--- _id: '8699' abstract: - lang: eng text: In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling. acknowledgement: 'We gratefully acknowledge C. Sahle for experimental support at the ID20 beamline of the ESRF. The soft X-ray experiments were carried out at the ADRESS beamline of the Swiss Light Source, Paul Scherrer Institut (PSI). E. Paris and T.S. thank X. Lu and C. Monney for valuable discussions. The work at PSI is supported by the Swiss National Science Foundation (SNSF) through Project 200021_178867, the NCCR (National Centre of Competence in Research) MARVEL (Materials’ Revolution: Computational Design and Discovery of Novel Materials) and the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH) (SNSF Research Grants CRSII2_160765/1 and CRSII2_141962). K.W. acknowledges support by the Narodowe Centrum Nauki Projects 2016/22/E/ST3/00560 and 2016/23/B/ST3/00839. E.M.P. and M.N. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreements 754411 and 701647, respectively. M.R. was supported by the Swiss National Science Foundation under Project 200021 – 182695. This research used resources of the APS, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357.' article_processing_charge: No article_type: original author: - first_name: Eugenio full_name: Paris, Eugenio last_name: Paris - first_name: Yi full_name: Tseng, Yi last_name: Tseng - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Wenliang full_name: Zhang, Wenliang last_name: Zhang - first_name: Mary H full_name: Upton, Mary H last_name: Upton - first_name: Anna full_name: Efimenko, Anna last_name: Efimenko - first_name: Katharina full_name: Rolfs, Katharina last_name: Rolfs - first_name: Daniel E full_name: McNally, Daniel E last_name: McNally - first_name: Laura full_name: Maurel, Laura last_name: Maurel - first_name: Muntaser full_name: Naamneh, Muntaser last_name: Naamneh - first_name: Marco full_name: Caputo, Marco last_name: Caputo - first_name: Vladimir N full_name: Strocov, Vladimir N last_name: Strocov - first_name: Zhiming full_name: Wang, Zhiming last_name: Wang - first_name: Diego full_name: Casa, Diego last_name: Casa - first_name: Christof W full_name: Schneider, Christof W last_name: Schneider - first_name: Ekaterina full_name: Pomjakushina, Ekaterina last_name: Pomjakushina - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld - first_name: Milan full_name: Radovic, Milan last_name: Radovic - first_name: Thorsten full_name: Schmitt, Thorsten last_name: Schmitt citation: ama: Paris E, Tseng Y, Paerschke E, et al. Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(40):24764-24770. doi:10.1073/pnas.2012043117 apa: Paris, E., Tseng, Y., Paerschke, E., Zhang, W., Upton, M. H., Efimenko, A., … Schmitt, T. (2020). Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2012043117 chicago: Paris, Eugenio, Yi Tseng, Ekaterina Paerschke, Wenliang Zhang, Mary H Upton, Anna Efimenko, Katharina Rolfs, et al. “Strain Engineering of the Charge and Spin-Orbital Interactions in Sr2IrO4.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.2012043117. ieee: E. Paris et al., “Strain engineering of the charge and spin-orbital interactions in Sr2IrO4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 40. National Academy of Sciences, pp. 24764–24770, 2020. ista: Paris E, Tseng Y, Paerschke E, Zhang W, Upton MH, Efimenko A, Rolfs K, McNally DE, Maurel L, Naamneh M, Caputo M, Strocov VN, Wang Z, Casa D, Schneider CW, Pomjakushina E, Wohlfeld K, Radovic M, Schmitt T. 2020. Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. 117(40), 24764–24770. mla: Paris, Eugenio, et al. “Strain Engineering of the Charge and Spin-Orbital Interactions in Sr2IrO4.” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 40, National Academy of Sciences, 2020, pp. 24764–70, doi:10.1073/pnas.2012043117. short: E. Paris, Y. Tseng, E. Paerschke, W. Zhang, M.H. Upton, A. Efimenko, K. Rolfs, D.E. McNally, L. Maurel, M. Naamneh, M. Caputo, V.N. Strocov, Z. Wang, D. Casa, C.W. Schneider, E. Pomjakushina, K. Wohlfeld, M. Radovic, T. Schmitt, Proceedings of the National Academy of Sciences of the United States of America 117 (2020) 24764–24770. date_created: 2020-10-25T23:01:17Z date_published: 2020-10-06T00:00:00Z date_updated: 2023-08-22T12:11:52Z day: '06' ddc: - '530' department: - _id: MiLe doi: 10.1073/pnas.2012043117 ec_funded: 1 external_id: arxiv: - '2009.12262' isi: - '000579059100029' pmid: - '32958669' file: - access_level: open_access checksum: 1638fa36b442e2868576c6dd7d6dc505 content_type: application/pdf creator: cziletti date_created: 2020-10-28T11:53:12Z date_updated: 2020-10-28T11:53:12Z file_id: '8715' file_name: 2020_PNAS_Paris.pdf file_size: 1176522 relation: main_file success: 1 file_date_updated: 2020-10-28T11:53:12Z has_accepted_license: '1' intvolume: ' 117' isi: 1 issue: '40' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 24764-24770 pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - '10916490' issn: - '00278424' publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Strain engineering of the charge and spin-orbital interactions in Sr2IrO4 tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 117 year: '2020' ... --- _id: '8737' abstract: - lang: eng text: Mitochondrial complex I couples NADH:ubiquinone oxidoreduction to proton pumping by an unknown mechanism. Here, we present cryo-electron microscopy structures of ovine complex I in five different conditions, including turnover, at resolutions up to 2.3 to 2.5 angstroms. Resolved water molecules allowed us to experimentally define the proton translocation pathways. Quinone binds at three positions along the quinone cavity, as does the inhibitor rotenone that also binds within subunit ND4. Dramatic conformational changes around the quinone cavity couple the redox reaction to proton translocation during open-to-closed state transitions of the enzyme. In the induced deactive state, the open conformation is arrested by the ND6 subunit. We propose a detailed molecular coupling mechanism of complex I, which is an unexpected combination of conformational changes and electrostatic interactions. acknowledged_ssus: - _id: LifeSc - _id: EM-Fac acknowledgement: We thank J. Novacek (CEITEC Brno) and V.-V. Hodirnau (IST Austria) for their help with collecting cryo-EM datasets. We thank the IST Life Science and Electron Microscopy Facilities for providing equipment. This work has been supported by iNEXT,project number 653706, funded by the Horizon 2020 program of the European Union. This article reflects only the authors’view,and the European Commission is not responsible for any use that may be made of the information it contains. CIISB research infrastructure project LM2015043 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at the CF Cryo-electron Microscopy and Tomography CEITEC MU.This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement no. 665385 article_number: eabc4209 article_processing_charge: No article_type: original author: - first_name: Domen full_name: Kampjut, Domen id: 37233050-F248-11E8-B48F-1D18A9856A87 last_name: Kampjut - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: Kampjut D, Sazanov LA. The coupling mechanism of mammalian respiratory complex I. Science. 2020;370(6516). doi:10.1126/science.abc4209 apa: Kampjut, D., & Sazanov, L. A. (2020). The coupling mechanism of mammalian respiratory complex I. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.abc4209 chicago: Kampjut, Domen, and Leonid A Sazanov. “The Coupling Mechanism of Mammalian Respiratory Complex I.” Science. American Association for the Advancement of Science, 2020. https://doi.org/10.1126/science.abc4209. ieee: D. Kampjut and L. A. Sazanov, “The coupling mechanism of mammalian respiratory complex I,” Science, vol. 370, no. 6516. American Association for the Advancement of Science, 2020. ista: Kampjut D, Sazanov LA. 2020. The coupling mechanism of mammalian respiratory complex I. Science. 370(6516), eabc4209. mla: Kampjut, Domen, and Leonid A. Sazanov. “The Coupling Mechanism of Mammalian Respiratory Complex I.” Science, vol. 370, no. 6516, eabc4209, American Association for the Advancement of Science, 2020, doi:10.1126/science.abc4209. short: D. Kampjut, L.A. Sazanov, Science 370 (2020). date_created: 2020-11-08T23:01:23Z date_published: 2020-10-30T00:00:00Z date_updated: 2023-08-22T12:35:38Z day: '30' ddc: - '572' department: - _id: LeSa doi: 10.1126/science.abc4209 ec_funded: 1 external_id: isi: - '000583031800004' pmid: - '32972993' file: - access_level: open_access checksum: 658ba90979ca9528a2efdfac8547047a content_type: application/pdf creator: lsazanov date_created: 2020-11-26T18:47:58Z date_updated: 2020-11-26T18:47:58Z file_id: '8820' file_name: Full_manuscript_with_SI_opt_red.pdf file_size: 7618987 relation: main_file success: 1 file_date_updated: 2020-11-26T18:47:58Z has_accepted_license: '1' intvolume: ' 370' isi: 1 issue: '6516' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version pmid: 1 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Science publication_identifier: eissn: - '10959203' publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: The coupling mechanism of mammalian respiratory complex I type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 370 year: '2020' ... --- _id: '8722' abstract: - lang: eng text: "Load imbalance pervasively exists in distributed deep learning training systems, either caused by the inherent imbalance in learned tasks or by the system itself. Traditional synchronous Stochastic Gradient Descent (SGD)\r\nachieves good accuracy for a wide variety of tasks, but relies on global synchronization to accumulate the gradients at every training step. In this paper, we propose eager-SGD, which relaxes the global synchronization for\r\ndecentralized accumulation. To implement eager-SGD, we propose to use two partial collectives: solo and majority. With solo allreduce, the faster processes contribute their gradients eagerly without waiting for the slower processes, whereas with majority allreduce, at least half of the participants must contribute gradients before continuing, all without using a central parameter server. We theoretically prove the convergence of the algorithms and describe the partial collectives in detail. Experimental results on load-imbalanced environments (CIFAR-10, ImageNet, and UCF101 datasets) show\r\nthat eager-SGD achieves 1.27x speedup over the state-of-the-art synchronous SGD, without losing accuracy." article_processing_charge: No author: - first_name: Shigang full_name: Li, Shigang last_name: Li - first_name: Tal Ben-Nun full_name: Tal Ben-Nun, Tal Ben-Nun last_name: Tal Ben-Nun - first_name: Salvatore Di full_name: Girolamo, Salvatore Di last_name: Girolamo - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Torsten full_name: Hoefler, Torsten last_name: Hoefler citation: ama: 'Li S, Tal Ben-Nun TB-N, Girolamo SD, Alistarh D-A, Hoefler T. Taming unbalanced training workloads in deep learning with partial collective operations. In: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Association for Computing Machinery; 2020:45-61. doi:10.1145/3332466.3374528' apa: 'Li, S., Tal Ben-Nun, T. B.-N., Girolamo, S. D., Alistarh, D.-A., & Hoefler, T. (2020). Taming unbalanced training workloads in deep learning with partial collective operations. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 45–61). San Diego, CA, United States: Association for Computing Machinery. https://doi.org/10.1145/3332466.3374528' chicago: Li, Shigang, Tal Ben-Nun Tal Ben-Nun, Salvatore Di Girolamo, Dan-Adrian Alistarh, and Torsten Hoefler. “Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations.” In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 45–61. Association for Computing Machinery, 2020. https://doi.org/10.1145/3332466.3374528. ieee: S. Li, T. B.-N. Tal Ben-Nun, S. D. Girolamo, D.-A. Alistarh, and T. Hoefler, “Taming unbalanced training workloads in deep learning with partial collective operations,” in Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, CA, United States, 2020, pp. 45–61. ista: 'Li S, Tal Ben-Nun TB-N, Girolamo SD, Alistarh D-A, Hoefler T. 2020. Taming unbalanced training workloads in deep learning with partial collective operations. Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP: Sympopsium on Principles and Practice of Parallel Programming, 45–61.' mla: Li, Shigang, et al. “Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations.” Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2020, pp. 45–61, doi:10.1145/3332466.3374528. short: S. Li, T.B.-N. Tal Ben-Nun, S.D. Girolamo, D.-A. Alistarh, T. Hoefler, in:, Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2020, pp. 45–61. conference: end_date: 2020-02-26 location: San Diego, CA, United States name: 'PPoPP: Sympopsium on Principles and Practice of Parallel Programming' start_date: 2020-02-22 date_created: 2020-11-05T15:25:30Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-22T12:13:48Z day: '01' department: - _id: DaAl doi: 10.1145/3332466.3374528 ec_funded: 1 external_id: arxiv: - '1908.04207' isi: - '000564476500004' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.04207 month: '02' oa: 1 oa_version: Preprint page: 45-61 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Taming unbalanced training workloads in deep learning with partial collective operations type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2020' ... --- _id: '8744' abstract: - lang: eng text: Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding. acknowledgement: 'We acknowledge help from Anja Seybert, Margot Frangakis, Diana Grewe, Mikhail Eltsov, Utz Ermel, and Shintaro Aibara. The work was supported by Deutsche Forschungsgemeinschaft in the CLiC graduate school. Work at the Center for Biomolecular Magnetic Resonance (BMRZ) is supported by the German state of Hesse. The work at BMRZ has been supported by the state of Hesse. L.S. has been supported by the DFG graduate college: CLiC.' article_number: '5569' article_processing_charge: No article_type: original author: - first_name: Linda full_name: Schulte, Linda last_name: Schulte - first_name: Jiafei full_name: Mao, Jiafei last_name: Mao - first_name: Julian full_name: Reitz, Julian last_name: Reitz - first_name: Sridhar full_name: Sreeramulu, Sridhar last_name: Sreeramulu - first_name: Denis full_name: Kudlinzki, Denis last_name: Kudlinzki - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - first_name: Jakob full_name: Meier-Credo, Jakob last_name: Meier-Credo - first_name: Krishna full_name: Saxena, Krishna last_name: Saxena - first_name: Florian full_name: Buhr, Florian last_name: Buhr - first_name: Julian D. full_name: Langer, Julian D. last_name: Langer - first_name: Martin full_name: Blackledge, Martin last_name: Blackledge - first_name: Achilleas S. full_name: Frangakis, Achilleas S. last_name: Frangakis - first_name: Clemens full_name: Glaubitz, Clemens last_name: Glaubitz - first_name: Harald full_name: Schwalbe, Harald last_name: Schwalbe citation: ama: Schulte L, Mao J, Reitz J, et al. Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nature Communications. 2020;11. doi:10.1038/s41467-020-19372-x apa: Schulte, L., Mao, J., Reitz, J., Sreeramulu, S., Kudlinzki, D., Hodirnau, V.-V., … Schwalbe, H. (2020). Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-19372-x chicago: Schulte, Linda, Jiafei Mao, Julian Reitz, Sridhar Sreeramulu, Denis Kudlinzki, Victor-Valentin Hodirnau, Jakob Meier-Credo, et al. “Cysteine Oxidation and Disulfide Formation in the Ribosomal Exit Tunnel.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-19372-x. ieee: L. Schulte et al., “Cysteine oxidation and disulfide formation in the ribosomal exit tunnel,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Schulte L, Mao J, Reitz J, Sreeramulu S, Kudlinzki D, Hodirnau V-V, Meier-Credo J, Saxena K, Buhr F, Langer JD, Blackledge M, Frangakis AS, Glaubitz C, Schwalbe H. 2020. Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nature Communications. 11, 5569. mla: Schulte, Linda, et al. “Cysteine Oxidation and Disulfide Formation in the Ribosomal Exit Tunnel.” Nature Communications, vol. 11, 5569, Springer Nature, 2020, doi:10.1038/s41467-020-19372-x. short: L. Schulte, J. Mao, J. Reitz, S. Sreeramulu, D. Kudlinzki, V.-V. Hodirnau, J. Meier-Credo, K. Saxena, F. Buhr, J.D. Langer, M. Blackledge, A.S. Frangakis, C. Glaubitz, H. Schwalbe, Nature Communications 11 (2020). date_created: 2020-11-09T07:49:36Z date_published: 2020-11-04T00:00:00Z date_updated: 2023-08-22T12:36:07Z day: '04' ddc: - '570' department: - _id: EM-Fac doi: 10.1038/s41467-020-19372-x external_id: isi: - '000592028600001' file: - access_level: open_access checksum: b2688f0347e69e6629bba582077278c5 content_type: application/pdf creator: dernst date_created: 2020-11-09T07:56:24Z date_updated: 2020-11-09T07:56:24Z file_id: '8745' file_name: 2020_NatureComm_Schulte.pdf file_size: 1670898 relation: main_file success: 1 file_date_updated: 2020-11-09T07:56:24Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Cysteine oxidation and disulfide formation in the ribosomal exit tunnel tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8747' abstract: - lang: eng text: "Appropriately designed nanocomposites allow improving the thermoelectric performance by several mechanisms, including phonon scattering, modulation doping and energy filtering, while additionally promoting better mechanical properties than those of crystalline materials. Here, a strategy for producing Bi2Te3–Cu2xTe nanocomposites based on the consolidation of heterostructured nanoparticles is described and the thermoelectric properties of the obtained materials are investigated. We first detail a two-step solution-based process to produce Bi2Te3–Cu2xTe heteronanostructures, based on the growth of Cu2xTe nanocrystals on the surface of Bi2Te3 nanowires. We characterize the structural and chemical properties of the synthesized nanostructures and of the nanocomposites\r\nproduced by hot-pressing the particles at moderate temperatures. Besides, the transport properties of the nanocomposites are investigated as a function of the amount of Cu introduced. Overall, the presence of Cu decreases the material thermal conductivity through promotion of phonon scattering, modulates the charge carrier concentration through electron spillover, and increases the Seebeck coefficient through filtering of charge carriers at energy barriers. These effects result in an improvement of over 50% of the thermoelectric figure of merit of Bi2Te3." acknowledgement: "This work was supported by the European Regional Development Funds and by the Spanish Ministerio de Economı´a y\r\nCompetitividad through the project SEHTOP (ENE2016-77798-C4-3-R). Y. Z. and X. H., thank the China Scholarship Council for scholarship support. M. C. has received funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. M. I. acknowledges financial support from IST Austria. Y. L. acknowledges funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement no. 754411. ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327 and the Spanish MINECO project ENE2017-85087-C3. ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (grant no. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat \r\nAuto`noma de Barcelona Materials Science PhD program." article_processing_charge: No article_type: original author: - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Mariano full_name: Calcabrini, Mariano last_name: Calcabrini - first_name: Congcong full_name: Xing, Congcong last_name: Xing - first_name: Xu full_name: Han, Xu last_name: Han - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Doris full_name: Cadavid, Doris last_name: Cadavid - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Zhang Y, Liu Y, Calcabrini M, et al. Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks. Journal of Materials Chemistry C. 2020;8(40):14092-14099. doi:10.1039/D0TC02182B apa: Zhang, Y., Liu, Y., Calcabrini, M., Xing, C., Han, X., Arbiol, J., … Cabot, A. (2020). Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks. Journal of Materials Chemistry C. Royal Society of Chemistry. https://doi.org/10.1039/D0TC02182B chicago: Zhang, Yu, Yu Liu, Mariano Calcabrini, Congcong Xing, Xu Han, Jordi Arbiol, Doris Cadavid, Maria Ibáñez, and Andreu Cabot. “Bismuth Telluride-Copper Telluride Nanocomposites from Heterostructured Building Blocks.” Journal of Materials Chemistry C. Royal Society of Chemistry, 2020. https://doi.org/10.1039/D0TC02182B. ieee: Y. Zhang et al., “Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks,” Journal of Materials Chemistry C, vol. 8, no. 40. Royal Society of Chemistry, pp. 14092–14099, 2020. ista: Zhang Y, Liu Y, Calcabrini M, Xing C, Han X, Arbiol J, Cadavid D, Ibáñez M, Cabot A. 2020. Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks. Journal of Materials Chemistry C. 8(40), 14092–14099. mla: Zhang, Yu, et al. “Bismuth Telluride-Copper Telluride Nanocomposites from Heterostructured Building Blocks.” Journal of Materials Chemistry C, vol. 8, no. 40, Royal Society of Chemistry, 2020, pp. 14092–99, doi:10.1039/D0TC02182B. short: Y. Zhang, Y. Liu, M. Calcabrini, C. Xing, X. Han, J. Arbiol, D. Cadavid, M. Ibáñez, A. Cabot, Journal of Materials Chemistry C 8 (2020) 14092–14099. date_created: 2020-11-09T08:37:51Z date_published: 2020-10-28T00:00:00Z date_updated: 2023-08-22T12:41:05Z day: '28' department: - _id: MaIb doi: 10.1039/D0TC02182B ec_funded: 1 external_id: isi: - '000581559100015' intvolume: ' 8' isi: 1 issue: '40' language: - iso: eng month: '10' oa_version: None page: 14092-14099 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Journal of Materials Chemistry C publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' scopus_import: '1' status: public title: Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2020' ... --- _id: '14095' abstract: - lang: eng text: 'The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.' article_number: '2001.06683' article_processing_charge: No author: - first_name: B. Scott full_name: Gaudi, B. Scott last_name: Gaudi - first_name: Sara full_name: Seager, Sara last_name: Seager - first_name: Bertrand full_name: Mennesson, Bertrand last_name: Mennesson - first_name: Alina full_name: Kiessling, Alina last_name: Kiessling - first_name: Keith full_name: Warfield, Keith last_name: Warfield - first_name: Kerri full_name: Cahoy, Kerri last_name: Cahoy - first_name: John T. full_name: Clarke, John T. last_name: Clarke - first_name: Shawn Domagal-Goldman full_name: Shawn Domagal-Goldman, Shawn Domagal-Goldman last_name: Shawn Domagal-Goldman - first_name: Lee full_name: Feinberg, Lee last_name: Feinberg - first_name: Olivier full_name: Guyon, Olivier last_name: Guyon - first_name: Jeremy full_name: Kasdin, Jeremy last_name: Kasdin - first_name: Dimitri full_name: Mawet, Dimitri last_name: Mawet - first_name: Peter full_name: Plavchan, Peter last_name: Plavchan - first_name: Tyler full_name: Robinson, Tyler last_name: Robinson - first_name: Leslie full_name: Rogers, Leslie last_name: Rogers - first_name: Paul full_name: Scowen, Paul last_name: Scowen - first_name: Rachel full_name: Somerville, Rachel last_name: Somerville - first_name: Karl full_name: Stapelfeldt, Karl last_name: Stapelfeldt - first_name: Christopher full_name: Stark, Christopher last_name: Stark - first_name: Daniel full_name: Stern, Daniel last_name: Stern - first_name: Margaret full_name: Turnbull, Margaret last_name: Turnbull - first_name: Rashied full_name: Amini, Rashied last_name: Amini - first_name: Gary full_name: Kuan, Gary last_name: Kuan - first_name: Stefan full_name: Martin, Stefan last_name: Martin - first_name: Rhonda full_name: Morgan, Rhonda last_name: Morgan - first_name: David full_name: Redding, David last_name: Redding - first_name: H. Philip full_name: Stahl, H. Philip last_name: Stahl - first_name: Ryan full_name: Webb, Ryan last_name: Webb - first_name: Oscar Alvarez-Salazar full_name: Oscar Alvarez-Salazar, Oscar Alvarez-Salazar last_name: Oscar Alvarez-Salazar - first_name: William L. full_name: Arnold, William L. last_name: Arnold - first_name: Manan full_name: Arya, Manan last_name: Arya - first_name: Bala full_name: Balasubramanian, Bala last_name: Balasubramanian - first_name: Mike full_name: Baysinger, Mike last_name: Baysinger - first_name: Ray full_name: Bell, Ray last_name: Bell - first_name: Chris full_name: Below, Chris last_name: Below - first_name: Jonathan full_name: Benson, Jonathan last_name: Benson - first_name: Lindsey full_name: Blais, Lindsey last_name: Blais - first_name: Jeff full_name: Booth, Jeff last_name: Booth - first_name: Robert full_name: Bourgeois, Robert last_name: Bourgeois - first_name: Case full_name: Bradford, Case last_name: Bradford - first_name: Alden full_name: Brewer, Alden last_name: Brewer - first_name: Thomas full_name: Brooks, Thomas last_name: Brooks - first_name: Eric full_name: Cady, Eric last_name: Cady - first_name: Mary full_name: Caldwell, Mary last_name: Caldwell - first_name: Rob full_name: Calvet, Rob last_name: Calvet - first_name: Steven full_name: Carr, Steven last_name: Carr - first_name: Derek full_name: Chan, Derek last_name: Chan - first_name: Velibor full_name: Cormarkovic, Velibor last_name: Cormarkovic - first_name: Keith full_name: Coste, Keith last_name: Coste - first_name: Charlie full_name: Cox, Charlie last_name: Cox - first_name: Rolf full_name: Danner, Rolf last_name: Danner - first_name: Jacqueline full_name: Davis, Jacqueline last_name: Davis - first_name: Larry full_name: Dewell, Larry last_name: Dewell - first_name: Lisa full_name: Dorsett, Lisa last_name: Dorsett - first_name: Daniel full_name: Dunn, Daniel last_name: Dunn - first_name: Matthew full_name: East, Matthew last_name: East - first_name: Michael full_name: Effinger, Michael last_name: Effinger - first_name: Ron full_name: Eng, Ron last_name: Eng - first_name: Greg full_name: Freebury, Greg last_name: Freebury - first_name: Jay full_name: Garcia, Jay last_name: Garcia - first_name: Jonathan full_name: Gaskin, Jonathan last_name: Gaskin - first_name: Suzan full_name: Greene, Suzan last_name: Greene - first_name: John full_name: Hennessy, John last_name: Hennessy - first_name: Evan full_name: Hilgemann, Evan last_name: Hilgemann - first_name: Brad full_name: Hood, Brad last_name: Hood - first_name: Wolfgang full_name: Holota, Wolfgang last_name: Holota - first_name: Scott full_name: Howe, Scott last_name: Howe - first_name: Pei full_name: Huang, Pei last_name: Huang - first_name: Tony full_name: Hull, Tony last_name: Hull - first_name: Ron full_name: Hunt, Ron last_name: Hunt - first_name: Kevin full_name: Hurd, Kevin last_name: Hurd - first_name: Sandra full_name: Johnson, Sandra last_name: Johnson - first_name: Andrew full_name: Kissil, Andrew last_name: Kissil - first_name: Brent full_name: Knight, Brent last_name: Knight - first_name: Daniel full_name: Kolenz, Daniel last_name: Kolenz - first_name: Oliver full_name: Kraus, Oliver last_name: Kraus - first_name: John full_name: Krist, John last_name: Krist - first_name: Mary full_name: Li, Mary last_name: Li - first_name: Doug full_name: Lisman, Doug last_name: Lisman - first_name: Milan full_name: Mandic, Milan last_name: Mandic - first_name: John full_name: Mann, John last_name: Mann - first_name: Luis full_name: Marchen, Luis last_name: Marchen - first_name: Colleen Marrese-Reading full_name: Colleen Marrese-Reading, Colleen Marrese-Reading last_name: Colleen Marrese-Reading - first_name: Jonathan full_name: McCready, Jonathan last_name: McCready - first_name: Jim full_name: McGown, Jim last_name: McGown - first_name: Jessica full_name: Missun, Jessica last_name: Missun - first_name: Andrew full_name: Miyaguchi, Andrew last_name: Miyaguchi - first_name: Bradley full_name: Moore, Bradley last_name: Moore - first_name: Bijan full_name: Nemati, Bijan last_name: Nemati - first_name: Shouleh full_name: Nikzad, Shouleh last_name: Nikzad - first_name: Joel full_name: Nissen, Joel last_name: Nissen - first_name: Megan full_name: Novicki, Megan last_name: Novicki - first_name: Todd full_name: Perrine, Todd last_name: Perrine - first_name: Claudia full_name: Pineda, Claudia last_name: Pineda - first_name: Otto full_name: Polanco, Otto last_name: Polanco - first_name: Dustin full_name: Putnam, Dustin last_name: Putnam - first_name: Atif full_name: Qureshi, Atif last_name: Qureshi - first_name: Michael full_name: Richards, Michael last_name: Richards - first_name: A. J. Eldorado full_name: Riggs, A. J. Eldorado last_name: Riggs - first_name: Michael full_name: Rodgers, Michael last_name: Rodgers - first_name: Mike full_name: Rud, Mike last_name: Rud - first_name: Navtej full_name: Saini, Navtej last_name: Saini - first_name: Dan full_name: Scalisi, Dan last_name: Scalisi - first_name: Dan full_name: Scharf, Dan last_name: Scharf - first_name: Kevin full_name: Schulz, Kevin last_name: Schulz - first_name: Gene full_name: Serabyn, Gene last_name: Serabyn - first_name: Norbert full_name: Sigrist, Norbert last_name: Sigrist - first_name: Glory full_name: Sikkia, Glory last_name: Sikkia - first_name: Andrew full_name: Singleton, Andrew last_name: Singleton - first_name: Stuart full_name: Shaklan, Stuart last_name: Shaklan - first_name: Scott full_name: Smith, Scott last_name: Smith - first_name: Bart full_name: Southerd, Bart last_name: Southerd - first_name: Mark full_name: Stahl, Mark last_name: Stahl - first_name: John full_name: Steeves, John last_name: Steeves - first_name: Brian full_name: Sturges, Brian last_name: Sturges - first_name: Chris full_name: Sullivan, Chris last_name: Sullivan - first_name: Hao full_name: Tang, Hao last_name: Tang - first_name: Neil full_name: Taras, Neil last_name: Taras - first_name: Jonathan full_name: Tesch, Jonathan last_name: Tesch - first_name: Melissa full_name: Therrell, Melissa last_name: Therrell - first_name: Howard full_name: Tseng, Howard last_name: Tseng - first_name: Marty full_name: Valente, Marty last_name: Valente - first_name: David Van full_name: Buren, David Van last_name: Buren - first_name: Juan full_name: Villalvazo, Juan last_name: Villalvazo - first_name: Steve full_name: Warwick, Steve last_name: Warwick - first_name: David full_name: Webb, David last_name: Webb - first_name: Thomas full_name: Westerhoff, Thomas last_name: Westerhoff - first_name: Rush full_name: Wofford, Rush last_name: Wofford - first_name: Gordon full_name: Wu, Gordon last_name: Wu - first_name: Jahning full_name: Woo, Jahning last_name: Woo - first_name: Milana full_name: Wood, Milana last_name: Wood - first_name: John full_name: Ziemer, John last_name: Ziemer - first_name: Giada full_name: Arney, Giada last_name: Arney - first_name: Jay full_name: Anderson, Jay last_name: Anderson - first_name: Jesús Maíz-Apellániz full_name: Jesús Maíz-Apellániz, Jesús Maíz-Apellániz last_name: Jesús Maíz-Apellániz - first_name: James full_name: Bartlett, James last_name: Bartlett - first_name: Ruslan full_name: Belikov, Ruslan last_name: Belikov - first_name: Eduardo full_name: Bendek, Eduardo last_name: Bendek - first_name: Brad full_name: Cenko, Brad last_name: Cenko - first_name: Ewan full_name: Douglas, Ewan last_name: Douglas - first_name: Shannon full_name: Dulz, Shannon last_name: Dulz - first_name: Chris full_name: Evans, Chris last_name: Evans - first_name: Virginie full_name: Faramaz, Virginie last_name: Faramaz - first_name: Y. Katherina full_name: Feng, Y. Katherina last_name: Feng - first_name: Harry full_name: Ferguson, Harry last_name: Ferguson - first_name: Kate full_name: Follette, Kate last_name: Follette - first_name: Saavik full_name: Ford, Saavik last_name: Ford - first_name: Miriam full_name: García, Miriam last_name: García - first_name: Marla full_name: Geha, Marla last_name: Geha - first_name: Dawn full_name: Gelino, Dawn last_name: Gelino - first_name: Ylva Louise Linsdotter full_name: Götberg, Ylva Louise Linsdotter id: d0648d0c-0f64-11ee-a2e0-dd0faa2e4f7d last_name: Götberg orcid: 0000-0002-6960-6911 - first_name: Sergi full_name: Hildebrandt, Sergi last_name: Hildebrandt - first_name: Renyu full_name: Hu, Renyu last_name: Hu - first_name: Knud full_name: Jahnke, Knud last_name: Jahnke - first_name: Grant full_name: Kennedy, Grant last_name: Kennedy - first_name: Laura full_name: Kreidberg, Laura last_name: Kreidberg - first_name: Andrea full_name: Isella, Andrea last_name: Isella - first_name: Eric full_name: Lopez, Eric last_name: Lopez - first_name: Franck full_name: Marchis, Franck last_name: Marchis - first_name: Lucas full_name: Macri, Lucas last_name: Macri - first_name: Mark full_name: Marley, Mark last_name: Marley - first_name: William full_name: Matzko, William last_name: Matzko - first_name: Johan full_name: Mazoyer, Johan last_name: Mazoyer - first_name: Stephan full_name: McCandliss, Stephan last_name: McCandliss - first_name: Tiffany full_name: Meshkat, Tiffany last_name: Meshkat - first_name: Christoph full_name: Mordasini, Christoph last_name: Mordasini - first_name: Patrick full_name: Morris, Patrick last_name: Morris - first_name: Eric full_name: Nielsen, Eric last_name: Nielsen - first_name: Patrick full_name: Newman, Patrick last_name: Newman - first_name: Erik full_name: Petigura, Erik last_name: Petigura - first_name: Marc full_name: Postman, Marc last_name: Postman - first_name: Amy full_name: Reines, Amy last_name: Reines - first_name: Aki full_name: Roberge, Aki last_name: Roberge - first_name: Ian full_name: Roederer, Ian last_name: Roederer - first_name: Garreth full_name: Ruane, Garreth last_name: Ruane - first_name: Edouard full_name: Schwieterman, Edouard last_name: Schwieterman - first_name: Dan full_name: Sirbu, Dan last_name: Sirbu - first_name: Christopher full_name: Spalding, Christopher last_name: Spalding - first_name: Harry full_name: Teplitz, Harry last_name: Teplitz - first_name: Jason full_name: Tumlinson, Jason last_name: Tumlinson - first_name: Neal full_name: Turner, Neal last_name: Turner - first_name: Jessica full_name: Werk, Jessica last_name: Werk - first_name: Aida full_name: Wofford, Aida last_name: Wofford - first_name: Mark full_name: Wyatt, Mark last_name: Wyatt - first_name: Amber full_name: Young, Amber last_name: Young - first_name: Rob full_name: Zellem, Rob last_name: Zellem citation: ama: Gaudi BS, Seager S, Mennesson B, et al. The habitable exoplanet observatory (HabEx) mission concept study final report. arXiv. doi:10.48550/arXiv.2001.06683 apa: Gaudi, B. S., Seager, S., Mennesson, B., Kiessling, A., Warfield, K., Cahoy, K., … Zellem, R. (n.d.). The habitable exoplanet observatory (HabEx) mission concept study final report. arXiv. https://doi.org/10.48550/arXiv.2001.06683 chicago: Gaudi, B. Scott, Sara Seager, Bertrand Mennesson, Alina Kiessling, Keith Warfield, Kerri Cahoy, John T. Clarke, et al. “The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2001.06683. ieee: B. S. Gaudi et al., “The habitable exoplanet observatory (HabEx) mission concept study final report,” arXiv. . ista: Gaudi BS et al. The habitable exoplanet observatory (HabEx) mission concept study final report. arXiv, 2001.06683. mla: Gaudi, B. Scott, et al. “The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report.” ArXiv, 2001.06683, doi:10.48550/arXiv.2001.06683. short: B.S. Gaudi, S. Seager, B. Mennesson, A. Kiessling, K. Warfield, K. Cahoy, J.T. Clarke, S.D.-G. Shawn Domagal-Goldman, L. Feinberg, O. Guyon, J. Kasdin, D. Mawet, P. Plavchan, T. Robinson, L. Rogers, P. Scowen, R. Somerville, K. Stapelfeldt, C. Stark, D. Stern, M. Turnbull, R. Amini, G. Kuan, S. Martin, R. Morgan, D. Redding, H.P. Stahl, R. Webb, O.A.-S. Oscar Alvarez-Salazar, W.L. Arnold, M. Arya, B. Balasubramanian, M. Baysinger, R. Bell, C. Below, J. Benson, L. Blais, J. Booth, R. Bourgeois, C. Bradford, A. Brewer, T. Brooks, E. Cady, M. Caldwell, R. Calvet, S. Carr, D. Chan, V. Cormarkovic, K. Coste, C. Cox, R. Danner, J. Davis, L. Dewell, L. Dorsett, D. Dunn, M. East, M. Effinger, R. Eng, G. Freebury, J. Garcia, J. Gaskin, S. Greene, J. Hennessy, E. Hilgemann, B. Hood, W. Holota, S. Howe, P. Huang, T. Hull, R. Hunt, K. Hurd, S. Johnson, A. Kissil, B. Knight, D. Kolenz, O. Kraus, J. Krist, M. Li, D. Lisman, M. Mandic, J. Mann, L. Marchen, C.M.-R. Colleen Marrese-Reading, J. McCready, J. McGown, J. Missun, A. Miyaguchi, B. Moore, B. Nemati, S. Nikzad, J. Nissen, M. Novicki, T. Perrine, C. Pineda, O. Polanco, D. Putnam, A. Qureshi, M. Richards, A.J.E. Riggs, M. Rodgers, M. Rud, N. Saini, D. Scalisi, D. Scharf, K. Schulz, G. Serabyn, N. Sigrist, G. Sikkia, A. Singleton, S. Shaklan, S. Smith, B. Southerd, M. Stahl, J. Steeves, B. Sturges, C. Sullivan, H. Tang, N. Taras, J. Tesch, M. Therrell, H. Tseng, M. Valente, D.V. Buren, J. Villalvazo, S. Warwick, D. Webb, T. Westerhoff, R. Wofford, G. Wu, J. Woo, M. Wood, J. Ziemer, G. Arney, J. Anderson, J.M.-A. Jesús Maíz-Apellániz, J. Bartlett, R. Belikov, E. Bendek, B. Cenko, E. Douglas, S. Dulz, C. Evans, V. Faramaz, Y.K. Feng, H. Ferguson, K. Follette, S. Ford, M. García, M. Geha, D. Gelino, Y.L.L. Götberg, S. Hildebrandt, R. Hu, K. Jahnke, G. Kennedy, L. Kreidberg, A. Isella, E. Lopez, F. Marchis, L. Macri, M. Marley, W. Matzko, J. Mazoyer, S. McCandliss, T. Meshkat, C. Mordasini, P. Morris, E. Nielsen, P. Newman, E. Petigura, M. Postman, A. Reines, A. Roberge, I. Roederer, G. Ruane, E. Schwieterman, D. Sirbu, C. Spalding, H. Teplitz, J. Tumlinson, N. Turner, J. Werk, A. Wofford, M. Wyatt, A. Young, R. Zellem, ArXiv (n.d.). date_created: 2023-08-21T10:10:21Z date_published: 2020-01-18T00:00:00Z date_updated: 2023-08-22T13:13:18Z day: '18' doi: 10.48550/arXiv.2001.06683 extern: '1' external_id: arxiv: - '2001.06683' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2001.06683' month: '01' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted status: public title: The habitable exoplanet observatory (HabEx) mission concept study final report type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8767' abstract: - lang: eng text: Resources are rarely distributed uniformly within a population. Heterogeneity in the concentration of a drug, the quality of breeding sites, or wealth can all affect evolutionary dynamics. In this study, we represent a collection of properties affecting the fitness at a given location using a color. A green node is rich in resources while a red node is poorer. More colors can represent a broader spectrum of resource qualities. For a population evolving according to the birth-death Moran model, the first question we address is which structures, identified by graph connectivity and graph coloring, are evolutionarily equivalent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily equivalent (where “properly colored” means that no two neighbors have the same color). We then compare the effects of background heterogeneity on properly two-colored graphs to those with alternative schemes in which the colors are permuted. Finally, we discuss dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate that random dynamic colorings often diminish the effects of background heterogeneity relative to a proper two-coloring. acknowledgement: 'We thank Igor Erovenko for many helpful comments on an earlier version of this paper. : Army Research Laboratory (grant W911NF-18-2-0265) (M.A.N.); the Bill & Melinda Gates Foundation (grant OPP1148627) (M.A.N.); the NVIDIA Corporation (A.M.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.' article_number: e1008402 article_processing_charge: No article_type: original author: - first_name: Kamran full_name: Kaveh, Kamran last_name: Kaveh - first_name: Alex full_name: McAvoy, Alex last_name: McAvoy - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Kaveh K, McAvoy A, Chatterjee K, Nowak MA. The Moran process on 2-chromatic graphs. PLOS Computational Biology. 2020;16(11). doi:10.1371/journal.pcbi.1008402 apa: Kaveh, K., McAvoy, A., Chatterjee, K., & Nowak, M. A. (2020). The Moran process on 2-chromatic graphs. PLOS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1008402 chicago: Kaveh, Kamran, Alex McAvoy, Krishnendu Chatterjee, and Martin A. Nowak. “The Moran Process on 2-Chromatic Graphs.” PLOS Computational Biology. Public Library of Science, 2020. https://doi.org/10.1371/journal.pcbi.1008402. ieee: K. Kaveh, A. McAvoy, K. Chatterjee, and M. A. Nowak, “The Moran process on 2-chromatic graphs,” PLOS Computational Biology, vol. 16, no. 11. Public Library of Science, 2020. ista: Kaveh K, McAvoy A, Chatterjee K, Nowak MA. 2020. The Moran process on 2-chromatic graphs. PLOS Computational Biology. 16(11), e1008402. mla: Kaveh, Kamran, et al. “The Moran Process on 2-Chromatic Graphs.” PLOS Computational Biology, vol. 16, no. 11, e1008402, Public Library of Science, 2020, doi:10.1371/journal.pcbi.1008402. short: K. Kaveh, A. McAvoy, K. Chatterjee, M.A. Nowak, PLOS Computational Biology 16 (2020). date_created: 2020-11-18T07:20:23Z date_published: 2020-11-05T00:00:00Z date_updated: 2023-08-22T12:49:18Z day: '05' ddc: - '000' department: - _id: KrCh doi: 10.1371/journal.pcbi.1008402 external_id: isi: - '000591317200004' file: - access_level: open_access checksum: 555456dd0e47bcf9e0994bcb95577e88 content_type: application/pdf creator: dernst date_created: 2020-11-18T07:26:10Z date_updated: 2020-11-18T07:26:10Z file_id: '8768' file_name: 2020_PlosCompBio_Kaveh.pdf file_size: 2498594 relation: main_file success: 1 file_date_updated: 2020-11-18T07:26:10Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '11' keyword: - Ecology - Modelling and Simulation - Computational Theory and Mathematics - Genetics - Ecology - Evolution - Behavior and Systematics - Molecular Biology - Cellular and Molecular Neuroscience language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: PLOS Computational Biology publication_identifier: eissn: - 1553-7358 issn: - 1553-734X publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: The Moran process on 2-chromatic graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 16 year: '2020' ... --- _id: '8750' abstract: - lang: eng text: "Efficiently handling time-triggered and possibly nondeterministic switches\r\nfor hybrid systems reachability is a challenging task. In this paper we present\r\nan approach based on conservative set-based enclosure of the dynamics that can\r\nhandle systems with uncertain parameters and inputs, where the uncertainties\r\nare bound to given intervals. The method is evaluated on the plant model of an\r\nexperimental electro-mechanical braking system with periodic controller. In\r\nthis model, the fast-switching controller dynamics requires simulation time\r\nscales of the order of nanoseconds. Accurate set-based computations for\r\nrelatively large time horizons are known to be expensive. However, by\r\nappropriately decoupling the time variable with respect to the spatial\r\nvariables, and enclosing the uncertain parameters using interval matrix maps\r\nacting on zonotopes, we show that the computation time can be lowered to 5000\r\ntimes faster with respect to previous works. This is a step forward in formal\r\nverification of hybrid systems because reduced run-times allow engineers to\r\nintroduce more expressiveness in their models with a relatively inexpensive\r\ncomputational cost." article_number: '9314994' article_processing_charge: No author: - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Forets M, Freire D, Schilling C. Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. In: 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. IEEE; 2020. doi:10.1109/MEMOCODE51338.2020.9314994' apa: 'Forets, M., Freire, D., & Schilling, C. (2020). Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. In 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. Virtual Conference: IEEE. https://doi.org/10.1109/MEMOCODE51338.2020.9314994' chicago: Forets, Marcelo, Daniel Freire, and Christian Schilling. “Efficient Reachability Analysis of Parametric Linear Hybrid Systems with  Time-Triggered Transitions.” In 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. IEEE, 2020. https://doi.org/10.1109/MEMOCODE51338.2020.9314994. ieee: M. Forets, D. Freire, and C. Schilling, “Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions,” in 18th ACM-IEEE International Conference on Formal Methods and Models for System Design, Virtual Conference, 2020. ista: 'Forets M, Freire D, Schilling C. 2020. Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. MEMOCODE: Conference on Formal Methods and Models for System Design, 9314994.' mla: Forets, Marcelo, et al. “Efficient Reachability Analysis of Parametric Linear Hybrid Systems with  Time-Triggered Transitions.” 18th ACM-IEEE International Conference on Formal Methods and Models for System Design, 9314994, IEEE, 2020, doi:10.1109/MEMOCODE51338.2020.9314994. short: M. Forets, D. Freire, C. Schilling, in:, 18th ACM-IEEE International Conference on Formal Methods and Models for System Design, IEEE, 2020. conference: end_date: 2020-12-04 location: Virtual Conference name: 'MEMOCODE: Conference on Formal Methods and Models for System Design' start_date: 2020-12-02 date_created: 2020-11-10T07:04:57Z date_published: 2020-12-04T00:00:00Z date_updated: 2023-08-22T12:48:18Z day: '04' department: - _id: ToHe doi: 10.1109/MEMOCODE51338.2020.9314994 ec_funded: 1 external_id: arxiv: - '2006.12325' isi: - '000661920400013' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2006.12325 month: '12' oa: 1 oa_version: Preprint project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 18th ACM-IEEE International Conference on Formal Methods and Models for System Design publication_identifier: isbn: - '9781728191485' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Efficient reachability analysis of parametric linear hybrid systems with time-triggered transitions type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2020' ... --- _id: '8758' abstract: - lang: eng text: We consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condition. The latter allows us to enrich the systems with a gradient structure, i.e. the evolution is given by a gradient-flow equation. We present the arising links between the associated gradient structures that are driven by the relative entropy of the detailed-balance steady state. The limit of large volumes is studied in the sense of evolutionary Γ-convergence of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling different modeling levels. acknowledgement: The research of A.M. was partially supported by the Deutsche Forschungsgemeinschaft (DFG) via the Collaborative Research Center SFB 1114 Scaling Cascades in Complex Systems (Project No. 235221301), through the Subproject C05 Effective models for materials and interfaces with multiple scales. J.M. gratefully acknowledges support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 716117), and by the Austrian Science Fund (FWF), Project SFB F65. The authors thank Christof Schütte, Robert I. A. Patterson, and Stefanie Winkelmann for helpful and stimulating discussions. Open access funding provided by Austrian Science Fund (FWF). article_processing_charge: No article_type: original author: - first_name: Jan full_name: Maas, Jan id: 4C5696CE-F248-11E8-B48F-1D18A9856A87 last_name: Maas orcid: 0000-0002-0845-1338 - first_name: Alexander full_name: Mielke, Alexander last_name: Mielke citation: ama: Maas J, Mielke A. Modeling of chemical reaction systems with detailed balance using gradient structures. Journal of Statistical Physics. 2020;181(6):2257-2303. doi:10.1007/s10955-020-02663-4 apa: Maas, J., & Mielke, A. (2020). Modeling of chemical reaction systems with detailed balance using gradient structures. Journal of Statistical Physics. Springer Nature. https://doi.org/10.1007/s10955-020-02663-4 chicago: Maas, Jan, and Alexander Mielke. “Modeling of Chemical Reaction Systems with Detailed Balance Using Gradient Structures.” Journal of Statistical Physics. Springer Nature, 2020. https://doi.org/10.1007/s10955-020-02663-4. ieee: J. Maas and A. Mielke, “Modeling of chemical reaction systems with detailed balance using gradient structures,” Journal of Statistical Physics, vol. 181, no. 6. Springer Nature, pp. 2257–2303, 2020. ista: Maas J, Mielke A. 2020. Modeling of chemical reaction systems with detailed balance using gradient structures. Journal of Statistical Physics. 181(6), 2257–2303. mla: Maas, Jan, and Alexander Mielke. “Modeling of Chemical Reaction Systems with Detailed Balance Using Gradient Structures.” Journal of Statistical Physics, vol. 181, no. 6, Springer Nature, 2020, pp. 2257–303, doi:10.1007/s10955-020-02663-4. short: J. Maas, A. Mielke, Journal of Statistical Physics 181 (2020) 2257–2303. date_created: 2020-11-15T23:01:18Z date_published: 2020-12-01T00:00:00Z date_updated: 2023-08-22T13:24:27Z day: '01' ddc: - '510' department: - _id: JaMa doi: 10.1007/s10955-020-02663-4 ec_funded: 1 external_id: arxiv: - '2004.02831' isi: - '000587107200002' file: - access_level: open_access checksum: bc2b63a90197b97cbc73eccada4639f5 content_type: application/pdf creator: dernst date_created: 2021-02-04T10:29:11Z date_updated: 2021-02-04T10:29:11Z file_id: '9087' file_name: 2020_JourStatPhysics_Maas.pdf file_size: 753596 relation: main_file success: 1 file_date_updated: 2021-02-04T10:29:11Z has_accepted_license: '1' intvolume: ' 181' isi: 1 issue: '6' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 2257-2303 project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics - _id: 260482E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: ' F06504' name: Taming Complexity in Partial Di erential Systems publication: Journal of Statistical Physics publication_identifier: eissn: - '15729613' issn: - '00224715' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Modeling of chemical reaction systems with detailed balance using gradient structures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 181 year: '2020' ... --- _id: '13070' abstract: - lang: eng text: This dataset comprises all data shown in the figures of the submitted article "Surpassing the resistance quantum with a geometric superinductor". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. Surpassing the resistance quantum with a geometric superinductor. 2020. doi:10.5281/ZENODO.4052882 apa: Peruzzo, M., Trioni, A., Hassani, F., Zemlicka, M., & Fink, J. M. (2020). Surpassing the resistance quantum with a geometric superinductor. Zenodo. https://doi.org/10.5281/ZENODO.4052882 chicago: Peruzzo, Matilda, Andrea Trioni, Farid Hassani, Martin Zemlicka, and Johannes M Fink. “Surpassing the Resistance Quantum with a Geometric Superinductor.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.4052882. ieee: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, and J. M. Fink, “Surpassing the resistance quantum with a geometric superinductor.” Zenodo, 2020. ista: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. 2020. Surpassing the resistance quantum with a geometric superinductor, Zenodo, 10.5281/ZENODO.4052882. mla: Peruzzo, Matilda, et al. Surpassing the Resistance Quantum with a Geometric Superinductor. Zenodo, 2020, doi:10.5281/ZENODO.4052882. short: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, J.M. Fink, (2020). date_created: 2023-05-23T16:42:30Z date_published: 2020-09-27T00:00:00Z date_updated: 2023-08-22T13:23:57Z day: '27' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.4052882 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.4052883 month: '09' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '8755' relation: used_in_publication status: public status: public title: Surpassing the resistance quantum with a geometric superinductor tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8787' abstract: - lang: eng text: Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets. acknowledgement: "We thank Sebastian Helmer, Nicole Blount, Christine Mann, and Beate Jantz for technical assistance; Hellen Ishikawa-Ankerhold for help and advice; Michael Sixt for critical\r\ndiscussions. This study was supported by the DFG SFB 914 (S.M. [B02 and Z01], K.Sch.\r\n[B02], B.W. [A02 and Z03], C.A.R. [B03], C.S. [A10], J.P. [Gerok position]), the DFG\r\nSFB 1123 (S.M. [B06]), the DFG FOR 2033 (S.M. and F.G.), the German Center for\r\nCardiovascular Research (DZHK) (Clinician Scientist Program [L.N.], MHA 1.4VD\r\n[S.M.], Postdoc Start-up Grant, 81×3600213 [F.G.]), FP7 program (project 260309,\r\nPRESTIGE [S.M.]), FöFoLe project 1015/1009 (L.N.), FöFoLe project 947 (F.G.), the\r\nFriedrich-Baur-Stiftung project 41/16 (F.G.), and LMUexcellence NFF (F.G.). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no.\r\n833440) (S.M.). F.G. received funding from the European Union’s Horizon 2020 research\r\nand innovation program under the Marie Skłodowska-Curie grant agreement no.\r\n747687." article_number: '5778' article_processing_charge: No article_type: original author: - first_name: Leo full_name: Nicolai, Leo last_name: Nicolai - first_name: Karin full_name: Schiefelbein, Karin last_name: Schiefelbein - first_name: Silvia full_name: Lipsky, Silvia last_name: Lipsky - first_name: Alexander full_name: Leunig, Alexander last_name: Leunig - first_name: Marie full_name: Hoffknecht, Marie last_name: Hoffknecht - first_name: Kami full_name: Pekayvaz, Kami last_name: Pekayvaz - first_name: Ben full_name: Raude, Ben last_name: Raude - first_name: Charlotte full_name: Marx, Charlotte last_name: Marx - first_name: Andreas full_name: Ehrlich, Andreas last_name: Ehrlich - first_name: Joachim full_name: Pircher, Joachim last_name: Pircher - first_name: Zhe full_name: Zhang, Zhe last_name: Zhang - first_name: Inas full_name: Saleh, Inas last_name: Saleh - first_name: Anna-Kristina full_name: Marel, Anna-Kristina last_name: Marel - first_name: Achim full_name: Löf, Achim last_name: Löf - first_name: Tobias full_name: Petzold, Tobias last_name: Petzold - first_name: Michael full_name: Lorenz, Michael last_name: Lorenz - first_name: Konstantin full_name: Stark, Konstantin last_name: Stark - first_name: Robert full_name: Pick, Robert last_name: Pick - first_name: Gerhild full_name: Rosenberger, Gerhild last_name: Rosenberger - first_name: Ludwig full_name: Weckbach, Ludwig last_name: Weckbach - first_name: Bernd full_name: Uhl, Bernd last_name: Uhl - first_name: Sheng full_name: Xia, Sheng last_name: Xia - first_name: Christoph Andreas full_name: Reichel, Christoph Andreas last_name: Reichel - first_name: Barbara full_name: Walzog, Barbara last_name: Walzog - first_name: Christian full_name: Schulz, Christian last_name: Schulz - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Markus full_name: Bender, Markus last_name: Bender - first_name: Rong full_name: Li, Rong last_name: Li - first_name: Steffen full_name: Massberg, Steffen last_name: Massberg - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 citation: ama: Nicolai L, Schiefelbein K, Lipsky S, et al. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nature Communications. 2020;11. doi:10.1038/s41467-020-19515-0 apa: Nicolai, L., Schiefelbein, K., Lipsky, S., Leunig, A., Hoffknecht, M., Pekayvaz, K., … Gärtner, F. R. (2020). Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-19515-0 chicago: Nicolai, Leo, Karin Schiefelbein, Silvia Lipsky, Alexander Leunig, Marie Hoffknecht, Kami Pekayvaz, Ben Raude, et al. “Vascular Surveillance by Haptotactic Blood Platelets in Inflammation and Infection.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-19515-0. ieee: L. Nicolai et al., “Vascular surveillance by haptotactic blood platelets in inflammation and infection,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Nicolai L, Schiefelbein K, Lipsky S, Leunig A, Hoffknecht M, Pekayvaz K, Raude B, Marx C, Ehrlich A, Pircher J, Zhang Z, Saleh I, Marel A-K, Löf A, Petzold T, Lorenz M, Stark K, Pick R, Rosenberger G, Weckbach L, Uhl B, Xia S, Reichel CA, Walzog B, Schulz C, Zheden V, Bender M, Li R, Massberg S, Gärtner FR. 2020. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nature Communications. 11, 5778. mla: Nicolai, Leo, et al. “Vascular Surveillance by Haptotactic Blood Platelets in Inflammation and Infection.” Nature Communications, vol. 11, 5778, Springer Nature, 2020, doi:10.1038/s41467-020-19515-0. short: L. Nicolai, K. Schiefelbein, S. Lipsky, A. Leunig, M. Hoffknecht, K. Pekayvaz, B. Raude, C. Marx, A. Ehrlich, J. Pircher, Z. Zhang, I. Saleh, A.-K. Marel, A. Löf, T. Petzold, M. Lorenz, K. Stark, R. Pick, G. Rosenberger, L. Weckbach, B. Uhl, S. Xia, C.A. Reichel, B. Walzog, C. Schulz, V. Zheden, M. Bender, R. Li, S. Massberg, F.R. Gärtner, Nature Communications 11 (2020). date_created: 2020-11-22T23:01:23Z date_published: 2020-11-13T00:00:00Z date_updated: 2023-08-22T13:26:26Z day: '13' ddc: - '570' department: - _id: MiSi - _id: EM-Fac doi: 10.1038/s41467-020-19515-0 ec_funded: 1 external_id: isi: - '000594648000014' pmid: - '33188196' file: - access_level: open_access checksum: 485b7b6cf30198ba0ce126491a28f125 content_type: application/pdf creator: dernst date_created: 2020-11-23T13:29:49Z date_updated: 2020-11-23T13:29:49Z file_id: '8798' file_name: 2020_NatureComm_Nicolai.pdf file_size: 7035340 relation: main_file success: 1 file_date_updated: 2020-11-23T13:29:49Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41467-022-31310-7 scopus_import: '1' status: public title: Vascular surveillance by haptotactic blood platelets in inflammation and infection tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8789' abstract: - lang: eng text: Cooperation is a ubiquitous and beneficial behavioural trait despite being prone to exploitation by free-riders. Hence, cooperative populations are prone to invasions by selfish individuals. However, a population consisting of only free-riders typically does not survive. Thus, cooperators and free-riders often coexist in some proportion. An evolutionary version of a Snowdrift Game proved its efficiency in analysing this phenomenon. However, what if the system has already reached its stable state but was perturbed due to a change in environmental conditions? Then, individuals may have to re-learn their effective strategies. To address this, we consider behavioural mistakes in strategic choice execution, which we refer to as incompetence. Parametrising the propensity to make such mistakes allows for a mathematical description of learning. We compare strategies based on their relative strategic advantage relying on both fitness and learning factors. When strategies are learned at distinct rates, allowing learning according to a prescribed order is optimal. Interestingly, the strategy with the lowest strategic advantage should be learnt first if we are to optimise fitness over the learning path. Then, the differences between strategies are balanced out in order to minimise the effect of behavioural uncertainty. acknowledgement: "This work was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement #754411, the Australian Research Council Discovery Grants DP160101236 and DP150100618, and the European Research Council Consolidator Grant 863818 (FoRM-SMArt).\r\nAuthors would like to thank Patrick McKinlay for his work on the preliminary results for this paper." article_number: '1945' article_processing_charge: No article_type: original author: - first_name: Maria full_name: Kleshnina, Maria id: 4E21749C-F248-11E8-B48F-1D18A9856A87 last_name: Kleshnina - first_name: Sabrina full_name: Streipert, Sabrina last_name: Streipert - first_name: Jerzy full_name: Filar, Jerzy last_name: Filar - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Kleshnina M, Streipert S, Filar J, Chatterjee K. Prioritised learning in snowdrift-type games. Mathematics. 2020;8(11). doi:10.3390/math8111945 apa: Kleshnina, M., Streipert, S., Filar, J., & Chatterjee, K. (2020). Prioritised learning in snowdrift-type games. Mathematics. MDPI. https://doi.org/10.3390/math8111945 chicago: Kleshnina, Maria, Sabrina Streipert, Jerzy Filar, and Krishnendu Chatterjee. “Prioritised Learning in Snowdrift-Type Games.” Mathematics. MDPI, 2020. https://doi.org/10.3390/math8111945. ieee: M. Kleshnina, S. Streipert, J. Filar, and K. Chatterjee, “Prioritised learning in snowdrift-type games,” Mathematics, vol. 8, no. 11. MDPI, 2020. ista: Kleshnina M, Streipert S, Filar J, Chatterjee K. 2020. Prioritised learning in snowdrift-type games. Mathematics. 8(11), 1945. mla: Kleshnina, Maria, et al. “Prioritised Learning in Snowdrift-Type Games.” Mathematics, vol. 8, no. 11, 1945, MDPI, 2020, doi:10.3390/math8111945. short: M. Kleshnina, S. Streipert, J. Filar, K. Chatterjee, Mathematics 8 (2020). date_created: 2020-11-22T23:01:24Z date_published: 2020-11-04T00:00:00Z date_updated: 2023-08-22T13:25:45Z day: '04' ddc: - '000' department: - _id: KrCh doi: 10.3390/math8111945 ec_funded: 1 external_id: isi: - '000593962100001' file: - access_level: open_access checksum: 61cfcc3b35760656ce7a9385a4ace5d2 content_type: application/pdf creator: dernst date_created: 2020-11-23T13:06:30Z date_updated: 2020-11-23T13:06:30Z file_id: '8797' file_name: 2020_Mathematics_Kleshnina.pdf file_size: 565191 relation: main_file success: 1 file_date_updated: 2020-11-23T13:06:30Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Mathematics publication_identifier: eissn: - '22277390' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Prioritised learning in snowdrift-type games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2020' ... --- _id: '8287' abstract: - lang: eng text: Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks. article_processing_charge: No author: - first_name: Sergiy full_name: Bogomolov, Sergiy last_name: Bogomolov - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Kostiantyn full_name: Potomkin, Kostiantyn last_name: Potomkin - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. Reachability analysis of linear hybrid systems via block decomposition. In: Proceedings of the International Conference on Embedded Software. ; 2020.' apa: Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., & Schilling, C. (2020). Reachability analysis of linear hybrid systems via block decomposition. In Proceedings of the International Conference on Embedded Software. Virtual . chicago: Bogomolov, Sergiy, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling. “Reachability Analysis of Linear Hybrid Systems via Block Decomposition.” In Proceedings of the International Conference on Embedded Software, 2020. ieee: S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, “Reachability analysis of linear hybrid systems via block decomposition,” in Proceedings of the International Conference on Embedded Software, Virtual , 2020. ista: 'Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. 2020. Reachability analysis of linear hybrid systems via block decomposition. Proceedings of the International Conference on Embedded Software. EMSOFT: International Conference on Embedded Software.' mla: Bogomolov, Sergiy, et al. “Reachability Analysis of Linear Hybrid Systems via Block Decomposition.” Proceedings of the International Conference on Embedded Software, 2020. short: S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, C. Schilling, in:, Proceedings of the International Conference on Embedded Software, 2020. conference: end_date: 2020-09-25 location: 'Virtual ' name: 'EMSOFT: International Conference on Embedded Software' start_date: 2020-09-20 date_created: 2020-08-24T12:56:20Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-08-22T13:27:32Z ddc: - '000' department: - _id: ToHe ec_funded: 1 external_id: arxiv: - '1905.02458' file: - access_level: open_access checksum: d19e97d0f8a3a441dc078ec812297d75 content_type: application/pdf creator: cschilli date_created: 2020-08-24T12:53:15Z date_updated: 2020-08-24T12:53:15Z file_id: '8288' file_name: 2020EMSOFT.pdf file_size: 696384 relation: main_file success: 1 file_date_updated: 2020-08-24T12:53:15Z has_accepted_license: '1' keyword: - reachability - hybrid systems - decomposition language: - iso: eng oa: 1 oa_version: Preprint project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the International Conference on Embedded Software publication_status: published quality_controlled: '1' related_material: record: - id: '8790' relation: later_version status: public status: public title: Reachability analysis of linear hybrid systems via block decomposition tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '8788' abstract: - lang: eng text: 'We consider a real-time setting where an environment releases sequences of firm-deadline tasks, and an online scheduler chooses on-the-fly the ones to execute on a single processor so as to maximize cumulated utility. The competitive ratio is a well-known performance measure for the scheduler: it gives the worst-case ratio, among all possible choices for the environment, of the cumulated utility of the online scheduler versus an offline scheduler that knows these choices in advance. Traditionally, competitive analysis is performed by hand, while automated techniques are rare and only handle static environments with independent tasks. We present a quantitative-verification framework for precedence-aware competitive analysis, where task releases may depend on preceding scheduling choices, i.e., the environment can respond to scheduling decisions dynamically . We consider two general classes of precedences: 1) follower precedences force the release of a dependent task upon the completion of a set of precursor tasks, while and 2) pairing precedences modify the characteristics of a dependent task provided the completion of a set of precursor tasks. Precedences make competitive analysis challenging, as the online and offline schedulers operate on diverging sequences. We make a formal presentation of our framework, and use a GPU-based implementation to analyze ten well-known schedulers on precedence-based application examples taken from the existing literature: 1) a handshake protocol (HP); 2) network packet-switching; 3) query scheduling (QS); and 4) a sporadic-interrupt setting. Our experimental results show that precedences and task parameters can vary drastically the best scheduler. Our framework thus supports application designers in choosing the best scheduler among a given set automatically.' acknowledgement: 'This work was supported by the Austrian Science Foundation (FWF) under the NFN RiSE/SHiNE under Grant S11405 and Grant S11407. This article was presented in the International Conference on Embedded Software 2020 and appears as part of the ESWEEK-TCAD special issue. ' article_processing_charge: No article_type: original author: - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Nico full_name: Schaumberger, Nico last_name: Schaumberger - first_name: Ulrich full_name: Schmid, Ulrich last_name: Schmid - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Pavlogiannis A, Schaumberger N, Schmid U, Chatterjee K. Precedence-aware automated competitive analysis of real-time scheduling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2020;39(11):3981-3992. doi:10.1109/TCAD.2020.3012803 apa: Pavlogiannis, A., Schaumberger, N., Schmid, U., & Chatterjee, K. (2020). Precedence-aware automated competitive analysis of real-time scheduling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. IEEE. https://doi.org/10.1109/TCAD.2020.3012803 chicago: Pavlogiannis, Andreas, Nico Schaumberger, Ulrich Schmid, and Krishnendu Chatterjee. “Precedence-Aware Automated Competitive Analysis of Real-Time Scheduling.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. IEEE, 2020. https://doi.org/10.1109/TCAD.2020.3012803. ieee: A. Pavlogiannis, N. Schaumberger, U. Schmid, and K. Chatterjee, “Precedence-aware automated competitive analysis of real-time scheduling,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11. IEEE, pp. 3981–3992, 2020. ista: Pavlogiannis A, Schaumberger N, Schmid U, Chatterjee K. 2020. Precedence-aware automated competitive analysis of real-time scheduling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 39(11), 3981–3992. mla: Pavlogiannis, Andreas, et al. “Precedence-Aware Automated Competitive Analysis of Real-Time Scheduling.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, IEEE, 2020, pp. 3981–92, doi:10.1109/TCAD.2020.3012803. short: A. Pavlogiannis, N. Schaumberger, U. Schmid, K. Chatterjee, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 (2020) 3981–3992. date_created: 2020-11-22T23:01:24Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-22T13:27:05Z day: '01' department: - _id: KrCh doi: 10.1109/TCAD.2020.3012803 external_id: isi: - '000587712700069' intvolume: ' 39' isi: 1 issue: '11' language: - iso: eng month: '11' oa_version: None page: 3981-3992 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication_identifier: eissn: - '19374151' issn: - '02780070' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Precedence-aware automated competitive analysis of real-time scheduling type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2020' ... --- _id: '8790' abstract: - lang: eng text: Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this article, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks. acknowledgement: 'This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411, and the Air Force Office of Scientific Research under award number FA2386-17-1-4065. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force. ' article_processing_charge: No article_type: original author: - first_name: Sergiy full_name: Bogomolov, Sergiy id: 369D9A44-F248-11E8-B48F-1D18A9856A87 last_name: Bogomolov orcid: 0000-0002-0686-0365 - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Kostiantyn full_name: Potomkin, Kostiantyn last_name: Potomkin - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. Reachability analysis of linear hybrid systems via block decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2020;39(11):4018-4029. doi:10.1109/TCAD.2020.3012859 apa: Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., & Schilling, C. (2020). Reachability analysis of linear hybrid systems via block decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. IEEE. https://doi.org/10.1109/TCAD.2020.3012859 chicago: Bogomolov, Sergiy, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling. “Reachability Analysis of Linear Hybrid Systems via Block Decomposition.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. IEEE, 2020. https://doi.org/10.1109/TCAD.2020.3012859. ieee: S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, “Reachability analysis of linear hybrid systems via block decomposition,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11. IEEE, pp. 4018–4029, 2020. ista: Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. 2020. Reachability analysis of linear hybrid systems via block decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 39(11), 4018–4029. mla: Bogomolov, Sergiy, et al. “Reachability Analysis of Linear Hybrid Systems via Block Decomposition.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, IEEE, 2020, pp. 4018–29, doi:10.1109/TCAD.2020.3012859. short: S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, C. Schilling, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 (2020) 4018–4029. date_created: 2020-11-22T23:01:25Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-22T13:27:33Z day: '01' department: - _id: ToHe doi: 10.1109/TCAD.2020.3012859 ec_funded: 1 external_id: arxiv: - '1905.02458' isi: - '000587712700072' intvolume: ' 39' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.02458 month: '11' oa: 1 oa_version: Preprint page: 4018-4029 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication_identifier: eissn: - '19374151' issn: - '02780070' publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '8287' relation: earlier_version status: public scopus_import: '1' status: public title: Reachability analysis of linear hybrid systems via block decomposition type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2020' ... --- _id: '8924' abstract: - lang: eng text: 'Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression.' acknowledgement: CN, DD, NF-F, and JD were funded by the BBSRC (grant number BB/M009459/1). NK and AM were funded through the ERASMUS+Program. NC was funded by the VIPS Program of the Austrian Federal Ministry of Science and Research and the City of Vienna. article_number: '586870' article_processing_charge: No article_type: original author: - first_name: Candida full_name: Nibau, Candida last_name: Nibau - first_name: Despoina full_name: Dadarou, Despoina last_name: Dadarou - first_name: Nestoras full_name: Kargios, Nestoras last_name: Kargios - first_name: Areti full_name: Mallioura, Areti last_name: Mallioura - first_name: Narcis full_name: Fernandez-Fuentes, Narcis last_name: Fernandez-Fuentes - first_name: Nicola full_name: Cavallari, Nicola id: 457160E6-F248-11E8-B48F-1D18A9856A87 last_name: Cavallari - first_name: John H. full_name: Doonan, John H. last_name: Doonan citation: ama: Nibau C, Dadarou D, Kargios N, et al. A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis. Frontiers in Plant Science. 2020;11. doi:10.3389/fpls.2020.586870 apa: Nibau, C., Dadarou, D., Kargios, N., Mallioura, A., Fernandez-Fuentes, N., Cavallari, N., & Doonan, J. H. (2020). A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis. Frontiers in Plant Science. Frontiers. https://doi.org/10.3389/fpls.2020.586870 chicago: Nibau, Candida, Despoina Dadarou, Nestoras Kargios, Areti Mallioura, Narcis Fernandez-Fuentes, Nicola Cavallari, and John H. Doonan. “A Functional Kinase Is Necessary for Cyclin-Dependent Kinase G1 (CDKG1) to Maintain Fertility at High Ambient Temperature in Arabidopsis.” Frontiers in Plant Science. Frontiers, 2020. https://doi.org/10.3389/fpls.2020.586870. ieee: C. Nibau et al., “A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis,” Frontiers in Plant Science, vol. 11. Frontiers, 2020. ista: Nibau C, Dadarou D, Kargios N, Mallioura A, Fernandez-Fuentes N, Cavallari N, Doonan JH. 2020. A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis. Frontiers in Plant Science. 11, 586870. mla: Nibau, Candida, et al. “A Functional Kinase Is Necessary for Cyclin-Dependent Kinase G1 (CDKG1) to Maintain Fertility at High Ambient Temperature in Arabidopsis.” Frontiers in Plant Science, vol. 11, 586870, Frontiers, 2020, doi:10.3389/fpls.2020.586870. short: C. Nibau, D. Dadarou, N. Kargios, A. Mallioura, N. Fernandez-Fuentes, N. Cavallari, J.H. Doonan, Frontiers in Plant Science 11 (2020). date_created: 2020-12-06T23:01:14Z date_published: 2020-11-10T00:00:00Z date_updated: 2023-08-24T10:50:00Z day: '10' ddc: - '580' department: - _id: EvBe doi: 10.3389/fpls.2020.586870 external_id: isi: - '000591637000001' file: - access_level: open_access checksum: 1c0ee6ce9950aa665d6a5cc64aa6b752 content_type: application/pdf creator: dernst date_created: 2020-12-09T09:14:19Z date_updated: 2020-12-09T09:14:19Z file_id: '8929' file_name: 2020_Frontiers_Nibau.pdf file_size: 1833244 relation: main_file success: 1 file_date_updated: 2020-12-09T09:14:19Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Frontiers in Plant Science publication_identifier: eissn: - 1664-462X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8926' abstract: - lang: eng text: 'Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant-free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.' acknowledgement: The authors also acknowledge financial support from the University Research Fund (BOF-GOA-PS ID No. 33928). S.L. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 665385. article_processing_charge: No article_type: original author: - first_name: Erdem full_name: Irtem, Erdem last_name: Irtem - first_name: Daniel full_name: Arenas Esteban, Daniel last_name: Arenas Esteban - first_name: Miguel full_name: Duarte, Miguel last_name: Duarte - first_name: Daniel full_name: Choukroun, Daniel last_name: Choukroun - first_name: Seungho full_name: Lee, Seungho id: BB243B88-D767-11E9-B658-BC13E6697425 last_name: Lee orcid: 0000-0002-6962-8598 - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Sara full_name: Bals, Sara last_name: Bals - first_name: Tom full_name: Breugelmans, Tom last_name: Breugelmans citation: ama: Irtem E, Arenas Esteban D, Duarte M, et al. Ligand-mode directed selectivity in Cu-Ag core-shell based gas diffusion electrodes for CO2 electroreduction. ACS Catalysis. 2020;10(22):13468-13478. doi:10.1021/acscatal.0c03210 apa: Irtem, E., Arenas Esteban, D., Duarte, M., Choukroun, D., Lee, S., Ibáñez, M., … Breugelmans, T. (2020). Ligand-mode directed selectivity in Cu-Ag core-shell based gas diffusion electrodes for CO2 electroreduction. ACS Catalysis. American Chemical Society. https://doi.org/10.1021/acscatal.0c03210 chicago: Irtem, Erdem, Daniel Arenas Esteban, Miguel Duarte, Daniel Choukroun, Seungho Lee, Maria Ibáñez, Sara Bals, and Tom Breugelmans. “Ligand-Mode Directed Selectivity in Cu-Ag Core-Shell Based Gas Diffusion Electrodes for CO2 Electroreduction.” ACS Catalysis. American Chemical Society, 2020. https://doi.org/10.1021/acscatal.0c03210. ieee: E. Irtem et al., “Ligand-mode directed selectivity in Cu-Ag core-shell based gas diffusion electrodes for CO2 electroreduction,” ACS Catalysis, vol. 10, no. 22. American Chemical Society, pp. 13468–13478, 2020. ista: Irtem E, Arenas Esteban D, Duarte M, Choukroun D, Lee S, Ibáñez M, Bals S, Breugelmans T. 2020. Ligand-mode directed selectivity in Cu-Ag core-shell based gas diffusion electrodes for CO2 electroreduction. ACS Catalysis. 10(22), 13468–13478. mla: Irtem, Erdem, et al. “Ligand-Mode Directed Selectivity in Cu-Ag Core-Shell Based Gas Diffusion Electrodes for CO2 Electroreduction.” ACS Catalysis, vol. 10, no. 22, American Chemical Society, 2020, pp. 13468–78, doi:10.1021/acscatal.0c03210. short: E. Irtem, D. Arenas Esteban, M. Duarte, D. Choukroun, S. Lee, M. Ibáñez, S. Bals, T. Breugelmans, ACS Catalysis 10 (2020) 13468–13478. date_created: 2020-12-06T23:01:15Z date_published: 2020-11-20T00:00:00Z date_updated: 2023-08-24T10:52:32Z day: '20' department: - _id: MaIb doi: 10.1021/acscatal.0c03210 ec_funded: 1 external_id: isi: - '000592978900031' intvolume: ' 10' isi: 1 issue: '22' language: - iso: eng month: '11' oa_version: None page: 13468-13478 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: ACS Catalysis publication_identifier: eissn: - '21555435' publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Ligand-mode directed selectivity in Cu-Ag core-shell based gas diffusion electrodes for CO2 electroreduction type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2020' ... --- _id: '8944' abstract: - lang: eng text: "Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path kF*l close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field \U0001D435\U0001D4502, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At \U0001D435\U0001D4502 a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving\r\nthe system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above \U0001D435\U0001D4502." acknowledgement: 'We gratefully acknowledge helpful conversations with B.L. Altshuler and R. Hlubina. The work was supported by the projects APVV-18-0358, VEGA 2/0058/20, VEGA 1/0743/19 the European Microkelvin Platform, the COST action CA16218 (Nanocohybri) and by U.S. Steel Košice. ' article_number: '180508' article_processing_charge: No article_type: original author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: M. full_name: Kopčík, M. last_name: Kopčík - first_name: P. full_name: Szabó, P. last_name: Szabó - first_name: T. full_name: Samuely, T. last_name: Samuely - first_name: J. full_name: Kačmarčík, J. last_name: Kačmarčík - first_name: P. full_name: Neilinger, P. last_name: Neilinger - first_name: M. full_name: Grajcar, M. last_name: Grajcar - first_name: P. full_name: Samuely, P. last_name: Samuely citation: ama: 'Zemlicka M, Kopčík M, Szabó P, et al. Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field. Physical Review B. 2020;102(18). doi:10.1103/PhysRevB.102.180508' apa: 'Zemlicka, M., Kopčík, M., Szabó, P., Samuely, T., Kačmarčík, J., Neilinger, P., … Samuely, P. (2020). Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.102.180508' chicago: 'Zemlicka, Martin, M. Kopčík, P. Szabó, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, and P. Samuely. “Zeeman-Driven Superconductor-Insulator Transition in Strongly Disordered MoC Films: Scanning Tunneling Microscopy and Transport Studies in a Transverse Magnetic Field.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/PhysRevB.102.180508.' ieee: 'M. Zemlicka et al., “Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field,” Physical Review B, vol. 102, no. 18. American Physical Society, 2020.' ista: 'Zemlicka M, Kopčík M, Szabó P, Samuely T, Kačmarčík J, Neilinger P, Grajcar M, Samuely P. 2020. Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field. Physical Review B. 102(18), 180508.' mla: 'Zemlicka, Martin, et al. “Zeeman-Driven Superconductor-Insulator Transition in Strongly Disordered MoC Films: Scanning Tunneling Microscopy and Transport Studies in a Transverse Magnetic Field.” Physical Review B, vol. 102, no. 18, 180508, American Physical Society, 2020, doi:10.1103/PhysRevB.102.180508.' short: M. Zemlicka, M. Kopčík, P. Szabó, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, P. Samuely, Physical Review B 102 (2020). date_created: 2020-12-13T23:01:21Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-24T10:53:36Z day: '01' department: - _id: JoFi doi: 10.1103/PhysRevB.102.180508 external_id: arxiv: - '2011.04329' isi: - '000591509900003' intvolume: ' 102' isi: 1 issue: '18' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2011.04329 month: '11' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - '24699969' issn: - '24699950' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 102 year: '2020' ... --- _id: '8955' abstract: - lang: eng text: Skeletal muscle activity is continuously modulated across physiologic states to provide coordination, flexibility and responsiveness to body tasks and external inputs. Despite the central role the muscular system plays in facilitating vital body functions, the network of brain-muscle interactions required to control hundreds of muscles and synchronize their activation in relation to distinct physiologic states has not been investigated. Recent approaches have focused on general associations between individual brain rhythms and muscle activation during movement tasks. However, the specific forms of coupling, the functional network of cortico-muscular coordination, and how network structure and dynamics are modulated by autonomic regulation across physiologic states remains unknown. To identify and quantify the cortico-muscular interaction network and uncover basic features of neuro-autonomic control of muscle function, we investigate the coupling between synchronous bursts in cortical rhythms and peripheral muscle activation during sleep and wake. Utilizing the concept of time delay stability and a novel network physiology approach, we find that the brain-muscle network exhibits complex dynamic patterns of communication involving multiple brain rhythms across cortical locations and different electromyographic frequency bands. Moreover, our results show that during each physiologic state the cortico-muscular network is characterized by a specific profile of network links strength, where particular brain rhythms play role of main mediators of interaction and control. Further, we discover a hierarchical reorganization in network structure across physiologic states, with high connectivity and network link strength during wake, intermediate during REM and light sleep, and low during deep sleep, a sleep-stage stratification that demonstrates a unique association between physiologic states and cortico-muscular network structure. The reported empirical observations are consistent across individual subjects, indicating universal behavior in network structure and dynamics, and high sensitivity of cortico-muscular control to changes in autonomic regulation, even at low levels of physical activity and muscle tone during sleep. Our findings demonstrate previously unrecognized basic principles of brain-muscle network communication and control, and provide new perspectives on the regulatory mechanisms of brain dynamics and locomotor activation, with potential clinical implications for neurodegenerative, movement and sleep disorders, and for developing efficient treatment strategies. acknowledgement: We acknowledge support from the W. M. Keck Foundation, National Institutes of Health (NIH Grant 1R01-HL098437), the US-Israel Binational Science Foundation (BSF Grant 2012219), and the Office of Naval Research (ONR Grant 000141010078). FL acknowledges support also from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 754411. article_number: '558070' article_processing_charge: No article_type: original author: - first_name: Rossella full_name: Rizzo, Rossella last_name: Rizzo - first_name: Xiyun full_name: Zhang, Xiyun last_name: Zhang - first_name: Jilin W.J.L. full_name: Wang, Jilin W.J.L. last_name: Wang - first_name: Fabrizio full_name: Lombardi, Fabrizio id: A057D288-3E88-11E9-986D-0CF4E5697425 last_name: Lombardi orcid: 0000-0003-2623-5249 - first_name: Plamen Ch full_name: Ivanov, Plamen Ch last_name: Ivanov citation: ama: Rizzo R, Zhang X, Wang JWJL, Lombardi F, Ivanov PC. Network physiology of cortico–muscular interactions. Frontiers in Physiology. 2020;11. doi:10.3389/fphys.2020.558070 apa: Rizzo, R., Zhang, X., Wang, J. W. J. L., Lombardi, F., & Ivanov, P. C. (2020). Network physiology of cortico–muscular interactions. Frontiers in Physiology. Frontiers. https://doi.org/10.3389/fphys.2020.558070 chicago: Rizzo, Rossella, Xiyun Zhang, Jilin W.J.L. Wang, Fabrizio Lombardi, and Plamen Ch Ivanov. “Network Physiology of Cortico–Muscular Interactions.” Frontiers in Physiology. Frontiers, 2020. https://doi.org/10.3389/fphys.2020.558070. ieee: R. Rizzo, X. Zhang, J. W. J. L. Wang, F. Lombardi, and P. C. Ivanov, “Network physiology of cortico–muscular interactions,” Frontiers in Physiology, vol. 11. Frontiers, 2020. ista: Rizzo R, Zhang X, Wang JWJL, Lombardi F, Ivanov PC. 2020. Network physiology of cortico–muscular interactions. Frontiers in Physiology. 11, 558070. mla: Rizzo, Rossella, et al. “Network Physiology of Cortico–Muscular Interactions.” Frontiers in Physiology, vol. 11, 558070, Frontiers, 2020, doi:10.3389/fphys.2020.558070. short: R. Rizzo, X. Zhang, J.W.J.L. Wang, F. Lombardi, P.C. Ivanov, Frontiers in Physiology 11 (2020). date_created: 2020-12-20T23:01:18Z date_published: 2020-11-26T00:00:00Z date_updated: 2023-08-24T11:00:45Z day: '26' ddc: - '570' department: - _id: GaTk doi: 10.3389/fphys.2020.558070 ec_funded: 1 external_id: isi: - '000596849400001' pmid: - '33324233' file: - access_level: open_access checksum: ef9515b28c5619b7126c0f347958bcb3 content_type: application/pdf creator: dernst date_created: 2020-12-21T10:37:50Z date_updated: 2020-12-21T10:37:50Z file_id: '8961' file_name: 2020_Frontiers_Rizzo.pdf file_size: 13380030 relation: main_file success: 1 file_date_updated: 2020-12-21T10:37:50Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Frontiers in Physiology publication_identifier: eissn: - 1664042X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Network physiology of cortico–muscular interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8949' abstract: - lang: eng text: Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia. Remarkably, the total numbers of glia in MADM clones balance out regardless of significant alterations in clonal symmetries. The variability in glial clones shows stochastic patterns that we define mathematically, which are different from the deterministic patterns in neuronal clones. This study sets a foundation for studying the biological significance of stochastic and deterministic clonal principles underlying tissue development, and identifying mechanisms that differentiate between neurogenesis and gliogenesis. acknowledgement: This research was funded by grants from the National Institutes of Health to H.T.G. (R01NS098370 and R01NS089795). C.V.M. was supported by a National Science Foundation Graduate Research Fellowship (DGE-1746939). R.B. was supported by the FWF Lise-Meitner program (M 2416), and S.H. was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 725780 LinPro).The authors thank members of the Ghashghaei lab for discussions, technical support, and help with preparation of the manuscript. article_number: '2662' article_processing_charge: No article_type: original author: - first_name: Xuying full_name: Zhang, Xuying last_name: Zhang - first_name: Christine V. full_name: Mennicke, Christine V. last_name: Mennicke - first_name: Guanxi full_name: Xiao, Guanxi last_name: Xiao - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Mansoor full_name: Haider, Mansoor last_name: Haider - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: H. Troy full_name: Ghashghaei, H. Troy last_name: Ghashghaei citation: ama: Zhang X, Mennicke CV, Xiao G, et al. Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage. Cells. 2020;9(12). doi:10.3390/cells9122662 apa: Zhang, X., Mennicke, C. V., Xiao, G., Beattie, R. J., Haider, M., Hippenmeyer, S., & Ghashghaei, H. T. (2020). Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage. Cells. MDPI. https://doi.org/10.3390/cells9122662 chicago: Zhang, Xuying, Christine V. Mennicke, Guanxi Xiao, Robert J Beattie, Mansoor Haider, Simon Hippenmeyer, and H. Troy Ghashghaei. “Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage.” Cells. MDPI, 2020. https://doi.org/10.3390/cells9122662. ieee: X. Zhang et al., “Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage,” Cells, vol. 9, no. 12. MDPI, 2020. ista: Zhang X, Mennicke CV, Xiao G, Beattie RJ, Haider M, Hippenmeyer S, Ghashghaei HT. 2020. Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage. Cells. 9(12), 2662. mla: Zhang, Xuying, et al. “Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage.” Cells, vol. 9, no. 12, 2662, MDPI, 2020, doi:10.3390/cells9122662. short: X. Zhang, C.V. Mennicke, G. Xiao, R.J. Beattie, M. Haider, S. Hippenmeyer, H.T. Ghashghaei, Cells 9 (2020). date_created: 2020-12-14T08:04:03Z date_published: 2020-12-11T00:00:00Z date_updated: 2023-08-24T10:57:48Z day: '11' ddc: - '570' department: - _id: SiHi doi: 10.3390/cells9122662 ec_funded: 1 external_id: isi: - '000601787300001' file: - access_level: open_access checksum: 5095cbdc728c9a510c5761cf60a8861c content_type: application/pdf creator: dernst date_created: 2020-12-14T08:09:43Z date_updated: 2020-12-14T08:09:43Z file_id: '8950' file_name: 2020_Cells_Zhang.pdf file_size: 3504525 relation: main_file success: 1 file_date_updated: 2020-12-14T08:09:43Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Cells publication_identifier: issn: - 2073-4409 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ...