name: Zhao, X last_name: Zhao - first_name: G full_name: Vert, G last_name: Vert - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: E full_name: Russinova, E last_name: Russinova citation: ama: Liu D, Kumar R, LAN C, et al. Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif. Plant Cell. 2020;32(11):3598-3612. doi:10.1105/tpc.20.00384 apa: Liu, D., Kumar, R., LAN, C., Johnson, A. J., Siao, W., Vanhoutte, I., … Russinova, E. (2020). Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.20.00384 chicago: Liu, D, R Kumar, Claus LAN, Alexander J Johnson, W Siao, I Vanhoutte, P Wang, et al. “Endocytosis of BRASSINOSTEROID INSENSITIVE1 Is Partly Driven by a Canonical Tyrosine-Based Motif.” Plant Cell. American Society of Plant Biologists, 2020. https://doi.org/10.1105/tpc.20.00384. ieee: D. Liu et al., “Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif,” Plant Cell, vol. 32, no. 11. American Society of Plant Biologists, pp. 3598–3612, 2020. ista: Liu D, Kumar R, LAN C, Johnson AJ, Siao W, Vanhoutte I, Wang P, Bender K, Yperman K, Martins S, Zhao X, Vert G, Van Damme D, Friml J, Russinova E. 2020. Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif. Plant Cell. 32(11), 3598–3612. mla: Liu, D., et al. “Endocytosis of BRASSINOSTEROID INSENSITIVE1 Is Partly Driven by a Canonical Tyrosine-Based Motif.” Plant Cell, vol. 32, no. 11, American Society of Plant Biologists, 2020, pp. 3598–612, doi:10.1105/tpc.20.00384. short: D. Liu, R. Kumar, C. LAN, A.J. Johnson, W. Siao, I. Vanhoutte, P. Wang, K. Bender, K. Yperman, S. Martins, X. Zhao, G. Vert, D. Van Damme, J. Friml, E. Russinova, Plant Cell 32 (2020) 3598–3612. date_created: 2020-10-05T12:45:16Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-09-05T12:21:32Z day: '01' department: - _id: JiFr doi: 10.1105/tpc.20.00384 ec_funded: 1 external_id: isi: - '000600226800021' pmid: - '32958564' intvolume: ' 32' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://europepmc.org/article/MED/32958564 month: '11' oa: 1 oa_version: Published Version page: 3598-3612 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' scopus_import: '1' status: public title: Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2020' ... --- _id: '7695' abstract: - lang: eng text: The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits, AtEH1/Pan1 and AtEH2/Pan1, although cytoplasmic proteins are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with co-localization analysis of different TPC subunits, allow us to conclude that TPC in plant cells is not recruited to the PM sequentially but as an octameric complex. article_processing_charge: No article_type: original author: - first_name: J full_name: Wang, J last_name: Wang - first_name: E full_name: Mylle, E last_name: Mylle - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: N full_name: Besbrugge, N last_name: Besbrugge - first_name: G full_name: De Jaeger, G last_name: De Jaeger - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: R full_name: Pleskot, R last_name: Pleskot - first_name: D full_name: van Damme, D last_name: van Damme citation: ama: Wang J, Mylle E, Johnson AJ, et al. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. 2020;183(3):986-997. doi:10.1104/pp.20.00178 apa: Wang, J., Mylle, E., Johnson, A. J., Besbrugge, N., De Jaeger, G., Friml, J., … van Damme, D. (2020). High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.20.00178 chicago: Wang, J, E Mylle, Alexander J Johnson, N Besbrugge, G De Jaeger, Jiří Friml, R Pleskot, and D van Damme. “High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits.” Plant Physiology. American Society of Plant Biologists, 2020. https://doi.org/10.1104/pp.20.00178. ieee: J. Wang et al., “High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits,” Plant Physiology, vol. 183, no. 3. American Society of Plant Biologists, pp. 986–997, 2020. ista: Wang J, Mylle E, Johnson AJ, Besbrugge N, De Jaeger G, Friml J, Pleskot R, van Damme D. 2020. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. 183(3), 986–997. mla: Wang, J., et al. “High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits.” Plant Physiology, vol. 183, no. 3, American Society of Plant Biologists, 2020, pp. 986–97, doi:10.1104/pp.20.00178. short: J. Wang, E. Mylle, A.J. Johnson, N. Besbrugge, G. De Jaeger, J. Friml, R. Pleskot, D. van Damme, Plant Physiology 183 (2020) 986–997. date_created: 2020-04-29T15:23:00Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-09-05T12:20:02Z day: '01' department: - _id: JiFr doi: 10.1104/pp.20.00178 external_id: isi: - '000550682000018' pmid: - '32321842' intvolume: ' 183' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.02.13.948109 month: '07' oa: 1 oa_version: Preprint page: 986-997 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' scopus_import: '1' status: public title: High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 183 year: '2020' ... --- _id: '9197' abstract: - lang: eng text: In this paper we introduce and study all-pay bidding games, a class of two player, zero-sum games on graphs. The game proceeds as follows. We place a token on some vertex in the graph and assign budgets to the two players. Each turn, each player submits a sealed legal bid (non-negative and below their remaining budget), which is deducted from their budget and the highest bidder moves the token onto an adjacent vertex. The game ends once a sink is reached, and Player 1 pays Player 2 the outcome that is associated with the sink. The players attempt to maximize their expected outcome. Our games model settings where effort (of no inherent value) needs to be invested in an ongoing and stateful manner. On the negative side, we show that even in simple games on DAGs, optimal strategies may require a distribution over bids with infinite support. A central quantity in bidding games is the ratio of the players budgets. On the positive side, we show a simple FPTAS for DAGs, that, for each budget ratio, outputs an approximation for the optimal strategy for that ratio. We also implement it, show that it performs well, and suggests interesting properties of these games. Then, given an outcome c, we show an algorithm for finding the necessary and sufficient initial ratio for guaranteeing outcome c with probability 1 and a strategy ensuring such. Finally, while the general case has not previously been studied, solving the specific game in which Player 1 wins iff he wins the first two auctions, has been long stated as an open question, which we solve. acknowledgement: This research was supported by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meitner fellowship). article_processing_charge: No article_type: original author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 citation: ama: Avni G, Ibsen-Jensen R, Tkadlec J. All-pay bidding games on graphs. Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34(02):1798-1805. doi:10.1609/aaai.v34i02.5546 apa: 'Avni, G., Ibsen-Jensen, R., & Tkadlec, J. (2020). All-pay bidding games on graphs. Proceedings of the AAAI Conference on Artificial Intelligence. New York, NY, United States: Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v34i02.5546' chicago: Avni, Guy, Rasmus Ibsen-Jensen, and Josef Tkadlec. “All-Pay Bidding Games on Graphs.” Proceedings of the AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence, 2020. https://doi.org/10.1609/aaai.v34i02.5546. ieee: G. Avni, R. Ibsen-Jensen, and J. Tkadlec, “All-pay bidding games on graphs,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02. Association for the Advancement of Artificial Intelligence, pp. 1798–1805, 2020. ista: Avni G, Ibsen-Jensen R, Tkadlec J. 2020. All-pay bidding games on graphs. Proceedings of the AAAI Conference on Artificial Intelligence. 34(02), 1798–1805. mla: Avni, Guy, et al. “All-Pay Bidding Games on Graphs.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02, Association for the Advancement of Artificial Intelligence, 2020, pp. 1798–805, doi:10.1609/aaai.v34i02.5546. short: G. Avni, R. Ibsen-Jensen, J. Tkadlec, Proceedings of the AAAI Conference on Artificial Intelligence 34 (2020) 1798–1805. conference: end_date: 2020-02-12 location: New York, NY, United States name: 'AAAI: Conference on Artificial Intelligence' start_date: 2020-02-07 date_created: 2021-02-25T09:05:18Z date_published: 2020-04-03T00:00:00Z date_updated: 2023-09-05T12:40:00Z day: '03' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v34i02.5546 external_id: arxiv: - '1911.08360' intvolume: ' 34' issue: '02' language: - iso: eng month: '04' oa_version: Preprint page: 1798-1805 project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory publication: Proceedings of the AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 isbn: - '9781577358350' issn: - 2159-5399 publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' scopus_import: '1' status: public title: All-pay bidding games on graphs type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 34 year: '2020' ... --- _id: '8142' abstract: - lang: eng text: Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: We thank Takashi Aoyama, David Alabadi, and Bert De Rybel for sharing material, Jiří Friml, Maciek Adamowski, and Katerina Schwarzerová for inspiring discussions, and Martine De Cock for help in preparing the manuscript. This research was supported by the Scientific Service Units (SSUs) of IST Austria through resources provided by the Bioimaging Facility (BIF), especially to Robert Hauschild; and the Life Science Facility (LSF). J.C.M. is the recipient of a EMBO Long‐Term Fellowship (ALTF number 710‐2016). This work was supported with MEYS CR, project no.CZ.02.1.01/0.0/0.0/16_019/0000738 to J.P., and by the Austrian Science Fund (FWF01_I1774S) to E.B. article_number: e104238 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Juan C full_name: Montesinos López, Juan C id: 310A8E3E-F248-11E8-B48F-1D18A9856A87 last_name: Montesinos López orcid: 0000-0001-9179-6099 - first_name: A full_name: Abuzeineh, A last_name: Abuzeineh - first_name: Aglaja full_name: Kopf, Aglaja id: 31DAC7B6-F248-11E8-B48F-1D18A9856A87 last_name: Kopf orcid: 0000-0002-2187-6656 - first_name: Alba full_name: Juanes Garcia, Alba id: 40F05888-F248-11E8-B48F-1D18A9856A87 last_name: Juanes Garcia orcid: 0000-0002-1009-9652 - first_name: Krisztina full_name: Ötvös, Krisztina id: 29B901B0-F248-11E8-B48F-1D18A9856A87 last_name: Ötvös orcid: 0000-0002-5503-4983 - first_name: J full_name: Petrášek, J last_name: Petrášek - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Montesinos López JC, Abuzeineh A, Kopf A, et al. Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. The Embo Journal. 2020;39(17). doi:10.15252/embj.2019104238 apa: Montesinos López, J. C., Abuzeineh, A., Kopf, A., Juanes Garcia, A., Ötvös, K., Petrášek, J., … Benková, E. (2020). Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. The Embo Journal. Embo Press. https://doi.org/10.15252/embj.2019104238 chicago: Montesinos López, Juan C, A Abuzeineh, Aglaja Kopf, Alba Juanes Garcia, Krisztina Ötvös, J Petrášek, Michael K Sixt, and Eva Benková. “Phytohormone Cytokinin Guides Microtubule Dynamics during Cell Progression from Proliferative to Differentiated Stage.” The Embo Journal. Embo Press, 2020. https://doi.org/10.15252/embj.2019104238. ieee: J. C. Montesinos López et al., “Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage,” The Embo Journal, vol. 39, no. 17. Embo Press, 2020. ista: Montesinos López JC, Abuzeineh A, Kopf A, Juanes Garcia A, Ötvös K, Petrášek J, Sixt MK, Benková E. 2020. Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. The Embo Journal. 39(17), e104238. mla: Montesinos López, Juan C., et al. “Phytohormone Cytokinin Guides Microtubule Dynamics during Cell Progression from Proliferative to Differentiated Stage.” The Embo Journal, vol. 39, no. 17, e104238, Embo Press, 2020, doi:10.15252/embj.2019104238. short: J.C. Montesinos López, A. Abuzeineh, A. Kopf, A. Juanes Garcia, K. Ötvös, J. Petrášek, M.K. Sixt, E. Benková, The Embo Journal 39 (2020). date_created: 2020-07-21T09:08:38Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-09-05T13:05:47Z day: '01' ddc: - '580' department: - _id: MiSi - _id: EvBe doi: 10.15252/embj.2019104238 external_id: isi: - '000548311800001' pmid: - '32667089' file: - access_level: open_access checksum: 43d2b36598708e6ab05c69074e191d57 content_type: application/pdf creator: dernst date_created: 2020-12-02T09:13:23Z date_updated: 2020-12-02T09:13:23Z file_id: '8827' file_name: 2020_EMBO_Montesinos.pdf file_size: 3497156 relation: main_file success: 1 file_date_updated: 2020-12-02T09:13:23Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '17' language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 253E54C8-B435-11E9-9278-68D0E5697425 grant_number: ALTF710-2016 name: Molecular mechanism of auxindriven formative divisions delineating lateral root organogenesis in plants - _id: 2542D156-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 1774-B16 name: Hormone cross-talk drives nutrient dependent plant development publication: The Embo Journal publication_identifier: eissn: - 1460-2075 issn: - 0261-4189 publication_status: published publisher: Embo Press quality_controlled: '1' scopus_import: '1' status: public title: Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 39 year: '2020' ...